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Manual dexterity measures can be useful for early detection of age-related functional

decline and for prediction of cognitive decline. However, what aspects of sensorimotor

function to assess remains unclear. Manual dexterity markers should be able to separate

impairments related to cognitive decline from those related to healthy aging. In this pilot

study, we aimed to compare manual dexterity components in patients diagnosed with

cognitive decline (mean age: 84 years, N = 11) and in age comparable cognitively intact

elderly subjects (mean age: 78 years, N = 11). In order to separate impairments due

to healthy aging from deficits due to cognitive decline we also included two groups

of healthy young adults (mean age: 26 years, N = 10) and middle-aged adults (mean

age: 41 years, N = 8). A comprehensive quantitative evaluation of manual dexterity was

performed using three tasks: (i) visuomotor force tracking, (ii) isochronous single finger

tapping with auditory cues, and (iii) visuomotor multi-finger tapping. Results showed

a highly significant increase in force tracking error with increasing age. Subjects with

cognitive decline had increased finger tapping variability and reduced ability to select

the correct tapping fingers in the multi-finger tapping task compared to cognitively intact

elderly subjects. Cognitively intact elderly subjects and those with cognitive decline had

prolonged force release and reduced independence of finger movements compared

to young adults and middle-aged adults. The findings suggest two different patterns

of impaired manual dexterity: one related to cognitive decline and another related to

healthy aging. Manual dexterity tasks requiring updating of performance, in accordance

with (temporal or spatial) task rules maintained in short-term memory, are particularly

affected in cognitive decline. Conversely, tasks requiring online matching of motor output

to sensory cues were affected by age, not by cognitive status. Remarkably, no motor

impairments were detected in patients with cognitive decline using clinical scales of hand

function. The findings may have consequences for the development of manual dexterity

markers of cognitive decline.
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INTRODUCTION

Cognitive aging represents the reduction of mental abilities
with age, such as attention, memory function, and information
processing speed (1). The prevalence of Mild Cognitive
Impairment (MCI) and Alzheimer’s disease (AD) increases
strongly with age. These conditions are common in
approximately 10% of the population over 65 years of age.
And in about 50% of those over 85 years, who develop AD
(2). Due to high prevalence of dementia in age, early detection
and prediction of cognitive decline remains a key challenge in
public health. Previous studies suggest a relationship between
cognitive decline and impairments in hand motor function
(3, 4). There is an increasing number of studies on sensorimotor
markers of cognitive decline in AD and MCI. Sensorimotor
performances have been investigated by several methods
available in clinical settings like gait, postural equilibrium (5–7)
or neuropsychological tests (8, 9). Markers of impaired manual
dexterity have also been used (3), and a recent longitudinal
4-year cohort study found that prolonged time taken in two
simple manual dexterity tasks (including putting on and
buttoning a shirt) was related to higher risk of developing
cognitive decline [according to MMSE; (10)]. Sensorimotor
markers are considered independent of educational level (11),
which is an advantage for clinical use. However, despite these
promising results some issues remain unresolved. First, as
a potential marker, what type of manual dexterity task and
which type of performance variable is optimal? Performance
measures previously used were most often global task-based
measures, i.e., time taken to complete task (5, 6, 10). Thus,
it remained unclear what aspect of sensorimotor control was
being measured, making the rationale for detecting cognitive
decline uncertain. A second issue, also relevant for comparing
different sensorimotor markers, concerns the role of cognition
in a given sensorimotor task. Most motor tasks also involve
cognitive control such as attention, planning, prediction (12),
and cognitive factors are increasingly being recognized as
important for motor control (13, 14). Cognitive assessments,
probing executive functions, can also be used to predict cognitive
decline (8, 15). Improved detection of sensorimotor impairments
in MCI patients has been found when assessed in a dual-task
condition, with enhanced effect in counting tasks compared to
verbal fluency tasks (5). Therefore, it is likely that sensorimotor
performance measures incorporating cognitive control would
enhance discrimination and improve detection of cognitive
decline.

