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MODULO p REPRESENTATIONS OF REDUCTIVE p-ADIC GROUPS:
FUNCTORIAL PROPERTIES

N. ABE, G. HENNIART, AND M.-F. VIGNÉRAS

Abstract. Let F be a local field with residue characteristic p, let C be an algebraically
closed field of characteristic p, and let G be a connected reductive F -group. In a previous
paper, Florian Herzig and the authors classified irreducible admissible C-representations
of G = G(F ) in terms of supercuspidal representations of Levi subgroups of G. Here,
for a parabolic subgroup P of G with Levi subgroup M and an irreducible admissible C-
representation τ of M , we determine the lattice of subrepresentations of IndGP τ and we show
that IndGP χτ is irreducible for a general unramified character χ of M . In the reverse direction,
we compute the image by the two adjoints of IndGP of an irreducible admissible representation
π of G. On the way, we prove that the right adjoint of IndGP respects admissibility, hence
coincides with Emerton’s ordinary part functor OrdG

P
on admissible representations.
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1. Introduction

1.1. Classification results of [AHHV17]. The present paper is a sequel to [AHHV17]. The
overall setting is the same: p is a prime number, F a local field with finite residue field of
characteristic p, G a connected reductive F -group and G = G(F ) is seen as a topological
locally pro-p group. We fix an algebraically closed field C of characteristic p and we study
the smooth representations of G over C-vector spaces - we write Mod∞C (G) for the category
they form.

Let P be a parabolic subgroup of G with a Levi decomposition P = MN and σ a su-
percuspidal C-representation of M , in the sense that it is irreducible, admissible, and does
not appear as a subquotient of a representation of M obtained by parabolic induction from
an irreducible, admissible C-representation of a proper Levi sugroup of M . Then there is a
maximal parabolic subgroup P (σ) of G containing P to which σ inflated to P extends; we
write e(σ) for that extension. For each parabolic subgroup Q of G with P ⊂ Q ⊂ P (σ), we
form

IG(P, σ,Q) = IndGP (σ)(e(σ)⊗ StP (σ)
Q )

where StP (σ)
Q = IndP (σ)

Q 1/
∑

IndP (σ)
Q′ 1, the sum being over parabolic subgroups Q′ of G with

Q ( Q′ ⊂ P (σ).
The classification result of [AHHV17] is that IG(P, σ,Q) is irreducible admissible, and that

conversely any irreducible admissible C-representation of G has the form IG(P, σ,Q), where
P is determined up to conjugation, and, once P is fixed, Q is determined and so is the
isomorphism class of σ.

1.2. Main results. The classification raises natural questions: if G is a Levi subgroup of
a parabolic subgroup R in a larger connected reductive group H, what is the structure of
IndHR π when π is a irreducible admissible C-representation of G?

We show that IndHR π has finite length and multiplicity 1; we determine its irreducible
constituents and the lattice of its subrepresentations: see section 3 for precise results and
proofs. As an application, we answer a question of Jean-Francois Dat, in showing that IndHR χπ
is irreducible when χ is a general unramified character of G.

If P1 is a parabolic subgroup of G with Levi decomposition P1 = M1N1, then IndGP1 :
Mod∞C (M1) → Mod∞C (G) has a left adjoint LGP1

, which is the usual Jacquet functor (−)N1

taking N1-coinvariants, and also a right adjoint functor RGP1
[Vig13]. It is natural to apply
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LGP1
and RGP1

to π. They turn out to be irreducible or 0, in sharp contrast to the case of
complex representations of G. To state precise results, we fix a minimal parabolic subgroup
B of G and a Levi decomposition B = ZU of B, and we consider only parabolic subgroups
containing B and their Levi components containing Z. We simply say “let P = MN be a
standard parabolic subgroup of G” to mean that P contains B and M is the Levi component
of P containing Z, N being the unipotent radical of P .

Theorem 1.1. Let P = MN and P1 = M1N1 be standard parabolic subgroups of G, let
σ be a supercuspidal C-representation of M and let Q be a parabolic subgroup of G with
P ⊂ Q ⊂ P (σ).

(i) LGP1
IG(P, σ,Q) is isomorphic to IM1(P ∩ M1, σ,Q ∩ M1) if P1 ⊃ P and the group

generated by P1 ∪Q contains P (σ), and is 0 otherwise.
(ii) RGP1

IG(P, σ,Q) is isomorphic to IM1(P ∩M1, σ,Q∩M1) if P1 ⊃ Q, and is 0 otherwise.

See §6 and §7 for the proofs, with consequences already drawn in §6.1: in particular, we
prove that an irreducible admissible C-representation π of G is supercuspidal exactly when
LGPπ and RGPπ are 0 for any proper parabolic subgroup P of G.

As the construction of IG(P, σ,Q) involves parabolic induction, we are naturally led to
investigate, as an intermediate step, the composite functors LGP1

IndGP and RGP1
IndGP , for stan-

dard parabolic subgroups P = MN and P1 = M1N1 of G. In §5, we prove:

Theorem 1.2. The functor LGP1
IndGP : Mod∞C (M)→ Mod∞C (M1) is isomorphic to the functor

IndM1
P∩M1

LMP1∩M , and the functor RGP1
IndGP : Mod∞C (M) → Mod∞C (M1) is isomorphic to the

functor IndM1
P∩M1

RMP1∩M .

We actually describe explicitly the functorial isomorphism for LGP1
IndGP whereas the case

of RGP1
IndGP is obtained by adjunction properties. The fact that RGP1

has no direct explicit
description has consequence for the proof of Theorem 1.1 (ii). We first prove:

Theorem 1.3. If π is an admissible C-representation of G, then RGPπ is an admissible C-
representation of M .

It follows that on admissible C-representations of G, RGP coincides with Emerton’s ordi-
nary part functor OrdG

P
(as extended to the case of C-representations in [Vig13]). To prove

Theorem 1.1 (ii) we in fact use OrdG
P 1

in place of RGP1
. Note that, if the characteristic of F

is 0 and π is an admissible C-representation of G, then LGPπ is admissible. But in contrast,
when F has characteristic p, we produce in §4 an example, for G = SL(2, F ), of an admissible
C-representation π of G such that LGBπ is not admissible.

1.3. Outline of the proof. After the initial section §2 devoted to notation and preliminaries,
our paper mainly follows the layout above. However admissibility questions are explored in
§4, where Theorem 1.3 is established: as mentioned above, the result is used in the proof
Theorem 1.1 (ii).

Without striving for the utmost generality, we have taken care not to use unnecessary
assumptions. In particular, from section §4 on, we consider a general commutative ring R as
coefficient ring, imposing conditions on R only when useful. The reason is that for arithmetic
applications it is important to consider the case where R is artinian and p is nilpotent or
invertible in R. Only when we use the classification do we assume R = C. Our results are
valid for R noetherian and p nilpotent in R in sections §4 to §7. For example, when R is
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noetherian and p is nilpotent in R, Theorem 1.2 is valid (Theorem 5.5 and Corollary 5.6) and
a version to Theorem 1.1 is obtained in Theorem 6.1 and Corollary 6.2. Likewise Theorem
1.3 is valid when R is noetherian and p is nilpotent in R (Theorem 4.11).

In a companion paper [AHV], the authors will investigate the effect of taking invariants
under a pro-p Iwahori subgroup in the modules IG(P, σ,Q) of 1.1.

Acknowledgment. The authors thank the referee for a thorough reading and helpful com-
ments. They also thank Julien Hauseux pointing out an error in Proposition 4.22.

2. Notation, useful facts and preliminaries

2.1. The group G and its standard parabolic subgroups P = MN . In all that follows,
p is a prime number, F is a local field with finite residue field k of characteristic p; as usual,
we write OF for the ring of integers of F , PF for its maximal ideal and valF the absolute value
of F normalised by valF (F ∗) = Z. We denote an algebraic group over F by a bold letter, like
H, and use the same ordinary letter for the group of F -points, H = H(F ). We fix a connected
reductive F -group G. We fix a maximal F -split subtorus T and write Z for its G-centralizer;
we also fix a minimal parabolic subgroup B of G with Levi component Z, so that B = ZU
where U is the unipotent radical of B. Let X∗(T) be the group of F -rational characters of
T and Φ the subset of roots of T in the Lie algebra of G. Then B determines a subset Φ+ of
positive roots - the roots of T in the Lie algebra of U- and a subset of simple roots ∆. The
G-normalizer NG of T acts on X∗(T) and through that action, NG/Z identifies with the
Weyl group of the root system Φ. Set N := NG(F ) and note that NG/Z ' N/Z; we write
W for N/Z.

A standard parabolic subgroup of G is a parabolic F -subgroup containing B. Such a
parabolic subgroup P has a unique Levi subgroup M containing Z, so that P = MN where
N is the unipotent radical of P - we also call M standard. By a common abuse of language
to describe the preceding situation, we simply say “let P = MN be a standard parabolic
subgroup of G”; we sometimes write NP for N and MP for M . The parabolic subgroup of G
opposite to P will be written P and its unipotent radical N , so that P = MN , but beware
that P is not standard ! We write WM for the Weyl group M ∩N/Z.

If P = MN is a standard parabolic subgroup of G, then M ∩ B is a minimal parabolic
subgroup of M. If ΦM denotes the set of roots of T in the Lie algebra of M, with respect
to M ∩ B we have Φ+

M = ΦM ∩ Φ+ and ∆M = ΦM ∩ ∆. We also write ∆P for ∆M as P
and M determine each other, P = MU . Thus we obtain a bijection P 7→ ∆P from standard
parabolic subgroups of G to subsets of ∆, with B corresponds to ∅ and G to ∆. If I is a subset
of ∆, we sometimes denote by PI = MINI the corresponding standard parabolic subgroup of
G. If I = {α} is a singleton, we write Pα = MαNα. We note a few useful properties. If P1
is another standard parabolic subgroup of G, then P ⊂ P1 if and only if ∆P ⊂ ∆P1 ; we have
∆P∩P1 = ∆P ∩∆P1 and the parabolic subgroup corresponding to ∆P ∪∆P1 is the subgroup
〈P, P1〉 of G generated by P and P1. The standard parabolic subgroup of M associated to
∆M ∩∆M1 is M∩P1 = (M∩M1)(M∩N1) [Car85, Proposition 2.8.9]. It is convenient to write
G′ for the subgroup of G generated by the unipotent radicals of the parabolic subgroups; it
is also the normal subgroup of G generated by U , and we have G = ZG′.

For each α ∈ X∗(T), the homomorphism x 7→ valF (α(x)) : T → Z extends uniquely to
a homomorphism Z → Q that we denote in the same way. This defines a homomorphism
Z

v−→ X∗(T )⊗Q such that α(v(z)) = valF (α(z)) for z ∈ Z,α ∈ X∗(T).
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An interesting situation occurs when ∆ = ItJ is the union of two orthogonal subsets I and
J . In that case, G′ = M ′IM

′
J , M ′I and M ′J commute with each other, and their intersection is

finite and central in G [AHHV17, II.7 Remark 5].

2.2. Representations of G. As apparent in the abstract and the introduction, our main
interest lies in smooth C-representations of G, where C is an algebraically closed field
of characteristic p, which we fix throughout. However many of our arguments do not
necessitate so strong a hypothesis on coefficients, so we let R be a fixed commutative ring.

Occasionally we shall consider an R[A]-module V where A is a monoid. An element v of V
is called A-finite if its translates under A generate a finitely generated submodule of V . If
R is noetherian the A-finite elements in V generate a submodule of V , that we write V A−f .
When A is generated by an element t, we write V t−f instead of V A−f .

We speak indifferently of R[H]-modules and of R-representations of H for a locally profinite
group H. An R[H]-module V is called smooth if every vector in V has an open stabilizer
in H. The smooth R-representations of H and R[H]-linear maps form an abelian category
Mod∞R (H).

An R-representation V of a locally profinite group H is admissible if it is smooth and
for any open compact subgroup J of H, the R-submodule V J of J-fixed vectors is finitely
generated. When R is noetherian, it is clear that it suffices to check this when J is small
enough. When R is noetherian we write ModaR(H) for the subcategory of Mod∞R (H) made
out of the admissible R-representations of H. We explore admissibility further in section 4.

If P = MN is a standard parabolic subgroup of G, the parabolic induction functor IndGP :
Mod∞R (M) → Mod∞R (G) sends W ∈ Mod∞R (M) to the smooth R[G]-module IndGP W made
out of functions f : G → W satisfying f(mngk) = mf(g) for m ∈ M,n ∈ N, g ∈ G and k
in some open subgroup Kf of G - the action of G is via right translation. The functor IndGP
has a left adjoint LGP : Mod∞R (G)→ Mod∞R (M) which sends V in Mod∞R (G) to the module of
N -coinvariants VN of V , which is naturally a smooth R[M ]-module. The functor IndGP has a
right adjoint RGP : Mod∞R (G)→ Mod∞R (M) [Vig13, Proposition 4.2].

When R is a field, a smooth R-representation of G is called irreducible if it is a simple
R[G]-module. An R-representation of G is called supercuspidal it is irreducible, admissible,
and does not appear as a subquotient of a representation of M obtained by parabolic induction
from an irreducible, admissible representation of a proper Levi subgroup of M .

2.3. On compact induction. If X is a locally profinite space with a countable basis of open
sets, and V is an R-module, we write C∞c (X,V ) for the space of compactly supported locally
constant functions X → V . One verifies that the natural map C∞c (X,R)⊗R V → C∞c (X,V )
is an isomorphism.

Lemma 2.1. The R-module C∞c (X,R) is free. When X is compact, the submodule of constant
functions is a direct factor of C∞c (X,R).

Proof. The proof of [Ly15, Appendix A.1] when X is compact is easily adapted to C∞c (X,V )
when X is not compact. �

Example 2.2. C∞c (X,R)H is a direct factor of C∞c (X,R) when X is compact with a continuous
action of a profinite group H with finitely many orbits (apply the lemma to the orbits which
are open).

Let H be a locally profinite group and J a closed subgroup of H.
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Lemma 2.3. The quotient map H → J\H has a continuous section.

Proof. When H is profinite, this is [RZ10, Proposition 2.2.2]. In general, let K be a compact
open subgroup of H. Cover H with disjoint double cosets JgK. It is enough to find, for any
given g, a continuous section of the induced map JgK πg−→ J\JgK. The map k 7→ gk induces
a continous bijective map (K ∩ g−1Jg)\K p−→ J\JgK. Because J is closed in H, both spaces
are Hausdorff and (K ∩ g−1Jg)\K is compact since K is, so p is a homeomorphism. If σ is a
continuous section of the quotient map K → (K ∩ g−1Jg)\K then x 7→ gσ(p−1(x)) gives the
desired section of πg. �

Let σ be a continuous section of H → J\H, and let V be a smooth R-representation of J .
Recall that c-IndHJ V is the space of functions f : H → V , left equivariant by J , of compact
support in J\H, and smooth for H acting by right translation. Immediately:

Lemma 2.4. The map f 7→ f ◦ σ : c-IndHJ V → C∞c (J\H,V ) is an R-module isomorphism.

As a consequence we get a useful induction/restriction property: let W be a smooth R-
representation of H.

Lemma 2.5. The map f ⊗w 7→ (h 7→ f(h)⊗ hw) : (c-IndHJ V )⊗W → c-IndHJ (V ⊗W ) is an
R[H]-isomorphism.

Proof. The map is linear and H-equivariant. Lemma 2.4 implies that it is bijective. �

Remark 2.6. Arens’ theorem says that if X is a homogeneous space for H and H/K is
countable for a compact open subgroup K of H, then for x ∈ X the orbit map h 7→ hx
induces a homeomorphism H/Hx ' X. In particular, for two closed subgroups I, J of H such
that H = IJ , we get a homeomorphism I/(I ∩ J) ' H/J . Hence (c-IndHJ V )|I ' c-IndII∩J V
for any smooth R-representation V of J .

2.4. IG(P, σ,Q) and minimality. We recall from [AHHV17] the construction of IG(P, σ,Q),
our main object of study.

Proposition 2.7. Let P = MN ⊂ Q be two standard parabolic subgroups of G and σ an
R-representation of M . Then the following are equivalent:

(i) σ extends to a representation of Q where N acts trivially.
(ii) For each α ∈ ∆Q \∆P , Z ∩M ′α acts trivially on σ.

That comes from [AHHV17, II.7 Proposition] when R = C, but the result is valid for any
commutative ring R [AHHV17, II.7 first remark 2]. Besides, the extension of σ to Q, when
the conditions are fulfilled, is unique; we write it eQ(σ); it is trivial on NQ and we view it
equally as a representation of MQ. The R-representation eQ(σ) of Q or MQ is smooth, or
admissible, or irreducible (when R is a field) if and only if σ is. Let Pσ = MσNσ be the
standard parabolic subgroup of G with ∆Pσ = ∆σ where

(1) ∆σ = {α ∈ ∆ \∆P | Z ∩M ′α acts trivially on σ}.

