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Lille, CNRS UMR 8204, Inserm U1019, CHU de Lille, Institut Pasteur de Lille, Centre
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Abstract Bacterial factors favoring the unprecedented multidrug-resistant tuberculosis (MDR-

TB) epidemic in the former Soviet Union remain unclear. We utilized whole genome sequencing and

Bayesian statistics to analyze the evolutionary history, temporal emergence of resistance and

transmission networks of MDR Mycobacterium tuberculosis complex isolates from Karakalpakstan,

Uzbekistan (2001–2006). One clade (termed Central Asian outbreak, CAO) dating back to 1974

(95% HPD 1969–1982) subsequently acquired resistance mediating mutations to eight anti-TB

drugs. Introduction of standardized WHO-endorsed directly observed treatment, short-course in

Karakalpakstan in 1998 likely selected for CAO-strains, comprising 75% of sampled MDR-TB

isolates in 2005/2006. CAO-isolates were also identified in a published cohort from Russia (2008–

2010). Similarly, the presence of mutations supposed to compensate bacterial fitness deficits was

associated with transmission success and higher drug resistance rates. The genetic make-up of

these MDR-strains threatens the success of both empirical and standardized MDR-TB therapies,

including the newly WHO-endorsed short MDR-TB regimen in Uzbekistan.
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Introduction
Multidrug-resistant tuberculosis (MDR-TB), caused by Mycobacterium tuberculosis complex (MTBC)

strains that are resistant to the first-line drugs isoniazid and rifampicin, represent a threat to global

TB control. Barely 20% of the estimated annual 480,000 new MDR-TB patients have access to ade-

quate second-line treatment regimens. The majority of undiagnosed or ineffectively treated MDR-TB

patients continue to transmit their infection and suffer high mortality (WHO, 2016).

Based on early observations that the acquisition of drug resistance could lead to reduced bacte-

rial fitness (Middlebrook and Cohn, 1953), it was hypothesized that drug-resistant MTBC-strains

had a reduced capacity to transmit, and would not widely disseminate in the general population

(Borrell and Gagneux, 2009; Billington et al., 1999; Burgos et al., 2003; Dye and Espinal, 2001;

Andersson and Levin, 1999). This optimistic scenario has been invalidated by the now abundant

evidence for transmission of MDR and extensively drug-resistant MTBC-strains (XDR-TB; MDR-TB

additionally resistant to at least one fluoroquinolone and one injectable aminoglycoside) in health-

care and community settings (Borrell and Gagneux, 2009; Gagneux et al., 2006; Müller et al.,

2013; Pym et al., 2002; Comas et al., 2012). In former Soviet Union countries, which experience

the highest MDR-TB rates worldwide, the expansion of drug-resistant MTBC-clones is thought to be

promoted by interrupted drug supplies, inadequate implementation of regimens, lack of infection

control and erratic treatment in prison settings (Balabanova et al., 2004; Casali et al., 2014a). Con-

tinued transmission is thought to be aided by the co-selection of mutations in the bacterial popula-

tion that compensate for a fitness cost (e.g. growth deficit) associated particularly with the

acquisition of rifampicin resistance mediating mutations (Borrell and Gagneux, 2009;

Andersson and Levin, 1999; Gagneux et al., 2006; Müller et al., 2013; Pym et al., 2002;

Comas et al., 2012). The compensatory mechanism for rifampicin-resistant MTBC-strains is pro-

posed to be associated with structural changes in the RNA-polymerase subunits RpoA, RpoB, and

RpoC that increase transcriptional activity and as a consequence enhance the growth rate

(Comas et al., 2012). However, the impact of these bacterial genetic factors on the epidemiological

success of MDR-MTBC strains and implications for current and upcoming MDR-TB treatment strate-

gies remain unexplored.

We utilized whole-genome sequencing (WGS) to retrace the longitudinal transmission and evolu-

tion of MTBC-strains toward MDR/pre-XDR/XDR geno- and phenotypes in Karakalpakstan, Uzbeki-

stan. In this high MDR-TB incidence setting, the proportion of MDR-TB among new TB-patients

increased from 13% in 2001 to 23% in 2014 despite the local introduction of the World Health Orga-

nization (WHO) recommended DOTS strategy in 1998 and an initially limited MDR-TB treatment pro-

gram in 2003 (Cox et al., 2007; Ulmasova et al., 2013). We expanded our analyses by including a

WGS dataset of MDR-MTBC isolates from Samara, Russia (2008–2010) (Casali et al., 2014a) to

investigate clonal relatedness, resistance and compensatory evolution in both settings.

Results

Study population and MTBC phenotypic resistance (Karakalpakstan,
Uzbekistan)
Despite differences in sampling for cohort 1 (cross-sectional, 2001–2002) and cohort 2 (consecutive

enrollment of MDR-TB patients, 2003–2006) (see Materials and methods), patients showed similar

age, sex distributions, and proportion of residence in Nukus, the main city in Karakalpakstan (Uzbeki-

stan) (Appendix—table 1). While the majority of strains from both cohorts were phenotypically resis-

tant to additional first-line TB drugs (i.e. beyond rifampicin and isoniazid), combined resistance to all

five first-line drugs was significantly greater in cohort 2 (47% in cohort 2 compared to 14% in cohort

1, p<0.0001). The same was true for resistance to the second-line injectable drug capreomycin (23%

in cohort 2 compared to 2% in cohort 1, p=0.0001) (Appendix—table 1). This finding was surprising

as the isolates from cohort two patients - who were treated with individualized second-line regimens

predominately comprising ofloxacin as the fluoroquinolone and capreomycin as the second-line

injectable - were all obtained before the initiation of their treatment. In addition, there was no formal
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MDR-TB treatment program in Karakalpakstan prior to 2003. These elements imply that the higher

rate of resistance to capreomycin was attributable to infection by already resistant strains (i.e. to pri-

mary resistance).

MTBC population structure and transmission rates
Utilizing WGS, we determined 6979 single-nucleotide polymorphisms (SNPs) plus 537 variants

located in 28 genes and upstream regions associated with drug resistance and bacterial fitness

(Supplementary file 1). The corresponding phylogeny revealed a dominant clade comprising 173/

277 (62.5%) closely related isolates within MTBC lineage 2 (particularly Beijing-genotype) (Figure 1).

This group, termed Central Asian Outbreak (CAO), showed a highly restricted genetic diversity

(median pairwise distance of 21 SNPs, IQR 13–25) and was differentiated from a set of more diverse

isolates by 38 specific SNPs (Appendix—figure 1, Supplementary file 1 ). The proportion of CAO-

isolates was similar between 2001–2002 and 2003–2004 (49% and 52%, respectively), but increased

to 76% in 2005–06 (p<0.01). Over the same time periods, the proportions of other groups remained

stable or decreased (Appendix—figure 2).

We then sized transmission networks (measured by transmission indexes, see

Materials and methods) supposed to reflect human-to-human transmission over the last ~10 years

based on a maximum of 10 differentiating SNPs between two isolates. Transmission rates varied,

even among closely related outbreak isolates (Figure 1). Beijing-CAO-isolates formed particularly

large transmission networks (>50 patients; Figure 1); 96.0% (166/173) of all Beijing-CAO isolates

were associated with recent transmission (i.e. transmission index �1), versus 48.4% (31/64) of non-

eLife digest Multidrug-resistant tuberculosis, often shortened to MDR-TB, is a public health

crisis with close to half a million patients falling ill each year globally. Some strains of the bacterium

Mycobacterium tuberculosis, which causes tuberculosis disease, are resistant to the two most

effective drugs used to treat the infection. As a result, patients with MDR-TB require a longer

treatment of up to two years, often with severe side effects and a low chance of cure. Resistant

strains of the bacteria are usually weaker than drug-susceptible strains. So, for a long time, large

MDR-TB epidemics were considered to be unlikely and outbreaks of MDR-TB were often regarded

as locally contained phenomenona.

Recent research has shown that MDR-TB strains are often just as likely as drug-susceptible strains

to be transmitted and therefore just as likely to cause large country-wide outbreaks. It has also

become clear that the resistant bacteria acquire additional mutations over time to compensate for

any weakness. However, a lack of detailed history of outbreaks has meant the role of the genetics of

MDR-TB bacteria has not been fully understood. Without this knowledge, prevention of future

outbreaks and containment of the most successful strains in areas with a high burden of disease is

difficult.

