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MODULO p REPRESENTATIONS OF REDUCTIVE p-ADIC GROUPS:
FUNCTORIAL PROPERTIES

N. ABE, G. HENNIART, AND M.-F. VIGNERAS

ABSTRACT. Let F' be a local field with residue characteristic p, let C' be an algebraically
closed field of characteristic p, and let G be a connected reductive F-group. In a previous
paper, Florian Herzig and the authors classified irreducible admissible C-representations
of G = G(F) in terms of supercuspidal representations of Levi subgroups of G. Here,
for a parabolic subgroup P of G with Levi subgroup M and an irreducible admissible C-
representation 7 of M, we determine the lattice of subrepresentations of Indg 7 and we show
that Ind$ x7 is irreducible for a general unramified character x of M. In the reverse direction,
we compute the image by the two adjoints of Ind$ of an irreducible admissible representation
7 of G. On the way, we prove that the right adjoint of Ind$ respects admissibility, hence
coincides with Emerton’s ordinary part functor Ord% on admissible representations.
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1. INTRODUCTION

1.1. Classification results of [AHHV17]|. The present paper is a sequel to [AHHV17]. The
overall setting is the same: p is a prime number, F' a local field with finite residue field of
characteristic p, G a connected reductive F-group and G = G(F) is seen as a topological
locally pro-p group. We fix an algebraically closed field C' of characteristic p and we study
the smooth representations of G over C-vector spaces - we write Mod¢y¥ (G) for the category
they form.

Let P be a parabolic subgroup of G with a Levi decomposition P = MN and o a su-
percuspidal C-representation of M, in the sense that it is irreducible, admissible, and does
not appear as a subquotient of a representation of M obtained by parabolic induction from
an irreducible, admissible C-representation of a proper Levi sugroup of M. Then there is a
maximal parabolic subgroup P(o) of G containing P to which o inflated to P extends; we
write e(o) for that extension. For each parabolic subgroup @ of G with P C Q C P(0), we
form

where Stg(a) = Indg(a) 1/> Indg,(a) 1, the sum being over parabolic subgroups @’ of G with
QCQ CP).

The classification result of [AHHV17] is that I (P, 0, Q) is irreducible admissible, and that
conversely any irreducible admissible C-representation of G has the form Ig(P, 0, Q), where
P is determined up to conjugation, and, once P is fixed, ) is determined and so is the
isomorphism class of o.

1.2. Main results. The classification raises natural questions: if GG is a Levi subgroup of
a parabolic subgroup R in a larger connected reductive group H, what is the structure of
Ind# 7 when 7 is a irreducible admissible C-representation of G?

We show that Indg 7w has finite length and multiplicity 1; we determine its irreducible
constituents and the lattice of its subrepresentations: see section 3 for precise results and
proofs. As an application, we answer a question of Jean-Francois Dat, in showing that Indg X7
is irreducible when x is a general unramified character of G.

If P, is a parabolic subgroup of G with Levi decomposition P, = M;Ni, then Indg1 :
ModgF (M) — ModF (G) has a left adjoint L%, which is the usual Jacquet functor (—)y,

taking Nj-coinvariants, and also a right adjoint functor Rgl [Vigl3]. It is natural to apply
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L% and Rgl to m. They turn out to be irreducible or 0, in sharp contrast to the case of
complex representations of G. To state precise results, we fix a minimal parabolic subgroup
B of G and a Levi decomposition B = ZU of B, and we consider only parabolic subgroups
containing B and their Levi components containing Z. We simply say “let P = M N be a
standard parabolic subgroup of G” to mean that P contains B and M is the Levi component
of P containing Z, N being the unipotent radical of P.

Theorem 1.1. Let P = MN and P, = MiN; be standard parabolic subgroups of G, let
o be a supercuspidal C-representation of M and let QQ be a parabolic subgroup of G with
PcCQcCP(o).
(i) Lgllg(P, 0,Q) is isomorphic to Ipn, (PN My,o,Q N M) if PP D P and the group
generated by Py UQ contains P(o), and is O otherwise.
(ii) Rgll(;(P, 0, Q) is isomorphic to Ing, (PNMy,0,QNM) if P D Q, and is 0 otherwise.

See §6 and §7 for the proofs, with consequences already drawn in §6.1: in particular, we
prove that an irreducible admissible C-representation 7w of G is supercuspidal exactly when
LIGDTF and RIGDW are 0 for any proper parabolic subgroup P of G.

As the construction of Ig(P,0,Q) involves parabolic induction, we are naturally led to

investigate, as an intermediate step, the composite functors L]GD1 Indg and R]Gg1 Indg7 for stan-
dard parabolic subgroups P = M N and P, = M{N; of G. In §5, we prove:

Theorem 1.2. The functor Lgl Ind% : Mod (M) — Mod¥ (M) is isomorphic to the functor
Ind%ﬁMl LY s and the functor Rgl Ind% : Mod® (M) — Mod¥ (M) is isomorphic to the

M,y M
Junctor Indpry, Bp -

We actually describe explicitly the functorial isomorphism for Lgl IndIGD whereas the case

of Rgl Indg is obtained by adjunction properties. The fact that RIGDl has no direct explicit
description has consequence for the proof of Theorem 1.1 (ii). We first prove:

Theorem 1.3. If m is an admissible C-representation of G, then R}% is an admissible C-
representation of M.

It follows that on admissible C-representations of G, Rg coincides with Emerton’s ordi-
nary part functor Ord% (as extended to the case of C-representations in [Vigl3]). To prove

Theorem 1.1 (ii) we in fact use Ordg1 in place of R]Ggl. Note that, if the characteristic of F'

is 0 and m is an admissible C-representation of G, then ng is admissible. But in contrast,
when F' has characteristic p, we produce in §4 an example, for G = SL(2, F'), of an admissible
C-representation 7 of G such that L& is not admissible.

1.3. Outline of the proof. After the initial section §2 devoted to notation and preliminaries,
our paper mainly follows the layout above. However admissibility questions are explored in
64, where Theorem 1.3 is established: as mentioned above, the result is used in the proof
Theorem 1.1 (ii).

Without striving for the utmost generality, we have taken care not to use unnecessary
assumptions. In particular, from section §4 on, we consider a general commutative ring R as
coefficient ring, imposing conditions on R only when useful. The reason is that for arithmetic
applications it is important to consider the case where R is artinian and p is nilpotent or
invertible in R. Only when we use the classification do we assume R = C'. Our results are
valid for R noetherian and p nilpotent in R in sections §4 to §7. For example, when R is



4 N. ABE, G. HENNIART, AND M.-F. VIGNERAS

noetherian and p is nilpotent in R, Theorem 1.2 is valid (Theorem 5.5 and Corollary 5.6) and
a version to Theorem 1.1 is obtained in Theorem 6.1 and Corollary 6.2. Likewise Theorem
1.3 is valid when R is noetherian and p is nilpotent in R (Theorem 4.11).

In a companion paper [AHV], the authors will investigate the effect of taking invariants
under a pro-p Iwahori subgroup in the modules I (P, 0, Q) of 1.1.

Acknowledgment. The authors thank the referee for a thorough reading and helpful com-
ments. They also thank Julien Hauseux pointing out an error in Proposition 4.22.

2. NOTATION, USEFUL FACTS AND PRELIMINARIES

2.1. The group G and its standard parabolic subgroups P = M N. In all that follows,
p is a prime number, F' is a local field with finite residue field k of characteristic p; as usual,
we write Op for the ring of integers of F', P for its maximal ideal and valr the absolute value
of F' normalised by valp(F*) = Z. We denote an algebraic group over F' by a bold letter, like
H, and use the same ordinary letter for the group of F-points, H = H(F'). We fix a connected
reductive F-group G. We fix a maximal F-split subtorus T and write Z for its G-centralizer;
we also fix a minimal parabolic subgroup B of G with Levi component Z, so that B = ZU
where U is the unipotent radical of B. Let X*(T) be the group of F-rational characters of
T and ® the subset of roots of T in the Lie algebra of G. Then B determines a subset ®* of
positive roots - the roots of T in the Lie algebra of U- and a subset of simple roots A. The
G-normalizer Ng of T acts on X*(T) and through that action, Ng/Z identifies with the
Weyl group of the root system ®. Set N := Ng(F) and note that Ng/Z ~ N /Z; we write
W for N'/Z.

A standard parabolic subgroup of G is a parabolic F-subgroup containing B. Such a
parabolic subgroup P has a unique Levi subgroup M containing Z, so that P = MN where
N is the unipotent radical of P - we also call M standard. By a common abuse of language
to describe the preceding situation, we simply say “let P = MN be a standard parabolic
subgroup of G”; we sometimes write Np for N and Mp for M. The parabolic subgroup of G
opposite to P will be written P and its unipotent radical N, so that P = M N, but beware
that P is not standard ! We write W, for the Weyl group M NN /Z.

If P = MN is a standard parabolic subgroup of G, then M N B is a minimal parabolic
subgroup of M. If ®,; denotes the set of roots of T in the Lie algebra of M, with respect
to M N B we have CIJTW =&, N®T and Ay = Py NA. We also write Ap for Ay as P
and M determine each other, P = MU. Thus we obtain a bijection P — Ap from standard
parabolic subgroups of G to subsets of A, with B corresponds to # and G to A. If I is a subset
of A, we sometimes denote by P; = M;Ny the corresponding standard parabolic subgroup of
G. If I = {a} is a singleton, we write P, = M,N,. We note a few useful properties. If P;
is another standard parabolic subgroup of G, then P C P if and only if Ap C Ap,; we have
Apap, = Ap N Ap, and the parabolic subgroup corresponding to Ap U Ap, is the subgroup
(P, P1) of G generated by P and P;. The standard parabolic subgroup of M associated to
ApNAp, is MOP = (MNM;)(MNN;) [Car85, Proposition 2.8.9]. It is convenient to write
G’ for the subgroup of G generated by the unipotent radicals of the parabolic subgroups; it
is also the normal subgroup of G generated by U, and we have G = ZG'.

For each o € X*(T), the homomorphism = — valp(a(z)) : T — Z extends uniquely to
a homomorphism Z — Q that we denote in the same way. This defines a homomorphism
Z % X,(T) ® Q such that a(v(z)) = valp(a(z)) for z € Z,a € X*(T).
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An interesting situation occurs when A = I11.J is the union of two orthogonal subsets I and
J. In that case, G’ = M;M/;, M} and M/, commute with each other, and their intersection is
finite and central in G [AHHV17, I1.7 Remark 5].

2.2. Representations of (G. As apparent in the abstract and the introduction, our main
interest lies in smooth C-representations of G, where C' is an algebraically closed field
of characteristic p, which we fix throughout. However many of our arguments do not
necessitate so strong a hypothesis on coeflicients, so we let R be a fixed commutative ring.

Occasionally we shall consider an R[A]-module V' where A is a monoid. An element v of V
is called A-finite if its translates under A generate a finitely generated submodule of V. If
R is noetherian the A-finite elements in V' generate a submodule of V| that we write VA=,
When A is generated by an element ¢, we write V¢~/ instead of VA7,

We speak indifferently of R[H]-modules and of R-representations of H for a locally profinite
group H. An R[H]-module V is called smooth if every vector in V' has an open stabilizer
in H. The smooth R-representations of H and R[H]-linear maps form an abelian category
Mod% (H).

An R-representation V of a locally profinite group H is admissible if it is smooth and
for any open compact subgroup J of H, the R-submodule V* of J-fixed vectors is finitely
generated. When R is noetherian, it is clear that it suffices to check this when J is small
enough. When R is noetherian we write Mod%(H) for the subcategory of Mod% (H) made
out of the admissible R-representations of H. We explore admissibility further in section 4.

If P= MN is a standard parabolic subgroup of GG, the parabolic induction functor Ind]Gg :
Mod$ (M) — Mod¥(G) sends W € Mod%¥ (M) to the smooth R[G]-module Ind% W made
out of functions f : G — W satisfying f(mngk) = mf(g) for m € M,n € N,g € G and k
in some open subgroup Ky of G - the action of G is via right translation. The functor Inleg
has a left adjoint LE : Mod% (G) — Mod¥ (M) which sends V in Mod% (G) to the module of
N-coinvariants Viy of V, which is naturally a smooth R[M]-module. The functor Ind% has a
right adjoint RE : Mod¥ (G) — Mod® (M) [Vigl3, Proposition 4.2].

When R is a field, a smooth R-representation of GG is called irreducible if it is a simple
R[G]-module. An R-representation of G is called supercuspidal it is irreducible, admissible,
and does not appear as a subquotient of a representation of M obtained by parabolic induction
from an irreducible, admissible representation of a proper Levi subgroup of M.

2.3. On compact induction. If X is a locally profinite space with a countable basis of open
sets, and V' is an R-module, we write C°(X, V') for the space of compactly supported locally
constant functions X — V. One verifies that the natural map C°(X,R) ®rV — C*(X,V)
is an isomorphism.

Lemma 2.1. The R-module C°(X, R) is free. When X is compact, the submodule of constant
functions is a direct factor of C°(X, R).

Proof. The proof of [Ly15, Appendix A.1] when X is compact is easily adapted to C2°(X, V)
when X is not compact. O

Ezample 2.2. C°(X, R)H is a direct factor of C2°(X, R) when X is compact with a continuous
action of a profinite group H with finitely many orbits (apply the lemma to the orbits which
are open).

Let H be a locally profinite group and J a closed subgroup of H.
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Lemma 2.3. The quotient map H — J\H has a continuous section.

Proof. When H is profinite, this is [RZ10, Proposition 2.2.2]. In general, let K be a compact
open subgroup of H. Cover H with disjoint double cosets JgK. It is enough to find, for any
given g, a continuous section of the induced map JgK SN \JgK. The map k — gk induces
a continous bijective map (K Ng~'Jg)\K & J\JgK. Because J is closed in H, both spaces
are Hausdorff and (K Ng~1Jg)\K is compact since K is, so p is a homeomorphism. If o is a
continuous section of the quotient map K — (K Ng~1Jg)\K then x + go(p~—!(x)) gives the
desired section of 7. O

Let o be a continuous section of H — J\H, and let V' be a smooth R-representation of J.
Recall that C—IndIf V' is the space of functions f : H — V, left equivariant by J, of compact
support in J\H, and smooth for H acting by right translation. Immediately:

Lemma 2.4. The map f +— foo:cIndf V — C®(J\H,V) is an R-module isomorphism.

As a consequence we get a useful induction/restriction property: let W be a smooth R-
representation of H.

Lemma 2.5. The map f @w — (h+ f(h) @ hw) : (c-Ind¥ V)@ W — c-Ind¥ (V@ W) is an
R[H]-isomorphism.

Proof. The map is linear and H-equivariant. Lemma 2.4 implies that it is bijective. O

Remark 2.6. Arens’ theorem says that if X is a homogeneous space for H and H/K is
countable for a compact open subgroup K of H, then for x € X the orbit map h — hzx
induces a homeomorphism H/H, ~ X. In particular, for two closed subgroups I, .J of H such
that H = I.J, we get a homeomorphism I/(I N.J) ~ H/J. Hence (c-Ind V)|; ~ c-Ind}, V
for any smooth R-representation V of J.