There is a largest parabolic subgroup P (σ) containing P to which σ extends: ∆P (σ) =
∆P ∪ ∆σ. Clearly when P ⊂ Q ⊂ P (σ), the restriction to Q of eP (σ)(σ) is eQ(σ). If
there is no risk of ambiguity, we write

e(σ) = eP (σ)(σ).
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Definition 2.8. An R[G]-triple is a triple (P, σ,Q) made out of a standard parabolic sub-
group P = MN of G, a smooth R-representation of M , and a parabolic subgroup Q of G
with P ⊂ Q ⊂ P (σ). To an R[G]-triple (P, σ,Q) is associated a smooth R-representation of
G:

IG(P, σ,Q) = IndGP (σ)(e(σ)⊗ StP (σ)
Q )

where StP (σ)
Q is the quotient of IndP (σ)

Q 1, 1 denoting the trivial R-representation of Q, by the
sum of its subrepresentations IndP (σ)

Q′ 1, the sum being over the set of parabolic subgroups Q′
of G with Q ( Q′ ⊂ P (σ).

Note that IG(P, σ,Q) is naturally isomorphic to the quotient of IndGQ(eQ(σ)) by the sum
of its subrepresentations IndGQ′(eQ′(σ)) for Q ( Q′ ⊂ P (σ) by Lemma 2.5.

We also remark that we have the identifications IndQP σ ' IndQ/NQP/NQ
σ and StQP ' StQ/NQP/NQ

where P ⊂ Q are parabolic subgroups, NQ the unipotent radical of Q and σ an representation
of P with the trivial action of NP (hence a representation of the Levi quotient of P ). The
subgroup P/NQ of Q/NQ is a parabolic subgroup.

It might happen that σ itself has the form eP (σ1) for some standard parabolic subgroup
P1 = M1N1 contained in P and some R-representation σ1 of M1. In that case, P (σ1) = P (σ)
and e(σ) = e(σ1). We say that σ is e-minimal if σ = eP (σ1) implies P1 = P, σ1 = σ.

Lemma 2.9. Let P = MN be a standard parabolic subgroup of G and let σ be an R-
representation of M . There exists a unique standard parabolic subgroup Pmin,σ = Mmin,σNmin,σ
of G and a unique e-minimal representation of σmin of Mmin,σ with σ = eP (σmin). Moreover
P (σ) = P (σmin) and e(σ) = e(σmin).

Proof. We have

(2) ∆Pmin,σ = {α ∈ ∆P | Z ∩M ′α does not act trivially on σ},

σmin is the restriction of σ to Mmin,σ, and

(3) ∆σmin = {α ∈ ∆ | Z ∩M ′α acts trivially on σ}.

�

Lemma 2.10. Let P = MN be a standard parabolic subgroup of G and σ an e-minimal
R-representation of M . Then ∆P and ∆σ are orthogonal.

That comes from [AHHV17, II.7 Corollary 2]. That corollary of loc. cit. also shows that
when R is a field and σ is supercuspidal, then σ is e-minimal. Lemma 2.10 shows that ∆Pmin,σ
and ∆σmin are orthogonal.

Note that when ∆P and ∆σ are orthogonal of union ∆ = ∆P t∆σ, then G = P (σ) = MM ′σ
and e(σ) is the R-representation of G simply obtained by extending σ trivially on M ′σ.

Lemma 2.11. Let (P, σ,Q) be an R[G]-triple. Then (Pmin,σ, σmin, Q) is an R[G]-triple and
IG(P, σ,Q) = IG(Pmin,σ, σmin, Q).

Proof. We already saw that P (σ) = P (σmin) and e(σ) = e(σmin). �
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2.5. Hecke algebras. We fix a special parahoric subgroup K of G fixing a special vertex
x0 in the apartment A associated to T in the Bruhat-Tits building of the adjoint group of
G. If V is an irreducible smooth C-representation of K, we have the compactly induced
representation c-IndGK V of G, its endomorphism algebra HG(K, V ) and the centre ZG(K, V )
of HG(K, V ). For a standard parabolic subgroup P = MN of G, the group M ∩K is a special
parahoric subgroup of M and VN∩K is an irreducible smooth C-representation of M ∩K. For
W ∈ Mod∞C (M), there is an injective algebra homomorphism

SGP : HG(K, V )→ HM (M ∩ K, VN∩K)

for which the natural isomorphism HomG(c-IndGK V, IndGP W ) ' HomM (c-IndMM∩K VN∩K,W )
is SGP -equivariant [HV15], [HV12]. Moreover. SGP (ZG(K, V )) ⊂ ZM (M ∩ K, VN∩K).

Let Z(M) denote the maximal split central subtorus of M ; it is equal to the group of
F -points of the connected component in T of

⋂
α∈∆M

Kerα. Let z ∈ Z(M). We say that
z strictly contracts an open compact subgroup N0 of N if the sequence (zkN0z

−k)k∈N is
strictly decreasing of intersection {1}. We say that z strictly contracts N if there exists an
open compact subgroup N0 ⊂ N such that z strictly contracts N0. Choose z ∈ Z(M) which
strictly contracts N . Let τ ∈ ZM (M ∩ K, VN∩K) be a non-zero element which supports on
(M∩K)z(M∩K). (Such an element is unique up to constant multiplication.) Then τ ∈ ImSGP
and the algebra HM (K∩M,VN∩K) (resp. ZM (M ∩K, VN∩K)) is the localization of HG(K, V )
(resp. ZG(K, V )) at τ .

3. Lattice of subrepresentations of IndGP σ, σ irreducible admissible

3.1. Result. This section is a direct complement to [AHHV17]. Our coefficient ring is R = C.
We are given a standard parabolic subgroup P1 = M1N1 of G and an irreducible admissible C-
representation σ1 of M1. Our goal is to describe the lattice of subrepresentations of IndGP1 σ1.
We shall see that IndGP1 σ1 has finite length and is multiplicity free, meaning that its irreducible
constituents occur with multiplicity 1. We recall the main result of [AHHV17] :

Theorem 3.1 (Classification Theorem). (A) Let P = MN be a standard parabolic subgroup
of G and σ a supercuspidal C-representation of M . Then IndGP σ ∈ Mod∞C (G) has finite
length and is multiplicity free of irreducible constituents the representations IG(P, σ,Q) for
P ⊂ Q ⊂ P (σ), and all IG(P, σ,Q) are admissible.

(B) Let π be an irreducible admissible C-representation of G. Then, there is a C[G]- triple
(P, σ,Q) with σ supercuspidal, such that π is isomorphic to IG(P, σ,Q) and π determines P,Q
and the isomorphism class of σ.

By the classification theorem, there is a standard parabolic subgroup P = MN of G and a
supercuspidal C-representation σ of M such that σ1 occurs in IndM1

P∩M1
σ. More precisely, if

P (σ) is the largest standard parabolic subgroup of G to which σ extends, then by Proposition
2.7, P (σ) ∩M1 is the largest standard parabolic subgroup of M1 to which σ extends and

σ1 ' IM1(P ∩M1, σ,Q) ' IndM1
P (σ)∩M1

(eP (σ)∩M1(σ)⊗ StP (σ)∩M1
Q )

for some parabolic subgroup Q of M1 with (P ∩M1) ⊂ Q ⊂ (P (σ) ∩M1). By transitivity of
the parabolic induction,

IndGP1 σ1 ' IndGP (σ)(e(σ)⊗ IndM(σ)
M(σ)∩P1

StP (σ)∩M1
Q ),
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and we need to analyse this representation. Our analysis is based on [Her11, §10]. We
recall the structure of the lattice of subrepresentations of a finite length multiplicity free
representation X. Let J be the set of its irreducible constituents. For j ∈ J , there is a unique
subrepresentation Xj of X with cosocle j - it is the smallest subrepresentation of X with j as
a quotient. Put the order relation ≤ on J , where i ≤ j if i is a constituent of Xj . Then the
lattice of subrepresentations of X is isomorphic to the lattice of lower sets in (J,≤) - recall
that such a lower set is a subset J ′ of J such that if j1 ∈ J, j2 ∈ J ′ and j1 ≤ j2 then j1 ∈ J ′.
A subrepresentation of X is sent to the lower set made out of its irreducible constituents,
and a lower set J ′ of J is sent to the sum of the subrepresentations Xj for j ∈ J ′. We have
Xj = j if and only if j is minimal in (J,≤). If the cosocle of X is irreducible, then (J,≤) has
the unique maximal element and Xj = X if and only if j is maximal in (J,≤). The socle of
X is the direct sum of the minimal j ∈ (J,≤) and the cosocle of X is the direct sum of the
maximal j ∈ (J,≤).

In the sequel J will often be identified with P(I) for some subset I of ∆, both equipped
with the order relation reverse to the inclusion. Thus we rather talk of upper sets in P(I)
(for the inclusion). In that case the socle I of X and the cosocle ∅ of X are both irreducible.

Theorem 3.2. With the above notations, IndGP1 σ1 has finite length and is multiplicity free,
of irreducible constituents the IG(P, σ,Q′) where Q′ is a parabolic subgroup of G satisfying
P ⊂ Q′ ⊂ P (σ) and ∆P1 ∩ ∆Q′ = ∆Q. Sending IG(P, σ,Q′) to ∆Q′ ∩ (∆ \ ∆P1) gives an
isomorphism of the lattice of subrepresentations of IndGP1 σ1 onto the lattice of upper sets in
P(∆P (σ) ∩ (∆ \∆P1)).

The first assertion is a consequence of the classification theorem 3.1 since IndGP1 σ1 is a
subrepresentation of IndGP σ. For the rest of the proof, given in §3.2, we proceed along the
classification, treating cases of increasing generality. As an immediate consequence of the
theorem, we get an irreducibility criterion.

Corollary 3.3. The representation IndGP1 σ1 is irreducible if and only if P1 contains P (σ).

Corollary 3.4. The socle and the cosocle of IndGP1 σ1 are both irreducible.

This is very different from the complex case [LM16].

3.2. Proof. We proceed now to the proof of Theorem 3.2. The very first and basic case is
when P1 = B and σ1 is the trivial representation 1 of Z. The irreducible constituents of
IndGB 1 are the StGQ for the different standard parabolic subgroups Q of G, each occuring with
multiplicity 1.

Proposition 3.5. Let Q be a standard parabolic subgroup of G.
(i) The submodule of IndGB 1 with cosocle StGQ is IndGQ 1.
(ii) Sending StGQ to ∆Q gives an isomorphism of the lattice of subrepresentations of IndGB 1

onto the lattice of upper sets in P(∆).

Proof. By the properties recalled before Theorem 3.2, (i) implies (ii). For (i) the proof is
given in [Her11, §10] when G is split, using results of Grosse-Klönne [GK14]. The general
case is due to T. Ly [Ly15, beginning of §9]. �

We have variants of Proposition 3.5. If Q is a standard parabolic subgroup of G, the
subrepresentations of IndGQ 1 are the subrepresentations of IndGB 1 contained in IndGQ 1. So the
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lattice of subrepresentations of IndGQ 1 is isomorphic of the sublattice of upper sets in P(∆)
consisting of subsets containing ∆Q; intersecting with ∆ \∆Q gives an isomorphism onto the
lattice of upper sets in P(∆ \∆Q). More generally,

Proposition 3.6. Let P,Q be two standard parabolic subgroups of G with Q ⊂ P .
(i) The irreducible constituents of IndGP StPQ are the StGQ′ where Q′ ∩ P = Q, and each

occurs with multiplicity 1.
(ii) Sending StGQ′ to ∆Q′ ∩ (∆ \∆P ) gives an isomorphism of the lattice of subrepresenta-

tions of IndGP StPQ onto the lattice of upper sets in P(∆ \∆P ).

Proof. For (i), note that IndGP StPQ is the quotient of IndGQ 1 by the sum of its subrepresentations
IndGQ′ 1 for Q′ where Q ( Q′ ⊂ P and (i) is the content of [Ly15, Corollary 9.2]. The order
StGQ′ ≤ StGQ′′ on the irreducible constituents corresponds (as it does in IndGB 1) to ∆Q′′ ⊂ ∆Q′ .
Again (ii) follows for (i). �

Remark 3.7. Note that P(∆ \∆P ) does not depend on Q. The unique irreducible quotient
of IndGP StPQ is StGQ, and its unique subrepresentation is StGQ′ where ∆Q′ = ∆Q ∪ (∆ \∆P ).

The next case where P1 = P, σ1 = σ is a consequence of :

Proposition 3.8. Let P = MN be a standard parabolic subgroup of G and σ a supercuspidal
C-representation of M . Then the map X 7→ IndGP (σ)(e(σ)⊗X) gives an isomorphism of the
lattice of subrepresentations of IndP (σ)

P 1 onto the lattice of subrepresentations of IndGP σ.

It has the immediate consequence:

Corollary 3.9. Sending IG(P, σ,Q) to ∆Q \∆P gives an isomorphism of the lattice of sub-
representations of IndGP σ onto the lattice of upper sets in P(∆P (σ) \∆P ).

The proposition 3.8 is proved in two steps, inducing first to P (σ) and then to G. In the
first step we may as well assume that P (σ) = G:

Lemma 3.10. Let P = MN be a standard parabolic subgroup of G and σ a supercuspidal C-
representation of M such that P (σ) = G. Then the map X 7→ e(σ)⊗X gives an isomorphism
of the lattice of subrepresentations of IndGP 1 onto the lattice of subrepresentations of e(σ) ⊗
IndGP 1 ' IndGP σ.

Proof. By the classification theorem 3.1, the map X 7→ e(σ)⊗X gives a bijection between the
irreducible constituents of IndGP 1 and those of e(σ)⊗ IndGP 1. It is therefore enough to show
that, for a parabolic subgroup Q of G containing P , the subrepresentation of e(σ) ⊗ IndGP 1
with cosocle e(σ)⊗ StGQ is e(σ)⊗ IndGQ 1. Certainly, e(σ)⊗ StGQ is a quotient of e(σ)⊗ IndGQ 1.
Assume that e(σ)⊗ StGQ is a quotient of e(σ)⊗ IndGQ′ 1 for some parabolic subgroup Q′ of G
containing P ; we want to conclude that Q′ = Q. Recall from §2.2 that σ being supercuspidal,
∆P and ∆σ are orthogonal . Also, e(σ) is obtained by extending σ from M to G = MM ′σ
trivially on M ′σ. Upon restriction to M ′σ, therefore, e(σ)⊗ IndGQ 1 is a direct sum of copies of
IndGQ 1 whereas e(σ) ⊗ StGQ′ is a direct sum of copies of StGQ′ . Thus there is a non-zero M ′σ-
equivariant map IndGQ 1 → StGQ′ . Let Mis

σ denote the isotropic part of the simply connected
covering of the derived group Mσ. Then M ′σ is the image of M is

σ in Mσ [AHHV17, II.4
Proposition]; moreover, as a representation of M is

σ , IndGQ 1 is simply IndM
is
σ

Qis
σ

1 where Qis
σ is the
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parabolic subgroup of M is
σ corresponding to ∆Q ∩∆σ, whereas StGQ′ is StM

is
σ

Q′isσ
. It follows that

StM
is
σ

Q′isσ
is a quotient of IndM

is
σ

Qis
σ

1, thus ∆Q ∩ ∆σ = ∆Q′ ∩ ∆σ which implies ∆Q = ∆Q′ and
Q = Q′, since ∆Q and ∆Q′ both contain ∆P . �

The second step in the proof of Proposition 3.8 is an immediate consequence of the following
lemma, applied to P (σ) instead of P .
Lemma 3.11. Let P = MN be a standard parabolic subgroup of G. Let W be a finite length
smooth C-representation of M , and assume that for any irreducible subquotient Y of W ,
IndGP Y is irreducible. The map Y 7→ IndGP Y from the lattice LW of subrepresentations of W
to the lattice LIndGP W

of subrepresentations of IndGP W is an isomorphism.

Proof. We recall from [Vig13, Theorem 5.3] that the functor IndGP has a right adjoint RGP and
that the natural map Id → RGP IndGP is an isomorphism of functors. Let ϕ : LW → LIndGP W
be the map Y 7→ IndGP Y and let ψ : LIndGP W

→ LW be the map X 7→ RGPX. The composite
ψ ◦ ϕ is a bijection. If ψ is injective, then ψ and ϕ are bijective, reciprocal to each other. To
show that ψ is injective, we show first that X ∈ LIndGP W

and RGPX ∈ LW have always the
same length.

Step 1. An irreducible subquotient X of IndGP W has the form IndGP Y for an irreducible
subquotient Y of W ; in particular, RGPX ' Y is irreducible. Thus, W and IndGP W have the
same length.

Step 2. Let X be a subquotient of IndGP W . Denote the length by lg(−). We prove that
lg(RGPX) ≤ lg(X), by induction on lg(X). If X 6= 0, insert X in an exact sequence 0→ X ′ →
X → X ′′ → 0 with X ′′ irreducible; then the sequence 0→ RGPX

′ → RGPX → RGPX
′′ is exact

and RGPX
′′ is irreducible. So lg(RGPX) ≤ lg(RGPX ′) + 1 ≤ lg(X ′) + 1 = lg(X).

Step 3. LetX ∈ LIndGP W
. We deduce from the steps 1 and 2 that lg(RGPX) = lg(X). Indeed,

the exact sequence 0 → X → IndGP W → (IndGP W )/X → 0 gives an exact sequence 0 →
RGPX → W → RGP ((IndGP W )/X). By Step 2, lg(RGPX) ≤ lg(X) and lg(RGP ((IndGP W )/X)) ≤
lg((IndGP W )/X); by Step 1, lg(IndGP W ) = lg(W ), so we get equalities instead of inequalities.