To address this, Merker, Barbier et al. reconstructed the evolutionary history of MDR-TB strains

obtained in 2001–2006 from an outbreak in Uzbekistan. Whole genome sequencing followed by

statistical analysis highlighted one predomininant strain that likely emerged in the mid-1970s, when

the country was part of the former Soviet Union. This strain has since acquired mutations that make

it resistant to eight different drugs. The most successful bacterial strains found also had

compensatory mutations that seem to aid their survival.

In 1998, the health authorities implemented a TB treatment program in the region without

knowing the true extent of the MDR-TB outbreak at that time. Testing for drug resistance was not

routinely available, and Merker, Barbier et al. saw that MDR-TB strains resistant to the drugs used

spread in the study region and were later also found independently in Russia.

A lack of routine testing for drug resistance in TB remains common in many countries with high

burdens of the disease. These findings emphasize the need for universal access to tests for TB drug

resistance, therapies tailored for individual patients, and access to new and repurposed drugs to

reduce the risk of future outbreaks of drug-resistant TB.

DOI: https://doi.org/10.7554/eLife.38200.002
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Figure 1. Drug resistance and transmission success among MDR-MTBC isolates from Karakalpakstan, Uzbekistan. Maximum likelihood phylogeny (GTR

substitution model, 1000 resamples) of 277 MDR-MTBC isolates from Karakalpakstan, Uzbekistan sampled from 2001 to 2006. Columns show drug

resistance associated mutations to first- and second-line drugs (different mutations represented by different colors), genetic classification of pre-XDR

(purple) and XDR (pink) isolates, and putative compensatory mutations in the RNA polymerase genes rpoA, rpoB and rpoC. Transmission index

represents number of isolates within a maximum range of 10 SNPs at whole genome level. MTBC lineage two isolates (Beijing genotype) are

differentiated into three clades (i.e. Central Asian Outbreak (CAO), group 2 and group 3). Isolates belonging to lineage 4 (Euro-American) are colored

in grey: H = isoniazid, R = rifampicin, S = streptomycin, E = ethambutol, Z = pyrazinamide, FQ = fluoroquinolone, AG = aminoglycosides,

Km = kanamycin Cm = capreomycin, TA = thioamide, PAS = para aminosalicylic acid.

DOI: https://doi.org/10.7554/eLife.38200.003
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CAO Beijing isolates (p<0.0001) and 57.5% (23/40) of non-Beijing isolates (p<0.0001)

(Supplementary file 1). In addition, the large CAO transmission network exhibited higher levels of

drug resistance relative to non-Beijing strains, as reflected by the larger number of drugs for which

phenotypic (p=0.0079) and genotypic drug resistance (p=0.0048) was detected Appendix—

figure 3).

Evolutionary history of CAO strains in Karakalpakstan
In order to gain more detailed insights into the emergence of resistance mutations in the evolution-

ary history of the CAO clade, we sought to employ a Bayesian phylogenetic analysis for a temporal

calibration of the CAO phylogeny and an estimation of the mutation rate. Using an extended collec-

tion of more diverse CAO isolates (n = 220) from different settings (see Materials and methods), we

initially compensated for the restricted sampling time frame of the Karakalpakstan dataset (2001–

2006). A linear regression analysis showed correlation between sampling year and root-to-tip dis-

tance and even a moderate temporal signal (p=0.00039, R2 = 5.2%, Appendix—figure 4), allowed

for a further estimation of CAO mutation rates and evaluation of molecular clock models using

Bayesian statistics as discussed previously (Duchêne et al., 2016). Based on the marginal L estimates

collected by path sampling, we found a strict molecular clock with tip dates to be a reasonable

Figure 2. Evolutionary history of MTBC Central Asian outbreak (CAO) strains. Genealogical tree of CAO strains in Karakalpakstan, Uzbekistan and

effective population size over time based on a (piecewise-constant) Bayesian skyline approach using the GTR substitution model and a strict molecular

clock prior of 0.94 � 10�7 substitutions per nucleotide per year. Pink shaded area represents changes in the effective population size giving the 95%

highest posterior density (HPD) interval with the pink line representing the mean value. Vertical lines indicate time points of the implementation of the

first standardized TB treatment program (DOTS) in Karakalpakstan and of the declaration of Uzbekistan as independent republic. Symbols on branches

show steps of fixation of resistance conferring mutations.

DOI: https://doi.org/10.7554/eLife.38200.004
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Figure 3. Compensatory mutations and drug resistance levels. Comparisons between isolates carrying compensatory mutations (in orange) and

isolates with no-compensatory mutations (in blue), from the Karakalpakstan dataset. (A) Boxplot showing number of resistance mutations for the two

categories (without or with compensatory mutations). The two categories were significantly different (two-sample t-test p=1.2�10�10). (B) Bubble plots

showing the transmission index (number of isolates differing by less than 10 SNPs) as a function of antibiotic resistance related mutations. Bubble sizes

are proportional to the number of isolates. (C) Density plot of the number of resistance-conferring mutations for four groups of isolates sourced from

the Karakalpakstan data. Proportions are adjusted by using Gaussian smoothing kernels. The four groups are composed of non-CAO isolates with no

compensatory mutations; non-CAO isolates carrying compensatory mutations; CAO isolates with no compensatory mutations and CAO isolates

carrying compensatory mutations. These groups are respectively colored in light blue, dark blue, light orange and light red.

DOI: https://doi.org/10.7554/eLife.38200.005
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model for CAO isolates (Appendix—table 2). Mutation rate estimates (under a relaxed clock model)

ranged on average from 0.88 to 0.96 � 10�7 substitutions per site per year (s/s/y), depending on

the demographic model, in favor for the Bayesian skyline model with a mutation rate of 0.94 � 10�7

(s/s/y) (95% HPD 0.72–1.15 � 10�7 (s/s/y)) (Appendix—table 2). Comparing different demographic

models for the CAO-Karakalpakstan dataset (n = 173) an exponential growth model and a Bayesian

skyline model were superior over the constant size demographic prior.

Employing the Bayesian skyline model with a strict molecular clock set to 0.94 � 10�7 (s/s/y) spe-

cifically we determined that the most recent common ancestor (MRCA) of the CAO-clade emerged

around 1974 (95% highest posterior density (HPD) 1969–1982). The time to the MRCA was con-

firmed with the exponential growth demographic model (1977, 95% HPD 1977–1982, Appendix—

table 2). The MRCA already exhibited a streptomycin resistance mutation (rpsL K43R) (Figure 2),

and acquired isoniazid resistance (katG S315T) in 1977 (95% HPD 1973 – 1983). The CAO-population

size then rose contemporaneously with multiple events of rifampicin, ethambutol, ethionamide, and

para-aminosalicylic acid resistance acquisition in different branches (Figure 2). As an illustration, the

most frequent CAO-clone (upper clade in Figure 2) acquired ethambutol and ethionamide resis-

tance mutations (embB M306V, ethA T314I) around 1984 (95% HPD 1982–1989), and an MDR-geno-

type (rpoB S450L) around 1986 (95% HPD 1985–1992). The effective population size reached a

plateau before fixation of mutations in the ribD promoter region (leading to para-aminosalicylic acid

resistance) and rpoC N698S, putatively enhancing its fitness around 1990 (95% HPD 1989–1994)

(Figure 2). Independent fixation of pyrazinamide (pncA Q10P and I133T) and kanamycin (eis �12 g/

a) resistance-associated mutations was detected in 1992 and 1991 (both with 95% HPD rounded to

1991–1996) (Figure 2).

Figure 4. Contributions of resistance-conferring and compensatory mutations to the transmission success of the MTBC Beijing-CAO clade,

Karakalpakstan, Uzbekistan. Shown are the coefficients and 95% confidence bands of multiple linear regression of the transmission success score,

defined as the size of clusters diverging by at most N SNPs and divided by N or, equivalently, the size of clusters that evolved over N years divided by

N. The presence of compensatory mutations was independently associated with transmission success, with a maximum association strength found for

SNP distances ranging from 10 to 20 SNPs, corresponding to transmission clusters beginning around 1995.

DOI: https://doi.org/10.7554/eLife.38200.006
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To further account for uncertainties of substitution rates and thus fixation of drug resistance

within the CAO-clade we ran the best models (Bayesian skyline and exponential growth) with the

upper and lower HPD interval of the best clock estimate (see above). Similarly, the most recent fixa-

tion of the putative compensatory mutation rpoC N698S was 1994 (95% HPD 1992–1996), still years

before implementation of the systematic DOTS-program in Karakalpakstan in 1998. Interestingly,

the DOTS implementation coincided with a second effective population size increase (Figure 2). At

that time, distinct CAO-clades already exhibited pre-XDR (in this context MDR plus kanamycin resis-

tance) resistance profiles, mediating resistance to as many as eight different anti-TB drugs. Of note,

only a single isolate was identified as harboring a gyrA mutation (A90V), associated with fluoroquino-

lone resistance (Supplementary file 1). At the end of the study period in 2006, we observed a pre-

XDR rate among CAO isolates of 52.0% (90/173), compared to 35.9% (23/64) among other Beijing

isolates (p=0.03) and compared to 42.5% (17/40) among non-Beijing isolates (p=0.30)

(Supplementary file 1).