Manual dexterity is complex and can be defined as the
ability to accurately and rapidly control finger movements
in a coordinated and adaptive manner, such as fine control
in grasping and manipulation of small objects. Manual
dexterity is highly specialized in humans (16) allowing a
rich repertoire of goal- and object-oriented manual control.
Manual dexterity deteriorates with aging and can negatively
impact activities of daily living and independence (17). Studies
have reported age-related impairments in maximal grip force
(18) sensory functioning (19, 20) and in grasping and
manipulation of objects [Box and Block test (21, 22), NHPT

(23, 24)]. Regarding specific manual dexterity components,
accuracy in force control tasks is reduced in age (25, 26)
and independence of finger movements may deteriorate (27).
Increased variability of finger movements (28) and motor
slowing (29) have also been documented. These studies suggest
a complex multi-component decline in manual dexterity
in older people, especially in the very old (30). However,
it is less clear how age-related sensorimotor impairments
relate to cognitive decline, and how those two compare. In
particular, whether different measures of manual dexterity
reflect sensorimotor or rather cognitive control has not been
investigated so far.

The aim in this study was to use the Finger Force
Manipulandum, developed for the measurement of multiple
components of manual dexterity (31), to disentangle manual
dexterity impairments due to cognitive decline from those related
to age-related sensorimotor impairment (25). We hypothesized
that manual dexterity tasks strongly dependent on executive
functions (attention, working memory) would be differently
affected by cognitive decline compared to tasks involving fewer
cognitive constraints.

METHODS

Participants
This cross-sectional observational study included four groups
of participants recruited from Hôpital Pitié-Salpêtrière-Charles
Foix, Paris and the Centre de Psychiatrie et Neurosciences,
Paris. We studied three groups of healthy participants: young
adults [YA, N = 10, 6F/4M, mean age ± SD = 26 ± 3 y,
range (21–30 y)], middle-aged adults [MA, N = 8, 3F/5M,
mean age = 41 ± 9y, (32–55 y)], cognitively intact elderly
subjects [ES, N = 11, 7F/4M, mean age = 78 ± 8y, (68–93 y)]
and one group of elderly subjects with cognitive decline [CD,
N = 11, 8F/3M, mean age = 84 ± 7 y, (73–96 y)], consisting
of either MCI or early Alzheimer’s disease (AD). All participants
reported being right-handed with a laterality quotient above
than 0 according to the Edinburgh Handedness Inventory (32).
Patients in the CD group had been previously diagnosed of
MCI or early AD by an experienced geriatrician, accordingly
to the National Institute on Aging—Alzheimer’s Association
criteria (33).

Exclusion criteria were any neurological, orthopedic, or age-
related disorders that could affect their manual dexterity. A brief
interview preceded all testing, to determine whether subjects met
the inclusion criteria. Elderly subjects with cognitive decline also
underwent additional clinical neuropsychological evaluation (see
below).

Elderly subjects were participants of a larger study on
health and functional recovery in a geriatric population post-
transaortic valve implantation. Young and middle-aged adults
were volunteers who underwent dexterity assessment for the
purpose of another study. Ethical approval was obtained from
local ethical committee (CPP, Ile de France). Informed consent
was obtained from all participants and the study was conducted
in accordance to the Declaration of Helsinki.
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Clinical Measures
Upper extremity sensorimotor function was assessed in all elderly
subjects (i.e., in healthy elderly and in subjects with cognitive
decline) using the following tests. The Nine-Hole Peg Test
[NHPT, (22)] was used to qualitatively evaluate precision grip
and object manipulation. Both the dominant and non-dominant
hands were tested twice, and the average time taken to place and
remove all pegs of each hand was calculated. The Box and Blocks
Test [BBT, (34)] was used to measure gross manual dexterity.
The Jebsen Taylor hand function test [JTHFT, (24)] was used to
evaluate fine and gross motor hand function. The pinch gauge
[Patterson Medical Inc. (35)] was used to measure maximal
strength in precision, key (lateral), palmar (three-jaw chuck)
and pinch grips (best of three attempts recorded). Performance
in right and left hands was measured in the participants. The
Instrumental Activities of Daily Living Scale [IADL, (36)] as used
to assess independent living skills. Patients were scored according
to their highest level of functioning using a summary score that
ranges from 0 (low function, dependent) to 14 (high function,
independent) (37). Sensory function was tested through light
touch-test (Semmes-Weinstein Monofilaments). This provided
an evaluation of cutaneous sensitivity of finger tips (38).