2.4. Ig(P,0,Q) and minimality. We recall from [AHHV17] the construction of I¢(P, 0, @),
our main object of study.

Proposition 2.7. Let P = MN C @Q be two standard parabolic subgroups of G and o an
R-representation of M. Then the following are equivalent:

(i) o extends to a representation of Q where N acts trivially.
ii) For each a € Ag \ Ap, Z N M/, acts trivially on o.
Q o

That comes from [AHHV17, I1.7 Proposition] when R = C, but the result is valid for any
commutative ring R [AHHV17, I1.7 first remark 2]. Besides, the extension of o to @, when
the conditions are fulfilled, is unique; we write it eg(o); it is trivial on Ng and we view it
equally as a representation of Mg. The R-representation eg(c) of @ or Mg is smooth, or
admissible, or irreducible (when R is a field) if and only if o is. Let P, = M,N, be the
standard parabolic subgroup of G with Ap = A, where

(1) A, ={a e A\ Ap | ZN M, acts trivially on o}.

There is a largest parabolic subgroup P(c) containing P to which o extends: Ap) =
Ap UA,. Clearly when P C Q C P(0), the restriction to @ of ep()(0) is eq(o). If
there is no risk of ambiguity, we write

e(0) = ep)(0).
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Definition 2.8. An R[G]-triple is a triple (P, o, Q) made out of a standard parabolic sub-
group P = MN of G, a smooth R-representation of M, and a parabolic subgroup @ of G
with P C @ C P(0). To an R[G]-triple (P, 0, Q) is associated a smooth R-representation of
G:

I6(P,0,Q) = Ind$, (e(0) ® St5)

(

where Stg(g) is the quotient of Indg o) 1, 1 denoting the trivial R-representation of ), by the

sum of its subrepresentations Indg,(g) 1, the sum being over the set of parabolic subgroups @’

of G with Q € Q' C P(o).

Note that I(P, 0, Q) is naturally isomorphic to the quotient of Indg(eQ(a)) by the sum
of its subrepresentations Indg,(eQ/(a)) for @ C Q' C P(0) by Lemma 2.5.
Q/Nq

We also remark that we have the identifications Indg o~ Indg//xg o and St% ~ St P/Ng
where P C @) are parabolic subgroups, N the unipotent radical of () and o an representation
of P with the trivial action of Np (hence a representation of the Levi quotient of P). The
subgroup P/Ng of Q/Ng is a parabolic subgroup.

It might happen that o itself has the form ep(o;) for some standard parabolic subgroup
P, = M N contained in P and some R-representation o1 of M. In that case, P(o1) = P(0)
and e(o) = e(o1). We say that o is e-minimal if 0 = ep (o) implies P, = P01 = 0.

Lemma 2.9. Let P = MN be a standard parabolic subgroup of G and let ¢ be an R-
representation of M. There exists a unique standard parabolic subgroup Puins = Mmin,o Nmin,o
of G and a unique e-minimal representation of omin Of Mmin,ec with 0 = ep(omin). Moreover

P(0) = P(omin) and e(o) = e(omin)-
Proof. We have
(2) Ap,

min,o

={a € Ap| ZN M, does not act trivially on o},

Omin is the restriction of o to Mpin,s, and

(3) Ay ={a€A| ZN M. acts trivially on o}.

Omin

0

Lemma 2.10. Let P = MN be a standard parabolic subgroup of G and o an e-minimal
R-representation of M. Then Ap and A, are orthogonal.

That comes from [AHHV17, I1.7 Corollary 2]. That corollary of loc. cit. also shows that
when R is a field and o is supercuspidal, then o is e-minimal. Lemma 2.10 shows that Ap,_
and A, . are orthogonal.

Note that when Ap and A, are orthogonal of union A = ApUA,, then G = P(c) = MM,
and e(o) is the R-representation of G simply obtained by extending o trivially on M.

Lemma 2.11. Let (P,0,Q) be an R[G]-triple. Then (Puin,o, Omin, @) s an R[G]-triple and
Ig(P, g, Q) = IG(Pmin,ow Omin» Q)

Proof. We already saw that P(0) = P(omin) and e(o) = e(omin)- O
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2.5. Hecke algebras. We fix a special parahoric subgroup K of G fixing a special vertex
zo in the apartment A associated to T in the Bruhat-Tits building of the adjoint group of
G. If V is an irreducible smooth C-representation of K, we have the compactly induced
representation c—Ind% V of G, its endomorphism algebra Hg (K, V') and the centre Z5(KC, V)
of Ha(KC, V). For a standard parabolic subgroup P = M N of G, the group M NK is a special
parahoric subgroup of M and Vyni is an irreducible smooth C-representation of M N /C. For
W € Mod (M), there is an injective algebra homomorphism

SEHG(K, V) = Hyu (M N K, Viag)

for which the natural isomorphism Homg (c-Ind% V, Ind% W) ~ Hom s (c-Ind¥ - Vivare, W)
is SG-equivariant [HV15], [HV12]. Moreover. 8§ (Z¢(K,V)) C Zy(M N K, Vi)

Let Z(M) denote the maximal split central subtorus of M; it is equal to the group of
F-points of the connected component in T of ,ca,, Kera. Let z € Z(M). We say that
z strictly contracts an open compact subgroup Ny of N if the sequence (szoz*k)keN is
strictly decreasing of intersection {1}. We say that z strictly contracts N if there exists an
open compact subgroup Ny C N such that z strictly contracts Ny. Choose z € Z(M) which
strictly contracts N. Let 7 € Zy/(M N K, Vnnik) be a non-zero element which supports on
(MNK)z(MNK). (Such an element is unique up to constant multiplication.) Then 7 € Im S§
and the algebra H (KN M, Vnak) (resp. 2y (M NK, Vank)) is the localization of Hea(KC, V)
(resp. Zg(K,V)) at .

3. LATTICE OF SUBREPRESENTATIONS OF Ind% ¢, 0 IRREDUCIBLE ADMISSIBLE

3.1. Result. This section is a direct complement to [AHHV17]. Our coefficient ring is R = C.
We are given a standard parabolic subgroup P, = M;N; of G and an irreducible admissible C-
representation o1 of My. Our goal is to describe the lattice of subrepresentations of Indg1 o1.
We shall see that Indg1 o1 has finite length and is multiplicity free, meaning that its irreducible
constituents occur with multiplicity 1. We recall the main result of [AHHV17] :

Theorem 3.1 (Classification Theorem). (A) Let P = M N be a standard parabolic subgroup
of G and o a supercuspidal C-representation of M. Then Ind%o € ModX(G) has finite
length and is multiplicity free of irreducible constituents the representations Ig(P,0,Q) for
PCQC P(o), and all I(P,0,Q) are admissible.

(B) Let 7 be an irreducible admissible C-representation of G. Then, there is a C|G]- triple
(P,0,Q) with o supercuspidal, such that 7 is isomorphic to Ig(P,0,Q) and 7 determines P, Q
and the isomorphism class of o.

By the classification theorem, there is a standard parabolic subgroup P = M N of G and a
supercuspidal C-representation o of M such that o1 occurs in Ind%}] a1, ©- More precisely, if
P(0) is the largest standard parabolic subgroup of G to which o extends, then by Proposition
2.7, P(o) N M is the largest standard parabolic subgroup of M; to which o extends and

o1~ Iy, (PO My, 0,Q) = Ind}l ) (ep(oyran (0) © Stg @ ™)

for some parabolic subgroup @ of M; with (PN M;) C Q C (P(o) N Mj). By transitivity of
the parabolic induction,

Ind%, o7 ~ Indg(a)(e(a) ® Indﬁggmpl Stg(o)li),
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and we need to analyse this representation. Our analysis is based on [Herll, §10]. We
recall the structure of the lattice of subrepresentations of a finite length multiplicity free
representation X. Let J be the set of its irreducible constituents. For j € J, there is a unique
subrepresentation X; of X with cosocle j - it is the smallest subrepresentation of X with j as
a quotient. Put the order relation < on J, where 7 < j if 7 is a constituent of X;. Then the
lattice of subrepresentations of X is isomorphic to the lattice of lower sets in (J, <) - recall
that such a lower set is a subset J’ of J such that if j; € J,jo € J' and j; < js then j; € J'.
A subrepresentation of X is sent to the lower set made out of its irreducible constituents,
and a lower set J' of J is sent to the sum of the subrepresentations X; for j € J’. We have
X; = j if and only if j is minimal in (J, <). If the cosocle of X is irreducible, then (J, <) has
the unique maximal element and X; = X if and only if j is maximal in (J, <). The socle of
X is the direct sum of the minimal j € (J, <) and the cosocle of X is the direct sum of the
maximal j € (J, <).

In the sequel J will often be identified with P(I) for some subset I of A, both equipped
with the order relation reverse to the inclusion. Thus we rather talk of upper sets in P(I)
(for the inclusion). In that case the socle I of X and the cosocle () of X are both irreducible.

Theorem 3.2. With the above notations, Indg1 o1 has finite length and is multiplicity free,
of irreducible constituents the Ig(P,o,Q") where Q' is a parabolic subgroup of G satisfying
P C @ C P(o) and Ap, N Ag = Aq. Sending Ig(P,0,Q") to Ag N (A\ Ap,) gives an
isomorphism of the lattice of subrepresentations of Indgl o1 onto the lattice of upper sets in

P(AP(U) N (A \ Apl)).

The first assertion is a consequence of the classification theorem 3.1 since Indg1 o1 is a
subrepresentation of Ind% . For the rest of the proof, given in §3.2, we proceed along the
classification, treating cases of increasing generality. As an immediate consequence of the
theorem, we get an irreducibility criterion.

Corollary 3.3. The representation Indg1 o1 is irreducible if and only if Py contains P(o).

Corollary 3.4. The socle and the cosocle of IndIG;1 o1 are both irreducible.
This is very different from the complex case [LM16].

3.2. Proof. We proceed now to the proof of Theorem 3.2. The very first and basic case is
when P, = B and o7 is the trivial representation 1 of Z. The irreducible constituents of
Indg 1 are the Stg for the different standard parabolic subgroups @ of G, each occuring with
multiplicity 1.

Proposition 3.5. Let Q be a standard parabolic subgroup of G.

(i) The submodule of Ind$ 1 with cosocle Stg is Indg 1.

(ii) Sending Stg to Ag gives an isomorphism of the lattice of subrepresentations of Indg 1
onto the lattice of upper sets in P(A).

Proof. By the properties recalled before Theorem 3.2, (i) implies (ii). For (i) the proof is
given in [Herll, §10] when G is split, using results of Grosse-Klonne [GK14]. The general
case is due to T. Ly [Lyl5, beginning of §9]. O

We have variants of Proposition 3.5. If @) is a standard parabolic subgroup of G, the
subrepresentations of Indg 1 are the subrepresentations of Indg 1 contained in Indg 1. So the
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lattice of subrepresentations of Indg 1 is isomorphic of the sublattice of upper sets in P(A)
consisting of subsets containing Ag; intersecting with A\ Ag gives an isomorphism onto the
lattice of upper sets in P(A \ Ag). More generally,

Proposition 3.6. Let P, () be two standard parabolic subgroups of G with () C P.

(i) The irreducible constituents of Ind% Stg are the Stg, where Q' NP = Q, and each
occurs with multiplicity 1.
(ii) Sending Stgl to Ag: N (A\ Ap) gives an isomorphism of the lattice of subrepresenta-

tions of IndIGD Stg onto the lattice of upper sets in P(A\ Ap).

Proof. For (i), note that Ind% Stg is the quotient of Indg 1 by the sum of its subrepresentations
Indg, 1 for Q" where @ C Q' C P and (i) is the content of [Lyl5, Corollary 9.2]. The order

Stg/ < Stg,, on the irreducible constituents corresponds (as it does in Ind% 1) to Agr C Agr.
Again (ii) follows for (i). O

Remark 3.7. Note that P(A\ Ap) does not depend on (. The unique irreducible quotient
of Ind]Gg Stg is Stg, and its unique subrepresentation is Stg, where A = Ag U (A\ Ap).

The next case where P, = P,01 = o is a consequence of :

Proposition 3.8. Let P = M N be a standard parabolic subgroup of G and o a supercuspidal
C-representation of M. Then the map X — IndIGD(J)(e(U) ® X)) gives an isomorphism of the
)

lattice of subrepresentations of Indllz((7 1 onto the lattice of subrepresentations of IndIGp .

It has the immediate consequence:

Corollary 3.9. Sending Ig(P,0,Q) to Ag \ Ap gives an isomorphism of the lattice of sub-
representations of IndIGDU onto the lattice of upper sets in P(Ap() \ Ap).

The proposition 3.8 is proved in two steps, inducing first to P(o) and then to G. In the
first step we may as well assume that P(o) = G:

Lemma 3.10. Let P = M N be a standard parabolic subgroup of G and o a supercuspidal C-
representation of M such that P(o) = G. Then the map X — e(0)® X gives an isomorphism
of the lattice of subrepresentations of Indg 1 onto the lattice of subrepresentations of e(o) ®
Ind$1 ~ Ind$o.

Proof. By the classification theorem 3.1, the map X — e(0)® X gives a bijection between the
irreducible constituents of Ind% 1 and those of e(o) ® Ind% 1. It is therefore enough to show
that, for a parabolic subgroup Q of G containing P, the subrepresentation of e(¢) ® Ind% 1
with cosocle e(0) ® Stg ise(o)® Indg 1. Certainly, e(0) ® Stg is a quotient of e(0) ® Indg 1.
Assume that e(0) ® Stg is a quotient of e(0) ® Indgl 1 for some parabolic subgroup Q' of G
containing P; we want to conclude that Q' = Q. Recall from §2.2 that o being supercuspidal,
Ap and A, are orthogonal . Also, e(o) is obtained by extending o from M to G = MM,
trivially on M. Upon restriction to M, therefore, e(c) ® Indg 1 is a direct sum of copies of
Indg 1 whereas e(0) ® Stg, is a direct sum of copies of Stg,. Thus there is a non-zero M-
equivariant map Indg 1— Stg,. Let M denote the isotropic part of the simply connected
covering of the derived group M,. Then M! is the image of M® in M, [AHHV17, 11.4

Proposition]; moreover, as a representation of MS, Indg 1 is simply Indg{é’s 1 where Q¥ is the
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parabolic subgroup of M$ correspondlng to Ag N A,, whereas StQ, is St Tt follows that

Q/IS
St ,‘i’z is a quotient of Tnd™ o 1 thus Ag N Ay = Agr N A, which implies Ag = Ag and
Q= Q’ since Ag and AQ/ both contain Ap. O

The second step in the proof of Proposition 3.8 is an immediate consequence of the following
lemma, applied to P(o) instead of P.

Lemma 3.11. Let P = M N be a standard parabolic subgroup of G. Let W be a finite length
smooth C-representation of M, and assume that for any irreducible subquotient Y of W,
IndSY is irreducible. The map Y — IndGY from the lattice Ly of subrepresentations of W
to the lattice £Ind§W of subrepresentations of IndIG; W is an isomorphism.