Impact of compensatory variants on transmission networks
Overall, 62.1% (172/277) of all MDR-MTBC isolates carried putative compensatory mutations

(Comas et al., 2012; Casali et al., 2014a) in rpoA (n = 7), rpoC (n = 126) and rpoB (n = 43)

(Supplementary file 1). These mutations were almost completely mutually exclusive, as only 4/172

isolates harbored variants in more than one RNA polymerase-encoding gene. While mutations in

rpoA and rpoB were equally distributed between Beijing-CAO isolates and other non-outbreak Bei-

jing isolates, CAO-isolates had more rpoC variants (56% vs 28%, p=0.003) (Appendix—table 3). The

mutation rpoC N698N accounted for 79/124 (63.7%) of CAO isolates with putative compensatory

effects. The mean number of resistance mutations was higher among isolates carrying compensatory

mutations (Figure 3A), 4.77 vs 3.35 mutations (two-sample t-test p=1.2�10�10). Notably, isolates

with compensatory mutations also showed larger transmission indexes than isolates presenting no

compensatory mutation, 37.16 vs 9.22 (Welch two-sample t-test p<2.2�10�16) (Figure 3B). CAO-iso-

lates with compensatory mutations also had more resistance-conferring mutations than CAO-isolates

lacking such mutation (ANOVA, Tukey multiple comparisons of means P adj = 0.0000012). There

was no difference observed for the means of resistance-conferring mutations among non-CAO iso-

lates; compensatory mutation present vs. absent (P adj = 0.1978623) (Figure 3C).

Regression-based analyses of transmission success scores in the Beijing-CAO clade confirmed

that the presence of compensatory mutations was strongly associated with cluster sizes independent

of the accumulation of resistance mutations (Figure 4). This pattern was mostly observed for clusters

initiated in the late 1980s and the 1990s.

Combined analysis of MDR-TB cohorts from Karakalpakstan and Samara
(2001–2010)
To place our analyses in a broader phylogenetic and geographic context, we combined our Karakal-

pakstan genome set with previously published genomes of 428 MDR-MTBC isolates from Samara

(Casali et al., 2014a), a Russian region located ~1700 km from Nukus, Karakalpakstan. This analysis

showed that Beijing-CAO isolates accounted for the third largest clade in Samara (Casali et al.,

2014a). Conversely, the second largest clade in Samara, termed Beijing clade B according to Casali

et al (Casali et al., 2014a; Casali et al., 2012), or European/Russian W148 (Merker et al., 2015),

was represented in Karakalpakstan by a minor clade (Figure 5). Considering a third Beijing clade

(termed clade A) restricted to Samara (Casali et al., 2014a), three major Beijing outbreak clades

accounted for 69.6% (491/705) of the MDR-TB cases in both regions.

The three Beijing clades (A, B, and CAO) in Samara and Karakalpakstan had more drug resistance

conferring mutations (in addition to isoniazid and rifampicin resistance) with means of 5.0 (SEM

0.07), 4.2 (SEM 0.18), and 4.7 (SEM 0.11), respectively (Appendix—figure 5), than compared to only

3.6 (SEM 0.20) additional genotypic drug resistances (p<0.0001, p=0.0143, p<0.0001) for other Bei-

jing isolates in both settings. Isolates belonging to other MTBC genotypes (mainly lineage four

clades) were found with a mean of 2.6 (SEM 0.20) additional drug resistance mediating mutations,

lower than any Beijing-associated group (p�0.0009) (Appendix—figure 5).

Similar to Karakalpakstan, MDR-MTBC isolates from Samara with compensatory mutations also

accumulated more resistance-associated mutations (4.57 vs 2.30 mutations per genome; two-sample
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Figure 5. MDR-MTBC phylogeny and resistance mutations of isolates from Samara (Russia) and Karakalpakstan (Uzbekistan) Maximum likelihood tree

(with 1,000 resamples, GTR nucleotide substitution model) based on 12,567 variable positions (SNPs) among 705 MDR-MTBC isolates from

Karakalpakstan and Samara. Any resistance associated mutations (see methods) for individual antibiotics are depicted with red bars for each isolate.

Figure 5 continued on next page
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t-test p<2.2�10�16) and had higher transmission indexes (50.32 vs 0.46; Welch two-sample t-test

p<2.2�10�16) compared to isolates lacking compensatory mutations (Appendix—figure 6).

The impact of resistance conferring and compensatory mutations on the transmission success

score in Beijing-A clade from Samara (Appendix—figure 7) was strikingly similar to the one

observed in CAO isolates from Karakalpakstan. The presence of compensatory mutations, but not

the accumulation of resistance mutations, was significantly and independently associated with net-

work size in clusters originating in the 1980s and 1990s, with a maximum influence found in clusters

starting in the late 1990s.

Critically, the high proportions of isolates detected in both settings with pre-XDR and XDR resis-

tance profiles among the three major Beijing clades (clade A, 96%; clade B, 62%; clade CAO, 50%;

Appendix—table 4, Figure 6) reveal the low proportion of patients that are or would be eligible to

receive the newly WHO endorsed short MDR-TB regimen. As per definition of the WHO exclusion

criteria, for example any confirmed or suspected resistance to one drug (except isoniazid) in the

short regimen, only 0.5% (1/191 in Karakalpakstan) and 2.7% (8/300 in Samara) of the patients

infected with either a Beijing clade A, B or CAO strain would benefit from a shortened MDR-TB ther-

apy (Supplementary file 1).

Figure 5 continued

The presence of any putative compensatory mutation in the RNA polymerase genes rpoA, rpoB, rpoC is depicted with green bars and country of origin

and a genotypic pre-XDR and XDR isolate classification is color coded. PAS = para aminosalycylic acid.

DOI: https://doi.org/10.7554/eLife.38200.007

Figure 6. Percentage of drug resistance among 705 MDR-MTBC isolates from Samara (Russia) and Karakalpakstan (Uzbekistan). MDR-MTBC isolates

stratified to three Beijing clades, other Beijing isolates and non-Beijing isolates. Proportions of isolates with identified molecular drug resistance

mutations (see Supplementary file 1) which mediate resistance to multiple first- and second-line anti-TB drugs. Values are rounded. Drugs used in the

WHO endorsed standardized short MDR-TB regimen marked with grey boxes. *The short MDR-TB regimen further includes high-dose isoniazid

treatment, and clofazimine. In that regard, we identified 622/705 (85.4%) of the MDR-MTBC isolates with the well-known high-level isoniazid resistance

mediating mutation katG S315T (Supplementary file 1), for clofazimine resistance mediating mutations are not well described.

DOI: https://doi.org/10.7554/eLife.38200.008
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Discussion
Using WGS combined with Bayesian and phylogenetic analyses, we reveal the evolutionary history

and recent clonal expansion of the dominatant MDR/pre-XDR MTBC-clade in Karakalpakstan, Uzbe-

kistan, termed the Central Asian outbreak (CAO). Strikingly, CAO-isolates were also found also in

Samara, Russia, and vice versa isolates belonging to the second largest clade in Samara (Beijing

clade B, i.e. European/Russian W148 (Casali et al., 2014a; Merker et al., 2015) were identified in

Karakalpakstan, suggesting that the MDR-TB epidemic in this world region is driven by few outbreak

clades. During the three last decades, these strains gradually accumulated resistance to multiple

anti-TB drugs that largely escaped phenotypic and molecular diagnostics, and reduced treatment

options to a restricted set of drugs that often cause severe side effects. In addition, our results sug-

gest that compensatory mutations (in RNA-polymerase subunit coding genes) that are proposed to

ameliorate growth deficits in rifampicin resistant strains in vitro are also crucial in a global epidemio-

logical context allowing MDR and pre-XDR strains to form and maintain large transmission networks.

The predominance of these strain networks, seen in two distant geographic regions of the former

Soviet Union clearly limit the use of standardized MDR-TB therapies, for example the newly WHO

endorsed short MDR-TB regimen, in these settings.