We can show now that ψ is injective. Let X,X ′ in LIndGP W
such that RGPX = RGPX

′.
Applying RGP to the exact sequence 0 → X ∩ X ′ → X ⊕ X ′ → X + X ′ → 0 gives an exact
sequence 0 → RGP (X ∩X ′) → RGPX ⊕ RGPX ′ → RGP (X +X ′) because RGP is compatible with
direct sums. As RGP respects the length, the last map is surjective by length count. But
then RGP (X + X ′) = RGP (X) + RGP (X ′) inside W . Hence RGP (X + X ′) = RGPX = RGPX

′. So
X = X ′ = X +X ′ by length preservation. �

Remark 3.12. Note that lg(RGPX) = lg(X) for a subquotient X of IndGP W . Indeed, insert X in
an exact sequence 0→ X ′ → X ′′ → X → 0 where X ′′ is a subrepresentation of IndGP W . The
exact sequence 0 → RGPX

′ → RGPX
′′ → RGPX and lg(RGPX ′) = lg(X ′), lg(RGPX ′′) = lg(X ′′)

give lg(RGPX) ≥ lg(X); with Step 2, this inequality is an equality.
We are now finally in a position to prove Theorem 3.2. It follows from Proposition 3.8

that X 7→ IndGP (σ)(e(σ) ⊗ X) gives an isomorphism of the lattice of subrepresentations of
IndP (σ)

P1∩P (σ) StM1∩P (σ)
Q (a quotient of the IndP (σ)

P 1) onto the lattice of subrepresentations of
IndGP (σ)(e(σ)⊗ IndP (σ)

P1∩P (σ) StM1∩P (σ)
Q ) isomorphic to IndGP1 σ1. The desired result then follows

from Proposition 3.6 applied to G = P (σ), P = P1 ∩ P (σ) describing the first lattice.
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3.3. Twists by unramified characters. Recall the definition of unramified characters of
G. If X∗F (G) is the group of algebraic F -characters of G, we have a group homomorphism
HG : G → Hom(X∗F (G),Z) defined by HG(g)(χ) = valF (χ(g)) for g ∈ G and χ ∈ X∗F (G).
The kernel 0G of HG is open and closed in G, and the image HG(G) has finite index in
Hom(X∗F (G),Z). It is well known (see 2.12 in [HL17]) that 0G is the subgroup of G generated
by its compact subgroups. A smooth character χ : G → C∗ is unramified if it is trivial
on 0G; the unramified characters of G form the group of C-points of the algebraic variety
HomZ(HG(G),Gm).

Let σ1 be an irreducible admissible C-representation σ1 of M1 and we now examine the
effect on IndGP1 σ1 of twisting σ1 by unramified characters of M1. As announced in §1.2,
we want to prove that for a general unramified character χ : M1 → C∗, the representation
IndGP1 χσ1 is irreducible. For that we translate the irreducibility criterion P (χ|Mσ) ⊂ P1 given
in Corollary 3.3 into more concrete terms. Note that χ|M is an unramified character of M .
By Proposition 2.7, P (χ|Mσ) ⊂ P1 means that for each α ∈ ∆ \ ∆P1 , χσ is non-trivial on
Z ∩M ′α. Because χ|Mσ is supercuspidal, when α ∈ ∆ is not orthogonal to ∆P , χσ is not
trivial on Z ∩M ′α. Let ∆nr(σ) be the set of roots α ∈ ∆ \∆P1 orthogonal to ∆P , such that
there exists an unramified character χα : M → C∗ such that χασ is trivial on Z ∩M ′α; for
α ∈ ∆nr(σ), choose such a χα.

Recall from [AHHV17, III.16 Proposition] that the quotient of Z ∩ M ′α by its maximal
compact subgroup is infinite cyclic; if we choose aα ∈ Z ∩M ′α generating the quotient, then
χσ is trivial on Z ∩M ′α is and only if χ(aα) = χα(aα). We conclude:

Proposition 3.13. Let χ : M1 → C∗ be an unramified C-character of M1. Then IndGP1 χσ1
is irreducible if and only if for all α ∈ ∆nr(σ) we have χ(aα) 6= χα(aα).

The following corollary answers a question of J.-F. Dat.

Corollary 3.14. The set of unramified C-characters χ of M1 such that IndGP1 χσ1 is reducible
is a Zariski-closed proper subset of the space of unramified characters.

Indeed by the proposition, the reducibility set is the union, possibly empty, of hypersurfaces
with equation χ(aα) = χα(aα) for α ∈ ∆nr(σ).

4. Admissibility

4.1. Generalities. LetH be a locally profinite group and let R be a commutative ring. When
R is noetherian, a subrepresentation of an admissible R-representation of H is admissible.
If H is locally pro-p and p is invertible in R, then taking fixed points under a pro-p open
subgroup ofH is an exact functor [Vig96, I.4.6], so for noetherian R a quotient of an admissible
R-representation of H is again admissible. This is not generally true, however when p = 0 in
R, as the following example shows.

Example 4.1. Assume that p = 0 in R so that R is a Z/pZ-algebra. Let H be the additive
group (Z/pZ)N, with the product of the discrete topologies on the factors; it is a pro-p group.
The space C∞(H,R) (§2.2) can be interpreted as the space of functions H → R which depend
only on finitely many terms of a sequence (un)n∈N ∈ H. The group H acts by translation
yielding a smooth R-representation of H; if J is an open subgroup of H, the J-invariant
functions in C∞(H,R) form the finitely generated free R-module of functions J\H → R. In
particular, V = C∞(H,R) is an admissible R-representation of H. However the quotient of
V by its subrepresentation V0 = V H of constant functions is not admissible. Indeed, a linear
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form f ∈ HomZ/pZ(H,R) contained in V satisfies wf(v)− f(v) = f(w+ v)− f(v) = f(w) for
v, w ∈ H so f produces an H-invariant vector in V/V0. Such linear forms make an infinite
rank free R-submodule of V and V/V0 cannot be admissible. That example will be boosted
below in §4.2.

Lemma 4.2. Assume that R is noetherian. Let M be an R-module and t a nilpotent R-
endomorphism of M . Then M is finitely generated if and only if Ker t is.

Proof. If M is finitely generated so is its R-submodule Ker t, because R is noetherian. Con-
versely assume that Ker t is a finitely generated R-module; we prove that M is finitely gen-
erated by induction over the smallest integer r ≥ 1 such that tr = 0. The case r = 1 is a
tautology so we assume r ≥ 2. By induction, the R-submodule Ker tr−1 is finitely generated.
As tr−1 induces an injective map M/Ker tr−1 → Ker t of finitely generated image because R
is noetherian, the R-module M is finitely generated. �

Lemma 4.3. Assume that R is noetherian. Let H be a locally pro-p group and J an open
pro-p subgroup of H. Let M be a smooth R-representation of H such that the multiplication
pM by p on M is nilpotent. Then the following are equivalent:

(i) M is admissible;
(ii) MJ is finitely generated over R;

(iii) MJ ∩Ker pM is finitely generated over R/pR.

Proof. Clearly (i) implies (ii) and the equivalence of (ii) and (iii) comes from Lemma 4.2
applied to t = pM . Assume now (ii). To prove (i), it suffices to prove that for any open
normal subgroup J ′ of J , the R-module MJ ′ is finitely generated. By Lemma 4.2, it suffices
to do it for MJ ′ ∩ Ker pM , that is, we can assume p = 0 in R. Now MJ ′ = HomJ ′(R,M) '
HomJ(R[J/J ′],M) as R-modules. The group algebra Fp[J/J ′] has a decreasing filtration by
two sided ideals Ai for 0 ≤ i ≤ r with A0 = Fp[J/J ′], Ar = {0} and Ai/Ai+1 of dimension 1
over Fp with trivial action of J/J ′. By tensoring with R we get an analogous filtration with
Bi = R⊗Ai for R[J/J ′]. By decreasing induction on i, we prove that HomJ(Bi,M) is finitely
generated over R. Indeed, the case i = r is a tautology, the exact sequence

0→ Bi+1 → Bi → Bi/Bi+1 → 0

gives an exact sequence

0→ HomJ(Bi/Bi+1,M)→ HomJ(Bi,M)→ HomJ(Bi+1,M)

and HomJ(Bi/Bi+1,M) ' MJ is a finitely generated R-module by assumption. Since
HomJ(Bi+1,M) is finitely generated by induction, so is HomJ(Bi,M) because R is noe-
therian. The case i = 0 gives what we want. �

4.2. Examples. Let us now take up the case of a reductive connected group G = G(F ).
Here the characteristic of F plays a role. When char(F ) = 0, G is an analytic p-adic group,
in particular contains a uniform open pro-p subgroup, so that at least when R is a finite local
Zp-algebra [Eme10] or a field of characteristic p [Hen09, 4.1 Theorem 1 and 2], a quotient of
an admissible representation of G is still admissible. That does not survive when char(F ) = p,
as the following example shows.

Example 4.4. An admissible representation of F ∗ with a non-admissible quotient, when
char(F ) = p > 0 and pR = 0.
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The group 1 + PF is a quotient of F ∗. Choose a uniformizer t of F . For simplicity assume
that q = p. Then it is known that the map

∏
(m,p)=1,m≥1 Zp → 1 + PF sending (xm) to∏

m(1+tm)xm is a topological group isomorphism. The groupH of Example 4.1 is a topological
quotient of F ∗. When pR = 0 the admissible R-representation C∞c (H,R) of H with the non-
admissible quotient C∞c (H,R)/C∞c (H,R)H inflates to an admissible R-representation V of
F ∗ containing the trivial representation V0 = V 1+PF with a non-admissible quotient V/V0.

That contrast also remains when we consider Jacquet functors. Let P = MN be a standard
parabolic subgroup of G. Assume that R is noetherian. The parabolic induction IndGP :
Mod∞R (M) → Mod∞R (G) respects admissibility [Vig13, Corollary 4.7]. Its left adjoint LGP
respects admissibility when R is a field of characteristic different from p [Vig96, II.3.4]. More
generally,

Proposition 4.5. Assume that R is noetherian and that p is invertible in V . Let V ∈
Mod∞R (G) such that for any open compact subgroup J of G, the R-module V J has finite
length. Then for any open compact subgroup JM of M , the R-module V JM

N has finite length.

Proof. Assume that p is invertible in V . We recall first the assertions (i) and (ii) of the last
part of [Vig13]. Let (Kr)r≥0 be a decreasing sequence of open pro-p subgroups of G with an
Iwahori decomposition with respect to P = MN , with Kr normal in K0, ∩Kr = {1}. We
write κ : V → VN for the natural map and Mr = M ∩Kr, Nr = N ∩Kr,Wr = V KrN0 . Let
z ∈ Z(M) strictly contracting N0 (subsection 2.5). Then we have

For any finitely generated submodule X of VMr
N there exists a ∈ N with zaX ⊂ κ(Wr).

We prove now the proposition. As KrN0 is a compact open subgroup of G, the R-module
Wr has finite length, say `. The R-modules κ(Wr) and zaX have finite length ≤ `, hence X
also. This is valid for all X hence VMr

N has finite length ≤ `. We have zaVMr
N ⊂ κ(Wr) ⊂ VMr

N

for some a ∈ N. The three R-modules have finite length hence κ(Wr) = VMr
N . As any open

compact subgroup JM of M contains Mr for r large enough, the proposition is proved. �

Remark 4.6. The proof is essentially due to Casselman [Cas], who gives it for complex coef-
ficients. The proof shows that VMr

N = κ(Wr) where Wr ⊂ V N0 for all r ≥ 0. This implies
κ(V N0) = VN because VN being smooth is equal to

⋃
r≥0 V

Mr
N .

When R is artinian, any finitely generated R-module has finite length, so the proposition
implies:

Corollary 4.7. LGP respects admissibility when R is artinian (in particular a field) and p is
invertible in R.

Remark 4.8. This corollary was already noted by Dat [Dat09]. The corollary is expected to
be true for R noetherian when p is invertible in R. Using the theory of types, Dat proves it
when G is a general linear group, a classical group with p odd, or a group of relative rank 1
over F .

Emerton has proved that LGP respects admissibility when R is a finite local Zp-algebra and
char(F ) = 0 [Eme10]. But again, his proof does not survive when char(F ) = p > 0 and
pR = 0.

Example 4.9. An admissible representation of SL(2, F ) with a non-admissible space of U -
coinvariants, when char(F ) = p > 0 and pR = 0.
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Assume char(F ) = p > 0 and pR = 0. Let B = TU the upper triangular subgroup
of G = SL(2, F ) and identify T with F ∗ via diag(a, a−1) 7→ a. Example 4.4 provides an
admissible R-representation V of T containing the trivial representation V0 (the elements
of V fixed by the maximal pro-p subgroup of T ), such that V/V0 is not admissible. The
representation IndGB V of G contains IndGB V0, which contains the trivial subrepresentation V00.
We claim that the quotient W = (IndGB V )/V00 is admissible and that WU is not admissible
(as a representation of T ).

For the second assertion, it suffices to prove that WU = V/V0. The Steinberg representation
St = IndGB V0/V00 of G is contained in W and W/St is isomorphic to IndGB(V/V0). We get an
exact sequence

StU →WU → (IndGB(V/V0))U → 0.
It is known that StU = 0 (see the more general result in Corollary 6.10 below). Hence the
module WU is isomorphic to (IndGB(V/V0))U ' V/V0 [Vig13, Theorem 5.3].

We now prove the admissibility of W . Let U be the pro-p Iwahori subgroup of G, consist-
ing of integral matrices in SL(2, OF ) congruent modulo PF to the strictly upper triangular
subgroup of SL(2, k). We prove that WU = StU , so W is admissible by Lemma 4.3, be-
cause St is admissible. Let f ∈ IndGB V with a U-invariant image in W , hence for x ∈ U ,

there exists vx ∈ V0 with f(gx) − f(g) = vx for all g ∈ G. Put s =
(

0 1
−1 0

)
. Then

f(sx) − f(x) = f(sx) − vx − (f(x) − vx) = f(s) − f(1). Put v = f(s) − f(1) ∈ V . If
x ∈ U , then sxs−1 ∈ U and f(sg) = f(sxs−1sg) = f(sxg). If x ∈ U ∩ U and z ∈ U we have
f(sz) = f(z)+v = f(xz)+v = f(sxz). An easy matrix calculation shows that U is generated
by U ∩U and U ∩U , so the map z 7→ f(sz) from U to V is invariant under left multiplication
by U . We have V0 = V U∩T and U ∩ T is stable by conjugation by s. For t ∈ U ∩ T and z ∈ U
we have f(sz) = f(stz) = sts−1f(sz) and f(z) = f(sz) − v = f(stz) − v = f(tz) = tf(z).
Therefore, f(sz) and f(z) lie in V0. But G is the union of BU and BsU , so f(g) ∈ V0 for all
g ∈ G, which means f ∈ IndGB V0 and its image in W does belong to StU .

4.3. Admissibility and RGP . We turn to the main result of this section (theorem 1.3 of the
introduction) for a general connected reductive group G and a standard parabolic subgroup
P = MN of G.

Lemma 4.10. Let V be a noetherian R-module, let t be an endomorphism of V , and view
V as a Z[T ]-module with T acting through t. Then the map f 7→ f(1) yields an isomorphism
e from HomZ[T ](Z[T, T−1],M) onto the submodule V∞ = ∩n≥0t

nV of infinitely t-divisible
elements.

Proof. A Z[T ]-morphism f : Z[T, T−1] → V is determined by the values mn = f(T−n) for
n ∈ N, which are only subject to the condition tmn+1 = mn for n ∈ N. Certainly f(1) = m0
is in V∞. Let us prove that e is surjective. As V is noetherian, there is some n ≥ 0 such that
Ker tn+k = Ker tn for k ≥ 0. Let m ∈ V∞ and for k ≥ 0 choose mk such that m = tkmk.
Then for k ≥ 0, mn+k − tmn+k+1 belongs to Ker tn+k so that tnmn+k = tn+1mn+k+1 Putting
µk = tnmn+k we have µk = tµk+1 and µ0 = m. Therefore e is surjective. By [Bou12, §2, No
2, Proposition 2], the action of t on V∞ being surjective is bijective because the R-module
V∞ is noetherian, so e is indeed bijective. �

Theorem 4.11. Assume that R is noetherian and p is nilpotent in R. Then the functor
RGP : Mod∞R (G)→ Mod∞R (M) respects admissibility.
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Proof. Let π be an admissible R-representation of G and we prove RGP (π) is admissible. By
Lemma 4.3, we may replace π with Ker(p : π → π), hence we assume that p = 0 in R.

Recall that we have fixed a special parahoric subgroup K in §2.5. Take a finite extension
F of Fp such that all absolute irreducible representations of K in characteristic p are defined
over F. Then for any open pro-p subgroup J of K ∩M , we have

RGP (π)J ⊂ RGP (F⊗Fp π)J = HomF[J ](F, RGP (F⊗Fp π))
= HomF[K∩M ](IndK∩MJ (F), RGP (F⊗Fp π)).