Neuropsychological assessments were performed by
a neuropsychologist. It included the Mini-Mental State
Examination (MMSE) and a more detailed neuropsychological
assessment to document the presence or absence of cognitive
decline. Neuropsychological testing included in most cases the
Dubois test of verbal episodic memory (39), the French version
of the Free and cued selective reminding test [RL/RI-16; (40)],
the French version of the Listening Span Test (EMPANS), the
French version of the Frontal Assessment Battery [Batterie rapide
d’efficience mentale, BREF; (41)], the Verbal Fluency Test, which
assesses semantic memory (42), as well as the figure of Rey test.

Finger Force Manipulandum Tasks
Manual dexterity components were measured using the Finger
Force Manipulandum (FFM; http://www.sensix.fr1), a device
with force sensitive pistons linked to various visuo-motor tasks
[Figure 1, (31)]. Individual force data for each finger (index,
middle, ring and little finger) were sampled at 10KHz using a
CED1401 R© (www.ced.co.uk) connected to a computer running
Spike2V6 R©, which provided real-time visual display of finger
forces together with target instructions. Three FFM tasks, as
described previously (43) were used (Figure 2A):

(i) The finger force tracking task was used to measure
precision of index fingertip force modulation. Subjects were
instructed to accurately match the applied index finger
force to the target force. The applied force was displayed
in real-time as a cursor moving vertically as a function
of force. The target force was displayed by a moving line.
Each trial was composed of a ramp (linearly increasing
force), a hold (static maintenance of force), and a release
phase (instantaneous drop in target force back to baseline

1SENSIX FORCE-TORQUE SENSOR FOR BIOMECHANICS Available online at:
http://www.sensix.fr/ (Accessed June 3, 2018).

FIGURE 1 | The Finger Force Manipulandum (FFM). Index, middle, ring, and

little finger each apply forces on separate spring-loaded pistons. In the force

tracking task, graduated force was exerted on one piston (index finger). In

single and multi-finger tapping tasks the subject was instructed to tap on the

corresponding piston(s) in response to auditory or visual cues without trying to

match a particular force level (no force constraint).

level, 0N). Trials were separated by 3 s rest. A total of 48
trials were performed in eight blocks (four with 1N and four
with 2N target hold force) in alternating order.

(ii) The single finger tapping task was used to measure
performance of rhythmic tapping at 1, 2, and 3Hz. For
each finger, subjects were instructed first to follow auditory
rhythmic cues by tapping on the piston. After 15 auditory-
cued trials, subjects had to continue tapping 15 trials at the
same rate without auditory cues (total number of trials per
frequency for each finger: 30).

(iii) The multi-finger tapping task was used to measure
the independence of finger movements. Subjects were
instructed to reproduce different finger tap combinations
according to displayed target instructions within a 2 s time
window. Trials consisted of single finger taps (separate tap
of index, middle, ring or little finger; each performed 8
times for a total of 32 single finger trials) or two-finger tap
combinations (simultaneous taps of index-middle, index-
ring, index-little, middle-ring, middle-little, or ring-little
fingers; each performed 5 times for a total of 30 two-finger
trials). The sequence of trials was pseudo-randomized.

Data Analysis
Visuomotor performance was analyzed using MatlabV9.1 (The
MathWorks, Inc., Natick, MA, USA). Raw data of the four
finger force signals was first down-sampled to 100Hz (and
then smoothed using a 20ms sliding window). The following
measures were first extracted trial-by-trial and then averaged
across trials for each task and condition (e.g., for a single subject
in CD and ES groups in Figures 2B,C).

(i) Finger force tracking:

• Tracking error (N) was calculated as the absolute
summed error between the ideal target force and the user
applied force. The tracking error was extracted separately
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FIGURE 2 | FFM task display and single trial performance examples. (A) Examples from the visual display of the three FFM tasks. In the finger force tracking task, the

subject matched the force applied on the piston (represented as a red cursor that moves vertically as a function of force) to the target force trajectory (yellow

right-to-left moving line) displayed on computer screen. In the single finger tapping task, the subject performed repeated tapping with a single finger following auditory

cues at a given rate. The white bar on the screen indicated which finger had to perform the tapping task (here the index finger), while the red bar gave a visual

feedback of which finger is being selected by the subject. The length (height) of each bar was a function of force. In the multi-finger tapping task, the subject was

instructed to perform a one or two-finger tap with fingers matching the visual cues on the screen (here the instruction indicates a two-finger tap using the index and

ring finger). (B) Single trial recordings from a subject in the cognitive decline (CD) group. (C) Single trial recordings from a subject in the elderly subjects (ES) group.