Temporal reconstruction of the resistance mutation acquisition and of changes in bacterial popu-

lation sizes over three decades demonstrates that MDR outbreak strains already became resistant to

both first- and second-line drugs in the 1980s. Fully first-line resistant strains massively expanded in

the 1990s, a period that shortly preceded or immediately followed the end of the Soviet Union,

years before the implementation of DOTS and programmatic second-line MDR-TB treatment. This is

in line with the known rise in TB incidence that accompanied the economic breakdown in Russia dur-

ing the 1990s (Institute of Medicine Forum on Drug Discovery, Development, and Translation

and Russian Academy of Medical Science, 2011).

From a bacterial genetic point of view, our data show that particular MDR and pre-XDR clades

are highly transmissible despite accumulation of multiple resistance mutations. The acquisition of

compensatory mutations after introduction of low fitness cost resistance mutations (e.g. katG S315T

(Pym et al., 2002), rpoB S450L (Gagneux et al., 2006), rpsL K43R (Böttger et al., 1998) seems the

critical stage allowing for higher transmission rates. Multiple regression analyses further strength-

ened this hypothesis by demonstrating that the presence of fitness compensating variants was posi-

tively associated with transmission success in different settings and outbreak clades, independently

of the accumulation of resistance mutations. Compensatory evolution thus appears to play a central

role in driving large MDR-TB epidemics such as that seen with the Beijing CAO-clade.

A particular concern is the high prevalence of mutations conferring resistance to second-line

drugs currently included in treatment regimens, among the dominant MDR-MTBC strains. Their

detected emergence in a period preceding DOTS implementation, for example in Karakalpakstan,

can be explained by past, largely empirical treatment decisions or self-medication. For instance,

high frequencies of mutations in the ribD promoter region, and folC among Beijing-CAO isolates,

associated with para-aminosalicylic acid resistance (Zheng et al., 2013; Zhao et al., 2014), are a

likely consequence of the use of para-aminosalicylic acid in failing treatment regimens in the late

1970s to the early 1980s in the Soviet Union (USSR Ministry of Health, 1976; USSR Ministry of

Health, 1983; Mishin, 2008). Likewise, the frequent independent emergence of mutations in the eis

promoter and of rare variants in the upstream region of whiB7, both linked to resistance to amino-

glycosides (mainly streptomycin and kanamycin) (Zaunbrecher et al., 2009; Reeves et al., 2013),

probably reflects self-administration of kanamycin that was available in local pharmacies. Of note,

prominent mutations such as katG S315T or rpoB S450L might have occurred multiple times inde-

pendently in a bacterial population and inferring the common ancestor could lead to an overesti-

mate of the TMRCA. However, this is not the case for rare and more diverse mutations, for example

conferring resistance to pyrazinamide, PAS or kanamycin, thus further strengthening the historic fixa-

tion mentioned above.

The pre-existence of fully first-line resistant strain populations (e.g. CAO-Beijing in Karakalpak-

stan) likely contributed to the poor treatment outcomes observed among MDR-TB patients following

the implementation of first-line DOTS treatment in 1998 (Cox et al., 2006). This period coincides

with a detected CAO population size increase, likely reflecting the absence of drug susceptibility
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testing and therefore appropriate second-line treatment during extended hospitalization at the

time, resulting in prolonged infectiousness of TB-patients and further spread of these strains.

The frequencies of fluoroquinolone resistance, mediated by gyrA and gyrB mutations, remained

low among the Karakalpakstan MDR-MTBC isolates, which is consistent with the notion that such

drugs were rarely used for treating TB in former Soviet Union countries (see Discussion (Casali et al.,

2014a; USSR Ministry of Health, 1976; USSR Ministry of Health, 1983; Mishin, 2008). This obser-

vation explains the generally favorable MDR-TB treatment outcomes observed with the use of indi-

vidualized second-line regimens, including a fluoroquinolone, in the latter MDR-TB treatment

program in the Karakalpakstan patient population (Cox et al., 2007; Lalor et al., 2011). However,

fluoroquinolone resistance, representing the last step towards XDR-TB, is already emerging as

reported for strains in Beijing clade A and B (Casali et al., 2014a).

In conclusion, the (pre-) existence and wide geographic dissemination of highly resistant and

highly transmissible strain populations most likely contributes to increasing M/XDR-TB incidence

rates despite scaling up of the MDR-TB programs in some Eastern European and Russian regions

(Ulmasova et al., 2013; Institute of Medicine Forum on Drug Discovery, Development, and

Translation and Russian Academy of Medical Science, 2011; Medecins Sans Frontiere, 2013).

Importantly, from the large spectrum of resistance detected among dominating strains in this study,

it can be predicted that standardized therapies, including the newly WHO endorsed short MDR-TB

regimen in Uzbekistan, are/will be largely ineffective for many patients in Samara and Karakalpak-

stan, and likely elsewhere in Eurasia. In order to successfully control the worldwide MDR-TB epidem-

ics, universal access to rapid and comprehensive drug susceptibility testing, best supported by more

advanced technologies, will be crucial for guiding individualized treatment with existing and new/

repurposed TB drugs and to maximize chances of cure and prevention of further resistance

acquisition.

Materials and methods

Study population, Karakalpakstan (Uzbekistan)
A total of 277 MDR-MTBC isolates derived from two separate cohorts were sequenced. The first

cohort comprised 86% (49/57) of MDR-MTBC isolates from a cross-sectional drug resistance survey

conducted in four districts in Karakalpakstan, Uzbekistan between 2001–2002 (Cox et al., 2006). An

additional 228 isolates were obtained from TB-patients enrolled for second-line treatment in the

MDR-TB treatment program from 2003 to 2006. These isolates represented 76% (228/300) of all

MDR-TB cases diagnosed over the period. While the MDR-TB treatment program covered two of

the four districts included in the initial drug resistance survey, the majority of isolates from both

cohorts, 69% and 64% respectively, were obtained from patients residing in the same main city of

Nukus (Appendix—table 1).

Study population, Samara (Russia)
To set the MDR-MTBC isolates from Karakalpakstan into a broader geographical perspective, raw

WGS data of 428 MDR-MTBC isolates from a published cross-sectional prospective study in Samara,

Russia from 2008 to 2010 (Casali et al., 2014a) were processed as described below and included

into a composite MDR-MTBC dataset.

Drug susceptibility testing
Drug susceptibility testing (DST) was performed for five first-line drugs (isoniazid, rifampicin, etham-

butol, streptomycin, pyrazinamide), and three second-line drugs (ofloxacin, capreomycin and pro-

thionamide) for cohort 1, and six second-line drugs for cohort 2 (capreomycin, amikacin, ofloxacin,

ethionamide, para-aminosalicylic acid and cycloserine) by the reference laboratory in Borstel, Ger-

many as described previously (Kent and Kubica, 1985).

Whole genome sequencing
WGS was performed with Illumina Technology (MiSeq and HiSeq 2500) using Nextera XT library

preparation kits as instructed by the manufacturer (Illumina, San Diego, CA). Fastq files (raw

sequencing data) were submitted to the European nucleotide archive (see Supplementary file 1 for
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accession numbers). Obtained reads were mapped to the M. tuberculosis H37Rv reference genome

(GenBank ID: NC_000962.3) with BWA (Li and Durbin, 2009). Alignments were refined with GATK

(McKenna et al., 2010) and Samtools (Li et al., 2009) toolkits with regard to base quality re-calibra-

tion and alignment corrections for possible PCR artefact. We considered variants that were covered

by a minimum of four reads in both forward and reverse orientation, four reads calling the allele with

at least a phred score of 20, and 75% allele frequency. In the combined datasets, we allowed a maxi-

mum of 5% of all samples to fail the above-mentioned threshold criteria in individual genome posi-

tions to compensate for coverage fluctuations in certain genome regions; in these cases, the

majority allele was considered. Regions annotated as ‘repetitive’ elements (e.g. PPE and PE-PGRS

gene families), insertions and deletions (InDels), and consecutive variants in a 12 bp window (putative

artefacts flanking InDels) were excluded. Additionally, 28 genes associated with drug resistance and

bacterial fitness (see Supplementary file 1) were excluded for a conservative and robust phyloge-

netic reconstructions. The remaining single-nucleotide polymorphisms (SNPs) were considered as

valid and used for concatenated SNP alignments. Further detailed methods of the phylogenetic

reconstruction, molecular resistance prediction, strain-to-strain genetic distance, and Bayesian mod-

els are given as Appendix 1.

Transmission index
Based on the distance matrix (SNP distances), we further determined for every isolate the number of

isolates that were in a range of 10 SNPs or less (in the following referred to as ‘transmission index’).