Proof. We recall from [Vigl3, Theorem 5.3] that the functor Ind% has a right adjoint RG and
that the natural map Id — R}GD Indg is an isomorphism of functors. Let ¢ : Ly — Elndg W

be the map Y > Indg Y and let v : Elndgw — Ly be the map X — RgX. The composite
1 o is a bijection. If v is injective, then ¥ and ¢ are bijective, reciprocal to each other. To
show that v is injective, we show first that X € Elndgw and RgX € Ly have always the
same length.

Step 1. An irreducible subquotient X of Ind% W has the form Ind@ Y for an irreducible
subquotient Y of W; in particular, RIGDX ~ Y is irreducible. Thus, W and Indg W have the
same length.

Step 2. Let X be a subquotient of Ind% W. Denote the length by lg(—). We prove that
lg(REX) < 1g(X), by induction on lg(X). If X # 0, insert X in an exact sequence 0 — X’ —
X — X" — 0 with X” irreducible; then the sequence 0 — REX’ — REX — REX" is exact
and REX" is irreducible. So lg(REX) < lg(REX") +1 < lIg(X') + 1 = Ig(X).

Step 3. Let X € Clndg w- We deduce from the steps 1 and 2 that lg(REX) = lg(X). Indeed,
the exact sequence 0 — X — IndSW — (IndgW)/X — 0 gives an exact sequence 0 —
REX — W — RE((Indg W)/X). By Step 2, Ig(REX) < lg(X) and lg(RE((Ind% W) /X)) <
lg((Ind% W)/ X); by Step 1, lg(Indg W) = 1g(W), so we get equalities instead of inequalities.

We can show now that v is injective. Let X, X’ in Clndgw such that REX = REX'.
Applying R$ to the exact sequence 0 — X N X’ = X & X' — X + X' — 0 gives an exact
sequence 0 — RG(X N X') — REX @ REX' — RE(X + X') because RS is compatible with
direct sums. As R]GD respects the length, the last map is surjective by length count. But
then RE(X + X') = RE(X) + R%(X') inside W. Hence RE(X + X') = REX = REX'. So
X = X' = X + X’ by length preservation. O
Remark 3.12. Note that lg(REX) = lg(X) for a subquotient X of Indg W. Indeed, insert X in
an exact sequence 0 — X’ — X” — X — 0 where X" is a subrepresentation of Ind% W. The
exact sequence 0 — REX' — REX" — REX and lg(REX') = lg(X'), lg(REX") = lg(X")
give lg(REX) > lg(X); with Step 2, this inequality is an equality.

We are now finally in a position to prove Theorem 3.2. It follows from Proposition 3.8
that X — Indg( y(e(0) ® X) gives an isomorphism of the lattice of subrepresentations of

P(U) 1)

MiNP(o .
nd5) Stg (@) (a quotient of the Indj

PiNP(o)

Ind% P(oy(e(0) @ Ind P(mzj( ) StMmP(o)) isomorphic to Ind% , 01. The desired result then follows

from Proposition 3.6 applied to G = P(0),P = PN P(o ) describing the first lattice.

onto the lattice of subrepresentations of
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3.3. Twists by unramified characters. Recall the definition of unramified characters of
G. If X3 (G) is the group of algebraic F-characters of G, we have a group homomorphism
Hg : G — Hom(X3(G),Z) defined by Hg(g)(x) = valp(x(g)) for g € G and x € X5(G).
The kernel °G of Hg is open and closed in G, and the image Hg(G) has finite index in
Hom(X3(G),Z). Tt is well known (see 2.12 in [HL17]) that °G is the subgroup of G' generated
by its compact subgroups. A smooth character x : G — C* is unramified if it is trivial
on °G; the unramified characters of G form the group of C-points of the algebraic variety
Homyz(Ha(G), Gn).

Let o1 be an irreducible admissible C-representation o1 of M; and we now examine the
effect on Indlc_i1 o1 of twisting o1 by unramified characters of M;. As announced in §1.2,
we want to prove that for a general unramified character y : M; — C*, the representation
Ind%, xo is irreducible. For that we translate the irreducibility criterion P(x|a0) C P given
in Corollary 3.3 into more concrete terms. Note that x|ys is an unramified character of M.
By Proposition 2.7, P(x|yo) C P means that for each « € A\ Ap,, xo is non-trivial on
Z N M. Because x|y 0o is supercuspidal, when o € A is not orthogonal to Ap, xo is not
trivial on Z N M. Let A,,(0) be the set of roots a € A\ Ap, orthogonal to Ap, such that
there exists an unramified character x, : M — C* such that x,0 is trivial on Z N M/ ; for
a € Apr(0), choose such a xq.

Recall from [AHHV17, II1.16 Proposition] that the quotient of Z N M/, by its maximal
compact subgroup is infinite cyclic; if we choose a, € Z N M/, generating the quotient, then
xo is trivial on Z N M, is and only if x(aq) = Xa(aa). We conclude:

Proposition 3.13. Let x : My — C* be an unramified C-character of My. Then Indlq1 X01
is irreducible if and only if for all a € Ay, (o) we have x(aq) 7# Xa(ta)-

The following corollary answers a question of J.-F. Dat.

Corollary 3.14. The set of unramified C-characters x of M1 such that Ind}q1 X011 s reducible
is a Zariski-closed proper subset of the space of unramified characters.

Indeed by the proposition, the reducibility set is the union, possibly empty, of hypersurfaces
with equation x(aq) = Xa(aq) for a € Ay, (o).

4. ADMISSIBILITY

4.1. Generalities. Let H be a locally profinite group and let R be a commutative ring. When
R is noetherian, a subrepresentation of an admissible R-representation of H is admissible.
If H is locally pro-p and p is invertible in R, then taking fixed points under a pro-p open
subgroup of H is an exact functor [Vig96, 1.4.6], so for noetherian R a quotient of an admissible
R-representation of H is again admissible. This is not generally true, however when p = 0 in
R, as the following example shows.

Ezample 4.1. Assume that p = 0 in R so that R is a Z/pZ-algebra. Let H be the additive
group (Z/pZ)N, with the product of the discrete topologies on the factors; it is a pro-p group.
The space C*°(H, R) (§2.2) can be interpreted as the space of functions H — R which depend
only on finitely many terms of a sequence (up)neny € H. The group H acts by translation
yielding a smooth R-representation of H; if J is an open subgroup of H, the J-invariant
functions in C*°(H, R) form the finitely generated free R-module of functions J\H — R. In
particular, V' = C*°(H, R) is an admissible R-representation of H. However the quotient of
V by its subrepresentation Vy = V# of constant functions is not admissible. Indeed, a linear
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form f € Homg,,7(H, R) contained in V satisfies wf(v) — f(v) = f(w +v) — f(v) = f(w) for
v,w € H so f produces an H-invariant vector in V/Vj. Such linear forms make an infinite
rank free R-submodule of V' and V/V} cannot be admissible. That example will be boosted
below in §4.2.

Lemma 4.2. Assume that R is noetherian. Let M be an R-module and t o nilpotent R-
endomorphism of M. Then M is finitely generated if and only if Kert is.

Proof. If M is finitely generated so is its R-submodule Ker ¢, because R is noetherian. Con-
versely assume that Kert is a finitely generated R-module; we prove that M is finitely gen-
erated by induction over the smallest integer » > 1 such that " = 0. The case r = 1 is a
tautology so we assume r > 2. By induction, the R-submodule Ker¢"~! is finitely generated.
As t"~! induces an injective map M/ Kert"~! — Kert of finitely generated image because R
is noetherian, the R-module M is finitely generated. O

Lemma 4.3. Assume that R is noetherian. Let H be a locally pro-p group and J an open
pro-p subgroup of H. Let M be a smooth R-representation of H such that the multiplication
pyv by p on M is nilpotent. Then the following are equivalent:
(i) M is admissible;
(ii) M7 is finitely generated over R;
(iii) MY NKerpys is finitely generated over R/pR.

Proof. Clearly (i) implies (ii) and the equivalence of (ii) and (iii) comes from Lemma 4.2
applied to t = pp;. Assume now (ii). To prove (i), it suffices to prove that for any open
normal subgroup J’ of J, the R-module M”" is finitely generated. By Lemma 4.2, it suffices
to do it for M7/ N Ker pys, that is, we can assume p = 0 in R. Now M) = Hom j/ (R, M) ~
Hom j(R[J/J'], M) as R-modules. The group algebra F,[.J/J'] has a decreasing filtration by
two sided ideals A; for 0 < i < r with Ay = F,[J/J], A, = {0} and A;/A; 41 of dimension 1
over [, with trivial action of J/J'. By tensoring with R we get an analogous filtration with
B; = R® A; for R[J/J']. By decreasing induction on i, we prove that Hom ;(B;, M) is finitely
generated over R. Indeed, the case ¢ = r is a tautology, the exact sequence

0— Bi+1 — Bl — Bi/Bi—i-l —0
gives an exact sequence
0 — Hom(B;/B;y1, M) — Hom;(B;, M) — Hom j(B;y1, M)

and Homy(B;/Biy1, M) ~ M’ is a finitely generated R-module by assumption. Since
Hom j(B;t1, M) is finitely generated by induction, so is Hom;(B;, M) because R is noe-
therian. The case ¢ = 0 gives what we want. g

4.2. Examples. Let us now take up the case of a reductive connected group G = G(F).
Here the characteristic of F' plays a role. When char(F) = 0, G is an analytic p-adic group,
in particular contains a uniform open pro-p subgroup, so that at least when R is a finite local
Zp-algebra [Emel0] or a field of characteristic p [Hen09, 4.1 Theorem 1 and 2], a quotient of
an admissible representation of G is still admissible. That does not survive when char(F') = p,
as the following example shows.

Ezrample 4.4. An admissible representation of F* with a non-admissible quotient, when
char(F) =p > 0 and pR = 0.
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The group 1+ Pp is a quotient of F*. Choose a uniformizer ¢t of F'. For simplicity assume
that ¢ = p. Then it is known that the map [](, py—1m>1Zp — 1+ Pp sending (xm) to
[1,,(1+t™)* is a topological group isomorphism. The group H of Example 4.1 is a topological
quotient of F*. When pR = 0 the admissible R-representation C2°(H, R) of H with the non-
admissible quotient C2°(H, R)/C°(H, R)" inflates to an admissible R-representation V' of
F* containing the trivial representation Vy = V1P with a non-admissible quotient V/Vj.

That contrast also remains when we consider Jacquet functors. Let P = M N be a standard
parabolic subgroup of G. Assume that R is noetherian. The parabolic induction Ind]G;: :
Mod (M) — Mod%(G) respects admissibility [Vigl3, Corollary 4.7]. Its left adjoint L
respects admissibility when R is a field of characteristic different from p [Vig96, 11.3.4]. More
generally,

Proposition 4.5. Assume that R is noetherian and that p is invertible in V. Let V €
Mod% (G) such that for any open compact subgroup J of G, the R-module V7 has finite

length. Then for any open compact subgroup Jy; of M, the R-module VN]M has finite length.

Proof. Assume that p is invertible in V. We recall first the assertions (i) and (ii) of the last
part of [Vigl3]. Let (K,),>0 be a decreasing sequence of open pro-p subgroups of G with an
Iwahori decomposition with respect to P = M N, with K, normal in Ky, NK, = {1}. We
write £ : V — Vy for the natural map and M, = M N K,,N, = NN K,, W, = VENo_ Let
z € Z(M) strictly contracting Ny (subsection 2.5). Then we have

For any finitely generated submodule X of Vje/[” there exists a € N with z*X C k(W,).

We prove now the proposition. As KNy is a compact open subgroup of GG, the R-module
W, has finite length, say ¢. The R-modules x(W,) and z*X have finite length < ¢, hence X
also. This is valid for all X hence V]é/[ " has finite length < ¢. We have zaVJG/[ T CR(Wr) C VYT
for some a € N. The three R-modules have finite length hence x(W;) = Vy'". As any open
compact subgroup Jys of M contains M, for r large enough, the proposition is proved. [

Remark 4.6. The proof is essentially due to Casselman [Cas|, who gives it for complex coef-
ficients. The proof shows that V" = k(W) where W, C VNo for all » > 0. This implies
#x(VNo) = Viy because Vyy being smooth is equal to Urso V"

When R is artinian, any finitely generated R-module has finite length, so the proposition
implies:

Corollary 4.7. Lg respects admissibility when R is artinian (in particular a field) and p is
invertible in R.

Remark 4.8. This corollary was already noted by Dat [Dat09]. The corollary is expected to
be true for R noetherian when p is invertible in R. Using the theory of types, Dat proves it
when G is a general linear group, a classical group with p odd, or a group of relative rank 1
over F'.

Emerton has proved that Lg respects admissibility when R is a finite local Z,-algebra and
char(F) = 0 [Emel0]. But again, his proof does not survive when char(F) = p > 0 and
pR = 0.

Ezample 4.9. An admissible representation of SL(2, F') with a non-admissible space of U-
coinvariants, when char(F) =p > 0 and pR = 0.
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Assume char(F) = p > 0 and pR = 0. Let B = TU the upper triangular subgroup
of G = SL(2, F) and identify T with F* via diag(a,a™') ~ a. Example 4.4 provides an
admissible R-representation V' of T' containing the trivial representation Vj (the elements
of V fixed by the maximal pro-p subgroup of T'), such that V/Vj is not admissible. The
representation Indg V of G contains Indg Vi, which contains the trivial subrepresentation V.
We claim that the quotient W = (Ind% V') /Vo is admissible and that Wy is not admissible
(as a representation of 7).

For the second assertion, it suffices to prove that Wiy = V/Vj. The Steinberg representation
St = Ind% Vp/ Voo of G is contained in W and W/St is isomorphic to Ind%(V/Vy). We get an
exact sequence

Sty — Wy — (IndG(V/Vo))y — 0.
It is known that Styy = 0 (see the more general result in Corollary 6.10 below). Hence the
module Wy is isomorphic to (Ind%(V/Vy))y ~ V/V; [Vigl3, Theorem 5.3].

We now prove the admissibility of W. Let U be the pro-p Iwahori subgroup of G, consist-
ing of integral matrices in SL(2,Op) congruent modulo P to the strictly upper triangular
subgroup of SL(2,k). We prove that WY = StY, so W is admissible by Lemma 4.3, be-
cause St is admissible. Let f € Indg V with a U-invariant image in W, hence for x € U,
there exists v, € Vp with f(gx) — f(g) = v, for all ¢ € G. Put s = <_01 é) Then
Fls2) = f(&) = f(s2) — va — (F(2) —v) = f(s) = F(1). Put v = f(s) = f(1) € V. It
x € U, then szs™! € U and f(sg) = f(szs tsg) = f(sxg). f x € UNU and z € U we have
f(sz) = f(z)+v = f(zz)+v = f(sxz). An easy matrix calculation shows that U is generated
by UNU and UNU, so the map z + f(sz) from U to V is invariant under left multiplication
by U. We have Vy = VY™ and U N T is stable by conjugation by s. For t c UNT and z € U
we have f(sz) = f(stz) = sts™!f(sz) and f(2) = f(s2) —v = f(stz) —v = f(tz) = tf(2).
Therefore, f(sz) and f(z) lie in Vp. But G is the union of BU and BsU, so f(g) € Vj for all
g € G, which means f € Indg Vp and its image in W does belong to St¥.