Note: greater variability in single finger tapping and difficulty selecting correct finger to tap with in multi-finger tapping task (the performed taps do not match the cues

indicated by the stippled line). Color code: blue, index; red, middle; green, ring; black, little finger. The four trials from left to right represent: a single (little) finger tap,

followed by a two-finger (index, little) tap, a single (ring) finger tap, and another two-finger (index, middle) tap.

in the ramp and hold phase for each trial (total of 48
trials).

• Release duration (ms) was calculated as the time taken to
instantaneously reduce the user-applied force from 75 to
25% of the target force (total of 48 trials).

The data of the two tapping tasks were analyzed with a peak
detection algorithm allowing identification of finger taps of a
minimal force amplitude (>0.5N). All detected taps were then
categorized as correct (detected tap = target instruction) or
incorrect (detected tap 6= target instruction). Incorrect taps
included “overflow taps” (presence of unwanted extra finger
tap while correctly matching the target finger) and “error
taps” (presence of unwanted extra finger tap in absence of a
correct finger tap). The following task-specific measures were
calculated:

(ii) Single finger tapping:

• Tap frequency: mean tapping frequency (Hz) performed
during 1, 2, or 3Hz conditions during auditory
cues (15 taps) or without auditory cues (equivalent
time).

• Standard deviation (SD) Tap interval: tap interval (ms)
variability between two successive finger taps during 1, 2,
or 3Hz condition.

(iii) Multi-finger tapping:

• Selectivity index: rate (%) of correct finger taps matching
the target (non-target taps were not considered).

• Individuation index: rate (%) of correct finger
taps matching the target in absence of incorrect
taps.

Statistical Analysis
Statistical analyses of clinical and behavioral measures
were performed using Statistica10 (StatSoft, Inc., USA).
Student’s t-test or Mann-Whitney U-test were used to test
for group differences in demographic and clinical outcomes.
Group differences of FFM measures were analyzed using a
general linear model repeated measures ANOVA with one
GROUP factor (YA/A/ES/CD) and task-related within-group
factors:

(i) Finger force tracking: FORCE (1N and 2N) and PHASE
(RAMP and HOLD)

(ii) Single finger tapping: FREQUENCY (1, 2, and 3Hz),
FINGER (index, middle, ring, little finger), PHASE
(auditory-cued, without feedback)

(iii) Multi-finger tapping: FINGER (index, middle, ring,
little finger), COMBINATION (single and two-finger
taps)

Fisher LSD post-hoc test was used to investigate differences
revealed by ANOVA.
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RESULTS

Demographic and clinical details of elderly subjects and patients
with cognitive decline are shown in Table 1.

FFM Task Feasibility
All subjects successfully performed the finger force tracking task.
Two participants in the elderly subjects group were not able
to complete the single and multi-finger tapping tasks due to
limited time or unwillingness to complete the full protocol. In
the cognitive decline group, four participants were not able to
complete the multi-finger tapping task due to an inability to use
the visual feedback in the allotted time window [task-related issue
similar to (31)].

Group Comparisons for Dexterity
Components
Finger Force Tracking
Qualitatively, this task revealed striking differences in the
ability to precisely control forces with increasing age. Single
subject/single trial examples are shown in Figure 2A. The
ANOVA of tracking error showed significant group differences
[F(3, 36) = 18.60, p < 0.001, Figure 3A]. Post-hoc testing revealed
that young adults (YA) had smaller errors compared to other
groups (Table 2, p < 0.05). Young adults also had decreased
error compared to elderly subjects (p = 0.03) and to subjects
with cognitive decline (p = 0.001). However, error did not
differ between elderly subjects and those with cognitive decline
(p = 0.16). Release duration also changed as a function of age
[GROUP F(3, 36) = 3.18, p = 0.02). Post-hoc testing showed
that both elderly subjects and those with cognitive decline had

TABLE 1 | Clinical data for the two groups: elderly subjects (ES) and patients with

cognitive decline (CD).