This 10 SNP-threshold was used to infer the number of recently linked cases, as considered within a

10-year time period, based on previous convergent estimates of MTBC genome evolution rate of »

0.5 SNPs/genome/year in inter-human transmission chains and in macaque infection models

(Ford et al., 2011; Walker et al., 2013; Roetzer et al., 2013; Walker et al., 2014). This can include

direct transmission events among the study population but also cases which are connected by a

more distant contact which was not sampled. In the latter case, we assumed that two isolates with a

maximum distance of 10 SNPs share a hypothetical common ancestor that is 5 SNPs apart from the

two sampled isolates (considering a bifurcating phylogeny) and thus covers a timeframe of 5 SNPs

over 0.5 SNPs/year equals 10 years between the two actual samples and a shared recent ancestor

node/case (see also Appendix 1).

Genotypic drug resistance prediction
Mutations (small deletions and SNPs) in 34 resistance-associated target regions (comprising 28

genes) were considered for a molecular resistance prediction to 13 first- and second-line drugs

(Supplementary file 1). Mutations in genes coding for the RNA-Polymerase subunits rpoA, rpoB

(excluding resistance mediating mutations in the rifampicin resistance determining region (RRDR),

and in codons 170, 400, 491), and rpoC were reported as putative fitness compensating (e.g. in vitro

growth enhancing) variants for rifampicin-resistant strains as suggested previously (Comas et al.,

2011; de Vos et al., 2013; Casali et al., 2014b; Cohen et al., 2015). A detailed overview of all

mutations considered as genotypic resistance markers is given in Supplementary file 1. Mutations

that were not clearly linked to phenotypic drug resistance were reported as genotypic non wild type

and were not considered as genotypic resistance markers. When no mutation (or synonymous, silent

mutations) was detected in any of the defined drug relevant target regions the isolate was consid-

ered to be phenotypically susceptible.

Phylogenetic inference (maximum likelihood)
We used jModelTest v2.1 and Akaike and Bayesian Information Criterion (AIC and BIC) to find an

appropriate substitution model for phylogenetic reconstructions based on the concatenated

sequence alignments (Appendix—table 5). Maximum likelihood trees were calculated with FastTree

2.1.9 (double precision for short branch lengths) (Price et al., 2010) using a general time reversible

(GTR) nucleotide substitution model (best model according to AIC and second best model according

to BIC), 1000 resamplings and Gamma20 likelihood optimization to account for evolutionary rate

heterogeneity among sites. The consensus tree was rooted with the ‘midpoint root’ option in Fig-

Tree (resulting in the expected tree topology of lineage 2–4 strains) and nodes were arranged in

increasing order. Variants considered as drug resistance markers (see above) and putative
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compensatory variants were analyzed individually and mapped on the phylogenetic tree to define

resistance patterns of identified phylogenetic clades.

Molecular clock model
In order to compute a time scaled phylogeny and employ the Bayesian skyline model (see below) for

the identified Central Asian outbreak (CAO) clade, we sought to define an appropriate molecular

clock model (strict versus relaxed clock) and a mutation rate estimate. Due to the restricted sampling

timeframe of the Karakalpakstan dataset (2001–2006), we extended the dataset for the model selec-

tion process with CAO isolates from Samara (2008–2010) and ‘historical’ CAO isolates from MDR-TB

patients in Germany (1995–2000) thus allowing for a more confident mutation rate estimate. The

strength of the temporal signal in the combined dataset, assessed by the correlation of sampling

year and root-to-tip distance, was investigated with TempEst v1.5 (44). Regression analysis was

based on residual mean squares, using a rooted ML tree (PhyML, GTR substitution model, 100 boot-

straps), R-square and adjusted p-value are reported. For the comparison of different Bayesian phylo-

genetic models, we used path sampling with an alpha of 0.3, 50% burn-in and 15 million iterations

(resulting in mean ESS values > 100), marginal likelihood estimates were calculated with BEAST

v2.4.2 (45), and D marginal L estimates are reported relative to the best model.

First, we employed a strict molecular clock fixed to 1 � 10�7 substitutions per site per year as

reported previously (Ford et al., 2011; Walker et al., 2013; Roetzer et al., 2013) without tip dat-

ing, a strict molecular clock with tip dating and a relaxed molecular clock with tip dating. BEAST

templates were created with BEAUti v2 applying a coalescent constant size demographic model, a

GTR nucleotide substitution model, a chain length of 300 million (10% burn-in) and sampling of 5000

traces/trees.

Second, we ran different demographic models (i.e. coalescent constant size, exponential, and

Bayesian skyline) under a relaxed molecular clock using tip dates and the same parameters for the

site model and Markov-Chain-Monte-Carlo (MCMC) as described above.

Third, we tested and compared the best models for the Karakalpakstan CAO-clade under a strict

molecular clock prior including the upper and lower 95% HPD interval (Appendix—table 2).

Inspection of BEAST log files with Tracer v1.6 showed an adequate mixing of the Markov chains

and all parameters were observed with an effective sample size (ESS) >200 for the combined dataset

(n = 220) and in the thousands for the Karakalpakstan CAO clade (n = 173), suggesting an adequate

number of effectively independent draws from the posterior sample and thus sufficient statistical

support. Other priors between the model comparisons were not changed.

Bayesian skyline plot
Changes of the effective population size of the CAO clade in Karakalpakstan over the last four deca-

des were calculated with a Bayesian skyline plot using BEAST v2.4.2 (45) using a tip date approach

with a strict molecular clock model of 0.94 � 10�7 substitutions per site per year (best model accord-

ing to path sampling results, see above), and a GTR nucleotide substitution model. We further used

a random starting tree, a chain length of 300 million (10% burn-in) and collected 5000 traces/trees.

Again adequate mixing of the Markov chains and ESS values in the hundreds were observed. A max-

imum clade credibility genealogy was calculated with TreeAnnotator v2.

Impact of resistance-conferring and compensatory mutations on
transmission success
We used multiple linear regression to examine the respective contributions of antimicrobial resis-

tance and putative fitness cost-compensating mutations to the transmission success of tuberculosis.

To take transmission duration into account, we computed, for each isolate and each period length T

in years (from 1 to 40y before sampling), a transmission success score defined as the number of iso-

lates distant of less than T SNPs, divided by T. This approach relied on the following rationale: based

on MTBC evolution rate of 0.5 mutation per genome per year, the relation between evolution time

and SNP divergence is such that a cluster with at most N SNPs of difference is expected to have

evolved for approximately N years. Thus, transmission success score over T years could be inter-

preted as the size of the transmission network divided by its evolution time, hence as the average

yearly increase of the network size. For each period T, the transmission success score was regressed
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on the number of resistance mutations and on the presence of putative compensatory mutations.

The regression coefficients with 95% confidence intervals were computed and plotted against T to

identify maxima, that is, time periods when the transmission success was maximally influenced by

either resistance-conferring or –compensating mutations. These analyses were conducted indepen-

dently on outbreak isolates of the Beijing-CAO clade in the Karakalpakstan cohort and of the Bei-

jing-A clade in the Samara cohort.

Statistical analyses
Differences between cohorts and numbers of sampled isolates per year category were performed

using Chi-squared analysis (mid-P exact) or Fisher’s exact test, while comparison of median age was

performed using the Mann-Whitney test. p-Values for pairwise comparisons of groups regarding

pairwise genetic distances, number of resistant DST results and number of resistance related muta-

tions were calculated with an unpaired t-test (Welch correction) or a t-test according to the result of

the variances comparison using a F-test. Boxplot, bubble plots and density plots have been per-

formed in R.
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M, Borroni E, Campos-Herrero I, et al. 2015. Evolutionary history and global spread of the Mycobacterium

Merker et al. eLife 2018;7:e38200. DOI: https://doi.org/10.7554/eLife.38200 17 of 31