Since we have a filtration on IndK∩MJ (F) whose successive quotients are absolute irreducible
representations, it is sufficient to prove that the R-module

HomF[K∩M ](V,RGP (F⊗Fp π)).

is finitely generated for any irreducible F-representation V of K ∩M .
Put π1 = F ⊗Fp π. This is also admissible. Let V0 be an irreducible F-representation

of K which is P -regular [HV12, Definition 3.6] and (V0)N∩K ' V . This V0 exists by the
classification of absolute irreducible representations of K ([HV12, Theorem 3.7], [AHHV17,
III.10 Lemma]). Then by [HV12, Theorem 1.2] we have

IndGP (c-IndMK∩M (V )) ' HM (K ∩M,V )⊗HG(K,V0) c-IndGK(V0).

Hence

HomF[K∩M ](V,RGP (π1)) = HomF[M ](c-IndMK∩M (V ), RGP (π1))
= HomF[G](IndGP (c-IndMK∩M (V )), π1)
= HomF[G](HM (K ∩M,V )⊗HG(K,V0) c-IndGK(V0), π1)
= HomHG(K,V0)(HM (K ∩M,V ),HomF[K](V0, π1)).

As HM (K ∩M,V ) is a localization of HG(K, V0) at some τ ∈ ZG(K, V0), the R-module

HomHG(K,V0)(HM (K ∩M,V ),HomF[K](V0, π1))

identifies with
HomF[T ](F[T, T−1],HomF[K](V0, π1))

with T acting on HomF[K](V0, π1) through τ . Since the R-module HomF[K](V0, π1) is finitely
generated and R is noetherian, Lemma 4.10 show that HomF[T ](F[T, T−1],HomF[K](V0, π1))
is also a finitely generated R-module. �

Remark 4.12. Using [OV17, Proposition 4.6] instead of [HV12, Corollary 1.3], the argument
works replacing K by a pro-p Iwahori subgroup. Note that the only irreducible representation
of pro-p Iwahori subgroup in characteristic p is the trivial representation. So we may take
F = Fp.

When R is noetherian, IndGP : Mod∞R (M)→ Mod∞R (G) respects admissibility and induces a
functor IndG,aP : ModaR(M) → ModaR(G) between the category of admissible representations.
Emerton’s P -ordinary part functor OrdG

P
is right adjoint to IndG,aP . For V ∈ Mod∞R (G)

admissible,

(4) OrdG
P
V = (HomR[N ](C

∞
c (N,R), V ))Z(M)−f ,
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is the space of Z(M)-finite vectors of HomR[N ](C
∞
c (N,R), V ) with the natural action of M

(the representation OrdG
P
V of M is smooth) [Vig13, §8].

If RGP respects admissibility, the restriction of RGP to the category of admissible represen-
tations is necessarily right adjoint to IndG,aP , hence is isomorphic to OrdG

P
.

Corollary 4.13. Assume R noetherian and p nilpotent in R. Then RGP is isomorphic to the
P -ordinary part functor OrdG

P
on admissible R-representations of G.

Corollary 4.14. Assume that R is a field of characteristic p. Let V be an irreducible admis-
sible R-representation of G which is a quotient of IndGP W for some smooth R-representation
W of M . Then V is a quotient of IndGP W ′ for some irreducible admissible subquotient W ′ of
W .

The latter corollary was previously known only under the assumption that W admits a
central character and R is algebraically closed [HV12, Proposition 7.10]. Its proof is as
follows. By assumption, there is a non-zero M -equivariant map f : W → RGPV . By the
theorem RGPV is admissible so f(W ) contains an irreducible admissible subrepresentation W ′
because charR = p [HV12, Lemma 7.9]. The inclusion of W ′ into RGPV gives a non-zero
G-equivariant map IndGP W ′ → V , so that V is a quotient of IndGP W ′.

Remark 4.15. When R is a field of characteristic 6= p and RGP respects admissibility, then
Corollary 4.14 remains true.

Proof. It suffices to modify the proof of Corollary 4.14 as follows. We reduce to a finitely
generated R-representation W of M , by replacing W by the representation of M generated
by the values of an element of IndGP W with non-zero image in V . An admissible quotient of
W is also finitely generated, thus is of finite length [Vig96, II.5.10], and in particular, contains
an irreducible admissible subrepresentation W ′. By the arguments in the proof of Corollary
4.14, V is a quotient of IndGP W ′. �

Let V ∈ Mod∞R (G). Obviously, OrdG
P

(V ) given by the formula (4)depends only on the
restriction of V to P , and LGPV = VN depends only on the restriction of V to P . We ask:

Question 4.16. Does RGPV depend only on the restriction of V to P ?

To end this section we assume that R is noetherian and p is invertible in R and we compare
LGP and OrdGP . In the same situation than in Proposition 4.5, we take up the same notations.
For V ∈ ModaR(G) we have the R-linear map

(5) ϕ 7→ κ(ϕ(1N0)) : OrdGP (V ) eV−→ LGP (V ) = VN ,

where 1N0 is the characteristic function of N0. Replacing N0 by a compact open subgroup
JN ⊂ N multiplies eV by the generalized index [JN : N0] which is a power of p. Following
the action of m ∈M which sends ϕ ∈ OrdGP (V ) to m ◦ ϕ ◦m−1,

κ((mϕ)(1N0)) = κ(m(ϕ(1m−1N0m))) = [m−1N0m : N0]m(κ(ϕ(1N0))),

we get that eV is an R[M ]-linear map OrdGP (V ) → δ−1
P LGP (V ), and that V 7→ eV defines on

ModaR(G) a morphism of functors e : OrdGP → δ−1
P LGP . Here δP (m) = [mN0m

−1 : N0] for
m ∈M .
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Proposition 4.17. Assume R noetherian and p invertible in R. Let V ∈ Mod∞R (G) such
that for any open compact subgroup J of G, the R-module V J has finite length. Then eV is
an isomorphism.

Proof. 1) We recall the Hecke version of the Emerton’s functor [Vig13, §7, §8] for V ∈
ModaR(G). We fix an open compact subgroup N0 of N as in [Eme10, §3.1.1]. The monoid
M+ ⊂M of m ∈M contracting N0 acts on V N0 by the Hecke action:

(m, v) 7→ hm(v) =
∑

n∈N0/mN0m−1

nmv : M+ × V N0 → V N0 .

We write IMM+ : ModR(M+) → ModR(M) for the induction, right adjoint of the restriction
ResMM+ : ModR(M) → ModR(M+). Let z ∈ Z(M) strictly contracting N0 (subsection 2.5).
The map ΦV : OrdGP (V )→ (IMM+V N0)z−1−f defined by
(6) ΦV (ϕ)(m) = (mϕ)(1N0)
is an isomorphism in ModaR(M) (loc. cit. Proposition 7.5 restricted to the smooth and Z(M)-
finite part, and Theorem 8.1 which says that the right hand side is admissible, hence is smooth
and Z(M)-finite). For any r ≥ 0, Wr is stable by hz, the restriction from M to zZ gives a
R[zZ]-isomorphism

(7) ((IMM+V N0)z−1−f )Mr ' (IzZzN (V N0Mr))z−1−f

(loc. cit. Remark 7.7 for z−1-finite elements, Proposition 8.2), the RHS of (7) is contained
in Iz

Z

zN (Wr), and we have the isomorphism

f 7→ (f(z−n))n∈N : IzZzN (Wr)→ {(xn)n≥0, xn ∈ h∞z (Wr) = ∩n∈Nhnz (Wr), hz(xn+1) = xn}

(loc. cit. Proposition 8.2, for the isomorphism Lemma 4.10).
2) The inclusion above is an equality (IzZ

zN (V N0Mr))z−1−f = Iz
Z

zN (Wr), because the map

(8) f → f(1) : IzZzN (Wr)→ h∞z (Wr)
is an isomorphism: on the finitely generated R-module h∞z (Wr), hz is bijective as it is sur-
jective (Lemma 4.10), hence any element f ∈ IzZ

zN (Wr) is z−1-finite as (z−nf)(1) = f(z−n) for
n ∈ N and a R-submodule of h∞z (Wr) is finitely generated.

Through the isomorphisms (6), (7), (8) the restriction of eV to (OrdP (V ))Mr translates
into the restriction κr of κ to h∞z (Wr)

h∞z (Wr)
κr−→ VMr

N .

3) The sequence Ker(hnz |Wr) is increasing hence stationary. Let n the smallest number such
that Ker(hnz |Wr) = Ker(hn+1

z |Wr). By [Cas, III.5.3 Lemma, beginning of the proof of III.5.4
Lemma],

Ker(κ|Wr) = Ker(hnz |Wr), hnz (Wr) ∩Ker(hnz |Wr) = 0.
4) If the R-module Wr has finite length, h∞z (Wr) = hnz (Wr) and Wr = hnz (Wr)⊕Ker(hnz |Wr).

Indeed, the sequence (hmz (Wr))m∈N is decreasing and lg(Wr) = lg(Ker(hmz |Wr))+lg(hmz (Wr)).
Therefore κr is injective of image κ(Wr). As κ(Wr) = VMr

N (proof of Proposition 4.5), κr is
an isomorphism.

5) If the R-module Wr has finite length for any r ≥ 0, then κ(V N0) = VN (Remark 4.6)
and eV is an isomorphism. �
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Remark 4.18. The arguments in part 1) show that for V ∈ ModaR(G), we have OrdG
P
V =

(HomR[N ](C
∞
c (N,R), V ))z−1−f for any z ∈ Z(M) strictly contracting N (subsection 2.5).

When R is artinian, any finitely generated R-module has finite length, so the proposition
implies:

Corollary 4.19. Assume R artinian (in particular a field) and p is invertible in R. On
ModaR(G), the functors OrdGP and δ−1

P LGP are isomorphic via e.

Remark 4.20. We expect the corollary to be true for noetherian R with p invertible in R. We
even expect that the functorsRG

P
and δ−1

P LGP are isomorphic on Mod∞R (G) (second adjunction).
That is proved by Dat for the same groups as in Remark 4.8, and for those groups RG

P
preserves

admissibility.

4.4. Admissibility of IG(P, σ,Q).

Theorem 4.21. Assume R noetherian. Let (P, σ,Q) be an R[G]-triple with σ admissible. If
p is invertible or nilpotent in R, then IG(P, σ,Q) is admissible.

It is already known that StGQ is admissible when R is noetherian (when G is split [GK14,
Corollary B], in general [Ly15, Remark 5.10]).

Proof. Since parabolic induction preserves admissibility, we may assume P (σ) = G. If p is
invertible in R, the result is easy because IG(P, σ,Q) is a quotient of IndGP σ: if σ is admissible
so are IndGP σ and all its subquotients. Therefore, it is enough to prove the theorem when p
is nilpotent in R and P (σ) = G. Then IG(P, σ,Q) = e(σ)⊗R StGQ. Let U be a pro-p-Iwahori
subgroup which has the Iwahori decomposition U = (U ∩N)(U ∩M)(U ∩N). Using Lemma
4.3 that is a consequence of [AHV, Theorem 4.7] which shows that the natural linear map
e(σ)U ⊗R (StGQ)U → (e(σ) ⊗R StGQ)U is an isomorphism, hence (e(σ) ⊗R StGQ)U is a finitely
generated R-module. �

4.5. IndGP does not respect finitely generated representations. We add a few remarks
on finiteness: when R is the complex number field, the parabolic induction preserves the
finitely generated representations [Ber84a, Variante 3.11]. However when R = C (recall that
C is an algebraically closed field of characteristic p), this does not hold as we see in the
following.

Proposition 4.22. Let P = MN be a proper parabolic subgroup, V0 an irreducible C-
representation of M ∩ K. Set σ = c-IndMM∩K V0. Then IndGP σ is not finitely generated.

Proof. Let V be an irreducible C-representation of K such that VN∩K ' V0 and V is P -
regular ([HV12, Theorem 3.7], [AHHV17, III.10 Lemma]). Let IV : c-IndGK V → IndGP σ be
the injective homomorphism defined in [HV12, Definition 2.1]. Then by [HV12, Theorem 1.2],
IV induces an isomorphism

IndGP σ ' HM (M ∩ K, V0)⊗HG(K,V ) c-IndGK V.

Set X = Im IV . As HM (M ∩K, V0) is the localization of HG(K, V ) at τ ∈ ZG(K, V ) (subsec-
tion 2.5), we have IndGP σ =

⋃
n∈Z≥0

τ−nX.
Now assume that IndGP σ is generated by finitely many vectors f1, . . . , fr ∈ IndGP σ. Since

IndGP σ =
⋃
n∈Z≥0

τ−nX, there exists n ∈ Z≥0 such that fi ∈ τ−nX for all i = 1, . . . , r. Since
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f1, . . . , fr generates IndGP σ, we have τ−nX = IndGP σ. Since τ is invertible on IndGP σ, we have
X = IndGP σ. This contradicts the following lemma. �

Lemma 4.23. Assume R = C. If P 6= G, then IV is not surjective for any irreducible
representation V of K.
Proof. Take τ ∈ ZG(K, V ) such that HM (M ∩ K, VN∩K) = HG(K, V )[τ−1]. Since the ring
homomorphism SGP : HG(K, V )→ HM (M ∩ K, VN∩K) is not surjective (this follows from the
description of the image of SGB : HG(K, V )→ HZ(Z∩K, VU∩K) [HV15]), τ is not invertible. As-
sume that IV is surjective. Since τ is invertible on IndGP (c-IndMM∩K VN∩K) and IV is HG(K, V )-
equivariant, τ is invertible on c-IndGK V . Hence τ is a unit in EndG(c-IndGK V ) = HG(K, V ).
This is a contradiction. �

We also have the following.
Proposition 4.24. If P 6= G and R = C, then the functor RGP does not preserve infinite
direct sums.
Proof. For an infinite family of representations {πn} and a finitely generated representation σ
of M , we have HomM (σ,

⊕
nR

G
P (πn)) =

⊕
n Hom(σ,RGP (πn)) '

⊕
n Hom(IndGP σ, πn). Hence

it is sufficient to prove ⊕
n

HomG(IndGP σ, πn) 6= HomG(IndGP σ,
⊕
n

πn)

for some {πn} and σ.
We take σ as in Proposition 4.22 and use the same notation as in the proof of Propo-

sition 4.22. Set π = IndGP σ and Xn = τ−nX. Then we have π 6= Xn for all n ∈ Z≥0
and

⋃
nXn = π. The homomorphism IndGP σ = π →

⊕
n π/Xn induced by the projections

π → π/Xn is not in
⊕

n HomG(IndGP σ, π/Xn). �

Remark 4.25. The functor RGP preserves infinite direct sums when RGP = δPL
G
P

(the second
adjoint theorem) holds true. It is known when R is the complex number field [Ber], when R
is an algebraically closed field of characteristic different from p [Vig96, II.3.8 (2)] and in many
cases when p is invertible in R [Dat09, Théorème 1.5].

5. Composing IndGP with adjoints of IndGP1 when p is nilpotent

Let us keep a general reductive connected group G and a commutative ring R. Let P =
MN,P1 = M1N1 be two standard parabolic subgroups of G.

5.1. Results. We start our investigations on the compositions of the functor IndGP with LGP1

and RGP1
by some considerations on coinvariants.

Lemma 5.1. Let H be a group and let V,W be R[H]-modules, and assume that H acts
trivially on W . Then the R-modules (V ⊗RW )H and VH ⊗RW are isomorphic.
Proof. We write as usual V (H) for the R-submodule of V generated by the elements hv − v
for h ∈ H, v ∈ V . The exact sequence 0→ V (H)→ V → VH → 0 of R[H]-modules gives by
tensor product over R with W an exact sequence

V (H)⊗RW → V ⊗RW → VH ⊗RW → 0
of R[H]-modules. Because H acts trivially on W , (V ⊗RW )(H) is the image of V (H)⊗RW
in V ⊗RW , hence the result. �
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As a consequence of Lemma 5.1, if V is a Z[H]-module and W = R with the trivial action
of H, the R-modules (V ⊗Z R)H and VH ⊗Z R are isomorphic.

Let us study now C∞c (H,R)H = C∞c (H,Z)H ⊗Z R. A right Haar measure on H with
values in R is a non-zero element of HomR(C∞c (H,R)H , R).

Proposition 5.2. Let H be a locally pro-p group having an infinite open pro-p subgroup J
and W an R-module on which H acts trivially. The R-module of H-coinvariants C∞c (H,W )H
is isomorphic to R[1/p]⊗RW .

Proof. Lemma 5.1 reduces us to the case R = W = Z. We consider the right Haar measure
on H with values in Z[1/p] sending the characteristic function 1J of J to 1. It induces a
linear map C∞c (H,Z) → Z[1/p]. This map is surjective because J is infinite hence has open
subgroups of index pn for n going to infinity. Let f be in its kernel. We write f as a finite sum∑
i aihi1J ′ where J ′ is a suitable open subgroup of J , ai ∈ Z, hi ∈ H. Then

∑
i ai[J : J ′]−1 = 0

in Z[1/p] hence
∑
i ai = 0 and f =

∑
i ai(hi1J ′−1J ′) belongs to the kernel of the natural map

C∞c (H,Z) → (C∞c (H,Z))H . We thus get an isomorphism C∞c (H,Z)H ' Z[1/p]. Therefore
C∞c (H,W )H ' R[1/p]⊗RW . �

Corollary 5.3. C∞c (H,R)H = {0} if and only if p is nilpotent in R, and in general,
C∞c (H,W )H = {0} if and only if W is p-torsion.