4.3. Admissibility and RS. We turn to the main result of this section (theorem 1.3 of the
introduction) for a general connected reductive group G and a standard parabolic subgroup
P =DMN of G.

Lemma 4.10. Let V be a noetherian R-module, let t be an endomorphism of V, and view
V' as a Z[T]-module with T' acting through t. Then the map f +— f(1) yields an isomorphism
e from Homgr(Z[T), T, M) onto the submodule V™ = N,>ot"V of infinitely t-divisible
elements.

Proof. A Z[T]-morphism f : Z[T,T~'] — V is determined by the values m,, = f(T~") for
n € N, which are only subject to the condition tmg,+1 = m,, for n € N. Certainly f(1) = mg
is in V'°°. Let us prove that e is surjective. As V' is noetherian, there is some n > 0 such that
Kert"t* = Kert” for k > 0. Let m € V> and for k > 0 choose my, such that m = tFm;,.
Then for k > 0, My, — tmyr41 belongs to Ker t"* so that t"m, . = t"T'm, 441 Putting
pr = t"my, 1 we have pp = tugy1 and pp = m. Therefore e is surjective. By [Boul2, §2, No
2, Proposition 2], the action of ¢t on V' being surjective is bijective because the R-module
V'°° is noetherian, so e is indeed bijective. O

Theorem 4.11. Assume that R is noetherian and p is nilpotent in R. Then the functor
R$ : Mod® (G) — Mod$ (M) respects admissibility.
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Proof. Let m be an admissible R-representation of G and we prove R% () is admissible. By
Lemma 4.3, we may replace m with Ker(p: m — ), hence we assume that p =0 in R.

Recall that we have fixed a special parahoric subgroup K in §2.5. Take a finite extension
[ of IF,, such that all absolute irreducible representations of K in characteristic p are defined
over . Then for any open pro-p subgroup J of K N M, we have

RE(r)” C RE(F @r, )7 = Homgyy)(F, RE(F ©p, 7))
= Homgpr (Ind5™ (F), RE(F @, m)).

Since we have a filtration on Indf{" (F) whose successive quotients are absolute irreducible
representations, it is sufficient to prove that the R-module

Homg ey (V; RE(F @, 7).

is finitely generated for any irreducible F-representation V' of N M.

Put m; = F ®p, m. This is also admissible. Let Vj be an irreducible F-representation
of K which is P-regular [HV12, Definition 3.6] and (Vy)nnx =~ V. This Vj exists by the
classification of absolute irreducible representations of £ ([HV12, Theorem 3.7], [AHHV17,
IIT1.10 Lemma]). Then by [HV12, Theorem 1.2] we have

Ind@ (c-Indg 5 (V) 2 Har (K 0 M, V) @y icvi) e-Indg (Vo).
Hence
Homg(erar (V, RE (1)) = Homgay (c-Indgfp (V), RE (1))

= Homgg) (Ind? (c-Indh (V) m1)

= Homp(g)(Ha (KN M, V) ®@34,06,v0) c—Ind,Cé(Vo), 1)

= Homy,, (xc,vp) (Har (KN M, V'), Hompx) (Vo, 71))-
As Hp (KN M, V) is a localization of Hg(IC, Vo) at some 7 € Z5(K, Vp), the R-module

Homy, ., (xc,vp) (Har (K 0 M, V), Homgx) (Vo, 71))
identifies with
Homp7 (F[T, T, Hompx) (Vo, 71))

with T" acting on Homgyx)(Vo, 71) through 7. Since the R-module Homgyc)(Vo, 71) is finitely
generated and R is noetherian, Lemma 4.10 show that Homp7)(F[7, T_l],HomF[,q(Vo,m))
is also a finitely generated R-module. O

Remark 4.12. Using [OV17, Proposition 4.6] instead of [HV12, Corollary 1.3], the argument
works replacing /C by a pro-p Iwahori subgroup. Note that the only irreducible representation
of pro-p Iwahori subgroup in characteristic p is the trivial representation. So we may take
F =TF,.

When R is noetherian, Ind$ : Mod® (M) — Mod® (G) respects admissibility and induces a
functor Indg’a : Mod% (M) — Mod%(G) between the category of admissible representations.

Emerton’s P-ordinary part functor Ord% is right adjoint to Indg’“. For V € Mod%(G)
admissible,

(4) Ord%V = (Hom py (C2°(N, R), V) #M0~7,
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is the space of Z(M)-finite vectors of HomRW](C’SO(N, R),V) with the natural action of M

(the representation Ord%V of M is smooth) [Vigl3, §8].
If Rg respects admissibility, the restriction of Rg to the category of admissible represen-
tations is necessarily right adjoint to Indg’a, hence is isomorphic to Ord%.

Corollary 4.13. Assume R noetherian and p nilpotent in R. Then Rg is isomorphic to the
P-ordinary part functor Ord% on admissible R-representations of G.

Corollary 4.14. Assume that R is a field of characteristic p. Let V' be an irreducible admis-
sible R-representation of G which is a quotient of Indg W for some smooth R-representation
W of M. Then V is a quotient of Indg W' for some irreducible admissible subquotient W' of
w.

The latter corollary was previously known only under the assumption that W admits a
central character and R is algebraically closed [HV12, Proposition 7.10]. Its proof is as
follows. By assumption, there is a non-zero M-equivariant map f : W — RgV. By the
theorem RSV is admissible so f(WW) contains an irreducible admissible subrepresentation W’
because char R = p [HV12, Lemma 7.9]. The inclusion of W’ into REV gives a non-zero
G-equivariant map Ind% W’ — V, so that V is a quotient of Ind% W',

Remark 4.15. When R is a field of characteristic # p and RIGD respects admissibility, then
Corollary 4.14 remains true.

Proof. 1t suffices to modify the proof of Corollary 4.14 as follows. We reduce to a finitely
generated R-representation W of M, by replacing W by the representation of M generated
by the values of an element of IndIGp W with non-zero image in V. An admissible quotient of
W is also finitely generated, thus is of finite length [Vig96, I11.5.10], and in particular, contains
an irreducible admissible subrepresentation W’. By the arguments in the proof of Corollary
4.14, V is a quotient of Ind% W', O

Let V € Mod®(G). Obviously, Ord%(V) given by the formula (4)depends only on the
restriction of V to P, and LgV = Vi depends only on the restriction of V to P. We ask:

Question 4.16. Does RgV depend only on the restriction of V to P ?

To end this section we assume that R is noetherian and p is invertible in R and we compare
Lg and OrdIGg. In the same situation than in Proposition 4.5, we take up the same notations.
For V € Mod%(G) we have the R-linear map

(5) p = K(p(1ng)) = OrdB(V) =5 LE(V) = Vi,

where 1y, is the characteristic function of Ny. Replacing Ny by a compact open subgroup
Jn C N multiplies ey by the generalized index [Jy : Ny| which is a power of p. Following

the action of m € M which sends ¢ € Ord%(V) to mo g om™,

K((me)(1x,)) = K(m(9(Ln-18gm))) = [m™ Nom : Nolm(r(o(1n,))),

we get that ey is an R[M]-linear map Ord%(V) — 65 LE(V), and that V + ey defines on
Mod%(G) a morphism of functors e : Ord% — §5'LE. Here dp(m) = [mNom ™" : Ny| for
m e M.
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Proposition 4.17. Assume R noetherian and p invertible in R. Let V € Modf (G) such
that for any open compact subgroup J of G, the R-module V' has finite length. Then ey is
an isomorphism.

Proof. 1) We recall the Hecke version of the Emerton’s functor [Vigl3, §7, §8] for V €
Mod%(G). We fix an open compact subgroup Ny of N as in [Emel0, §3.1.1]. The monoid
M* C M of m € M contracting Ny acts on Vo by the Hecke action:

(m,v) — hp(v) = Z nmv : M+ x VN — yNo,
n€Ny/mNom—1
We write I}, : Modg(M ™) — Modg(M) for the induction, right adjoint of the restriction
Resil, : Modr(M) — Modg(M™). Let z € Z(M) strictly contracting Ny (subsection 2.5).
The map ®y : OrdZ(V) — (1M, VNo)2"" =/ defined by

(6) Dy (p)(m) = (me)(1n;)

is an isomorphism in Mod% (M) (loc. cit. Proposition 7.5 restricted to the smooth and Z(M)-
finite part, and Theorem 8.1 which says that the right hand side is admissible, hence is smooth
and Z(M)-finite). For any r > 0, W, is stable by h., the restriction from M to z” gives a
R[z%]-isomorphism

(7) (I v Noyz Iy Mr o (13 (v NoMry)= =]

(loc. cit. Remark 7.7 for z~!-finite elements, Proposition 8.2), the RHS of (7) is contained
in I ZZ§ (W), and we have the isomorphism

. VA
z neN LN r Tn)n>0, Tn 2 r) = |l lneNl, r)y Nz(Tpt+1) = Tp
[ (f(zTT) 2 (Wr) = {(zn) € h22(Wy) = NnenhZ (W), he(2ni1) }
(loc. cit. Proposition 8.2, for the isomorphism Lemma 4.10).
2) The inclusion above is an equality (I;i(VNoMT))[I*f = IZZNZ(WT), because the map

Z
(8) = FQ) La(Wy) = h2E(W;)
is an isomorphism: on the finitely generated R-module h3°(W,), h, is bijective as it is sur-
jective (Lemma 4.10), hence any element f € Izzé(Wr) is 2~ !-finite as (z7"f)(1) = f(z™") for
n € N and a R-submodule of h3°(W,) is finitely generated.

Through the isomorphisms (6), (7), (8) the restriction of ey to (Ordp(V))Mr translates
into the restriction s, of k to h3°(W;)

R (W) =5 V.

3) The sequence Ker(h” |, ) is increasing hence stationary. Let n the smallest number such
that Ker(h?|w,) = Ker(h?™t|yy,). By [Cas, IIL.5.3 Lemma, beginning of the proof of I11.5.4
Lemma],

Ker(klw,) = Ker(h|w,), hZ(Wr) N Ker(hZ|w,) = 0.

4) If the R-module W, has finite length, h3°(W,) = h2(W,) and W,. = hZ(W, )@ Ker(hZ|w, ).
Indeed, the sequence (hJ"(W;))men is decreasing and 1g(W,.) = lg(Ker(h7*|w,.)) +1g(h7*(W})).
Therefore £, is injective of image k(W,.). As k(W,) = V" (proof of Proposition 4.5), &, is
an isomorphism.

5) If the R-module W, has finite length for any = > 0, then x(V°) = Viy (Remark 4.6)
and ey is an isomorphism. O
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Remark 4.18. The arguments in part 1) show that for V€ Mod%(G), we have Ord%V =
(Hom p5 (C2° (N,R),V))* '~/ for any z € Z(M) strictly contracting N (subsection 2.5).

When R is artinian, any finitely generated R-module has finite length, so the proposition
implies:

Corollary 4.19. Assume R artinian (in particular a field) and p is invertible in R. On
Mod%(G), the functors Ord% and 65'LE are isomorphic via e.

Remark 4.20. We expect the corollary to be true for noetherian R with p invertible in R. We
even expect that the functors R% and 65" LG are isomorphic on Mod% (G) (second adjunction).
That is proved by Dat for the same groups as in Remark 4.8, and for those groups R% preserves
admissibility.

4.4. Admissibility of I5(P,0,Q).

Theorem 4.21. Assume R noetherian. Let (P,o0,Q) be an R[G]-triple with o admissible. If
p is invertible or nilpotent in R, then Ig(P,0,Q) is admissible.

It is already known that Stg is admissible when R is noetherian (when G is split [GK14,
Corollary B], in general [Ly15, Remark 5.10]).

Proof. Since parabolic induction preserves admissibility, we may assume P(o) = G. If p is
invertible in R, the result is easy because I (P, 0, Q) is a quotient of Indg o: if o is admissible
SO are Indg o and all its subquotients. Therefore, it is enough to prove the theorem when p
is nilpotent in R and P(c) = G. Then Ig(P,0,Q) = e(0) ®r Stg. Let U be a pro-p-Iwahori
subgroup which has the Iwahori decomposition U = (U N N)(U N M)(U N N). Using Lemma
4.3 that is a consequence of [AHV, Theorem 4.7] which shows that the natural linear map
e(o)1 @ (Stg)” — (e(0) ®r Stg)u is an isomorphism, hence (e(0) ®r Stg)” is a finitely
generated R-module. O

4.5. IndIGg does not respect finitely generated representations. We add a few remarks
on finiteness: when R is the complex number field, the parabolic induction preserves the
finitely generated representations [Ber84a, Variante 3.11]. However when R = C' (recall that
C' is an algebraically closed field of characteristic p), this does not hold as we see in the
following.

Proposition 4.22. Let P = MN be a proper parabolic subgroup, Vo an irreducible C-
representation of M N K. Set o = c-Ind} - Vo. Then Ind$ o is not finitely generated.

Proof. Let V be an irreducible C-representation of K such that Vynx ~ Vo and V is P-
regular ([HV12, Theorem 3.7], [AHHV17, TI1.10 Lemmal). Let Iy: c¢-Ind$ V — Ind% o be
the injective homomorphism defined in [HV12, Definition 2.1]. Then by [HV12, Theorem 1.2],
Iy induces an isomorphism

Ind@ o ~ Har(M N K, Vo) @300, c-Indg V.
Set X =Im Iy. As Hp (M NIKC, Vp) is the localization of Hg(IC, V) at 7 € Z5(K, V') (subsec-
tion 2.5), we have Ind§ o = Unezoo 7 "X

Now assume that Indg o is generated by finitely many vectors fi,..., f. € IndIGD o. Since
Ind% o = Unez., 7 "X, there exists n € Z>o such that f; € 77" X for alli =1,...,r. Since
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fi,.-., fr generates Indg o, we have 77" X = IndIGp o. Since T is invertible on IndIGD o, we have
X =Ind% 0. This contradicts the following lemma. t

Lemma 4.23. Assume R = C. If P # G, then Iy is not surjective for any irreducible
representation V of K.

Proof. Take 7 € Z¢(K, V) such that Hy (M N K, Vynk) = Ha(K,V)[r71]. Since the ring
homomorphism S§: Ha(K, V) — Hu (M N K, Vynk) is not surjective (this follows from the
description of the image of S§: Ha (K, V) — Hz(ZNK, Vunk) [HV15]), 7 is not invertible. As-
sume that Iy is surjective. Since 7 is invertible on Ind%(c-Ind¥ - Vivrxe) and Iy is Hg (K, V)-
equivariant, 7 is invertible on c-Ind% V. Hence 7 is a unit in Endg(c-Ind% V) = Ha(K, V).
This is a contradiction. O

We also have the following.

Proposition 4.24. If P # G and R = C, then the functor Rg does not preserve infinite
direct sums.