Research article Evolutionary Biology

https://doi.org/10.1101/gr.128678.111
http://www.ncbi.nlm.nih.gov/pubmed/22294518
http://www.ncbi.nlm.nih.gov/pubmed/22294518
https://doi.org/10.1038/ng.2878
https://doi.org/10.1038/ng.2878
http://www.ncbi.nlm.nih.gov/pubmed/24464101
https://doi.org/10.1371/journal.pmed.1001880
http://www.ncbi.nlm.nih.gov/pubmed/26418737
https://doi.org/10.1038/ng.1038
http://www.ncbi.nlm.nih.gov/pubmed/22179134
https://doi.org/10.1038/ng.1038
https://doi.org/10.1371/journal.pmed.0030384
http://www.ncbi.nlm.nih.gov/pubmed/17020405
https://doi.org/10.1371/journal.pone.0001126
http://www.ncbi.nlm.nih.gov/pubmed/17987113
https://doi.org/10.1128/AAC.01541-12
https://doi.org/10.1128/AAC.01541-12
http://www.ncbi.nlm.nih.gov/pubmed/23208709
https://doi.org/10.1099/mgen.0.000094
https://doi.org/10.1099/mgen.0.000094
http://www.ncbi.nlm.nih.gov/pubmed/28348834
https://doi.org/10.1098/rspb.2000.1328
http://www.ncbi.nlm.nih.gov/pubmed/12123297
https://doi.org/10.1038/ng.811
https://doi.org/10.1038/ng.811
http://www.ncbi.nlm.nih.gov/pubmed/21516081
https://doi.org/10.1126/science.1124410
https://doi.org/10.1126/science.1124410
http://www.ncbi.nlm.nih.gov/pubmed/16809538
https://doi.org/10.1093/bioinformatics/btp324
http://www.ncbi.nlm.nih.gov/pubmed/19451168
https://doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
https://doi.org/10.1101/gr.107524.110
http://www.ncbi.nlm.nih.gov/pubmed/20644199
https://doi.org/10.7554/eLife.38200


tuberculosis Beijing lineage. Nature Genetics 47:242–249. DOI: https://doi.org/10.1038/ng.3195, PMID: 255
99400

Middlebrook G, Cohn ML. 1953. Some observations on the pathogenicity of isoniazid-resistant variants of
tubercle bacilli. Science 118:297–299. DOI: https://doi.org/10.1126/science.118.3063.297, PMID: 13089681

Mishin VY. 2008. TB chemotherapy review. Pulmonologiya:5–14.
Müller B, Borrell S, Rose G, Gagneux S. 2013. The heterogeneous evolution of multidrug-resistant
Mycobacterium tuberculosis. Trends in Genetics 29:160–169. DOI: https://doi.org/10.1016/j.tig.2012.11.005,
PMID: 23245857

Price MN, Dehal PS, Arkin AP. 2010. FastTree 2–approximately maximum-likelihood trees for large alignments.
PLoS One 5:e9490. DOI: https://doi.org/10.1371/journal.pone.0009490, PMID: 20224823

Pym AS, Saint-Joanis B, Cole ST. 2002. Effect of katG mutations on the virulence of Mycobacterium tuberculosis
and the implication for transmission in humans. Infection and Immunity 70:4955–4960. DOI: https://doi.org/10.
1128/IAI.70.9.4955-4960.2002, PMID: 12183541

Rambaut A, Lam TT, Max Carvalho L, Pybus OG. 2016. Exploring the temporal structure of heterochronous
sequences using TempEst (formerly Path-O-Gen). Virus Evolution 2:vew007. DOI: https://doi.org/10.1093/ve/
vew007, PMID: 27774300

Reeves AZ, Campbell PJ, Sultana R, Malik S, Murray M, Plikaytis BB, Shinnick TM, Posey JE. 2013.
Aminoglycoside cross-resistance in Mycobacterium tuberculosis due to mutations in the 5’ untranslated region
of whiB7. Antimicrobial Agents and Chemotherapy 57:1857–1865. DOI: https://doi.org/10.1128/AAC.02191-
12, PMID: 23380727
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Appendix 1
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Supplementary Methods

Transmission index
In the context of this manuscript, we determined for every isolate the number of isolates that

were in a range of 10 SNPs or less (in the following referred to as ‘transmission index’, see

figure below).

The rationale to implement a ‘transmission index’ was the need to link each isolate with a

continuous parameter (for further analysis) which reflects the number of recently linked

cases, that is the extend of a putative transmission network. These networks are better

reflected with a minimum spanning tree (rather than bifurcating phylogenies) which allows the

visualization of super spreaders for instance as central nodes (see figure below). Thus an

isolate with a high transmission index might well be linked to a patient that infected multiple

secondary cases. The benefit compared to a categorical parameter like ‘clustered’ and’not

clustered’ is that the transmission index has the potential to indicate transmission hotspots

within an outbreak scenario and is independent from a phylogenetic clade definition, which in

turn would be difficult to assign due to the close genetic relationship in MTBC outbreaks and

low bootstrap values for small sub-groups at the tips of a tree. The figure below illustrates the

transmission index calculation per isolate. The upper left isolate for instance just has one

sampled isolate within 10 SNP distance. A direct transmission event is relatively unlikely with

that distance and both isolates rather share a common ancestor/linked case that was not

sampled in the study period or study area. This common ancestor would be then in a four and

five SNP distance, respectively that is translated to an infection event eight and ten years ago

assuming an evolutionary rate of » 0.5 SNPs/genome/year (Ford et al., 2011; Walker et al.,

2013; Roetzer et al., 2013; Walker et al., 2014). The central isolate has five other sampled

isolates in proximity, which might indicate a super spreader patient and/or a particularly

transmissible strain.

Genotypic drug resistance prediction
Mutations (small deletions and SNPs) in 34 resistance associated target regions (comprising 28

genes) were considered for a molecular resistance prediction to 13 first- and second-line drugs

(Supplementary file 1). Mutations in genes coding for the RNA-Polymerase subunits rpoA,

rpoB (excluding resistance mediating mutations), and rpoC were reported as putative fitness

compensating (e.g. in vitro growth enhancing) variants for rifampicin resistant strains. A

detailed overview of all mutations considered as genotypic resistance marker is given as

Supplementary file 1. Mutations that were not clearly linked to phenotypic drug resistance

were reported as genotypic non wild type and were not considered as genotypic resistance

markers. When no mutation (or synonymous, silent mutations) was detected in any of the

defined drug relevant target regions the isolate was considered to be phenotypically

susceptible.

Phylogenetic inference (maximum likelihood)
We used jModelTest v2.1 and Akaike and Bayesian Information Criterion (AIC and BIC) to find

an appropriate substitution model for phylogenetic reconstructions based on the

concatenated sequence alignments (Appendix—table 5). Maximum likelihood trees were

calculated with FastTree 2.1.9 (double precision for short branch lengths) (Price et al., 2010)

using a general time reversible (GTR) nucleotide substitution model (best model according to

AIC and second best model according to BIC), 1000 resamplings and Gamma20 likelihood

optimization to account for evolutionary rate heterogeneity among sites. The consensus tree
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was rooted with the ‘midpoint root’ option in FigTree and nodes were arranged in increasing

order. Variants considered as drug resistance marker (see above) and putative compensatory

variants were analyzed individually and mapped on the phylogenetic tree to define resistance

patterns of identified phylogenetic subgroups.

Molecular clock model
In order to compute a time scaled phylogeny and employ the Bayesian skyline model (see

below) for the identified Central Asian outbreak (CAO) clade we sought to define an

appropriate molecular clock model (strict versus relaxed clock) and a mutation rate estimate.

Due to the restricted sampling timeframe of the Karakalpakstan dataset (2001 – 2006) we

extended the dataset for the model selection process with CAO strains from Samara (2008 –

2010) and ‘historical’ CAO strains isolated from MDR-TB patients in Germany (1995 – 2000)

thus allowing for a more confident mutation rate estimate. The strength of the temporal signal

in the combined dataset, assessed by the correlation of sampling year and root-to-tip

distance, was investigated with TempEst v1.5 (44). Regression analysis was based on residual

mean squares, using a rooted ML tree (PhyML, GTR substitution model, 100 bootstraps),

R-square and adjusted P-value are reported. For the comparison of different Bayesian

phylogenetic models we used path sampling with an alpha of 0.3, 50% burn-in and 15 million

iterations (resulting in mean ESS values > 100), marginal likelihood estimates were calculated

with BEAST v2.4.2 (45), and D marginal L estimates are reported relative to the best model.

First, we employed a strict molecular clock fixed to 1 � 10�7 substitutions per site per year

as reported previously (Ford et al., 2011; Walker et al., 2013; Roetzer et al., 2013) without

tip dating, a strict molecular clock with tip dating and a relaxed molecular clock with tip

dating. BEAST templates were created with BEAUti v2 applying a coalescent constant size

demographic model, a GTR nucleotide substitution model, a chain length of 300 million (10%

burn-in) and sampling of 5000 traces/trees.

Second, we ran different demographic models (i.e. coalescent constant size, exponential,

and Bayesian skyline) under a relaxed molecular clock using tip dates and the same

parameters for the site model and Markov-Chain-Monte-Carlo (MCMC) as described above.

Inspection of BEAST log files with Tracer v1.6 showed an adequate mixing of the Markov

chains and all parameters were observed with an effective sample size (ESS) in the hundreds,

suggesting an adequate number of effectively independent draws from the posterior sample

and thus sufficient statistical support.