MEAN ± SD

Cognitively intact

elderly

subjects (ES)

Elderly subjects with

cognitive

decline (CD)

Group

difference*

Age (years) 78.20 ± 8.47 83.64 ± 6.85 p = 0.12

MMSE (0–30) 27.25 ± 3.20 22.36 ± 3.59 p = 0.007

IADL (0–14) 10.33 ± 2.90 11.18 ± 3.52 p = 0.533

BBT right (#blocks/ min) 47.67 ± 14.09 43.36 ± 10.59 p = 0.45

BBT left (#blocks/ min) 41.92 ± 14.5 42.91 ± 10.06 p = 0.852

JTHFT right (s) 47.5 ± 13 49.1 ± 9.6 p = 0.75

JTHFT left (s) 55.5 ± 17.3 55.6 ± 13.6 p = 0.99

Pinch right (Kg) 8.23 ± 2.98 7.8 ± 2.26 p = 0.70

Pinch left (Kg) 7.27 ± 2.37 6.77 ± 1.96 p = 0.60

NHPT right (s) 29.35 ± 10.74 27.67 ± 2.41 p = 0.675

NHPT left (s) 33.05 ± 10.45 33.21 ± 6.24 p = 0.995

MMSE, Mini-Mental State Examination (min = 0, max = 30, score ≥ 24 normal, score

18-23 MCI) (44); IADL, Instrumental Activities of Daily Living Scale (45); BBT, Box and

Blocks Test (34) performed with right and left hand, respectively; JTHFT, Jebsen-Taylor

Hand Function Test (24) total score across six tasks; Pinch Gauge instructions for tip, key

and palmer pinch strength, average reported (35); NHPT, Nine-Hole Peg Test (22) finger

dexterity test. *Group difference tested usingMann-Whitney U-test. Significant differences

are highlighted in bold.

increased release duration compared to young adults (Table 2,
p < 0.05).

Single Finger Tapping
The ANOVA of tap frequency showed GROUP differences
[F(3, 34) = 9.94, p < 0.001] and significant interaction
with frequency conditions [GROUP∗FREQ, F(6, 68) = 11.07,
p < 0.001]. Post-hoc testing revealed that all groups performed
similarly at 1Hz (YA: 1.06Hz ± 0.04; MA: 1.02Hz ± 0.03; ES:
1.09Hz ± 0.14; CD: 1.02Hz ± 0.14) and 2Hz (YA: 2.07Hz ±

0.12; MA: 2.01Hz ± 0.08; ES: 1.80Hz ± 0.28; CD: 1.74Hz ±

0.19). However, at 3Hz elderly subjects as well as subjects with
cognitive decline had reduced tap frequency compared to young
adults and middle-aged adults (p < 0.001), detailed in Table 2.
No difference was found between elderly subjects and those with
cognitive decline.

The variability of tapping at 3Hz also differed significantly
between groups [ANOVA, GROUP, F(3, 34) = 8.44, p < 0.001,
Figure 3B]. Post-hoc tests showed no effect of age and only
the subjects with cognitive decline had significantly increased
tap interval variability compared to the other groups (Table 2,
p < 0.05).

Multi Finger Tapping
The ANOVA of the selectivity index showed significant GROUP
differences [F(3, 28) = 6.91, p = 0.001, Figure 3C]. Only the
cognitive decline group had greater difficulty to tap with
the correctly selected finger compared to the other groups
(Table 2, p < 0.05). Furthermore, the ANOVA showed a
significant interaction between GROUP and COMBINATION
[F(3, 28) = 4.90, p = 0.007]. Post-hoc testing revealed that the
performance of elderly subjects did not differ from those of young
adults (p = 0.16) or middle-aged adults (0.19) when tapping
with one finger. The selectivity of taps was reduced in elderly
subjects when tapping with two fingers (ES∗YA, p=0.02; ES∗MA,
p = 0.02). In contrast, the cognitive decline group had reduced
selectivity compared to all groups in both one and two-finger
taps.

The individuation index also varied between groups [GROUP
F(3, 28) = 10.30, p < 0.001] but there was no interaction between
GROUP × COMBINATION [F(3, 28) = 1.50, p = 0.24]. Thus,
elderly subjects and those with cognitive impairment showed a
significantly decreased group performance compared to young
adults and middle-aged adults (Table 2, p < 0.05). Furthermore,
this index showed no significant differences between elderly
subjects and those with cognitive impairment.