Proof. For an infinite family of representations {7, } and a finitely generated representation o
of M, we have Hom (o, @,, RG(m,)) = @,, Hom(o, R (7)) ~ @,, Hom(Ind% o, 7,,). Hence
it is sufficient to prove

@ Homg(Ind$ o, 7,,) # Homg (Ind$ o, @ Tn)

for some {m,} and o.

We take o as in Proposition 4.22 and use the same notation as in the proof of Propo-
sition 4.22. Set 7 = Ind% o and X, = 7"X. Then we have 7 # X, for all n € Z>0
and |, X,, = 7. The homomorphism Ind$ o = 7 — @, 7/X,, induced by the projections
7 — 7/ X, is not in @, Homg(Ind$ o, 7/X,,). O
Remark 4.25. The functor RE preserves infinite direct sums when RG = § pL% (the second
adjoint theorem) holds true. It is known when R is the complex number field [Ber|, when R

is an algebraically closed field of characteristic different from p [Vig96, I1.3.8 (2)] and in many
cases when p is invertible in R [Dat09, Théoréme 1.5].

5. COMPOSING Ind$¥ WITH ADJOINTS OF Indg1 WHEN p IS NILPOTENT

Let us keep a general reductive connected group G and a commutative ring R. Let P =
MN, Pi = M1 Ny be two standard parabolic subgroups of G.

5.1. Results. We start our investigations on the compositions of the functor Indg with LIGD1
and Rgl by some considerations on coinvariants.

Lemma 5.1. Let H be a group and let V,W be R[H|-modules, and assume that H acts
trivially on W. Then the R-modules (V @ g W) and Vg @ g W are isomorphic.

Proof. We write as usual V(H) for the R-submodule of V' generated by the elements hv — v
for h € H,v € V. The exact sequence 0 — V(H) — V — Vg — 0 of R[H]-modules gives by
tensor product over R with W an exact sequence

VH) QW - VW - Vg r W — 0

of R[H]-modules. Because H acts trivially on W, (V ® g W)(H) is the image of V(H) @ g W
in V ®gr W, hence the result. ([l
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As a consequence of Lemma 5.1, if V' is a Z[H]-module and W = R with the trivial action
of H, the R-modules (V ®z R)p and Vi ®z R are isomorphic.

Let us study now C°(H,R)g = C°(H,Z)g ®z R. A right Haar measure on H with
values in R is a non-zero element of Homp(CX(H, R)m, R).

Proposition 5.2. Let H be a locally pro-p group having an infinite open pro-p subgroup J
and W an R-module on which H acts trivially. The R-module of H -coinvariants C°(H, W)y
is isomorphic to R[1/p| @ p W.

Proof. Lemma 5.1 reduces us to the case R = W = Z. We consider the right Haar measure
on H with values in Z[1/p] sending the characteristic function 1; of J to 1. It induces a
linear map CS°(H,Z) — Z[1/p]. This map is surjective because J is infinite hence has open
subgroups of index p™ for n going to infinity. Let f be in its kernel. We write f as a finite sum
>, a;h;1; where J' is a suitable open subgroup of J, a; € Z,h; € H. Then Y, a;[J : J'|71 =0
in Z[1/p] hence >~,a; =0 and f = >, a;(h;1;7 — 1) belongs to the kernel of the natural map
C*®(H,Z) — (C*(H,Z))r. We thus get an isomorphism C°(H,Z)y ~ 7Z[1/p]. Therefore
Ce(H,W)m ~ R[1/p| @r W. O

Corollary 5.3. C°(H,R)g = {0} if and only if p is nilpotent in R, and in general,
CX(H,W)g = {0} if and only if W is p-torsion.

Homp(CX(H, R)u, R) = {0} if and only if Hom(Z[1/p], R) = {0} if and only if there is
no Haar measure on H with values in R.

Proof. R[1/p] = {0} if and only if p is nilpotent in R by [Bou85, 1.2 Corollary 2| and
R[1/p]| @r W = {0} if and only if any element of W is killed by a power of p (W is called
p-torsion). O

The p-ordinary part of an R-module V is

V})ford = ﬂ ka-
k>0
When R is a field, the three conditions: p nilpotent, R,_,.¢ = {0}, Hom(Z[1/p], R) = {0},
are equivalent to char(R) = p. The equivalence of these three conditions is not true for a
general commutative ring, contrary to what is claimed in [Vig96, I (2.3.1)], [Vigl3, §5].

Lemma 5.4. 1) p is nilpotent in R if and only if V,_orq = {0} for all R-modules V.
2) Rp—orq = {0} implies Hom(Z[1/p], R) = {0}. The converse is true if R is noetherian.

Proof. 1) Let n € N be the characteristic of R (nZ is the kernel of the canonical map Z — R).
Then p is nilpotent in R if and only if n = p* for some k > 1. Clearly p*¥ = 0 in R implies
p*V = 0 for all R-modules V. Conversely, if p is not nilpotent there exists a prime ideal J of
R not containing p. The fraction field of R/J is a field V' of characteristic char(V') # p.

2) For the last assertion see Lemma 4.10. U

For W € Mod%® (M), Frobenius reciprocity gives a natural map L% IndG W — W sending
the image of f € Ind]G; W to f(1); that yields a natural transformation L% Indg — Idmoase (ar)-
When p is nilpotent in R, that natural transformation is an isomorphism of functors [Vigl3,
Theorem 5.3] (this uses Proposition 5.2); by general nonsense it follows that the natural
morphism Idyoqee (vr) — RG Indg coming from the adjunction property is also an isomorphism
of functors. We generalize these statements.
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Theorem 5.5. When p is nilpotent in R, the two functors LlG’l IndIGg and Indy%Ml LAP/{QM
from Mod (M) to Modf (My) are isomorphic.

Before proving the theorem, we deduce a corollary:

Corollary 5.6. In the same situation, the two functors Rgl IndIGg and Ind]}frﬁMl R%QM from
Mod® (M) to Mod% (My) are isomorphic.

Proof. By Theorem 5.5 the functors L]G;l Ind$ and Ind%% My L% Aap are isomorphic, so are
their right adjoints RE Ind%, and Indpt,, RY ). O

In fact, our results are more precise than Theorem 5.5 and Corollary 5.6. See Corollaries 5.8
and 5.9. Our proof of Theorem 5.5 is inspired by the proof of the “geometric lemma” in [BZ77].
But [BZ77] uses complex coefficients, also Haar measures on unipotent groups and normalized
parabolic inductions which are not available p is nilpotent in R. In fact, our result is simpler
than for complex coefficients. As will be apparent in the proof, the isomorphism comes from
the natural maps LIG_—II Ind% W — Ind])g/% M,y LJI‘D{ Ay W for W e Mod% (M) sending the class of
fe Indg W to the function m; +— image of f(m1) in Wx,Aap. To control Lgl Indg W we
look at Ind% W as a representation of P;. The coset space P\G/P; is finite and we choose
a sequence Xq,..., X, of (P, P;)-double cosets in G such that G = X; U---UX,, X, = PP,
and XqU---UX;isopenin G fori=1,...,r. We let I; be the space of functions in Indg w
with support included in X; U---U X;, and put Iy = {0}. For i =1,...,r, restricting to X;
functions in I; gives an isomorphism from I;/I;_; onto the space J; = C—Indgi W of functions
[ Xi — W satistying f(mng) = mf(g) form € M,n € N, g € X;, which are locally constant
and of support compact in P\ X;. That isomorphism is obviously compatible with the action
of Py by right translations. For ¢ = 1,...,r, we have the exact sequence

0—)[1'71—>L;—>J7;—>0
and by taking Ni-coinvariants, an exact sequence
(Li-1)ny = (Li)ny = (i), = 0.
Proposition 5.7. Let W € Mod% (M).
(i) The R-linear map c-Indb"™' W — Ind%ﬁMl Warnn, sending f € c-IndbP* W to the
function my — image of f(m1) in Wann,, gives an isomorphism of (C—Indgp1 W)n,
onto Ind%[rl]M1 Whrnn, as representations of M;.

(ii) Assume W is a p-torsion R-module. The space of Ni-coinvariants of c—Indgi Wis 0
fori=1,...,r—1.

(iii) Let V € Modg (M1) with Vy_orq = 0. Then the space Holi((C—Indgi Wn,, V) is0
fori=1,...,r—1.

The proof of Proposition 5.7 is given in §5.2. Composing the surjective map in Proposition
5.7 (i) with the restriction from Ind% W to C—Ind£P1 W we get a surjective functorial M;-
equivariant homomorphism

(9) L mdE W — Indpt,, LY Ay W
Corollary 5.8. For any W € Mod% (M) which is p-torsion, (9) is an isomorphism:

LG IndE W ~ Indpl,, LY\ W.
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Proof. Proposition 5.7 (ii) shows by induction on 4 that (I;)n, =0 when i < r—1; wheni =r
we have J,. = C—Indjlzp1 W and with Proposition 5.7 (i), we get the isomorphism. O

If p is nilpotent in R, every W € Mod% (M) is p-torsion (and conversely), and Theorem
5.5 follows from the corollary.

Let V € Mod% (M), and any W € Mod% (M), the surjective homomorphism (9) gives an
injection
(10) Homyy, (Indpy, LY Ay W, V) = Homyy, (LG, IndE W, V).
Taking the right adjoints of the functors we get an injection
(11) Homyy, (W, Ind} s Rpiay, V) — Homyy, (W, RS Ind, V)
which is functorial in W. Consequently, we have an M-equivariant injective homomorphism
(12) Ind} ~p Rptay, V — REIndB V
Corollary 5.9. For any V € Mod% (M) with V,_orq = 0, (12) is an isomorphism:

Id¥ s Rpag, V ~ REIndf, V.

Proof. Proposition 5.7 (i) and (iii) shows that (10) is a bijection for any W € Mod® (M).
This means that (12) is an isomorphism. O

Now assume that R is noetherian and V' is admissible. If for any admissible W € Mod% (M),
L% Am W is admissible, from (10) we get by right adjunction an injection

M
(13) Hom , (W, Indj; , Ord ! 2, V) — Homay, (W, Ord% Ind V)
which is functorial in admissible W. So, we have an M-equivariant injective homomorphism

(14) Indjy Ord! V= Ordg Indf, V.

As for Corollary 5.9, we deduce:

Corollary 5.10. Assume that R is noetherian. Let V. € Mod% (My) be admissible with
Vp—orda = 0. If for any admissible W € Modg (M), L%ﬂMW is admissible, then (14) is an
isomorphism:

Indjp;y Ordg! )V o OrdE Indg, V.

Remark 5.11. 1)If P D P, L%QMW = W so the hypothesis on W is always satisfied.
2) If p is nilpotent in R then Rg respects admissibility and is isomorphic to Ord%. Hence
(12) gives an isomorphism

Indj{y Ordgt V=~ OrdE Indg, V.
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5.2. Proofs. To prove Proposition 5.7 (ii) and (iii), we control the action of N; on c—Indl).fi w
fori=1,...,7—1. Since B contains N; we may filter X; by (P, B) double cosets, exactly as
we did in §5.1. Reasoning exactly as in §5.1, it is enough to prove the following lemma.

Lemma 5.12. Let W € Mod% (M) and V € Mod% (M;). Let X be a (P, B) double coset not
contained in PPy.

(i) the space of Ni-coinvariants of C—Indfg W is 0 if W is p-torsion.
(11) I_IOHlR((C'Ind.)Pg W)va V) =0 lf ‘/;)*OTd =0.

Proof. By the Bruhat decomposition G = BN B, we may assume that X = PnB for some
n € N, and the assumption that X is not contained in PP; means the image w of n in
W = N/Z does not belong to Wy Wy, . The map u — Pnu : U — P\G is continuous and
induces a bijection from (n~!PnNU)\U onto P\PnB. By Arens’s theorem that bijection is
an homeomorphism. The group n~'PnNU is Z-invariant and is equal to the product (in any
order) of subgroups U, for some reduced roots a. More precisely,

n_IPnﬂU: H Uom

acdt

red’

where @y = &\ @}, and ® is the disjoint union ® pLPNLI(—Py) (§2.1). We choose a reduced
root (3 such that w(f) belongs to —®x (we check the existence of § in Lemma 5.13), and an
ordering av, . .., a, with o, = 3 of the reduced roots a € @ , such that w(a) € —®y. Let U’
denote the subset Uy, X - - - X Uy, _, of U. Then the product map (n ! PnNU)xU’'xUs — U is
a bijection, indeed a homeomorphism, so we get a homeomorphism U’ xUs — (n~PnNU)\U,
which moreover is Ug-equivariant for the right translation. All taken together we have an

Ug-equivariant isomorphism of R-modules:

w(a)€<I>MU'I>N

f = (W ug) = f(nu'ug)) : c-Indp W — C°(U’ x Ug, W).

Now C(U' x Ug,W) is C(U',R) @ C°(Ug, R) ®r W where Up acts only on the mid-
dle factor. By Proposition 5.2, C2°(Ug, R)y, is isomorphic to R[1/p]. If W is p-torsion,
C*(Ug, R)u; ®r W = 0 hence (c—Indﬁ”B(W))Uﬁ = 0 and a fortiori (c-Ind5"Z(W))y, = 0 by
transitivity of the coinvariants, since Ny contains Ug. We get (i). Similarly, if V,_orq = 0,
Hompg(Cg®(Ug, R)u,, V') = 0 hence we get (ii). O

Lemma 5.13. Let w € W\ Wy Wy, . Then there exists € @, such that w(B) belongs to
—Py.

We can take  reduced. If 5 is not reduced, replace it by /5/2.

Proof. The property in Lemma 5.13 depends only on the double coset Wy;wW s, because
Oy is stable by Wy, and @y, is stable by Wjs,. We suppose that w is the element of minimal
length in WywWjy,. This condition translates as:

(i) w (@) Ndt C Dy,

(ii) [ ﬁw(@*) C —dy.
Proceeding by contradiction we suppose w(®y,) C ®pyUPy. This implies w(Pn, )N®™ C P,
then (ii) implies w(®y, ) NP~ = 0 so w(Py,) C . With (i) we get D~ Nw(P1) C w(Py,) C
®*. Then comparing with (i), w(®*) C ®* which implies w = 1. This is absurd hence
Lemma 5.13 is proved. 0
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This ends the proof of Proposition 5.7 (ii) and (iii). To prove Proposition 5.7 (i), we control
C—Indgp LW as a representation of P;. As the inclusion of P; in PP; induces an homeomor-
phism (P N P)\P; — P\PP;, we think of c-Ind]F;P ' W as the representation C—Indlj‘zlm p, W of
Py. To identify (C—Indglm p, W)n, and Ind]]\g/[r% a;, Wann, we proceed exactly as in [BZ77, 5.16
case I'V1]; indeed mutatis mutandis we are in that case: their G = @ is our P, their M = P is
our PN Py, their N is our M7 and their V' our N;. Their reasoning applies to get the desired
result: it is enough to realize that the equivalence relation between ¢-sheaves on (PN P;)\ P,
and smooth representations of PN P; is valid for R as coefficients [BZ77, 5.10 to 5.14] and also
that although N is locally pro-p, forming Ni-coinvariants is still compatible with inductive
limits [BZ77, 1.9 (9)]. This latter property is valid for any functor Mod% (G) — Mod% (M)
having a right adjoint, because Mod% (G) is a Grothendieck category [Vigl3, Proposition 2.9,
lemma 3.2].