Bayesian Skyline Plot
Changes of the effective population size of the CAO clade in Karakalpakstan over the last four

decades were calculated with a Bayesian skyline plot using BEAST v2.4.2 (45) using a tip date

approach with a strict molecular clock model of 0.94 � 10�7 substitutions per site per year

(best model according to path sampling results, see above), and a GTR nucleotide substitution

model. We further used a random starting tree, a chain length of 300 million (10% burn-in) and

collected 5000 traces/trees. Again adequate mixing of the Markov chains and ESS values in

the hundreds were observed. A maximum clade credibility genealogy was calculated with

TreeAnnotator v2.

Impact of resistance-conferring and compensatory mutations on
transmission success
We used multiple linear regression to examine the respective contributions of antimicrobial

resistance and putative fitness cost-compensating mutations to the transmission success of

tuberculosis. To take transmission duration into account, we computed, for each isolate and

each period length T in years (from 1 to 40y before sampling), a transmission success score

defined as the number of isolates distant of less than T SNPs, divided by T. This approach

relied on the following rationale: based on MTBC evolution rate of 0.5 mutation per genome
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per year, the relation between evolution time and SNP divergence is such that a cluster with at

most N SNPs of difference is expected to have evolved for approximately N years. Thus,

transmission success score over T years could be interpreted as the size of the transmission

network divided by its evolution time, hence as the average yearly increase of the network

size. For each period T, the transmission success score was regressed on the number of

resistance mutations and on the presence of putative compensatory mutations. The regression

coefficients with 95% confidence intervals were computed and plotted against T to identify

maxima, that is, time periods when the transmission success was maximally influenced by

either resistance-conferring or –compensating mutations. These analyses were conducted

independently on outbreak strains of the Beijing-CAO clade in the Karakalpakstan cohort and

of the Beijing-A clade in the Samara cohort.

Appendix Figures and Tables

Appendix 1—figure 1. Box-Plot showing pairwise SNP distances among identified Beijing

clades and other Beijing isolates in comparison to non-Beijing isolates from Karakalpakstan,

Uzbekistan. Box represents inter quartile range, whiskers represent 95% of the data, outliers

shown as black dots; solid black line represents the median.

DOI: https://doi.org/10.7554/eLife.38200.012
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Appendix 1—figure 2. Proportions of different Beijing clades, other Beijing isolates and non-

Beijing isolates in Karakalpakstan, Uzbekistan stratified to the years 2001/02, 2003/04, 2005/06.

P-values for pairwise comparisons within groups were calculated with Fisher exact test (two-

sided). Beijing CAO 2001/2002 vs 2005/2006 p=0.0018, Beijing CAO 2003/2004 vs 2005/2006

p=0.0002.

DOI: https://doi.org/10.7554/eLife.38200.013
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Appendix 1—figure 3. Box-Plot showing median number of (A) phenotypic and (B) genotypic

drug resistances (in addition to the MDR classification,that is isoniazid and rifampicin resistance)

of all isolates from Karakalpakstan. Box represents inter quartile range, whiskers represent 95%

of the data, outliers shown as black dots; solid black line represents the median. Beijing CAO
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isolates exhibit more phenotypic drug resistances compared to non-Beijing isolates (p=0.0079)

and more genotypic drug resistances compared to other Beijing isolates (p<0.0001), and non-

Beijing isolates (p<0.0001). P-values for pairwise comparison with reference group calculated

with unpaired t-test (two-tailed, Welch’s correction).

DOI: https://doi.org/10.7554/eLife.38200.014

Appendix 1—figure 4. Linear regression analysis showing correlation between root-to-tip dis-

tance and sampling years of an extended collection of 220 Beijing CAO datasets covering the

period 1995 to 2009.

DOI: https://doi.org/10.7554/eLife.38200.015
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Appendix 1—figure 5. Number of drug resistance mutations among different MDR-MTBC

groups from Samara (n = 428) and Karakapakstan (n = 277). Box-Plot with mean (diamond) and

median (horizontal line) number of genotypic drug resistances (see methods) to additional

anti-TB drugs (beyond MDR defining rifampicin and isoniazid resistance). Box represents inter

quartile range, whiskers represent 95% of the data, outliers shown as black dots. P-values for

three major Beijing outbreak clades (A, B and CAO), and non-Beijing isolates (mainly lineage

four isolates) were calculated with unpaired t-tests with Welch correction compared to the

group ‘other Beijing’. Color codes according to Figure 5. P-values for pairwise comparison

with reference group calculated with unpaired t-test (two-tailed, Welch’s correction). Clade A

(p�0.0001), Clade B (p=0.0143), CAO (p�0.0001), and non-Beijing (p=0.0009).
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Appendix 1—figure 6. Comparisons between isolates carrying compensatory mutations (in

orange) and isolates with no-compensatory mutations (in blue), from the Samara dataset. (A)

Boxplot showing number of resistance mutations for the two categories (without or with

compensatory mutations). The two categories were significantly different (two-sample t-test

p<2.2�10�16). (B) Bubble plots showing the transmission index (number of isolates differing

by less than 10 SNPs) as a function of antibiotic resistance related mutations. Bubble sizes are

function of the number of isolates. (C) Density plot of the number of resistance-conferring

mutations for isolates carrying compensatory mutations (orange) and isolates that don’t carry

compensatory mutation (blue) from Samara dataset. Proportions are adjusted by using

Gaussian smoothing kernels.
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Appendix 1—figure 7. Contributions of resistance-conferring and compensatory mutations to

the transmission success of M.tuberculosis of the Beijing-A clade from Samara, Russia. Shown

are the coefficients and 95% confidence bands of multiple linear regression of the transmission

success score, defined as the size of clusters diverging by at most N SNPs and divided by N

or, equivalently, the size of clusters that evolved over N years divided by N. Compensatory

mutations were independently associated with transmission success, with a maximum

association strength found for transmission clusters beginning around 1999.

DOI: https://doi.org/10.7554/eLife.38200.018

Appendix 1—figure 8. Exemplary minimum spanning tree to visualize the determination of a

transmission index for each isolate. Each node/isolate is labelled with its transmission index, i.e.

number of other isolates with a maximum distance of 10 SNPs. Branches are indicated with

number of unique SNPs.
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Appendix 1—table 1. Main characteristics of patients from cohorts 1 and 2 in Karakalpakstan,

Uzbekistan.

Cohort 1 Cohort 2 P value

Year of isolate collection
(patient diagnosis with MDR-TB)

2001–2002 2003–2006

No. MDR cases diagnosed within time period 57 300

No. Included in this analysis
Reasons for non-inclusion:
Multiple strain infection
No DNA available
Patient already in cohort 1
Low DNA quantity

49 (86%)
6
2
NA
0

228 (76%)
1
40
11
20

0.094

Patient residence (within Karakalpakstan)
Nukus
Chimbay
Other
Unknown

34 (69%)
6
9
0

146 (64%)
64
1
17

0.49

Male 27 (55%) 119 (52%) 0.72

Age (median, IQR)
Missing age

32, 27–38
0

31, 24–41
49 (21%)

0.40

Previous TB treatment 38 (78%) 228 (100%) <0.0001

First-line resistance profile:
HR
HRE
HRS
HRES
HRSZ
HREZ
HRESZ

1
0
12 (24%)
28 (57%)
1 (2%)
1
7 (14%)

2
1
41 (18%)
49 (21%)
27 (12%)
1
107 (47%)

<0.0001

No. of first-line drugs resistant
2
3
4
5

1
12 (24%)
30 (61%)
7 (14%)

2
42 (18%)
77 (34%)
107 (47%)

<0.0001

Availability of second-line drug susceptibility test-
ing (DST)

Ofx, Cap,
Proth

Ofx, Cap, Ami, Eth, Cyc,
PAS

Ofx resistance 5 (10%) 6 (3%) 0.033

Cm resistance 1 (2%) 53 (23%) 0.0001

Abbreviations: H = isoniziad, R = rifampicin, E = ethambutol, S = streptomycin,

Z = pyrazinamide, Ofx = ofloxacin, Cm = capreomycin

DOI: https://doi.org/10.7554/eLife.38200.020

Appendix 1—table 2. Path sampling results and model selection based on D marginal L

estimates (relative to best model (ref)) considering 75 path sampling steps and chain lengths

of 15 million. Comparisons of Beast runs using a combined dataset of Central Asian outbreak

(CAO) isolates originated from Germany (1995 – 2000), Karakalpakstan (2001–2006), and Samara

(2008 – 2010) as well as comparisons of Beast runs from CAO-Karakalpakstan data employing

the best clock model/substitution rate estimate and runs with the 95% HPD intervals for the

substitution rate. Mean node age of CAO-MRCA and acquisition of putative compensatory

mutation rpoC N698S of CAO-Karakalpakstan clade are given for each model.