HomR(C∞c (H,R)H , R) = {0} if and only if Hom(Z[1/p], R) = {0} if and only if there is
no Haar measure on H with values in R.

Proof. R[1/p] = {0} if and only if p is nilpotent in R by [Bou85, II.2 Corollary 2] and
R[1/p] ⊗R W = {0} if and only if any element of W is killed by a power of p (W is called
p-torsion). �

The p-ordinary part of an R-module V is

Vp−ord =
⋂
k≥0

pkV.

When R is a field, the three conditions: p nilpotent, Rp−ord = {0}, Hom(Z[1/p], R) = {0},
are equivalent to char(R) = p. The equivalence of these three conditions is not true for a
general commutative ring, contrary to what is claimed in [Vig96, I (2.3.1)], [Vig13, §5].

Lemma 5.4. 1) p is nilpotent in R if and only if Vp−ord = {0} for all R-modules V .
2) Rp−ord = {0} implies Hom(Z[1/p], R) = {0}. The converse is true if R is noetherian.

Proof. 1) Let n ∈ N be the characteristic of R (nZ is the kernel of the canonical map Z→ R).
Then p is nilpotent in R if and only if n = pk for some k ≥ 1. Clearly pk = 0 in R implies
pkV = 0 for all R-modules V . Conversely, if p is not nilpotent there exists a prime ideal J of
R not containing p. The fraction field of R/J is a field V of characteristic char(V ) 6= p.

2) For the last assertion see Lemma 4.10. �

For W ∈ Mod∞R (M), Frobenius reciprocity gives a natural map LGP IndGP W → W sending
the image of f ∈ IndGP W to f(1); that yields a natural transformation LGP IndGP → IdMod∞R (M).
When p is nilpotent in R, that natural transformation is an isomorphism of functors [Vig13,
Theorem 5.3] (this uses Proposition 5.2); by general nonsense it follows that the natural
morphism IdMod∞R (M) → RGP IndGP coming from the adjunction property is also an isomorphism
of functors. We generalize these statements.
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Theorem 5.5. When p is nilpotent in R, the two functors LGP1
IndGP and IndM1

P∩M1
LMP1∩M

from Mod∞R (M) to Mod∞R (M1) are isomorphic.

Before proving the theorem, we deduce a corollary:

Corollary 5.6. In the same situation, the two functors RGP1
IndGP and IndM1

P∩M1
RMP1∩M from

Mod∞R (M) to Mod∞R (M1) are isomorphic.

Proof. By Theorem 5.5 the functors LGP1
IndGP and IndM1

P∩M1
LMP1∩M are isomorphic, so are

their right adjoints RGP IndGP1 and IndM1
P∩M1

RMP1∩M . �

In fact, our results are more precise than Theorem 5.5 and Corollary 5.6. See Corollaries 5.8
and 5.9. Our proof of Theorem 5.5 is inspired by the proof of the “geometric lemma” in [BZ77].
But [BZ77] uses complex coefficients, also Haar measures on unipotent groups and normalized
parabolic inductions which are not available p is nilpotent in R. In fact, our result is simpler
than for complex coefficients. As will be apparent in the proof, the isomorphism comes from
the natural maps LGP1

IndGP W → IndM1
P∩M1

LMP1∩MW for W ∈ Mod∞R (M) sending the class of
f ∈ IndGP W to the function m1 7→ image of f(m1) in WN1∩M . To control LGP1

IndGP W we
look at IndGP W as a representation of P1. The coset space P\G/P1 is finite and we choose
a sequence X1, . . . , Xr of (P, P1)-double cosets in G such that G = X1 t · · · tXr, Xr = PP1
and X1 t · · · tXi is open in G for i = 1, . . . , r. We let Ii be the space of functions in IndGP W
with support included in X1 t · · · tXi, and put I0 = {0}. For i = 1, . . . , r, restricting to Xi

functions in Ii gives an isomorphism from Ii/Ii−1 onto the space Ji = c-IndXiP W of functions
f : Xi →W satisfying f(mng) = mf(g) for m ∈M,n ∈ N, g ∈ Xi, which are locally constant
and of support compact in P\Xi. That isomorphism is obviously compatible with the action
of P1 by right translations. For i = 1, . . . , r, we have the exact sequence

0→ Ii−1 → Ii → Ji → 0
and by taking N1-coinvariants, an exact sequence

(Ii−1)N1 → (Ii)N1 → (Ji)N1 → 0.

Proposition 5.7. Let W ∈ Mod∞R (M).
(i) The R-linear map c-IndPP1

P W → IndM1
P∩M1

WM∩N1 sending f ∈ c-IndPP1
P W to the

function m1 7→ image of f(m1) in WM∩N1, gives an isomorphism of (c-IndPP1
P W )N1

onto IndM1
P∩M1

WM∩N1 as representations of M1.
(ii) Assume W is a p-torsion R-module. The space of N1-coinvariants of c-IndXiP W is 0

for i = 1, . . . , r − 1.
(iii) Let V ∈ Mod∞R (M1) with Vp−ord = 0. Then the space HomM1((c-IndXiP W )N1 , V ) is 0

for i = 1, . . . , r − 1.

The proof of Proposition 5.7 is given in §5.2. Composing the surjective map in Proposition
5.7 (i) with the restriction from IndGP W to c-IndPP1

P W we get a surjective functorial M1-
equivariant homomorphism

(9) LGP1 IndGP W → IndM1
P∩M1

LMP1∩MW.

Corollary 5.8. For any W ∈ Mod∞R (M) which is p-torsion, (9) is an isomorphism:

LGP1 IndGP W ' IndM1
P∩M1

LMP1∩MW.
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Proof. Proposition 5.7 (ii) shows by induction on i that (Ii)N1 = 0 when i ≤ r−1; when i = r

we have Jr = c-IndPP1
P W and with Proposition 5.7 (i), we get the isomorphism. �

If p is nilpotent in R, every W ∈ Mod∞R (M) is p-torsion (and conversely), and Theorem
5.5 follows from the corollary.

Let V ∈ Mod∞R (M1), and any W ∈ Mod∞R (M), the surjective homomorphism (9) gives an
injection

(10) HomM1(IndM1
P∩M1

LMP1∩MW,V )→ HomM1(LGP1 IndGP W,V ).

Taking the right adjoints of the functors we get an injection

(11) HomM1(W, IndMP1∩M RM1
P∩M1

V )→ HomM1(W,RGP IndGP1 V )

which is functorial in W . Consequently, we have an M -equivariant injective homomorphism

(12) IndMP1∩M RM1
P∩M1

V → RGP IndGP1 V

Corollary 5.9. For any V ∈ Mod∞R (M1) with Vp−ord = 0, (12) is an isomorphism:

IndMP1∩M RM1
P∩M1

V ' RGP IndGP1 V.

Proof. Proposition 5.7 (i) and (iii) shows that (10) is a bijection for any W ∈ Mod∞R (M).
This means that (12) is an isomorphism. �

Now assume thatR is noetherian and V is admissible. If for any admissibleW ∈ Mod∞R (M),
LMP1∩MW is admissible, from (10) we get by right adjunction an injection

(13) HomM1(W, IndMP1∩M OrdM1
P∩M1

V )→ HomM1(W,OrdG
P

IndGP1 V )

which is functorial in admissible W . So, we have an M -equivariant injective homomorphism

(14) IndMP1∩M OrdM1
P∩M1

V → OrdG
P

IndGP1 V.

As for Corollary 5.9, we deduce:

Corollary 5.10. Assume that R is noetherian. Let V ∈ Mod∞R (M1) be admissible with
Vp−ord = 0. If for any admissible W ∈ Mod∞R (M), LMP1∩MW is admissible, then (14) is an
isomorphism:

IndMP1∩M OrdM1
P∩M1

V ' OrdG
P

IndGP1 V.

Remark 5.11. 1)If P1 ⊃ P , LMP1∩MW = W so the hypothesis on W is always satisfied.
2) If p is nilpotent in R then RGP respects admissibility and is isomorphic to OrdG

P
. Hence

(12) gives an isomorphism

IndMP1∩M OrdM1
P∩M1

V ' OrdG
P

IndGP1 V.
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5.2. Proofs. To prove Proposition 5.7 (ii) and (iii), we control the action of N1 on c-IndXiP W
for i = 1, . . . , r− 1. Since B contains N1 we may filter Xi by (P,B) double cosets, exactly as
we did in §5.1. Reasoning exactly as in §5.1, it is enough to prove the following lemma.

Lemma 5.12. Let W ∈ Mod∞R (M) and V ∈ Mod∞R (M1). Let X be a (P,B) double coset not
contained in PP1.

(i) the space of N1-coinvariants of c-IndXP W is 0 if W is p-torsion.
(ii) HomR((c-IndXP W )N1 , V ) = 0 if Vp−ord = 0.

Proof. By the Bruhat decomposition G = BNB, we may assume that X = PnB for some
n ∈ N , and the assumption that X is not contained in PP1 means the image w of n in
W = N/Z does not belong to WMWM1 . The map u 7→ Pnu : U → P\G is continuous and
induces a bijection from (n−1Pn ∩ U)\U onto P\PnB. By Arens’s theorem that bijection is
an homeomorphism. The group n−1Pn∩U is Z-invariant and is equal to the product (in any
order) of subgroups Uα for some reduced roots α. More precisely,

n−1Pn ∩ U =
∏

α∈Φ+
red

,w(α)∈ΦM∪ΦN

Uα,

where ΦN = Φ+\Φ+
M and Φ is the disjoint union ΦMtΦNt(−ΦN ) (§2.1). We choose a reduced

root β such that w(β) belongs to −ΦN (we check the existence of β in Lemma 5.13), and an
ordering α1, . . . , αr with αr = β of the reduced roots α ∈ Φ+

red such that w(α) ∈ −ΦN . Let U ′
denote the subset Uα1×· · ·×Uαr−1 of U . Then the product map (n−1Pn∩U)×U ′×Uβ → U is
a bijection, indeed a homeomorphism, so we get a homeomorphism U ′×Uβ → (n−1Pn∩U)\U ,
which moreover is Uβ-equivariant for the right translation. All taken together we have an
Uβ-equivariant isomorphism of R-modules:

f 7→ ((u′, uβ) 7→ f(nu′uβ)) : c-IndXP W → C∞c (U ′ × Uβ,W ).

Now C∞c (U ′ × Uβ,W ) is C∞c (U ′, R) ⊗R C∞c (Uβ, R) ⊗R W where Uβ acts only on the mid-
dle factor. By Proposition 5.2, C∞c (Uβ, R)Uβ is isomorphic to R[1/p]. If W is p-torsion,
C∞c (Uβ, R)Uβ ⊗RW = 0 hence (c-IndPnBP (W ))Uβ = 0 and a fortiori (c-IndPnBP (W ))N1 = 0 by
transitivity of the coinvariants, since N1 contains Uβ. We get (i). Similarly, if Vp−ord = 0,
HomR(C∞c (Uβ, R)Uβ , V ) = 0 hence we get (ii). �

Lemma 5.13. Let w ∈W \WMWM1. Then there exists β ∈ ΦN1 such that w(β) belongs to
−ΦN .

We can take β reduced. If β is not reduced, replace it by β/2.

Proof. The property in Lemma 5.13 depends only on the double coset WMwWM1 because
ΦN is stable by WM and ΦN1 is stable by WM1 . We suppose that w is the element of minimal
length in WMwWM1 . This condition translates as:

(i) w−1(Φ−) ∩ Φ+ ⊂ ΦN1 ,
(ii) Φ− ∩ w(Φ+) ⊂ −ΦN .

Proceeding by contradiction we suppose w(ΦN1) ⊂ ΦM∪ΦN . This implies w(ΦN1)∩Φ− ⊂ Φ−M
then (ii) implies w(ΦN1)∩Φ− = ∅ so w(ΦN1) ⊂ Φ+. With (i) we get Φ−∩w(Φ+) ⊂ w(ΦN1) ⊂
Φ+. Then comparing with (ii), w(Φ+) ⊂ Φ+ which implies w = 1. This is absurd hence
Lemma 5.13 is proved. �



MODULO p REPRESENTATIONS OF REDUCTIVE p-ADIC GROUPS: FUNCTORIAL PROPERTIES 25

This ends the proof of Proposition 5.7 (ii) and (iii). To prove Proposition 5.7 (i), we control
c-IndPP1

P W as a representation of P1. As the inclusion of P1 in PP1 induces an homeomor-
phism (P ∩ P1)\P1 → P\PP1, we think of c-IndPP1

P W as the representation c-IndP1
P∩P1

W of
P1. To identify (c-IndP1

P∩P1
W )N1 and IndM1

P∩M1
WM∩N1 we proceed exactly as in [BZ77, 5.16

case IV1]; indeed mutatis mutandis we are in that case: their G = Q is our P1, their M = P is
our P ∩P1, their N is our M1 and their V our N1. Their reasoning applies to get the desired
result: it is enough to realize that the equivalence relation between `-sheaves on (P ∩ P1)\P1
and smooth representations of P ∩P1 is valid for R as coefficients [BZ77, 5.10 to 5.14] and also
that although N1 is locally pro-p, forming N1-coinvariants is still compatible with inductive
limits [BZ77, 1.9 (9)]. This latter property is valid for any functor Mod∞R (G)→ Mod∞R (M1)
having a right adjoint, because Mod∞R (G) is a Grothendieck category [Vig13, Proposition 2.9,
lemma 3.2].

6. Applying adjoints of IndGP1 to IG(P, σ,Q)

Let us keep a general reductive connected group G and a commutative ring R. Let P1 =
M1N1 be a standard parabolic subgroup of G and (P = MN,σ,Q) an R[G]-triple (2.2).

6.1. Results and applications. We would like to compute LGP1
IG(P, σ,Q) when σ is p-

torsion and RGP1
IG(P, σ,Q) when σp−ord = 0. Applying Corollaries 5.8 and 5.9 we may reduce

to the case where P (σ) = G, so IG(P, σ,Q) = e(σ)⊗StGQ. But we have no direct construction
of RGP1

. When R is noetherian and p is nilpotent in R, then for admissible V ∈ Mod∞R (G),
RGP1

V ' OrdG
P 1
V (Corollary 4.13). Consequently, in the following Theorem 6.1, Part (ii) we

may replace OrdG
P 1

by RGP1
and OrdM

M∩P 1
by RMM∩P1

when p is nilpotent in R.

Theorem 6.1. Assume P (σ) = G. We have:
(i) Assume that σ is p-torsion. Then LGP1

(e(σ)⊗StGQ) is isomorphic to eM1(LMM∩P1
(σ))⊗

StM1
M1∩Q if 〈Q,P1〉 = G, and is 0 otherwise.

(ii) Assume R noetherian, σ admissible, and σp−ord = 0. Then OrdG
P 1

(e(σ) ⊗ StGQ) is
isomorphic to eM1(OrdM

M∩P 1
(σ))⊗ StM1

M1∩Q if 〈P, P1〉 ⊃ Q, and is 0 otherwise.

In part (i), the statement includes that LMM∩P1
(σ) extends to M1 and similarly in part (ii)

for OrdM
M∩P 1

(σ). Before the proof of the theorem (§6.2, §7) we derive consequences.
Without any assumption on P (σ), we get:

Corollary 6.2. (i) Assume that σ is p-torsion. Then LGP1
IG(P, σ,Q) is isomorphic to

(15) IndM1
P (σ)∩M1

(eM1∩M(σ)(LMM∩P1(σ))⊗ StM1∩M(σ)
Q∩M1

)

when 〈P1 ∩ P (σ), Q〉 = P (σ), and is 0 otherwise.
(ii) Assume R noetherian, σ admissible, and p nilpotent in R. Then OrdG

P 1
IG(P, σ,Q) is

isomorphic to

(16) IndM1
P (σ)∩M1

(eM1∩M(σ)(OrdM
M∩P 1

(σ))⊗ StM1∩M(σ)
Q∩M1

)

if 〈P, P1 ∩ P (σ)〉 ⊃ Q, and is 0 otherwise.
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In the corollary, LMM∩P1
(σ) might extend to a parabolic subgroup of M1 bigger than M1 ∩

P (σ). So we cannot write (15) as IM1(P ∩M1, L
M
M∩P1

(σ), Q∩M1). A similar remark applies
to (16).

Proof. (i) LGP1
IG(P, σ,Q) = LGP1

IndGP (σ)(eM(σ)(σ)⊗StM(σ)
Q∩M(σ)) is isomorphic to (Corollary 5.8)

IndM1
P (σ)∩M1

L
M(σ)
P1∩M(σ)eM(σ)(σ)⊗ StM(σ)

Q∩M(σ). Applying Theorem 6.1, we get (i).
(ii) Similarly, OrdG

P 1
IG(P, σ,Q) ' IndM1

P (σ)∩M1
OrdM(σ)

M∩P 1
(eM(σ)(σ)⊗StM(σ)

Q∩M(σ)) by Remark 5.11
(2). Applying Theorem 6.1, we get (ii). �

Definition 6.3. A smooth R-representation V of G is called left cuspidal if LGPV = 0 for all
proper parabolic subgroups P of G, and right cuspidal if RGPV = 0 for all proper parabolic
subgroups P of G.