Clinical Measures of Hand Sensory and
Motor Impairment and ADL
Clinical measures were obtained for all elderly subjects, i.e., for
healthy elderly subjects and those with cognitive impairment.
Sensory function (light touch) was normal in all subjects.
The MMSE score was, as expected, significantly lower in
the subjects with cognitive impairment compared to elderly
subjects. However, the mean MMSE score of 22.36 in the
cognitive impairment group indicated the absence of a major
cognitive disorder. For the clinical manual dexterity tests (pinch
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FIGURE 3 | Group comparisons of performance in FFM tasks. (A) Error during finger force tracking task. (B) Variability of intertap interval in single finger tapping task.

(C) Success rate (also termed the selectivity index) in the multi-finger tapping task. YA, young adults; MA, middle-aged adults; ES, elderly subjects; CD, subjects with

cognitive decline. Group differences in LSD post-hoc tests: *p < 0.05, **p < 0.01, ***p < 0.001.

TABLE 2 | FFM measures for the four groups (mean ± standard deviation).

MEAN ± SD Group differences

Young

adults (YA)

Middle-aged

adults (MA)

Elderly subjects

(ES)

Subjects with

cognitive

decline (CD)

YA vs. MA MA vs. ES ES vs. CD

Finger force

tracking

Tracking error (N) 4.44 ± 0.91 19.01 ± 3.68 29.54 ± 10.84 35.82 ± 15.81 p = 0.005 p = 0.03 p = 0.16

Release duration (ms) 84.03 ± 33.60 84.03 ± 33.60 237.58 ± 151.74 198.16 ± 147.33 p = 0.56 p = 0.03 p = 0.43

Single finger

tapping (3Hz)

Frequency (Hz) 3.26 ± 0.30 3.12 ± 0.46 2.49 ± 0.46 2.49 ± 0.46 p = 0.31 p < 0.001 p = 0.19

SD tap interval (ms) 59.54 ± 20.30 59.11 ± 16.01 98.91 ± 38.94 146.25 ± 72.09 p = 0.98 p = 0.08 p = 0.03

Multi-finger

tapping

Selectivity Index (%) 99.17 ± 0.93 98.88 ± 1.52 84.53 ± 11.25 66.11 ± 33.93 p = 0.96 p = 0.07 p = 0.03

Individuation index (%) 93.82 ± 4.57 93.19 ± 3.68 61.17 ± 28.78 50.05 ± 37.69 p = 0.95 p = 0.002 p = 0.28

LSD Fisher post-hoc tests were used to evaluate significant group effects in ANOVA. Significant differences are highlighted in bold.

grip strength, gross and fine manual dexterity; see Table 1)
elderly subjects and those with cognitive impairment showed
comparable performance (no significant group differences). In
both of these groups no dependency in activity of daily living was
observed.

DISCUSSION

This study provides a first multi-component characterization
of changes in manual dexterity related to aging and to
cognitive decline. The behavioral data suggest two different
patterns of deterioration in manual dexterity. (i) The first
pattern of impaired performance was found in patients
with a medical history of cognitive decline. These patients
had increased variability of finger tapping and reduced
ability to correctly select a finger in response to a visual
target in the multi-finger tapping task. Remarkably, impaired
performance was only related to cognitive status and not to
increasing age. The second pattern of decline in performance
was related to increasing age and was present in tasks
that required fine-graded sensorimotor processing, such as

visuo-motor precision during force tracking, finger tapping rate
at 3Hz and individuation of finger movements. Independent
finger movements are considered a hallmark of manual
dexterity (46), and we found impaired independence of finger
movements in elderly subjects. These pilot findings need to be
confirmed in larger samples. Nonetheless, the two patterns of
impaired performance suggest a dissociation between manual
tasks involving mainly sensorimotor processing (sensorimotor
integration, speed of execution and motor inhibition) and those
involving a greater cognitive contribution (attention and working
memory).