6. APPLYING ADJOINTS OF Ind%1 TO Ig(P,0,Q)

Let us keep a general reductive connected group G and a commutative ring R. Let P, =
M;iN; be a standard parabolic subgroup of G and (P = M N, 0,Q) an R[G]-triple (2.2).

6.1. Results and applications. We would like to compute L%I(;(P, 0,Q) when o is p-
torsion and RIGD1 I¢(P,0,Q) when 0p,_,qg = 0. Applying Corollaries 5.8 and 5.9 we may reduce
to the case where P(0) = G, so Ig(P,0,Q) =e(0)® Stg. But we have no direct construction
of Rgl. When R is noetherian and p is nilpotent in R, then for admissible V' € Mod% (G),

RIGD1V o~ Olrd%1 V' (Corollary 4.13). Consequently, in the following Theorem 6.1, Part (ii) we

M

may replace Ord%1 by RJGDl and Ord MAP, by R%n p, When p is nilpotent in R.

Theorem 6.1. Assume P(oc) = G. We have:
(i) Assume that o is p-torsion. Then LG (e(0) ® Stg) is isomorphic to enr, (LYfnp, (0)) ®
St%im@ if (Q, P1) = G, and is 0 otherwise.
(ii) Assume R noetherian, o admissible, and op_orq = 0. Then Ord%(e(a) ® Stg) is

isomorphic to eMl(Ord%mfl(U)) ® St%im@ if (P,P1) D Q, and is 0 otherwise.

In part (i), the statement includes that L} p, (o) extends to M; and similarly in part (ii)

for Ord% P, (0). Before the proof of the theorem (§6.2, §7) we derive consequences.
Without any assumption on P(0), we get:
Corollary 6.2. (i) Assume that o is p-torsion. Then LIG,-Zl I¢(P,0,Q) is isomorphic to
M MinM
(15) Indpl s, (eannnt(o) LAinp, (0)) @ Stodr )

when (Py N P(0),Q) = P(o), and is 0 otherwise.
(ii) Assume R noetherian, o admissible, and p nilpotent in R. Then Ord%1 Ig(P,o,Q) is
isomorphic to

M{NM (o
(16) A} ar (eanmar(e)(Ord 5 (0)) @ Stgthr )

if (PPN P(0)) DQ, and is 0 otherwise.
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In the corollary, LY p, (o) might extend to a parabolic subgroup of M; bigger than M; N
P(0). So we cannot write (15) as Ipz, (PN My, L%mpl(a), QN My). A similar remark applies
to (16).

Proof. (i) L% I(P,0,Q) = LE, Indg(o) (erm(o)(0) ®Stgrg(]7\/)[(a)) is isomorphic to (Corollary 5.8)

(o)

M(o M . .
Indlj‘;/.l(lo_)li Lplgja/[(g)eM(g) (0)® StQﬂM(o‘)' Applying Theorem 6.1, we get (i).
.. o . M(o M(o
(ii) Similarly, Ord%1 I¢(P,0,Q) ~ I]ndg(lg)ﬂM1 Olrer(%1 (erm(o) (0)®StQm(A/)[(U)) by Remark 5.11
(2). Applying Theorem 6.1, we get (ii). O
Definition 6.3. A smooth R-representation V of G is called left cuspidal if LIGDV = 0 for all
proper parabolic subgroups P of GG, and right cuspidal if RgV = ( for all proper parabolic

subgroups P of G.

We may restrict to proper standard parabolic subgroups in this definition, since any para-
bolic subgroup of G is conjugate to a standard one.

Proposition 6.4. Assume that R is a field of characteristic p. Then a supercuspidal repre-
sentation is right-cuspidal.

Proof. An irreducible admissible R-representation V of G such that RgV # 0 is a quotient
of IndIGD RgV and by Corollary 4.14 is a quotient of Indg W for some irreducible admissible
R-representation W of M because the characteristic of R is p (Corollary 4.14). If V is
supercuspidal, then P = G, so V is right cuspidal. (|

Corollary 6.5. Assume that R is a field of characteristic p and (P,0,Q) is an R[G]-triple
with o supercuspidal. Then Rgllg(P, 0, Q) is isomorphic to Iy, (PNMy,0,QNM;) if P D Q,
and is 0 otherwise.

This corollary implies Theorem 1.1 (ii).

Proof. (i) Assume first P(c) = G. As a supercuspidal representation is e-minimal, we may
apply Theorem 6.1 Part (ii). Thus R]Cil I¢(P,0,Q) = 0 unless (P, P1) D Q in which case it is
isomorphic to err, (R}jnp, (o)) ® St%imQ'

If P; does not contain P, then P; N M is a proper parabolic subgroup of M and by
Proposition 6.4, R%QMO' = 0.

If P> P, then MNP, =M and R%OMU = 0. Moreover, (P, P;) D Q if and only if
Py D Q. This gives the result when P(0) = G.

(ii) Without hypothesis on P(o), we proceed as in the proof of Corollary 6.2. O

We now turn to consequences where R = C.

We have the supersingular C-representations of G - we recall their definition. Recall the
homomorphism Sg in §2.5. A homomorphism y : Z5(K,V) — C is supersingular if it does
not factor through Sg when P # G.

Definition 6.6. A C-representation 7 of G is called supersingular if it is irreducible admissible
and for all irreducible smooth C-representations V' of K, the eigenvalues of Z4(K,V) in
Homg (c-Ind% V, 7) are supersingular.

A C-representation 7 of G is supersingular if and only if it is supercuspidal [AHHV17, 1.5
Theorem 5].
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Proposition 6.7. A supersingular C-representation of G is left-cuspidal.

Proof. Let m be an admissible C-representation of G and P = M N be a standard parabolic
subgroup of G such that LIGDW # 0. Putting W = ng, adjunction gives a G-equivariant
map ™ — Indg W. Choose an irreducible smooth C-representation of the special parahoric
subgroup K of G such that the space Homg(c-Ind§ V, 7r) (isomorphic to Homy (V, ) and finite
dimensional) is not zero. The commutative algebra Z(K,V') posseses an eigenvalue on this
space; that eigenvalue is also an eigenvalue of Z(K,V) on Homg(c-Ind{ V, Ind% W) which
necessarily factorizes through S§ (§2.5). If 7 is supersingular (in particular irreducible),
P = G hence 7 is left cuspidal. O

The classification theorem 3.1, Propositions 6.4 and 6.7 imply:

Corollary 6.8. Assume that (P,o0,Q) is a C[G]-triple with o supercuspidal. In that situation
LJGgllg(P, 0,Q) is isomorphic to Ipn, (PN My,0,Q N M) if PL D P and (P1,Q) D P(0), and
is 0 otherwise.

This corollary is Theorem 1.1 (i).

Proof. We proceed as for the proof of Corollary 6.5. With the same reasoning we get
L%QMU = 0 if P; does not contain P and L%OMO' = ¢ if P, D P. Therefore, Theorem
6.1 Part (i) implies the result when P(0) = G. Otherwise, we use Theorem 5.5 to reduce to
the case P(o) = G. O

From Corollary 6.5 and 6.8 we deduce immediately:

Corollary 6.9. An irreducible admissible C-representation of G is left and right cuspidal if
and only if it is supercuspidal.

Now it is easy to describe the left or right cuspidal irreducible admissible C-representations
of G.

Corollary 6.10. Let (P,0,Q) be a C[G|-triple with o supercuspidal. Then I¢(P,o,Q) is
(i) left cuspidal if and only if Q = P and P(c) = G, so Ig(P,0,Q) = e(0) ® St§;
(ii) right cuspidal if and only if Q@ = P(o) = G, so Ig(P,0,Q) = e(0).

Proof. (i) By Theorem 1.1 Part (i), Ig(P,0,Q) is left cuspidal if and only if
Ap, D Ap and Ap UAg D Ap(,) implies Ap, = A.

This displayed property is equivalent to A, \ (Ag N Ay) = A\ Ap, and this is equivalent to
@ =P and P(o) =G.

(ii) By Theorem 1.1 Part (ii), I¢(P,0,Q) is right cuspidal if and only if P, D @ implies
P, = G. This latter property is equivalent to @ = G. But Q C P(o) hence Ig(P,0,Q) is
right cuspidal if and only if @ = P(0) = G. O

Remark 6.11. We compare with the case where R is a field of characteristic # p. Then, Lg
is exact, a subquotient of a left cuspidal smooth R-representation of G is also left cuspidal.
For a representation m of GG satisfying the second adjointness property Rgﬂ‘ =4 PL%T[‘ for all
parabolic subgroups P of G (see §4.3), then left cuspidal is equivalent to right cuspidal. For an
irreducible smooth R-representation (hence admissible), supercuspidal implies obviously left
and right cuspidal. The converse is true when R is an algebraically closed field of characteristic
0 or banal [Vig96, I11.3.9]. When G = GL(2,Q,) and the characteristic £ of C divides p+1, the
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smooth C-representation Indg 1 of G admits a left and right cuspidal irreducible subquotient
[Vig89], which is not supercuspidal.

6.2. The case of Nj-coinvariants. We proceed to the proof of Theorem 6.1, Part (i). First
we assume that Aps is orthogonal to A\ Aps. Recall that P, is the parabolic subgroup
corresponding to A, and M, its Levi subgroup (subsection 2.4). Our assumption P(o) = G
implies A, = A\ Aps. The representation e(o) is obtained by extending o from M to
G = MM/ trivially on M.

6.2.1. Assume P; D P, so that Nj acts trivially on e(o) because Ny C M.. We start from
the exact sequence defining Stg and we tensor it by e(o)

(17) @ e(o) ® Indg/ 1—e(o)® Indg 1—e(o)® Stg — 0,
QeQ

where @Q is the set of parabolic subgroups of G containing strictly ). Applying the right
exact functor L1G31 gives an exact sequence. As o is p-torsion, Corollary 5.8 gives a natural
isomorphism Lgl (e(o) ® Indg 1) ~ep (o) ® Ind%imQ 1 and similarly for Q' € Q, so we get
the exact sequence

@ em, (0) ® Ind%im@ 1—enm(o)® Ind%im@ 1— Lgl(e(a) ® Stg) — 0.

QeQ
The map on the left is given by the natural inclusion for each summand. If for some Q' € Q
we have M1 N Q' = M N Q' then that map is surjective and LE (e(o) ® Stg) = 0. Otherwise
(@, P1) = G (see the lemma below) and from the exact sequence we have an isomorphism

LG, (e(0) @ St§) ~ ear, (0) @ Sthf! g

Lemma 6.12. (Q, P1) = G if and only if MiNQ' # M NQ' for all Q' € Q. In this case, the
map Q' +— My N Q' is a bijection from Q to the set of parabolic subgroups of My containing
strictly Q N M.

Proof. The proof is immediate after translation in terms of subsets of A. O

6.2.2. Assume (P, P) = G. Then P; D P,, N; is contained in M’ and acts trivially on Stg
because Ap; and A\ Ajs are orthogonal. By Lemma 5.1 we find that Lgl(e(a) ® Stg) o~
L%e(a)@S‘c%Ml. Decomposing P, = (PLNM)M] = (MiNM)N1M] and My = (MiNM)M]
we see that the R[P;]-module L%e(a) is LYjp,o = on, trivially extended to M. That is
L%e(a) = eMl(L%mpla). On the other hand, because Q D M and M; D M, we have G =
MM, = QM and the inclusion of M; in G induces an homeomorphism (QNM;)\M; ~ Q\G.
So, (Indg 1)|as, identifies with Ind%imQ 1, this also applies to the Q' € Q containing @, thus
Stg]M1 o St%im@- We get Lgl (e(o)® Stg) o~ eMl(L%mpla) ® St%im@ proving what we want
when P; D My, since Ag U Ay, = A. Note that the assumption that o is p-torsion was not
used.

6.2.3. The case where P; is arbitrary can finally be obtained in two stages, using the tran-
sitivity property of the coinvariant functors: first apply LIGD2 where P, = M P, contains P
then apply L%;rwﬂ where (P N My, Py N M) = M,. Applying 6.2.1, ng(e(cr) ® Stg) =0
unless Ap, UAqg = A in which case LE (e(o) ® Stg) ~ e, (0) ® St%;mQ. Applying 6.2.2,

M M M
Laiap, (ea(0) @ Styng) = (ear, (Lfnp, @) @ Sty no)-
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This ends the proof of Theorem 6.1 (i) when Ay is orthogonal to A\ Ayy.

In general, we introduce Ppin = MuminNmin and an e-minimal representation oy, of My
as in Lemma 2.9, such that 0 = ep(omin). Then Ay . = Apiy is orthogonal to A\ Ay
(Lemma 2.10), and o is p-torsion so is oy so we can apply Theorem 6.1 (i) to opin. As
e(0) = e(omin) We get:

Lgl(e(a) ® Stg) is isomorphic to eMl(L%:znpl (0min)) ® St%in@ if (Q,P1) =G, and is 0
otherwise.

We prove now eMl(L%Eerpl(amin)) = e]\/[l(L]\]\f[’ﬁP1 (0)). Write J = Apr \ Apin and Apy, =
Ajp. The orthogonal decomposition Ay N Ay = (Apin N A7) L (JNAy) implies M N M; =
(Myin WMy )(My N M) But (MyN M) C M) acts trivially on o (§2.2), so we deduce that
omnn, extends (Omin)M,nN, and e (L%::rwﬂ (omin)) = € (L%ND1 (0)). This ends the
proof of Theorem 6.1 (i).

7. ORDINARY FUNCTOR Ord%1

Let us keep a general reductive connected group G and a commutative ring R. Let P, =
M Ny be a standard parabolic subgroup of G and (P = MN,0,Q) an R[G|-triple with
P(o) =G.

In this section §7, we prove Theorem 6.1, Part (ii) after establishing some general results in
§7.1 and §7.2, with varying assumptions on R. As in §6 for the coinvariant functor L%, first
we assume that o is e-minimal, so that Aj; is orthogonal to A\ Ajy; it suffices to consider
two special cases Py D P (§7.3) and (P;, P) = G (§7.4) and the general case is obtained in
two stages, introducing the parabolic subgroup (P;, P) = M P;. When o is no longer assumed
to be e-minimal, we proceed as above, using oyin.

7.1. Haar measure and t-finite elements. Let H be a locally profinite group acting on a
locally profinite topological space X and on itself by left translation. For z € X, we denote
by H, the H-stabilizer of x. The group H acts on C°(X,R) by (hf)(z) = f(h~'z) for
heH feC*(X,R),x e X.

Proposition 7.1. Assume that R is a field and that there is a non-zero R[H]-linear map
C*®(H,R) — CX(X,R). Then for some x € X there is an R-valued left Haar measure on
H,.

Proof. We show that the proposition follows from Bernstein’s localization principle [Ber84b,
1.4] which, we remark, is valid for an arbitrary field R.