We may restrict to proper standard parabolic subgroups in this definition, since any para-
bolic subgroup of G is conjugate to a standard one.

Proposition 6.4. Assume that R is a field of characteristic p. Then a supercuspidal repre-
sentation is right-cuspidal.

Proof. An irreducible admissible R-representation V of G such that RGPV 6= 0 is a quotient
of IndGP RGPV and by Corollary 4.14 is a quotient of IndGP W for some irreducible admissible
R-representation W of M because the characteristic of R is p (Corollary 4.14). If V is
supercuspidal, then P = G, so V is right cuspidal. �

Corollary 6.5. Assume that R is a field of characteristic p and (P, σ,Q) is an R[G]-triple
with σ supercuspidal. Then RGP1

IG(P, σ,Q) is isomorphic to IM1(P ∩M1, σ,Q∩M1) if P1 ⊃ Q,
and is 0 otherwise.

This corollary implies Theorem 1.1 (ii).

Proof. (i) Assume first P (σ) = G. As a supercuspidal representation is e-minimal, we may
apply Theorem 6.1 Part (ii). Thus RGP1

IG(P, σ,Q) = 0 unless 〈P, P1〉 ⊃ Q in which case it is
isomorphic to eM1(RMM∩P1

(σ))⊗ StM1
M1∩Q.

If P1 does not contain P , then P1 ∩ M is a proper parabolic subgroup of M and by
Proposition 6.4, RMP1∩Mσ = 0.

If P1 ⊃ P , then M ∩ P1 = M and RMP1∩Mσ = σ. Moreover, 〈P, P1〉 ⊃ Q if and only if
P1 ⊃ Q. This gives the result when P (σ) = G.

(ii) Without hypothesis on P (σ), we proceed as in the proof of Corollary 6.2. �

We now turn to consequences where R = C.

We have the supersingular C-representations of G - we recall their definition. Recall the
homomorphism SGP in §2.5. A homomorphism χ : ZG(K, V ) → C is supersingular if it does
not factor through SGP when P 6= G.

Definition 6.6. A C-representation π ofG is called supersingular if it is irreducible admissible
and for all irreducible smooth C-representations V of K, the eigenvalues of ZG(K, V ) in
HomG(c-IndGK V, π) are supersingular.

A C-representation π of G is supersingular if and only if it is supercuspidal [AHHV17, I.5
Theorem 5].
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Proposition 6.7. A supersingular C-representation of G is left-cuspidal.

Proof. Let π be an admissible C-representation of G and P = MN be a standard parabolic
subgroup of G such that LGPπ 6= 0. Putting W = LGPπ, adjunction gives a G-equivariant
map π → IndGP W . Choose an irreducible smooth C-representation of the special parahoric
subgroup K of G such that the space HomG(c-IndGK V, π) (isomorphic to HomK(V, π) and finite
dimensional) is not zero. The commutative algebra Z(K, V ) posseses an eigenvalue on this
space; that eigenvalue is also an eigenvalue of Z(K, V ) on HomG(c-IndGK V, IndGP W ) which
necessarily factorizes through SGP (§2.5). If π is supersingular (in particular irreducible),
P = G hence π is left cuspidal. �

The classification theorem 3.1, Propositions 6.4 and 6.7 imply:

Corollary 6.8. Assume that (P, σ,Q) is a C[G]-triple with σ supercuspidal. In that situation
LGP1

IG(P, σ,Q) is isomorphic to IM1(P ∩M1, σ,Q ∩M1) if P1 ⊃ P and 〈P1, Q〉 ⊃ P (σ), and
is 0 otherwise.

This corollary is Theorem 1.1 (i).

Proof. We proceed as for the proof of Corollary 6.5. With the same reasoning we get
LMP1∩Mσ = 0 if P1 does not contain P and LMP1∩Mσ = σ if P1 ⊃ P . Therefore, Theorem
6.1 Part (i) implies the result when P (σ) = G. Otherwise, we use Theorem 5.5 to reduce to
the case P (σ) = G. �

From Corollary 6.5 and 6.8 we deduce immediately:

Corollary 6.9. An irreducible admissible C-representation of G is left and right cuspidal if
and only if it is supercuspidal.

Now it is easy to describe the left or right cuspidal irreducible admissible C-representations
of G.

Corollary 6.10. Let (P, σ,Q) be a C[G]-triple with σ supercuspidal. Then IG(P, σ,Q) is
(i) left cuspidal if and only if Q = P and P (σ) = G, so IG(P, σ,Q) = e(σ)⊗ StGP ;
(ii) right cuspidal if and only if Q = P (σ) = G, so IG(P, σ,Q) = e(σ).

Proof. (i) By Theorem 1.1 Part (i), IG(P, σ,Q) is left cuspidal if and only if
∆P1 ⊃ ∆P and ∆P1 ∪∆Q ⊃ ∆P (σ) implies ∆P1 = ∆.

This displayed property is equivalent to ∆σ \ (∆Q ∩∆σ) = ∆ \∆P , and this is equivalent to
Q = P and P (σ) = G.

(ii) By Theorem 1.1 Part (ii), IG(P, σ,Q) is right cuspidal if and only if P1 ⊃ Q implies
P1 = G. This latter property is equivalent to Q = G. But Q ⊂ P (σ) hence IG(P, σ,Q) is
right cuspidal if and only if Q = P (σ) = G. �

Remark 6.11. We compare with the case where R is a field of characteristic 6= p. Then, LGP
is exact, a subquotient of a left cuspidal smooth R-representation of G is also left cuspidal.
For a representation π of G satisfying the second adjointness property RGPπ = δPL

G
P
π for all

parabolic subgroups P of G (see §4.3), then left cuspidal is equivalent to right cuspidal. For an
irreducible smooth R-representation (hence admissible), supercuspidal implies obviously left
and right cuspidal. The converse is true when R is an algebraically closed field of characteristic
0 or banal [Vig96, II.3.9]. When G = GL(2,Qp) and the characteristic ` of C divides p+1, the
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smooth C-representation IndGB 1 of G admits a left and right cuspidal irreducible subquotient
[Vig89], which is not supercuspidal.

6.2. The case of N1-coinvariants. We proceed to the proof of Theorem 6.1, Part (i). First
we assume that ∆M is orthogonal to ∆ \ ∆M . Recall that Pσ is the parabolic subgroup
corresponding to ∆σ and Mσ its Levi subgroup (subsection 2.4). Our assumption P (σ) = G
implies ∆σ = ∆ \ ∆M . The representation e(σ) is obtained by extending σ from M to
G = MM ′σ trivially on M ′σ.

6.2.1. Assume P1 ⊃ P , so that N1 acts trivially on e(σ) because N1 ⊂ M ′σ. We start from
the exact sequence defining StGQ and we tensor it by e(σ)

(17)
⊕
Q′∈Q

e(σ)⊗ IndGQ′ 1→ e(σ)⊗ IndGQ 1→ e(σ)⊗ StGQ → 0,

where Q is the set of parabolic subgroups of G containing strictly Q. Applying the right
exact functor LGP1

gives an exact sequence. As σ is p-torsion, Corollary 5.8 gives a natural
isomorphism LGP1

(e(σ) ⊗ IndGQ 1) ' eM1(σ) ⊗ IndM1
M1∩Q 1 and similarly for Q′ ∈ Q, so we get

the exact sequence⊕
Q′∈Q

eM1(σ)⊗ IndM1
M1∩Q′ 1→ eM1(σ)⊗ IndM1

M1∩Q 1→ LGP1(e(σ)⊗ StGQ)→ 0.

The map on the left is given by the natural inclusion for each summand. If for some Q′ ∈ Q
we have M1 ∩Q′ = M ∩Q′ then that map is surjective and LGP1

(e(σ)⊗ StGQ) = 0. Otherwise
〈Q,P1〉 = G (see the lemma below) and from the exact sequence we have an isomorphism
LGP1

(e(σ)⊗ StGQ) ' eM1(σ)⊗ StM1
M1∩Q.

Lemma 6.12. 〈Q,P1〉 = G if and only if M1 ∩Q′ 6= M ∩Q′ for all Q′ ∈ Q. In this case, the
map Q′ 7→ M1 ∩ Q′ is a bijection from Q to the set of parabolic subgroups of M1 containing
strictly Q ∩M1.

Proof. The proof is immediate after translation in terms of subsets of ∆. �

6.2.2. Assume 〈P, P1〉 = G. Then P1 ⊃ Pσ, N1 is contained in M ′ and acts trivially on StGQ
because ∆M and ∆ \ ∆M are orthogonal. By Lemma 5.1 we find that LGP1

(e(σ) ⊗ StGQ) '
LGP1

e(σ)⊗StGQ|M1 . Decomposing P1 = (P1∩M)M ′σ = (M1∩M)N1M
′
σ and M1 = (M1∩M)M ′σ

we see that the R[P1]-module LGP1
e(σ) is LMM∩P1

σ = σN1 trivially extended to M ′σ. That is
LGP1

e(σ) = eM1(LMM∩P1
σ). On the other hand, because Q ⊃ M and M1 ⊃ Mσ we have G =

MMσ = QM1 and the inclusion of M1 in G induces an homeomorphism (Q∩M1)\M1 ' Q\G.
So, (IndGQ 1)|M1 identifies with IndM1

M1∩Q 1, this also applies to the Q′ ∈ Q containing Q, thus
StGQ|M1 ' StM1

M1∩Q. We get LGP1
(e(σ)⊗ StGQ) ' eM1(LMM∩P1

σ)⊗ StM1
M1∩Q proving what we want

when P1 ⊃Mσ, since ∆Q ∪∆M1 = ∆. Note that the assumption that σ is p-torsion was not
used.

6.2.3. The case where P1 is arbitrary can finally be obtained in two stages, using the tran-
sitivity property of the coinvariant functors: first apply LGP2

where P2 = MP1 contains P
then apply LM2

M2∩P1
where 〈P ∩M2, P1 ∩M2〉 = M2. Applying 6.2.1, LGP2

(e(σ) ⊗ StGQ) = 0
unless ∆P2 ∪ ∆Q = ∆ in which case LGP2

(e(σ) ⊗ StGQ) ' eM2(σ) ⊗ StM1
M2∩Q. Applying 6.2.2,

LM2
M2∩P1

(eM2(σ)⊗ StM2
M2∩Q) ' (eM1(LMM∩P1

σ)⊗ StM1
M1∩Q).
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This ends the proof of Theorem 6.1 (i) when ∆M is orthogonal to ∆ \∆M .

In general, we introduce Pmin = MminNmin and an e-minimal representation σmin of Mmin
as in Lemma 2.9, such that σ = eP (σmin). Then ∆Mmin = ∆min is orthogonal to ∆ \ ∆min
(Lemma 2.10), and σ is p-torsion so is σmin so we can apply Theorem 6.1 (i) to σmin. As
e(σ) = e(σmin) we get:
LGP1

(e(σ) ⊗ StGQ) is isomorphic to eM1(LMmin
Mmin∩P1

(σmin)) ⊗ StM1
M1∩Q if 〈Q,P1〉 = G, and is 0

otherwise.
We prove now eM1(LMmin

Mmin∩P1
(σmin)) = eM1(LMM∩P1

(σ)). Write J = ∆M \∆min and ∆M1 =
∆1. The orthogonal decomposition ∆M ∩∆1 = (∆min ∩∆1) ⊥ (J ∩∆1) implies M ∩M1 =
(Mmin ∩M1)(MJ ∩M1)′. But (MJ ∩M1)′ ⊂M ′J acts trivially on σ (§2.2), so we deduce that
σM∩N1 extends (σmin)Mmin∩N1 and eM1(LMmin

Mmin∩P1
(σmin)) = eM1(LMM∩P1

(σ)). This ends the
proof of Theorem 6.1 (i).

7. Ordinary functor OrdG
P 1

Let us keep a general reductive connected group G and a commutative ring R. Let P1 =
M1N1 be a standard parabolic subgroup of G and (P = MN,σ,Q) an R[G]-triple with
P (σ) = G.

In this section §7, we prove Theorem 6.1, Part (ii) after establishing some general results in
§7.1 and §7.2, with varying assumptions on R. As in §6 for the coinvariant functor LGP , first
we assume that σ is e-minimal, so that ∆M is orthogonal to ∆ \∆M ; it suffices to consider
two special cases P1 ⊃ P (§7.3) and 〈P1, P 〉 = G (§7.4) and the general case is obtained in
two stages, introducing the parabolic subgroup 〈P1, P 〉 = MP1. When σ is no longer assumed
to be e-minimal, we proceed as above, using σmin.

7.1. Haar measure and t-finite elements. Let H be a locally profinite group acting on a
locally profinite topological space X and on itself by left translation. For x ∈ X, we denote
by Hx the H-stabilizer of x. The group H acts on C∞c (X,R) by (hf)(x) = f(h−1x) for
h ∈ H, f ∈ C∞c (X,R), x ∈ X.

Proposition 7.1. Assume that R is a field and that there is a non-zero R[H]-linear map
C∞c (H,R) → C∞c (X,R). Then for some x ∈ X there is an R-valued left Haar measure on
Hx.

Proof. We show that the proposition follows from Bernstein’s localization principle [Ber84b,
1.4] which, we remark, is valid for an arbitrary field R.

Let C∞c (H,R) ϕ−→ C∞c (X,R) be a non-zero linear map. We show that there exists x ∈ X
such that HomR(C∞c (H × {x}, R), R) 6= 0. We view ϕ as providing an integration along the
fibres of the projection map H ×X → X, that is, a non-zero linear map C∞c (H ×X,R) Φ−→
C∞c (X,R) defined by

Φ(f)(x) = ϕ(fx)(x)
for x ∈ X, f ∈ C∞c (H ×X,R), where fx ∈ C∞c (H,R) sends h ∈ H to f(h, x). The dual of Φ
is a non-zero linear map

HomR(C∞c (X,R), R)
tΦ−→ HomR(C∞c (H ×X,R), R)

of image the space of linear functionals on C∞c (H ×X,R) vanishing on the kernel of Φ.
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But C∞c (X,R) is also an R-algebra for the multiplication ψ1ψ2(x) = ψ1(x)ψ2(x) if ψ1, ψ2 ∈
C∞c (X,R) and x ∈ X. Then, C∞c (H × X,R) is naturally a C∞c (X,R)-module: for ψ ∈
C∞c (X,R) and f ∈ C∞c (H × X,R), then ψf ∈ C∞c (H × X,R) is the function (h, x) 7→
(ψf)(h, x) = ψ(x)f(h, x). The map Φ is C∞c (X,R)-linear: (ψf)x = ψ(x)fx and Φ(ψf)(x) =
ϕ((ψf)x)(x) = ψ(x)ϕ(fx)(x) = ψ(x)Φ(f)(x). The image of tΦ is a C∞c (X,R)-submodule: for
ψ ∈ C∞c (X,R) and L ∈ HomR(C∞c (H ×X,R), R) vanishing on Ker Φ, (ψL)(f) = L(ψf).

By Bernstein’s localization principle, Im(tΦ) is the closure of the span of those functionals
in Im(tΦ) which are supported on H × {x} for some x ∈ X. Consequently, as Im(tΦ) 6= 0,
there exists x ∈ X and a non-zero L ∈ HomR(C∞c (H ×X,R), R) vanishing on Ker Φ which
factors through the restriction map C∞c (H ×X,R) res−−→ C∞c (H ×{x}, R). There is a non-zero
element µ ∈ HomR(C∞c (H × {x}, R), R) such that L = µ ◦ res.

Now assume that ϕ is H-equivariant. We show that µ is Hx-invariant. Indeed, denote by
χ the characteristic function of a small open neighborhood V of x. Let f ∈ C∞c (H,R). Take
f ⊗ χ in C∞c (H ×X,R). Then Φ(f ⊗ χ) = ϕ(f)χ whereas Φ(hf ⊗ χ) = ϕ(hf)χ = (hϕ(f))χ
for h ∈ Hx. We can certainly take V small enough for ϕ(f) and hϕ(f) to be constant on V ;
as hx = x, they are equal at x hence on all V . In particular L(f ⊗ χ) = L(hf ⊗ χ) which
implies that µ is Hx-invariant.

Now, for x ∈ X, applying Bernstein’s localization principle to the natural map H → Hx\H,
the existence of a non-zero Hx-invariant element of HomR(C∞c (H × {x}, R), R) implies the
existence of a R-valued left Haar measure on Hx.

�

There is a variant of Proposition 7.1 where R is replaced by an R-module V with zero
p-ordinary part.
Corollary 7.2. Assume that V is an R-module with

⋂
k≥0 p

kV = {0} and that there is a
non-zero R[H]-linear map ϕ : C∞c (H,R) → C∞c (X,V ). Then for some x ∈ X there is a
Fp-valued left Haar measure on Hx.