Cognitive Effects
Two specific impairments were only detected in subjects with
cognitive decline. First, tap interval variability, in the audio-
motor single finger tapping task, was higher (Figure 3B),
replicating previous findings of increased intra-individual
variability in finger tapping in MCI (47–49). Increased tapping
variability in MCI is considered to arise from impaired
working memory and attentional processing (48, 49), not
from impaired motor control. Furthermore, increased tapping
variability has also been shown in patients with attention
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deficit hyperactivity disorder (50). Impaired working memory
and attention may compromise matching of internal task
expectancies with external temporal demands (51) or affect
task planning (52) and prediction (53). Second, subjects with
cognitive decline showed reduced ability to select the correct
finger according to the visual cue during the multi-finger
tapping task (Figure 3C). This was not the case in healthy
middle-aged and young adults, suggesting absence of an age
effect. This task resembles the serial reaction time task (SRTT),
which revealed prolonged processing times in MCI (9, 54, 55).
Although older healthy subjects showed prolonged reaction
times in SRTT, they had similar error rates compared to
young subjects (56), coherent with our findings of similar
selectivity index in healthy subjects of different age. Selecting
the correct finger (effector), in response to the visual cue,
requires spatial mapping between cue and effector according
to rules maintained in short-term memory (57). This stimulus-
response relation and selection process is likely affected in
MCI, consistent with impaired associative memory and decision
making (58–60).

Aging Effects
A strong age effect was found in the ability to precisely match
finger force to a visual target in the force tracking task. Error
increased linearly with age across groups, with elderly subjects

and subjects with cognitive decline having the highest error
values (Figure 3A). Even the group of adults had increased error
compared to the group of young adults, providing evidence of
an early age-related decline in the precision of sensorimotor
control. This shows that the capacity to adapt motor performance
in accordance to visual feedback deteriorates with age. Previous
studies showed a two-fold increase in force-tracking error in
subjects 60–70 years old compared to young subjects (age
∼20) (61, 62). Our results extend these findings, showing an
even greater decline (∼6-fold) in force tracking precision in
elderly subjects and subjects with cognitive decline (age >70).
Importantly, subjects with cognitive decline did not perform
worse than elderly subjects of comparable age, suggesting that
MCI does not impact visuomotor force tracking, which relies
primarily on on-line sensorimotor integration, less on cognitive
resources. This is consistent with absence of visuo-motor upper
limb deficits in MCI, as long as cognitive demands (mapping,
memory, learning) are minor (63).

Our findings also suggest an age-related decline in motor
inhibition: longer release duration (during tracking) and reduced
finger individuation, both considered to involve processes
of motor inhibition (31, 64, 65), were found in elderly
subjects and those with cognitive decline. Age-related increase
in release duration has been reported previously in healthy
subjects (62), whereas altered finger individuation has not

FIGURE 4 | A hypothetical overview of how different brain areas are more or less involved depending on manual dexterity tasks involving more cognitive rule-making

or more sensorimotor integration requirements. Arrow thickness reflects degree of task-related involvement processes. The hypothesis is that brain areas and

processing involved in manual dexterity tasks depend on whether the task requires (i) on-line sensorimotor integration (yellow arrows) to adapt performance according

to feedback or (ii) rule-based associations (blue arrows) that result in performance predictions that are adapted during performance. The force tracking task requires a

greater level of on-line matching of motor output to sensory feedback with engagement of sensory-premotor-motor networks. In contrast, tasks requiring more

cognitive processing including stimulus-based decisions (temporal or spatial) according to task rules (maintained in working memory) involve a greater contribution

from prefrontal cortex and hippocampus. The basal ganglia and the cerebellum, also involved in manual dexterity processing, are not shown for simplicity.
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been shown consistently (27, 66), probably due to task-related
differences. Our tapping task, resembling keyboard typing or
piano playing, revealed evidence for a similar reduction of
independent finger movements in elderly subjects and, in
subjects with cognitive decline. This suggests that MCI does
not influence these measures linked to motor inhibition, in
line with previous reports using Go-Nogo paradigms or Stroop
(67).

Our data also point to age-related motor slowing. Both elderly
subjects [as those in (68)] and those with cognitive decline
were unable to maintain single finger tapping at 3Hz, but
showed no speed deficit at slower tapping rates (1 or 2Hz).
Tapping speed did not differentiate between elderly subjects and
those with cognitive decline, similar to previous reports (69–
71).