Clock
model

Demographic
model

Marginal
L
estimate

Mean
ESS

D marginal
L estimate

Subst rate x
10�7 (95%
HPD)

MRCA and rpoC
N698S mean node
age
(95%HPD)

Combined CAO dataset for clock model comparison
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Appendix 1—table 2 continued

Clock
model

Demographic
model

Marginal
L
estimate

Mean
ESS

D marginal
L estimate

Subst rate x
10�7 (95%
HPD)

MRCA and rpoC
N698S mean node
age
(95%HPD)

Strict
(no tip
dating)

Coalescent
constant size

�10131.67 4302 32.21 1.0
(fixed)

41.5 (30.6–49.1)
NA

Strict
(tip dat-
ing)

Coalescent
constant size

�10099.46 4041 ref 1.0
(fixed)

42.9 (34.3–50.3)
NA

Relaxed,
lognormal

Coalescent
constant size

�10117.21 1303 17.75 0.96
(0.65–1.24)

57.6 (34.4–84.5)
NA

Combined CAO dataset for molecular clock estimate among CAO strains

Relaxed,
lognormal

Coalescent
constant size

�10117.21 1303 78.28 0.96
(0.65–1.24)

57.6 (34.4–84.5)
NA

Relaxed,
lognormal

Exponential �10044.41 1266 5.48 0.88
(0.58–1.21)

40.5 (26.4–53.2)
NA

Relaxed,
lognormal

Bayesian sky-
line

�10038.93 924 ref 0.94
(0.72–1.15)

37.1 (25.7–44.0)
NA

CAO-Karakalpakstan dataset for demographic model comparison (under best clock estimate)

Strict
(tip dat-
ing)

Bayesian sky-
line

�7617.09 2874 3.79 0.94
(fixed)

32.2 (23.9–37.3)
16.1 (11.6–16.9)

Strict
(tip dat-
ing)

Coalescent
constant size

�7667.92 4231 54.62 0.94
(fixed)

37.5 (30.2–45.1)
15.8 (12.3–18.6)

Strict
(tip dat-
ing)

Exponential �7613.30 4003 ref 0.94
(fixed)

29.3 (23.5–33.7)
15.4 (12.4–20.1)

CAO-Karakalpakstan dataset, exponential growth model, upper and lower 95% HPD values (from best clock
estimate)

Strict
(tip dat-
ing)

Exponential �7610.94 3926 ref 0.72
(fixed)

36.4 (30.4–43.3)
18.4 (15.8–21.6)

Strict
(tip dat-
ing)

Exponential �7613.30 4003 2.36 0.94
(fixed)

29.3 (23.5–33.7)
15.4 (12.4–20.1)

Strict
(tip dat-
ing)

Exponential �7621.22 4031 10.28 1.15
(fixed)

24.4 (20.0–25.8)
12.9 (10.8–14.4)

CAO-Karakalpakstan dataset, skyline model, upper and lower 95% HPD values (from best clock estimate)

Strict
(tip dat-
ing)

Bayesian sky-
line

�7611.12 2694 ref 0.72
(fixed)

39.5 (30.7–47.8)
18.8 (14.6–21.5)

Strict
(tip dat-
ing)

Bayesian sky-
line

�7617.09 2874 5.97 0.94
(fixed)

32.2 (23.9–37.3)
16.1 (11.6–16.9)

Strict
(tip dat-
ing)

Bayesian sky-
line

�7619.71 2763 8.59 1.15
(fixed)

25.2 (20.2–30.7)
11.8 (10.1–13.9)

Abbreviations: HPD = Highest posterior density interval
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Appendix 1—table 3. Mutations in rpoB, rpoA and rpoC associated with a putative

compensatory effect in rifampicin resistant MTBC strains. Data from 277 MDR-MTBC isolates

from Karakalpakstan, Uzbekistan, stratified to the particularly successful variant termed Central

Asian outbreak (CAO) and other Beijing isolates. Pairwise differences between the two groups

calculated with Fisher exact test; two-tailed P-values are reported.

Beijing
CAO
(n = 173)

Other
Beijing
(n = 64)

P-
value

All
(n = 277)

rpoB mutations outside RRDR, excluding codon
170,400,491 variants
wild type

25 (14.5%)
147
(85.0%)

12 (18.8%)
52 (81.3%)

0.43 43
(15.5%)
234
(84.5%)

rpoC variants
wild type

95 (54.9%)
78 (45.1%)

18 (28.1%)
46 (71.2%)

0.0002 126
(45.5%)
151
(54.5%)

rpoA variants
wild type

5 (2.9%)
168
(97.1%)

2 (3.1%)
62 (96.9%)

1.00 7 (2.5%)
270
(97.5%)

Abbreviations: CAO = Central Asian outbreak, RRDR = rifampicin resistance determining

region

DOI: https://doi.org/10.7554/eLife.38200.022

Appendix 1—table 4. Proportions of genotypic drug resistance rates for different anti-TB

drugs (beyond isoniazid and rifampicin resistance) and pre-XDR/XDR-TB classification among

705 MDR-MTBC isolates from Samara (n = 428) and Karakalpakstan (n = 277), stratified to

three identified major phylogenetic clades within the Beijing genotype/lineage and to other

Beijing isolates, and to non-Beijing isolates (mainly lineage 4, Euro-American).

Group S E Z Km Am Cm Fq Thio PAS

Pre-
XDR
XDR

Beijing CAO
(n = 201)

201/
201
100.0%

195/
201
97.0%

152/
201
75.6%

97/
201
48.3%

37/
201
18.4%

37/
201
18.4%

6/201
3.0%

121/
201
60.2%

99/
201
49.3%

100/
201
49.8%

Beijing clade B
(W148) (n = 103)

103/
103
100.0%

83/
103
80.6%

44/
103
42.7%

61/
103
59.2%

18/
103
17.5%

18/
103
17.5%

23/
103
22.3%

75/
103
72.8%

12/
103
11.7%

64/
103
62.1%

Beijing clade A
(n = 187)

184/
187
98.4%

183/
187
97.9%

163/
187
87.2%

177/
187
94.7%

0/187
0.0%

0/187
0.0%

33/
187
17.6%

180/
187
96.3%

7/187
3.7%

179/
187
95.7%

Other Beijing
(n = 100)

91/100
91.0%

73/
100
73.0%

52/
100
52.0%

39/
100
39.0%

20/
100
20.0%

23/
100
23.0%

14/
100
14.0%

32/
100
32.0%

15/
100
15.0%

45/
187
24.1%

Non-Beijing
(n = 114)

69/114
60.5%

63/
114
55.3%

30/
114
26.3%

39/
114
34.2%

14/
114
12.3%

14/
114
12.3%

3/114
2.6%

34/
114
29.8%

34/
114
29.8%

40/
114
35.1%

Abbreviations: S = streptomycin, E = ethambutol, Z = pyrazinamide, Km = kanamycin,

Am = amikacin, Cm = Capreomycin, Fq = fluoroquinolone, Thio = thioamide, PAS = para

aminosalicylic acid
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Appendix 1—table 5. Likelihood scores for different substitution models calculated with

Jmodeltest 2.1 and statistical model selection based on Akaike and Bayesian Information

Criteration (AIC and BIC). Best model is assumed to have the lowest criteration value. Shown

are the top 10 AIC models. Substitution model used for Bayesian inference marked in bold.

Subst. model -lnL AIC D AIC BIC D BIC

GTR 8837.6437 18567.2875 0.0 21041.0025 7.0748 (2)

GTR + I 8837.6747 18569.3494 2.0619 (2) 21048.6109 14.6832 (5)

GTR + G 8838.9842 18571.9684 4.6809 (3) 21051.2299 17.3022 (6)

GTR + I + G 8839.0077 18574.0153 6.7278 (4) 21058.8233 24.8955 (8)

TPM1uf 8845.426 18576.852 9.5645 (5) 21033.9277 0.0

TPM1uf + I 8845.4446 18578.8891 11.6016 (6) 21041.5113 7.5836 (3)

TPM1uf + G 8846.7354 18581.4709 14.1834 (7) 21044.093 10.1653 (4)

TPM1uf + I + G 8846.7697 18583.5395 16.252 (8) 21051.7081 17.7804 (7)

SYM 8860.6478 18607.2955 40.008 (9) 21064.3712 30.4435 (9)

SYM + I 8860.6826 18609.3652 42.0777 (10) 21071.9874 38.0596 (12)
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