Let C°(H,R) % C°(X, R) be a non-zero linear map. We show that there exists = € X
such that Homp(C°(H x {z}, R), R) # 0. We view ¢ as providing an integration along the

fibres of the projection map H x X — X, that is, a non-zero linear map C°(H x X, R) 2
C°(X, R) defined by

o(f)(z) = ¢(fz)(x)
forz e X, f e CX(H x X, R), where f, € C°(H,R) sends h € H to f(h,z). The dual of ®
is a non-zero linear map
Homp(C®(X, R), R) -2 Homp(C=(H x X, R), R)

of image the space of linear functionals on C2°(H x X, R) vanishing on the kernel of ®.
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But C2°(X, R) is also an R-algebra for the multiplication 1112 (x) = 11 (x)2(x) if 91,19 €
C*(X,R) and x € X. Then, C*(H x X, R) is naturally a C2°(X, R)-module: for ¢ €
CX(X,R) and f € CX(H x X,R), then ¢f € C*(H x X,R) is the function (h,z) —
(6)(h, ) = () f(h,). The map @ is C2(X, R)-linear: (1), = ¥(2)f, and @(f)(x) =
o((0f)z) (@) = (x)p(fr)(z) = ¥(x)®(f)(z). The image of @ is a C2°(X, R)-submodule: for
€ CP(X,R) and L € Hompg(C°(H x X, R), R) vanishing on Ker ®, (Y L)(f) = L(¢f).

By Bernstein’s localization principle, Im(*®) is the closure of the span of those functionals
in Im(*®) which are supported on H x {z} for some # € X. Consequently, as Im(*®) # 0,
there exists © € X and a non-zero L € Hompg(C°(H x X, R), R) vanishing on Ker & which
factors through the restriction map C°(H x X, R) — C®(H x {x}, R). There is a non-zero
element ;1 € Homp(C°(H x {z}, R), R) such that L = p o res.

Now assume that ¢ is H-equivariant. We show that u is H,-invariant. Indeed, denote by
X the characteristic function of a small open neighborhood V of z. Let f € C°(H, R). Take
f®xin C°(H x X, R). Then ®(f ® x) = ¢(f)x whereas ®(hf @ x) = p(hf)x = (ho(f))x
for h € H,. We can certainly take V' small enough for ¢(f) and he(f) to be constant on V;
as hx = x, they are equal at x hence on all V. In particular L(f ® x) = L(hf ® x) which
implies that p is Hp-invariant.

Now, for z € X, applying Bernstein’s localization principle to the natural map H — H,\H,
the existence of a non-zero Hj-invariant element of Hompg(C°(H x {z}, R), R) implies the
existence of a R-valued left Haar measure on H,.

(|

There is a variant of Proposition 7.1 where R is replaced by an R-module V' with zero
p-ordinary part.

Corollary 7.2. Assume that V is an R-module with ;> p*V = {0} and that there is a
non-zero R[H]-linear map ¢ : C(H,R) — C(X,V). Then for some x € X there is a
Fp-valued left Haar measure on H,.

Proof. As Ng>op"V = {0}, there exists a largest integer k such that the image of ¢ is
contained in p*V but not in p**'V. The map ¢ induces a non-zero (R/pR)[H]-linear map
C>®(H,R/pR) — CX(X,pFV/p**1V). By R/pR-linearity, it restricts to a non-zero F,[H]-
linear map ¢, : C°(H,F,) — C2(X,p*V/p**1V). The values of the functions in the image
of ¢, is a non-zero F,-subspace V,, of pFV/pFt1V and composing with a [Fp-linear form on V),
we get a non-zero Fy[H]-linear map C°(H,F,) - C>*(X,F,). Applying Proposition 7.1 to
R =T,, we get the desired result. O

In the special case X = H acting on itself by left translation, all stabilizers H, are trivial,
and there are non-zero R[H]-endomorphisms of C2°(H, R), for example those given by right
translations by elements of H.

Consider the special situation, which appears later in the proof of the theorem, where
there is an automorphism ¢ of H and an open compact subgroup H of H such that t*(H°)
tFHL(HO) for k € Z, H = Ugey t*(HY) and {0} = Nyez t*(H®). Let moreover W be an
R-module with a trivial action of H and an action of ¢ via an automorphism. Then we
have a natural action of ¢ on C°(H,W) - that we identify with C°(H,R) ® W - and on
HomR[H}(Cgo(Hﬂ R)v CSO(H, W)) by

tf(h) =t(f(t'h),  (te)(f) = tlpt™' ),
for h e H, f € C*(H, W),y € Homp (CP(H, R), C*(H,W)).
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We recall that, for a monoid A and an R[A]-module V, an element v € V is A-finite if the
R-module generated by the A-translates of v is finitely generated.

We say that V is A-locally finite if every element of V' is A-finite, If A is generated by an
element ¢, we say t-finite instead of A-finite. When R is noetherian, the set VA~f of A-finite
vectors in V' is a submodule of V.

If w e W is t-finite, then f — f ® w in Hompgy(C°(H, R), C°(H, W)) is obviously
t-finite. Conversely:

Proposition 7.3. When R is noetherian, any t-finite element of
Hom g (C°(H, R), C°(H, W)
has the form f +— f @ w for some t-finite vector w € W.

Proof. For r € Z let f. € C°(H, R) be the characteristic function of ¢"(H?) so that t*f, =
frar for k € Z, hf, is the characteristic function of ht"(H") for h € H, and for v’ > r,
frr = Xher 0y jer oy fr- Any f € C2°(H, R) is a linear combination of H-translates of f,,
r € 7.

Let ¢ € Hompz(C2°(H, R),C°(H, W)). The support of ¢(fy) € C°(H, W) is contained
in ¢"(HY) for some integer r > 0. For v’ > 0, the H-equivariance of ¢ implies that ¢(f.) =
D het (H0)/HO ho(fo); in particular, ¢(f,) has support contained in ¢"(H°) and since ¢(f;)
is t"(HY)-invariant, it has the form f. ® w for some w € W. For r’ > r, we have similarly
o(fr) = ZhEtT’(HO)/tTHO ho(fr) = frr @ w. For k > 0, we compute

(18) (tk@)(fr’+k) = tk(gp(t_kfrurk)) = tk(@(fr/)) = tk(fr’ ® w) = frik @ tFw.

Assume now that ¢ is t-finite. Then there is an integer n > 1 such that the tkgo, 0<k<n—1,
generate the R-submodule V, generated by the t*o, h € N, and there is a relation

(19) " = art" o+ -+ an_1to + anp,
with ay,...,a, € R. Applying (19) to f,i, and using (t*¢)(fnir) = fair @tFw for 0 < k <n
by (18), we get

frtr Qt"w = fri, ® (alt"_lw + -t ap_1tw + aw).

So that t"w = a;t" ‘w + - -+ + ap_1tw + a,w and w is t-finite.

We have already seen that o(f.) = fv @ w for ¥/ > r. Let k > 1 and assume that
o(fr) = frr @ w for v > k. Noting that (t'0)(frir_1) = frsk_1 @ tw for 0 < i < n—1
because n + k — 1 —i > k, we apply (19) to fr1x—1 and we deduce

(") (frth—1) = frth—1 ® (@t" w + -+ + an_1tw + anw) = frpp—1 O t"w,
so that t"(p(frk—1)) = t"(fr—1®@w) and finally ¢(fx—1) = fr—1®@w. This proves the proposition
by descending induction on k. O

We suppose now that W is a free R-module with a trivial action of H and of t. Let V'
be an R[H]-module with a compatible action of ¢. As above, we have a natural action of ¢ on
HOIDR[H](CSO(H, R), V) and on HOHlR[H](Cgo(H, R), Vv X® W)

Proposition 7.4. When R is noetherian, the natural map Hom g (C°(H, R),V) @ W —
Hom g (C°(H, R),V ® W) induces an isomorphism between the submodules of t-finite ele-
ments.
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Proof. The natural map sends ¢ @ w to f — ¢(f) ® w. It is an embedding because W is
R-free. Tt sends a t-finite element to a t-finite element because ¢ acts trivially on W. Let
¢ € Homp g (C°(H, R),V @ W) and let (w;)ie; be an R-basis of W. For f € C°(H, R) we
write uniquely ¢(f) = > vi(f) ®w; for v;(f) € V. For each ¢ € I, the map v; is R[H]-linear
and for each f, v;(f) vanishes outside some finite subset I(f) of I. But it is not clear if the
map v; vanishes outside a finite subset of I. Now assume that ¢ is t-finite. As in (19), there
exists n > 1 and aq,...,a, € R such that for each i € I,

(20) t"u(t7"f) = alt”_lvi(t_”+1f) 4+t an,ltvi(t_lf) + anv;(f).

Let Iy = I(fo) be a finite subset of I such that v;(fo) = 0 for i« € I\ Iy. For r > 0,
vi(fr) = 0 for i € I\ Iy because f, is a sum of H-translates of fy. Let k € Z and assume
that for r > k, v;(f,) = 0 for i € I\ Ip. Apply (20) to f = fnyr—1 for ¢ € I\ Iy. This
gives t"v;(fx—1) = 0 hence v;(fx—1) = 0. As any f € C°(H, R) is a linear combination of
H-translates of f, k € Z, we have v;(f) = 0 for i € I'\ Ip and @(f) = > ;c;, vi(f) ® w; does
belong to Hom g1 (Ce°(H, R), V) ® W; each of the v; € Hompg g (C2°(H, R), V) for i € I is
t-finite (because ¢ is t-finite), and that proves the proposition. ]

7.2. Filtrations. We analyze the sequence (17) defining Stg, by filtering Indg 1 by subspaces
of functions with support in a union of (Q, B) double cosets. An important fact is that the
(Q, B)-cosets outside QP do not contribute.

For convenience of references to [AHHV17], we first consider (@, B) double cosets - we shall
switch to (Q, B)-cosets later. A (Q, B)-double coset has the form QnB for some n € N; if w
is the image of n in the finite Weyl group W = N'/Z we write, as is customary, QuwB instead
of @nB. The coset Wow is uniquely determined by QwB and contains a single element of
minimal length. We write W for the set of w € W with minimal length in Wow; they are
characterized by the condition w=!(a) > 0 for o € A [Car85, 2.3.3]. We have the disjoint
union

G= |_| QubB.
welWwW
By standard knowledge, for w,w’ € YW, the closure of QwB contains Qu’B if and only if
w > w' in the Bruhat order of W. As in [AHHV17, V.7], we let A C YW be a non-empty
upper subset (if a < w,a € A,w € YW, then w € A) so that QAB is open in G, and we
choose w4 € A minimal for the Bruhat order; letting A’ = A\ {wa}, QA’'B is open in G too.
Let C—IndgAB 1C Indg 1 be the subspace of functions with support in QAB,

cIndZ*” 1 ~ C=(Q\QAB, R).
For a parabolic subgroup @) of G' containing @), we have Imdg1 1cC Indg 1 and we let
QAB _ G QAB
IQ1 =1Indg, 1N c—IndQ 1.

It is the subspace of functions with support in the union of the cosets Q12 contained in QAB.
We have Igfl B IglAB. We also use an abbreviation Ig, 4 = IQIAB.

Lemma 7.5. For Q1 D Q, the injective natural map IglAB/Igle — C—IndgAB 1/ c—IndgAlB 1

is an isomorphism if wa € AW, and Ig;AB = IglA/B otherwise.
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Proof. We write w = wa. Assume first that w ¢ @1W. Write w = vw’ withv € W, \{1}, v’ €
Q1W. We have w' < w and w is minimal in A hence w’ ¢ A. Let ¢ € Ig, a. If the support
of ¢ meets QwB, it meets w’'B and this is impossible because w' € A. Thus ¢ € Ig, 4 and
Ig,, A = Ig, a as desired.

Assume now that w € @1W and let ¢ € Ina. Aswe Q1W, the natural map U — Q1\Q wB
induces a homeomorphism (w™'Uw N UN\U = Q:\QiwB; as w € YW, the natural map
U +— Q\QuwB induces also a homeomorphism (w™'Uw N U)\U = Q\QuwB [AHHV17, V.7].
Consequently, there is a function ¥ on QiwB left invariant under )1 and locally constant with
compact support modulo 1 which has the same restriction as ¢ to QwB. Set A >, C Quyy
to be the upper subset of u with u > w. The set Q141 >, B is open in G and Q1wB is closed
in Q1A >wB. There exists a function 15 on Q1 A1,>,B left invariant under @1 and locally
constant with compact support modulo @1 which is equal to 1 on QiwB. For u € Aj >y
the double coset QuB is the union of double cosets QtuB for t € Wg, with tu € QW: as
tu > u > w we have tu € A hence QiuB C QAB and naturally Q14 >,B8 C QAB. Now,
we have ) € I, A, IZJ and ¢ have the same restriction to QwB, hence the same image in
Ig,a/1g, a7, and the map of the lemma is surjective. O

Lemma 7.6. If P is a set of parabolic subgroups of G containing Q, then

G QAB 4 QAB
( Z C—IndQ1 1) N c—IndQ 1= Z c—IndQ1 1.
Q1P QiEP

Proof. The left hand side obviously contains the right hand side. The reverse inclusion is
proved as in [AHHV17, V.16 Lemma 23] by descending induction on the order of A. The
case where A = W being a tautology, we assume the result for A and we prove it for
A= A\ {wa}. As (Xg,ep Imdg1 1) N Ig, s is nothing else than (3 g, ep 1Q,,4) N Ig,ar, We
pick fg, € Ig,,a for Q1 € P and assume that > o cp f@, € Ig.a; we want to prove that
Yqier for € 2Xqier Loi,ar-

If wg & QW fo, € Ig, 4 by Lemma 7.5. We are done if wy ¢ QW for all Q; € P.

Otherwise, Q1 € P such that wy € @'W is contained in the parabolic subgroup Qs as-
sociated to Ay = {a € A,w,(a) > 0} and wa € 92W; we choose fq, € Ig, 4 such that
fo — fq, € 1, a, that is possible by Lemma 7.5. We write Y ¢, cp f@, as

. fo = > for + > (for — fq.) + > fQ,-
Q1€P Q1EP,wag1W Q1P wacQ1W Q1EP,wAC1W

The last term on the right belongs also to I 4/ because the other terms do, and even to
Ig, ar. We have I, ar C Ig, a/, and the last term belongs to Ig, s for any )1 € P such that
w € AW, This ends the proof of the lemma. O

To express Lemmas 7.5, 7.6 in terms of (Q, B)-double cosets we apply the remark that
QwBwy = QuwwoB if wyg is the longest element in W, so translating by wg 1 a function with
support in QAB gives a function with support in QAwgB. For a parabolic subgroup @1 C Q,

QAwoB _ G QAwoB
IQ1 07 = Indg, 1N c—IndQ 1

is the set of functions obtained in this way from Ing. We have w < w' if and only if
w'wy > wwp for w,w’ € W [BBO05, Proposition 2.5.4], YWuwyq is the set of w € W with
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maximal length in Wow, Awy is a non-empty lower subset of QWwg and w4wp is a maximal
element of Awg for the Bruhat order. We get:
Lemma 7.7. For Q1 D Q, the natural map
AwoB A'woB AwoB A'woB
IGAB /184 0F s ¢ Ind°P 1/ c-Indg* P 1

= ISIA/wOB otherwise.

is an isomorphism if wa € AW, and IglAWOB

Lemma 7.8. If P is a set of parabolic subgroups of G containing Q, then

> end§, 1) Nemdd*™ 1= 3 chdg”1.
Q1€P OreP

Note that - - B
c—IndgAwoB 1/ C—IndgA woB gy ~ c—IndgwAwOB 1

as representations of B. The image of IndgAwOE 1in Stg is denoted by StgAwOE.
Lemma 7.9. The R-modules C—IndgAw()El and StgAwOE are free.