Proof. As ∩k≥0 p
kV = {0}, there exists a largest integer k such that the image of ϕ is

contained in pkV but not in pk+1V . The map ϕ induces a non-zero (R/pR)[H]-linear map
C∞c (H,R/pR) → C∞c (X, pkV/pk+1V ). By R/pR-linearity, it restricts to a non-zero Fp[H]-
linear map ϕp : C∞c (H,Fp)→ C∞c (X, pkV/pk+1V ). The values of the functions in the image
of ϕp is a non-zero Fp-subspace Vp of pkV/pk+1V and composing with a Fp-linear form on Vp,
we get a non-zero Fp[H]-linear map C∞c (H,Fp) → C∞c (X,Fp). Applying Proposition 7.1 to
R = Fp, we get the desired result. �

In the special case X = H acting on itself by left translation, all stabilizers Hx are trivial,
and there are non-zero R[H]-endomorphisms of C∞c (H,R), for example those given by right
translations by elements of H.

Consider the special situation, which appears later in the proof of the theorem, where
there is an automorphism t of H and an open compact subgroup H0 of H such that tk(H0) ⊂
tk+1(H0) for k ∈ Z, H =

⋃
k∈Z t

k(H0) and {0} =
⋂
k∈Z t

k(H0). Let moreover W be an
R-module with a trivial action of H and an action of t via an automorphism. Then we
have a natural action of t on C∞c (H,W ) - that we identify with C∞c (H,R) ⊗W - and on
HomR[H](C∞c (H,R), C∞c (H,W )) by

tf(h) = t(f(t−1h)), (tϕ)(f) = t(ϕ(t−1f)),
for h ∈ H, f ∈ C∞c (H,W ), ϕ ∈ HomR[H](C∞c (H,R), C∞c (H,W )).
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We recall that, for a monoid A and an R[A]-module V , an element v ∈ V is A-finite if the
R-module generated by the A-translates of v is finitely generated.

We say that V is A-locally finite if every element of V is A-finite, If A is generated by an
element t, we say t-finite instead of A-finite. When R is noetherian, the set V A−f of A-finite
vectors in V is a submodule of V .

If w ∈ W is t-finite, then f 7→ f ⊗ w in HomR[H](C∞c (H,R), C∞c (H,W )) is obviously
t-finite. Conversely:

Proposition 7.3. When R is noetherian, any t-finite element of

HomR[H](C∞c (H,R), C∞c (H,W ))

has the form f 7→ f ⊗ w for some t-finite vector w ∈W .

Proof. For r ∈ Z let fr ∈ C∞c (H,R) be the characteristic function of tr(H0) so that tkfr =
fk+r for k ∈ Z, hfr is the characteristic function of htr(H0) for h ∈ H, and for r′ ≥ r,
fr′ =

∑
h∈tr′ (H0)/tr(H0) hfr. Any f ∈ C∞c (H,R) is a linear combination of H-translates of fr,

r ∈ Z.
Let ϕ ∈ HomR[H](C∞c (H,R), C∞c (H,W )). The support of ϕ(f0) ∈ C∞c (H,W ) is contained

in tr(H0) for some integer r ≥ 0. For r′ ≥ 0, the H-equivariance of ϕ implies that ϕ(fr′) =∑
h∈tr′ (H0)/H0 hϕ(f0); in particular, ϕ(fr) has support contained in tr(H0) and since ϕ(fr)

is tr(H0)-invariant, it has the form fr ⊗ w for some w ∈ W . For r′ ≥ r, we have similarly
ϕ(fr′) =

∑
h∈tr′ (H0)/trH0 hϕ(fr) = fr′ ⊗ w. For k ≥ 0, we compute

(18) (tkϕ)(fr′+k) = tk(ϕ(t−kfr′+k)) = tk(ϕ(fr′)) = tk(fr′ ⊗ w) = fr′+k ⊗ tkw.

Assume now that ϕ is t-finite. Then there is an integer n ≥ 1 such that the tkϕ, 0 ≤ k ≤ n−1,
generate the R-submodule Vϕ generated by the tkϕ, h ∈ N, and there is a relation

(19) tnϕ = a1t
n−1ϕ+ · · ·+ an−1tϕ+ anϕ,

with a1, . . . , an ∈ R. Applying (19) to fn+r and using (tkϕ)(fn+r) = fn+r⊗ tkw for 0 ≤ k ≤ n
by (18), we get

fn+r ⊗ tnw = fn+r ⊗ (a1t
n−1w + · · ·+ an−1tw + anw).

So that tnw = a1t
n−1w + · · ·+ an−1tw + anw and w is t-finite.

We have already seen that ϕ(fr′) = fr′ ⊗ w for r′ ≥ r. Let k ≥ 1 and assume that
ϕ(fr′) = fr′ ⊗ w for r′ ≥ k. Noting that (tiϕ)(fn+k−1) = fn+k−1 ⊗ tiw for 0 ≤ i ≤ n − 1
because n+ k − 1− i ≥ k, we apply (19) to fn+k−1 and we deduce

(tnϕ)(fn+k−1) = fn+k−1 ⊗ (a1t
n−1w + · · ·+ an−1tw + anw) = fn+k−1 ⊗ tnw,

so that tn(ϕ(fk−1)) = tn(fk−1⊗w) and finally ϕ(fk−1) = fk−1⊗w. This proves the proposition
by descending induction on k. �

We suppose now that W is a free R-module with a trivial action of H and of t. Let V
be an R[H]-module with a compatible action of t. As above, we have a natural action of t on
HomR[H](C∞c (H,R), V ) and on HomR[H](C∞c (H,R), V ⊗W ).

Proposition 7.4. When R is noetherian, the natural map HomR[H](C∞c (H,R), V ) ⊗W →
HomR[H](C∞c (H,R), V ⊗W ) induces an isomorphism between the submodules of t-finite ele-
ments.
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Proof. The natural map sends ϕ ⊗ w to f 7→ ϕ(f) ⊗ w. It is an embedding because W is
R-free. It sends a t-finite element to a t-finite element because t acts trivially on W . Let
ϕ ∈ HomR[H](C∞c (H,R), V ⊗W ) and let (wi)i∈I be an R-basis of W . For f ∈ C∞c (H,R) we
write uniquely ϕ(f) =

∑
i∈I vi(f)⊗wi for vi(f) ∈ V . For each i ∈ I, the map vi is R[H]-linear

and for each f , vi(f) vanishes outside some finite subset I(f) of I. But it is not clear if the
map vi vanishes outside a finite subset of I. Now assume that ϕ is t-finite. As in (19), there
exists n ≥ 1 and a1, . . . , an ∈ R such that for each i ∈ I,

(20) tnvi(t−nf) = a1t
n−1vi(t−n+1f) + · · ·+ an−1tvi(t−1f) + anvi(f).

Let I0 = I(f0) be a finite subset of I such that vi(f0) = 0 for i ∈ I \ I0. For r ≥ 0,
vi(fr) = 0 for i ∈ I \ I0 because fr is a sum of H-translates of f0. Let k ∈ Z and assume
that for r ≥ k, vi(fr) = 0 for i ∈ I \ I0. Apply (20) to f = fn+k−1 for i ∈ I \ I0. This
gives tnvi(fk−1) = 0 hence vi(fk−1) = 0. As any f ∈ C∞c (H,R) is a linear combination of
H-translates of fk, k ∈ Z, we have vi(f) = 0 for i ∈ I \ I0 and ϕ(f) =

∑
i∈I0 vi(f)⊗ wi does

belong to HomR[H](C∞c (H,R), V )⊗W ; each of the vi ∈ HomR[H](C∞c (H,R), V ) for i ∈ I0 is
t-finite (because ϕ is t-finite), and that proves the proposition. �

7.2. Filtrations. We analyze the sequence (17) defining StGQ, by filtering IndGQ 1 by subspaces
of functions with support in a union of (Q,B) double cosets. An important fact is that the
(Q,B)-cosets outside QP 1 do not contribute.

For convenience of references to [AHHV17], we first consider (Q,B) double cosets - we shall
switch to (Q,B)-cosets later. A (Q,B)-double coset has the form QnB for some n ∈ N ; if w
is the image of n in the finite Weyl group W = N/Z we write, as is customary, QwB instead
of QnB. The coset WQw is uniquely determined by QwB and contains a single element of
minimal length. We write QW for the set of w ∈ W with minimal length in WQw; they are
characterized by the condition w−1(α) > 0 for α ∈ ∆Q [Car85, 2.3.3]. We have the disjoint
union

G =
⊔

w∈QW
QwB.

By standard knowledge, for w,w′ ∈ QW, the closure of QwB contains Qw′B if and only if
w ≥ w′ in the Bruhat order of W . As in [AHHV17, V.7], we let A ⊂ QW be a non-empty
upper subset (if a ≤ w, a ∈ A,w ∈ QW, then w ∈ A) so that QAB is open in G, and we
choose wA ∈ A minimal for the Bruhat order; letting A′ = A \ {wA}, QA′B is open in G too.
Let c-IndQABQ 1 ⊂ IndGQ 1 be the subspace of functions with support in QAB,

c-IndQABQ 1 ' C∞c (Q\QAB,R).

For a parabolic subgroup Q1 of G containing Q, we have IndGQ1 1 ⊂ IndGQ 1 and we let

IQABQ1
= IndGQ1 1 ∩ c-IndQABQ 1.

It is the subspace of functions with support in the union of the cosets Q1x contained in QAB.
We have IQA

′B
Q1

⊂ IQABQ1
. We also use an abbreviation IQ1,A = IQABQ1

.

Lemma 7.5. For Q1 ⊃ Q, the injective natural map IQABQ1
/IQA

′B
Q1

→ c-IndQABQ 1/ c-IndQA
′B

Q 1
is an isomorphism if wA ∈ Q1W, and IQABQ1

= IQA
′B

Q1
otherwise.
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Proof. We write w = wA. Assume first that w 6∈ Q1W. Write w = vw′ with v ∈WQ1\{1}, w′ ∈
Q1W. We have w′ < w and w is minimal in A hence w′ 6∈ A. Let ϕ ∈ IQ1,A. If the support
of ϕ meets QwB, it meets w′B and this is impossible because w′ 6∈ A. Thus ϕ ∈ IQ1,A′ and
IQ1,A = IQ1,A′ as desired.

Assume now that w ∈ Q1W and let ϕ ∈ IQ,A. As w ∈ Q1W, the natural map U 7→ Q1\Q1wB

induces a homeomorphism (w−1Uw ∩ U)\U '−→ Q1\Q1wB; as w ∈ QW, the natural map
U 7→ Q\QwB induces also a homeomorphism (w−1Uw ∩ U)\U '−→ Q\QwB [AHHV17, V.7].
Consequently, there is a function ψ on Q1wB left invariant under Q1 and locally constant with
compact support modulo Q1 which has the same restriction as ϕ to QwB. Set A1,≥w ⊂ Q1W
to be the upper subset of u with u ≥ w. The set Q1A1,≥wB is open in G and Q1wB is closed
in Q1A1,≥wB. There exists a function ψ̃ on Q1A1,≥wB left invariant under Q1 and locally
constant with compact support modulo Q1 which is equal to ψ on Q1wB. For u ∈ A1,≥w
the double coset Q1uB is the union of double cosets QtuB for t ∈ WQ1 with tu ∈ QW; as
tu ≥ u ≥ w we have tu ∈ A hence Q1uB ⊂ QAB and naturally Q1A1,≥wB ⊂ QAB. Now,
we have ψ̃ ∈ IQ1,A, ψ̃ and ϕ have the same restriction to QwB, hence the same image in
IQ,A/IQ,A′ , and the map of the lemma is surjective. �

Lemma 7.6. If P is a set of parabolic subgroups of G containing Q, then ∑
Q1∈P

c-IndGQ1 1

 ∩ c-IndQABQ 1 =
∑
Q1∈P

c-IndQABQ1
1.

Proof. The left hand side obviously contains the right hand side. The reverse inclusion is
proved as in [AHHV17, V.16 Lemma 23] by descending induction on the order of A. The
case where A = QW being a tautology, we assume the result for A and we prove it for
A′ = A \ {wA}. As (

∑
Q1∈P IndGQ1 1) ∩ IQ,A′ is nothing else than (

∑
Q1∈P IQ1,A) ∩ IQ,A′ , we

pick fQ1 ∈ IQ1,A for Q1 ∈ P and assume that
∑
Q1∈P fQ1 ∈ IQ,A′ ; we want to prove that∑

Q1∈P fQ1 ∈
∑
Q1∈P IQ1,A′ .

If wA 6∈ Q1W, fQ1 ∈ IQ1,A′ by Lemma 7.5. We are done if wA 6∈ Q1W for all Q1 ∈ P.
Otherwise, Q1 ∈ P such that wA ∈ Q1W is contained in the parabolic subgroup Q2 as-

sociated to ∆2 = {α ∈ ∆, w−1
A (α) > 0} and wA ∈ Q2W; we choose fQ2 ∈ IQ2,A such that

fQ1 − fQ2 ∈ IQ1,A′ , that is possible by Lemma 7.5. We write
∑
Q1∈P fQ1 as∑

Q1∈P
fQ1 =

∑
Q1∈P,wA 6∈Q1W

fQ1 +
∑

Q1∈P,wA∈Q1W

(fQ1 − fQ2) +
∑

Q1∈P,wA∈Q1W

fQ2 .

The last term on the right belongs also to IQ,A′ because the other terms do, and even to
IQ2,A′ . We have IQ2,A′ ⊂ IQ1,A′ , and the last term belongs to IQ1,A′ for any Q1 ∈ P such that
w ∈ Q1W. This ends the proof of the lemma. �

To express Lemmas 7.5, 7.6 in terms of (Q,B)-double cosets we apply the remark that
QwBw0 = Qww0B if w0 is the longest element in W, so translating by w−1

0 a function with
support in QAB gives a function with support in QAw0B. For a parabolic subgroup Q1 ⊂ Q,

IQAw0B
Q1

= IndGQ1 1 ∩ c-IndQAw0B
Q 1

is the set of functions obtained in this way from IQABQ1
. We have w ≤ w′ if and only if

w′w0 ≥ ww0 for w,w′ ∈ W [BB05, Proposition 2.5.4], QWw0 is the set of w ∈ W with
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maximal length in WQw, Aw0 is a non-empty lower subset of QWw0 and wAw0 is a maximal
element of Aw0 for the Bruhat order. We get:

Lemma 7.7. For Q1 ⊃ Q, the natural map

IQAw0B
Q1

/IQA
′w0B

Q1
→ c-IndQAw0B

Q 1/ c-IndQA
′w0B

Q 1

is an isomorphism if wA ∈ Q1W, and IQAw0B
Q1

= IQA
′w0B

Q1
otherwise.

Lemma 7.8. If P is a set of parabolic subgroups of G containing Q, then ∑
Q1∈P

c-IndGQ1 1

 ∩ c-IndQAw0B
Q 1 =

∑
Q1∈P

c-IndQAw0B
Q1

1.

Note that
c-IndQAw0B

Q 1/ c-IndQA
′w0B

Q 1 ' c-IndQwAw0B
Q 1

as representations of B. The image of IndQAw0B
Q 1 in StGQ is denoted by StQAw0B

Q .

Lemma 7.9. The R-modules c-IndQAw0B
Q 1 and StQAw0B

Q are free.

Proof. We denote StGQ = StGQ(R) or StQAw0B
Q = StQAw0B

Q (R) to indicate the coefficient ring
R. The module C∞c (Q\QAw0B,Z) and StGQ(Z) are free [Ly15] and a submodule of the free
Z-module StGQ(Z) is free, hence StQAw0B

Q (Z) is also free. The exact sequence of free modules
defining StGQ(Z) or StQAw0B

Q (Z) remains exact when we tensor by R. As C∞c (Q\QAw0B,R) =
C∞c (Q\QAw0B,Z) ⊗Z R, we have also StGQ(Z) ⊗Z R = StGQ(R) and StQAw0B

Q (Z) ⊗Z R =
StQAw0B
Q (R). Thus, the lemma. �

Lemma 7.10. StQAw0B
Q = StQA

′w0B
Q if wA ∈ Q1W for some Q1 ∈ Q (notation of (6.2.1)).

Otherwise the map c-IndQAw0B
Q 1→ StQAw0B

Q induces an isomorphism

c-IndQAw0B
Q 1/ c-IndQA

′w0B
Q 1 ' StQAw0B

Q /StQA
′w0B

Q .

Proof. Set IQ1,A = IQAw0B
Q1

. If wA ∈ Q1W for some Q1 ∈ Q, then by Lemma 7.7, IQ,A =
IQ1,A+IQ,A′ and taking images in StGQ we get StQA

′w0B
Q = StQAw0B

Q . Otherwise, IQ1,A = IQ1,A′

for all Q1 ∈ Q by Lemma 7.7. The kernel of the map IQ,A → StQAw0B
Q is

∑
Q1∈Q IQ1,A

by Lemma 7.8 and similarly for A′. Hence the kernels of the maps IQ,A → StQAw0B
Q and

IQ,A′ → StQA
′w0B

Q are the same, and we get the last assertion. �

Proposition 7.11. Assume that P1 and Q1 contain Q but that P1 does not contain Q1. Then
IndGQ1 1 ∩ c-IndQP 1

Q 1 = 0.