Differential Cognitive Involvement in
Manual Dexterity Tasks
We propose a qualitative, explanatory model that accounts for
the observed differences in manual dexterity as a function of
cognitive decline vs. healthy aging. The model incorporates (i)
the cognitive and sensorimotor constraints of each task, and
(ii) the presumably involved brain structures and processes
(Figure 4).

(i) Task constraints: the single and multi-finger tapping tasks
both require a mapping between motor performance and
stimulus-based rules. In the single-finger tapping task the
rule involves tapping (with one finger at a time) in synchrony
with the auditory cue and then continuing without cue.
Single finger tapping is thus the one task among the
three that contains an explicit memory condition (other
than task instructions) on the timing of repetitive motor
action, which determines the degree of performance. In
the multi-finger tapping task the rule requires mapping the
visually displayed target tap to the effector configuration.
Thus, finger selection based on this trial-by-trial mapping
determines here successful task performance. In these two
tasks, specific rule-based (temporal or spatial) information is
maintained in short-term memory. Attention and working
memory processes are therefore key to good performance in
these two tasks, that do not require high-level sensorimotor
integration. In contrast, the force-tracking task requires
constant on-line modulation of finger force based on
real-time visual feedback (sensorimotor integration), but
depends, most likely, less on working memory (since the
feedback is available at all times and the task rules are simple
and invariant).

(ii) Neural correlates: we presume that implementation of
(temporal or spatial) stimulus-response rules, requiring
attention and working memory, depend on prefrontal
cortical areas and hippocampus (72). This concerns
primarily the two tapping tasks. In contrast, we assume
that force tracking, requiring a high degree of visuo-
motor integration, depends predominantly on sensorimotor
(parieto-motor) cortical networks (73, 74).

The proposed model is compatible with studies suggesting
a disassociation of neural mechanisms related to age-related
sensorimotor deterioration or cognitive decline. Neuroimaging
studies provide compelling evidence of reduced structural and
functional integrity of prefrontal cortex and hippocampus
in patients with MCI (72, 75), which has been correlated
with gait slowing and cognitive dysfunction in elderly
subjects (76). Decision making and response selection are
closely linked to the prefrontal cortex (77–79), which is
dysregulated in MCI subjects (80). In contrast, age-related
decline in motor function has been mainly related to loss of
structural and functional integrity in descending motor and
ascending sensory pathways (20, 25, 81, 82). Furthermore,
healthy aging has been related with increased recruitment
of prefrontal and sensorimotor networks to successfully
accomplish more cognitively demanding motor tasks (83).
Our results suggest that elderly subjects affected by MCI
cannot use compensatory cognitive reserves, consistent with
decreased performance in more cognitively demanding tasks
(81, 84, 85).

Limitations
The cognitive decline group consisted of a heterogeneous
sample of patients with clinical MCI or early stage AD
diagnosis. Group size was small and sub-group characterization
was not feasible. Nonetheless, this study provides a first
multi-component description of dexterity in patients with
cognitive decline. Future studies with a larger sample
would be needed to (i) assess the presence of different
manual dexterity profiles in various types of MCI and
AD, (ii) replicate the absence of an age effect in particular
key dexterity scores, and (iii) include a finger motor
sequence (memorization) task (43) to potentially evaluate
differences between amnestic and non-amnestic types of
MCI (86).

CONCLUSIONS

Although conventional clinical testing of hand function (BBT,
9-HPT, JTHFT) did not reveal any differences between
elderly subjects with cognitive decline and those without, the
quantitative assessment of manual dexterity showed clearly
distinct task performance. Subjects with cognitive impairment
showed decreased single-finger tapping regularity and reduced
finger selectivity (compared to healthy elderly, age-matched
subjects). In contrast, accuracy of force control was significantly
reduced with age (even between young adults and adults), but
not more so in subjects with cognitive decline. This dissociation
suggests that rule-based dexterity tasks are useful for the
detection of MCI and that on-line sensorimotor integration
tasks are sensitive for determining age-related decline in
manual dexterity in healthy subjects. Furthermore, our findings
imply that these performance measures, suitable for rapid
quantification in the clinical setting, could provide valuable
clinical markers for early sensitive detection of age-related
cognitive decline. Further studies in longitudinal cohorts are
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warranted to investigate whether these measures could be useful
for predicting the development of MCI (87).
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