Proof. We prove that the assumptions of the proposition imply that QP 1 does not contain
any coset Q1x. We note that P1 ⊃ Q implies
(21) QP 1 = P1P 1 = N1M1N1.
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The inclusion P1P 1 ⊃ QP 1 is obvious, and the inverse inclusion (and the second equality)
follows from N1 ⊂ NQ and P1P 1 = N1P 1, QP 1 = NQP 1. If QP 1 contains a coset Q1x, we
can suppose that x = p1 with p1 ∈ P 1. We have N1 ⊂ NQ ⊂ Q1 and Q1p1 ⊂ P1P 1 implies
Q1 ⊂ P1P 1, in particular MQ1 ⊂ P1P 1. By that latter inclusion, for y ∈ MQ1 there exist
unique n1 ∈ N1,m1 ∈ M1, n1 ∈ N1 with y = n1m1n1. For any central element z of MQ1 , we
have zyz−1 = y and by uniqueness zn1z

−1 = n1, zm1z
−1 = m1, zn1z

−1 = n1. But then,
n1,m1, n1 ∈MQ1 and we deduce MQ1 = (MQ1 ∩N1)(MQ1 ∩M1)(MQ1 ∩N1); this contradicts
the fact that MQ1 ∩ P1 is a proper parabolic subgroup of MQ1 when P1 does not contain
Q1. �

Corollary 7.12. For P1 ⊃ Q, the exact sequence (17) induces an exact sequence of P 1-
modules

0→
∑

Q(Q1⊂P1

(IndGQ1 1 ∩ c-IndQP 1
Q 1)→ c-IndQP 1

Q 1→ StQP 1
Q → 0.

7.3. Case P1 ⊃ P . Assume that σ is e-minimal, hence ∆M is orthogonal to ∆ \ ∆M , and
that P1 ⊃ P in this whole section §7.3. We start the proof of the theorem 6.1 (ii).

Proposition 7.13. Assume σp−ord = {0}. When w ∈W \WQWM1,

HomN1
(C∞c (N1, R), e(σ)⊗ c-IndQwBQ 1) = 0

Note that w ∈ W \WQWM1 is equivalent to QwB 6⊂ QP 1 and that N1 acts trivially on
e(σ) because P1 ⊃ P as in (6.2.1).

Proof. As σp−ord = 0, Corollary 7.2 applied to H = N1, X = Q\QwB, V the space of σ,
implies

HomN1
(C∞c (N1, R), e(σ)⊗ c-IndQwBQ 1) = HomN1

(C∞c (N1, R), e(σ)⊗ C∞c (Q\QwB,R) = 0,

if the N1-fixator of any coset Qx contained in QwB is infinite (the infinite closed subgroups
of N1 being locally pro-p-groups do not admit an Fp-valued Haar measure). This latter
property is equivalent to Q∩wN1w

−1 infinite, because N1 is normalized by P 1 ⊃ U . Indeed,
QwB = QwU and Qx = Qwu with u ∈ U . For n1 ∈ N1, Qwun1 = Qwu if and only if un1u

−1

fixes Qw if and only if un1u
−1 ∈ w−1Qw ∩N1.

When w ∈W \WQWM1 , there exists β ∈ −ΦN1 = ΦN1
with w(β) ∈ ΦNQ by Lemma 5.13.

The group Q ∩ wN1w
−1 is infinite because it contains Uw(β). We get the proposition. �

Corollary 7.14. When σp−ord = {0}, we have

HomN1
(C∞c (N1, R), e(σ)⊗ IndGQ 1) = HomN1

(C∞c (N1, R), e(σ)⊗ c-IndQP 1
Q 1),

HomN1
(C∞c (N1, R), e(σ)⊗ StGQ) = HomN1

(C∞c (N1, R), e(σ)⊗ StQP 1
Q ).

Proof. QP 1 is open in G (a union of Q-translates of N1P 1) and there is a sequence of double
cosets QwiB, wi ∈W, i = 1, . . . , r, disjoint form each other and not contained in QP 1 such
that

Xi = QP 1 t

⊔
j≤i

QwjB
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is open in G and G = Xr. We reason by descending induction on i ≤ r. Consider the exact
sequence of free R-modules (Lemma 7.9)

0→ c-IndXi−1
Q 1→ c-IndXiQ 1→ c-IndQwiBQ 1→ 0.

Tensoring by e(σ) keeps an exact sequence, and applying HomN1
(C∞c (N1, R),−) we obtain

an isomorphism (Proposition 7.13 and the latter functor is left exact)

HomN1
(C∞c (N1, R), e(σ)⊗ c-IndXi−1

Q 1) '−→ HomN1
(C∞c (N1, R), e(σ)⊗ c-IndXiQ 1).

Composing these isomorphisms we get the first equality of the corollary. For the second
equality, we suppose that each wi has maximal length in the coset WQwi and is maximal in
{w1, . . . , wi} for the Bruhat order. This is possible because QP 1 =

⋃
w∈WQWM1

QwP 1 and
WQWM1 is a lower set for the Bruhat order hence there are no w,w′ ∈W of maximal length
in their cosets WQw,WQw

′ with w ≥ w′ and Qw ⊂ QP 1 but Qw′ 6⊂ QP 1. Now, we have the
exact sequence of free R-modules (Lemma 7.9),

0→ StXi−1
Q → StXiQ → Yi → 0

where Yi is either 0 or c-IndQwiBQ 1 by lemma 7.10. Then proceeding as above for the first
equality, we get the second equality of the corollary. �

Proposition 7.15. Assume R noetherian, σ admissible, σp−ord = 0 and P1 ⊃ Q. Then
OrdG

P 1
(e(σ)⊗ IndGQ 1) and OrdG

P 1
(e(σ)⊗StGQ) are naturally isomorphic to eM1(σ)⊗ IndM1

Q∩M1
1

and eM1(σ)⊗ StM1
Q∩M1

.

Proof. Noting that QP 1 = P1N1 because P1 ⊃ Q and N1 ⊂ NQ, the P 1-module c-IndQP 1
Q 1

identifies with
c-IndM1

Q∩M1
1⊗ C∞c (N1, R)

where N1 acts by right translation on C∞c (N1, R) and trivially on c-IndM1
Q∩M1

1, whereas M1
acts by conjugation onN1 on the second factor and right translation on the first. If σp−ord = 0,
it suffices to recall Corollary 7.14 to identify OrdG

P 1
(e(σ)⊗IndGQ 1) = OrdG

P 1
(e(σ)⊗c-IndQP 1

Q 1)
with the subspace of Z(M1)-finite vectors in

(22) HomR[N1](C
∞
c (N1, R), e(σ)⊗ IndM1

Q∩M1
1⊗ C∞c (N1, R)).

By Remark 4.18 we may even take only t-finite vectors where t = z−1 and z ∈ Z(M) contracts
strictly N (subsection 2.5). Put W = eM1(σ)⊗ IndM1

M1∩Q 1 and then W ⊗ Id for the subspace
of (22) made of the maps ϕ 7→ f ⊗ ϕ for f ∈W . If R is noetherian, W ⊗ Id is Z(M1)-locally
finite because W is an admissible R-representation of M1 (a vector w ∈W is fixed by an open
compact subgroup J of M1 and W J is a finitely generated R-module, invariant by Z(M1)).
Hence OrdG

P 1
(e(σ)⊗ c-IndGQ 1) contains W ⊗ Id. Applying Proposition 7.3 with H = N1 and

some suitable t ∈ Z(M1) we find that W ⊗ Id is the space of t-finite vectors in (22). This
provides an isomorphism

OrdG
P 1

(e(σ)⊗ IndGQ 1) ' eM1(σ)⊗ IndM1
Q∩M1

1.

Similarly, for Q ⊂ Q1 ⊂ P1, c-IndQ1P 1
Q1

1 ' IndM1
Q1∩M1

1⊗ C∞c (N1, R), as R[P 1]-modules.
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The exact sequence in Corollary 7.12 is made of free R-modules (Lemma 7.9) hence remains
exact under tensorisation by e(σ), we get a R[P 1]-isomorphism

eM1(σ)⊗ StQP 1
Q ' eM1(σ)⊗ StM1

Q∩M1
⊗ C∞c (N1, R)

As R is noetherian and σp−ord = 0, OrdG
P 1

(e(σ) ⊗ StGQ) = OrdG
P 1

(e(σ) ⊗ StQP 1
Q ) identifies

(Corollary 7.14) with the subspace of Z(M1)-finite vectors in

HomR[N1](C
∞
c (N1, R), eM1(σ)⊗ StM1

Q∩M1
⊗ C∞c (N1, R)),

which is made out of the maps ϕ 7→ f ⊗ ϕ for f ∈ StM1
Q∩M1

by the same reasoning as above,
thus providing an isomorphism

OrdG
P 1

(e(σ)⊗ StGQ) ' eM1(σ)⊗ StM1
Q∩M1

.

This ends the proof of the proposition. �

Proposition 7.16. When P1 6⊃ Q and σp−ord = {0}, then

HomN1
(C∞c (N1, R), e(σ)⊗ IndGQ 1) = HomN1

(C∞c (N1, R), e(σ)⊗ StGQ) = 0.

Proof. As allowed by Corollary 7.14, we work with

HomN1
(C∞c (N1, R), e(σ)⊗ c-IndQP 1

Q 1), HomN1
(C∞c (N1, R), e(σ)⊗ StQP 1

Q ).

We filter QP 1 by double cosets QwB, w ∈ WM1 , as above. We simply need the following
lemma. �

Lemma 7.17. When P1 6⊃ Q, w ∈WM1 and σp−ord = {0}, then

HomR[N1](C
∞
c (N1, R), e(σ)⊗ c-IndQwBQ 1) = 0.

Proof. As in Proposition 7.13, assuming σp−ord = 0 that follows from Corollary 7.2 applied
to H = N1 and X = Q\QwB, V = e(σ) if Q ∩ wN1w

−1 is not trivial. When w ∈ WM1 , we
have N1 = wN1w

−1 and the hypothesis that P1 does not contains Q implies that there is
α ∈ ∆Q not contained in ∆P1 . The group Q ∩ wN1w

−1 = Q ∩ N1 is not trivial because it
contains U−α. We get the lemma. �

Corollary 7.18. Assume R noetherian, σ admissible, σp−ord = {0}, and P1 6⊃ Q. Then
OrdG

P 1
(e(σ)⊗ IndGQ 1) = OrdG

P 1
(e(σ)⊗ StGQ) = 0.

7.4. Case 〈P, P1〉 = G. Assume that σ is e-minimal and that 〈P, P1〉 = G.

Proposition 7.19. Assume R noetherian, σ admissible. For XG
Q equal to IndGQ 1 or StGQ, we

have
OrdG

P 1
(e(σ)⊗XG

Q ) ' eM1(OrdM
M∩P 1

(σ))⊗XM1
M1∩Q.

Proof. We have P1 ⊃ Pσ, or equivalently M1 ⊃ Mσ and N1 ⊂ Nσ. As N1 ⊂ M ′, N1 acts
trivially on IndGQ 1 (hence on its quotient StGQ) because G = M ′Mσ acts on IndGQ 1 trivially
on M ′ (∆M and ∆σ are orthogonal of union ∆). As M1 ⊃ Mσ, Z(M1) commutes with Mσ

and acts trivially on StGQ. We can apply Proposition 7.4 to H = N1, V = e(σ),W = XG
Q and

t ∈ Z(M1) strictly contracting N1 (subsection 2.5), to get isomorphisms
OrdG

P 1
(e(σ)⊗XG

Q ) ' OrdG
P 1

(e(σ))⊗XG
Q ,
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as representations of M1. As M1 ⊃ Mσ, the restriction to M1 of XG
Q is XM1

Q∩M1
. To

prove the desired result, we need to identify OrdG
P 1

(e(σ)) and eM1(OrdM
M∩P 1

(σ)). Put Y =
HomR[N1](C

∞
c (N1, R), V ). Then OrdG

P 1
(e(σ)) = Y Z(M1)−f and OrdM

M∩P 1
(σ) = Y Z(M1∩M)−f .

As Z(M1 ∩M) ⊃ Z(M1), a Z(M1 ∩M)-finite vector is also Z(M1)-finite. On the other hand,
Z(M1 ∩M) ∩M ′σ acts trivially on N1 and V hence on Y . The maximal compact subgroup
Z(M1∩M)0 of Z(M1∩M) acts smoothly on Y , hence all vectors in Y are Z(M1∩M)0-finite.

Lemma 7.20. Z(M1)Z(M1 ∩M)0(Z(M1 ∩M) ∩M ′σ) has finite index in Z(M1 ∩M).

Granted that lemma, the inclusion Y Z(M1)−f ⊂ Y Z(M1∩M)−f which is obviously M1 ∩M -
equivariant is an isomorphism. As Y Z(M1)−f is a representation of M1 it is eM1(Y Z(M1∩M)−f ),
which is what we want to prove.

We have Z(M1∩M)0 = Z(M1∩M)∩T 0. It suffices to prove that the image of Z(M1)(Z(M1∩
M) ∩M ′σ) in X∗(T) via the map v : Z → X∗(T )⊗Z Q defined in §2.1, has finite index in the
image of Z(M1∩M). The orthogonal of Z(M1∩M) in X∗(T)⊗ZQ is contained in the orthog-
onal of Z(M1)(Z(M1∩M)∩M ′σ). It suffices to show the inverse inclusion. The orthogonal of
Z(M1) in X∗(T)⊗ZQ is generated by ∆M1 . The image by v of Z(M1∩M)∩M ′σ in X∗(T) con-
taining the coroots of ∆σ, its orthogonal is contained in ∆M . We see that the orthogonal for
Z(M1)(Z(M1∩M)∩M ′σ) in X∗(T)⊗ZQ is contained in ∆M1 ∩∆M . As ∆M1∩M = ∆M1 ∩∆M

is the orthogonal of Z(M1 ∩M) in X∗(T)⊗Z Q, the lemma is proved. �

This ends the proof of Proposition 7.19.

7.5. General case. 1) First we assume that σ is e-minimal. We prove Theorem 6.1 (ii) in
stages, introducing the standard parabolic subgroup P2 = 〈P1, P 〉 and taking successively
OrdG

P 2
and OrdM2

M2∩P 1
using the transitivity of OrdG

P 1
. For XG

Q equal to IndGQ 1 or StGQ, we
have

OrdG
P 1

(e(σ)⊗XG
Q ) = OrdM2

M2∩P 1
(OrdG

P 2
(e(σ)⊗XG

Q ))

=
{

OrdM2
M2∩P 1

(eM2(σ)⊗XM2
Q∩M2

) if P2 ⊃ Q
0 if P2 6⊃ Q

=
{
eM1(OrdM

M∩P 1
σ)⊗XM1

Q∩M1
if P2 ⊃ Q

0 if P2 6⊃ Q.

The second equality follows from Proposition 7.15 for the first case and Corollary 7.18 for
the second case, and the third one from Proposition 7.19. This ends the proof of Theorem
6.1, Part (ii) when ∆M is orthogonal to ∆ \∆M .

2) General case. As at the end of §6.2, we introduce Pmin = MminNmin and an e-minimal
representation σmin of Mmin. The case 1) gives

OrdG
P 1

(e(σmin)⊗XG
Q ) =

{
eM1(OrdMmin

Mmin∩P 1
σmin)⊗XM1

Q∩M1
if〈P1, Pmin〉 ⊃ Q,

0 if〈P1, Pmin〉 6⊃ Q.
(23)

We have e(σ) = e(σmin). So we can suppress min on the left hand side. We show that we
can also suppress min on the right hand side.

If 〈P1, P 〉 6⊃ Q then 〈P1, Pmin〉 6⊃ Q as Pmin ⊂ P , hence OrdG
P 1

(e(σ)⊗XG
Q ) = 0.
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If 〈P1, P 〉 ⊃ Q but 〈P1, Pmin〉 6⊃ Q, then OrdG
P 1

(e(σ) ⊗ XG
Q ) = 0 and we now prove

OrdM
M∩P 1

σ = 0. Our hypothesis implies that there exists a root α ∈ ∆P which does not
belong to ∆1 ∪∆min. The root subgroup U−α is contained in M ∩N1 and acts trivially on
σ. Reasoning as in the proof of Proposition 7.13, HomM∩N1

(C∞c (M ∩ N1, R), σ) = 0 hence
OrdM

M∩P 1
σ = 0.

If 〈P1, Pmin〉 ⊃ Q then J ⊂ ∆1 = ∆P1 where J = ∆M \∆min. The extensions to M1 of

OrdM
M∩P 1

σ = (HomR[M∩N1](C
∞
c (M ∩N1, R), σ))Z(M∩M1)−f

(see (4)) and of OrdMmin
Mmin∩P 1

σmin are equal as we show now:
The group M ∩N1 is generated by the root subgroups Uα for α in Φ−M not in Φ1. Noting

that ΦM \ Φmin = ΦJ is disjoint from Φmin and contained in Φ1 = ΦM1 , a root α in Φ−M not
in Φ1 belongs to Φmin; hence M ∩N1 = Mmin ∩N1.

The group Z(M ∩M1) is contained in Z(Mmin ∩M1). Moreover T ∩M ′J acts trivially on σ
and on M ∩N1 and, reasoning as in 7.20, Z(M ∩M1)(Z(Mmin ∩M1) ∩M ′J) has finite index
in Z(Mmin ∩ M1). Consequently taking Z(Mmin ∩ M1)-finite vectors or Z(M ∩ M1)-finite
vectors in HomR[M∩N1](C

∞
c (M ∩N1, R), σ) gives the same answer. This finishes the proof of

Theorem 6.1 (ii) .
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