Proof. We denote St§ = St&(R) or StgAon = StgAwOE(R) to indicate the coefficient ring
R. The module C®(Q\QAwyB,Z) and Stg(Z) are free [Lyl5] and a submodule of the free

Z-module Stg(Z) is free, hence StgAon(Z) is also free. The exact sequence of free modules
defining Stg(Z) or StgAwOB(Z) remains exact when we tensor by R. As C°(Q\QAwoB, R) =
C(Q\QAw B, Z) ®7 R, we have also St§(Z) ©z R = St§(R) and St3""°P(2) @7 R =
StgAwOB(R). Thus, the lemma. O

Lemma 7.10. Stg‘%}oE = StgA/wOE if wa € QW for some Q1 € Q (notation of (6.2.1)).

Otherwise the map C—IndgAwOE 1— StgAon induces an isomorphism
AwoB A'woB AwoB Alwo B
(:—Ind?2 R C—Indg R Stg W/ Stg e,

Proof. Set I, 4 = Ig;&lwoﬁ‘ If wy € @'W for some Q1 € 9, ‘illen by Lemma 7.7, Ig 4 =
I, a+1g 4 and taking images in Stg we get StgA/woB = StgAwoB

for all Q1 € Q by Lemma 7.7. The kernel of the map Ig 4 — StgAwOE is 20,0 Io, 4

. Otherwise, TQLA = TQl,A’

by Lemma 7.8 and similarly for A’. Hence the kernels of the maps Ig 4 — StgAwOE and
7Q7 A — StgA/woB are the same, and we get the last assertion. ]

Proposition 7.11. Assume that Py and Q1 contain Q but that Py does not contain Q1. Then
Ind§, 1N c-Indg™ 1 = 0.

Proof. We prove that the assumptions of the proposition imply that QP; does not contain
any coset Q1z. We note that P; O @ implies

(21) Qﬁl = Plﬁl = N1M1N1.
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The inclusion P|P; D QP; is obvious, and the inverse inclusion (and the second equality)
follows from N1 C Ng and PP, = N\P{,QP; = NQFL If QP; contains a coset Qz, we
can suppose that z = p; with p; € P;. We have N1 C Ng C @1 and @1p; C P P; implies
Q1 C P, Py, in particular Mg, C Py P,. By that latter inclusion, for y € Mg, there exist
unique n1 € Ni,mq € My, € N1 with y = nym 7. For any central element z of Mg, , we
have zy,f1 = y and by uniqueness 2niz” = ng, 2mizt = my, #mz! = m;. But then,
n1,m1,M € Mg, and we deduce Mg, = (Mg, N N1)(Mg, N M;)(Mg, N'Ny); this contradicts
the fact that Mg, N Py is a proper parabolic subgroup of Mg, when P; does not contain
Q1. U

Corollary 7.12. For Py D Q, the ezact sequence (17) induces an ezact sequence of Pi-
modules B B B
0— Z (Indgl 1n c-Indgp1 1) — C—Inngl 1— S‘cgp1 — 0.
QCQ1CH

7.3. Case P; D P. Assume that o is e-minimal, hence A is orthogonal to A\ Ay, and
that P, D P in this whole section §7.3. We start the proof of the theorem 6.1 (ii).

Proposition 7.13. Assume 0,_orq = {0}. When w € W\ WoW,y,,

Homy (C°(N1, R), e(0) ® c-Ind3"P 1) = 0

Note that w € W\ WoW,y, is equivalent to QwB ¢ QP; and that Ny acts trivially on
e(o) because P; D P as in (6.2.1).

Proof. As 0,_ora = 0, Corollary 7.2 applied to H = N1, X = Q\QwB,V the space of o,
implies
Homy, (C2°(N1, R), e(0) ® c-Ind3"” 1) = Homg; (C2°(N1, R), e(0) ® C2°(Q\QwB, R) = 0,
if the Ni-fixator of any coset Qz contained in QuwB is infinite (the infinite closed subgroups
of Ny being locally pro-p-groups do not admit an F,-valued Haar measure). This latter
property is equivalent to @ NwNw ™! infinite, because N is normalized by P; O U. Indeed,
QuwB = QwU and Qx = Quwu withw € U. For m; € N1, Quun; = Qw if and only if wm !
fixes Qw if and only if wm @' € w™'Qw N N;.

When w € W\ WoWyy,, there exists 8 € —®y, = @5, with w(8) € ®n, by Lemma 5.13.
The group @ NwNjw™! is infinite because it contains Uw(p)- We get the proposition. O

Corollary 7.14. When op_orq = {0}, we have
Homy, (C2°(N1, R), e(0) ® Ind§ 1) = Homy (C°(N1, R), e(0) ® c-Ind3" 1),
Homﬁl(Ccoo(Nh R),e(0) ® Stg) = Homp, (C>(N1,R),e(0) ® Stgﬁl)_

Proof. Q?L is open in G (a union of Q-translates of N1 P1) and there is a sequence of double
cosets Qu; B, w; € W, ¢ =1,...,r, disjoint form each other and not contained in Q) P; such
that

X, = Qﬁl U <|_| Qw]B)

j<i
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is open in G and G = X,. We reason by descending induction on ¢ < r. Consider the exact
sequence of free R-modules (Lemma 7.9)

0— C—Indgi” 1— c—Indgi 1— C—Indgwiﬁ 1—0.

Tensoring by e(o) keeps an exact sequence, and applying Homﬁl(Cgo (N1, R),—) we obtain
an isomorphism (Proposition 7.13 and the latter functor is left exact)

Homy, (C(N1, R), e(0) ® c-Indy ™" 1) = Homyg (C2°(N1, R), e(0) @ c-Indi 1),
Composing these isomorphisms we get the first equality of the corollary. For the second
equality, we suppose that each w; has maximal length in the coset Wgw; and is maximal in
{wi,...,w;} for the Bruhat order. This is possible because QP = UwEWQWI\Jl QwP; and
WoWyy, is a lower set for the Bruhat order hence there are no w,w’ € W of maximal length

in their cosets Wow, Wow' with w > w' and Qw C QP but Qu’ ¢ QP;. Now, we have the
exact sequence of free R-modules (Lemma 7.9),

Xi—1 X; :
0—>StQ —>StQ —Y,—0

where Y; is either 0 or (:—ImdgwiE 1 by lemma 7.10. Then proceeding as above for the first
equality, we get the second equality of the corollary. [l

Proposition 7.15. Assume R noetherian, o admissible, 0p_orq = 0 and Py O Q. Then
Olrd%1 (e(o) ®Indg 1) and Ord%l(e(o) ®Stg) are naturally isomorphic to e, (o) (X)Indé\z/[rlﬂw1 1

and epr, (0) @ StgﬁMl.

Proof. Noting that QP; = Py N because P; D @ and N1 C Ng, the Pi-module c—ImdgF1 1
identifies with
C—Imdg%M1 1®C®°(Ny, R)

where N acts by right translation on C2°(N1, R) and trivially on c—Indé\?/% a, 1, whereas My
acts by conjugation on Ny on the second factor and right translation on the first. If o) orq = 0,
it suffices to recall Corollary 7.14 to identify Ord%1 (e(o) ®Indg 1) = Ordg1 (e(a)@c—lndgp1 1)
with the subspace of Z(M;)-finite vectors in

(22) Hom v 1(C°(N1, R), e(0) ® Indgydyy, 1@ O (N1, R)).

By Remark 4.18 we may even take only ¢-finite vectors where t = 2~ and z € Z(M) contracts
strictly N (subsection 2.5). Put W = ey, (0) ® Ind%imQ 1 and then W ® Id for the subspace
of (22) made of the maps ¢ — f ® ¢ for f € W. If R is noetherian, W ® Id is Z (M )-locally
finite because W is an admissible R-representation of M; (a vector w € W is fixed by an open
compact subgroup J of M; and W is a finitely generated R-module, invariant by Z(Mj)).
Hence Ord%1 (e(o) ® C—Indg 1) contains W ® Id. Applying Proposition 7.3 with H = N; and
some suitable ¢t € Z(M;) we find that W ® Id is the space of t-finite vectors in (22). This
provides an isomorphism

Ordg (e(0) @ Ind§ 1) = ear, (0) @ Indgyly, 1.

Similarly, for Q@ C @1 C Py, c—Indgiﬁ1 1~ Indgme1 1® CX (N1, R), as R[P1]-modules.
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The exact sequence in Corollary 7.12 is made of free R-modules (Lemma 7.9) hence remains

exact under tensorisation by e(o), we get a R[P;]-isomorphism
ens, (0) @ St37 = ear, (0) @ Stoytay, ® C°(N1, R)

As R is noetherian and o,_orq = 0, Ol“d%l (e(o) ® Stg) = Ord%l(e(a) ® Stgﬁl) identifies
(Corollary 7.14) with the subspace of Z(M;)-finite vectors in

Hom y, (Ce* (N1, R), eary (0) @ Steyd g, © C° (N1, R)),
which is made out of the maps ¢ — f ® ¢ for f € Stg% A, by the same reasoning as above,
thus providing an isomorphism
Ord$ (e(0) ® StG) = ear, () @ St
This ends the proof of the proposition. O
Proposition 7.16. When Py 7 Q and op_org = {0}, then
Homy (C°(N1, R),e(0) ® Indg 1) = Homy (C°(N1, R),e(0) ® St5) = 0.
Proof. As allowed by Corollary 7.14, we work with
Homy, (C2°(N1, R), e(0) ® c-Ind3™" 1), Homy, (C°(N1, R), e(o) @ St37).

We filter QP; by double cosets QuB, w € Wyy,, as above. We simply need the following
lemma. g

Lemma 7.17. When P; 7 Q, w € Wy, and op_org = {0}, then

Hom g (C° (N1,R),e(0) ® c—Indng 1) =0.
Proof. As in Proposition 7.13, assuming 0,_,,q = 0 that follows from Corollary 7.2 applied
to H= N; and X = Q\QwB,V = e(0) if Q NwNjw™! is not trivial. When w € Wy, , we
have N1 = wNjw™! and the hypothesis that P; does not contains @ implies that there is
a € Ag not contained in Ap,. The group @ N wNiw™" = Q NN is not trivial because it
contains U_,. We get the lemma. O

Corollary 7.18. Assume R noetherian, o admissible, op_orq = {0}, and Py 7 Q. Then
Olrd%1 (e(o) ® Indg 1) = Ord%1 (e(o) ® Stg) = 0.

7.4. Case (P, P;) = G. Assume that o is e-minimal and that (P, P;) = G.

Proposition 7.19. Assume R noetherian, o admissible. For Xg equal to Indg 1 or Stg, we
have

Ord$ (e(0) © X§) = ear, (Ordyy 5 () © Xiflngo-

Proof. We have P; D P,, or equivalently M; D M, and Ny C N,. As Ny C M’, Ny acts
trivially on Indg 1 (hence on its quotient Stg) because G = M'M, acts on Indg 1 trivially
on M' (A and A, are orthogonal of union A). As M; D M,, Z(M;) commutes with M,
and acts trivially on Stg. We can apply Proposition 7.4 to H = N1,V = e(o), W = Xg and
t € Z(M,) strictly contracting N7 (subsection 2.5), to get isomorphisms

Ord%l(e(a) ® Xg) ~ Ord%1 (e(o)) ® XS,
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as representations of M;. As M; D M,, the restriction to M; of Xg is X%Ml' To
prove the desirii result, we need to identify Ord%1 (e(0)) and €M1(Ord%mpl(g))- Put Y =
Hom v 1 (C°(N1, R), V). Then Ord$ (e(0)) = Y#(M)=/ and Ord}} o (o) = YZ(MOM)=/,
As Z(MiN M) D Z(My), a Z(My N M)-finite vector is also Z(Mj)-finite. On the other hand,

Z(My N M) N M, acts trivially on N and V hence on Y. The maximal compact subgroup
Z(MyN M) of Z(M;N M) acts smoothly on Y, hence all vectors in Y are Z(M; N M)%finite.

Lemma 7.20. Z(M;)Z(My N M)°(Z(My N M) N M) has finite index in Z(M; N M).

Granted that lemma, the inclusion YZM)—f ¢ yZMA0M)=f which is obviously M; N M-
equivariant is an isomorphism. As YZ(M1)~f ig a representation of M it is e M, (Y?Z (MyOM)—f ),
which is what we want to prove.

We have Z(MiNM)° = Z(MNM)NTP. It suffices to prove that the image of Z(M;)(Z(MiN
M)N M) in X,(T) via the map v: Z — X (T) ®z Q defined in §2.1, has finite index in the
image of Z(M;NM). The orthogonal of Z(M;NM) in X*(T)®zQ is contained in the orthog-
onal of Z(My)(Z(MyNM)NM.). It suffices to show the inverse inclusion. The orthogonal of
Z(My) in X*(T)®zQ is generated by Apz,. The image by v of Z(MiNM)NM/ in X,.(T) con-
taining the coroots of A, its orthogonal is contained in Ay;. We see that the orthogonal for
Z(Ml)(Z(Ml ﬂM) ﬂM(/T) in X*(T) ®7 Q is contained in AMl NAy. As AMlﬂM = AM1 NAp
is the orthogonal of Z(M; N M) in X*(T) ®z Q, the lemma is proved. O

This ends the proof of Proposition 7.19.

7.5. General case. 1) First we assume that o is e-minimal. We prove Theorem 6.1 (ii) in
stages, introducing the standard parabolic subgroup P, = (P, P) and taking successively
Olrd%2 and Ord2 using the transitivity of Ord%. For XS equal to Indg 1 or Stg, we

Mgﬂﬁl
have
Ord§ (e(0) ® X§) = Ord}?_ (Ord§ (e(0) ® X))
_[Ord)? o (ean(0) @ Xgfay,) i P22 Q
0 if P2 ﬁ Q
_ fea, (0rd)] 5 o) @ Xgly, HP2DQ
0 if P» Q.

The second equality follows from Proposition 7.15 for the first case and Corollary 7.18 for
the second case, and the third one from Proposition 7.19. This ends the proof of Theorem
6.1, Part (ii) when Ay is orthogonal to A\ Ayy.

2) General case. As at the end of §6.2, we introduce Ppin = MpminNmin and an e-minimal
representation oy, of Myi,. The case 1) gives

{eM1 (Ordﬁzi:mﬁl Omin) ® X%Ml if(Pr, Puin) D Q,
if(P1, Pyin) 2 Q.

We have e(0) = e(0min). So we can suppress min on the left hand side. We show that we

can also suppress min on the right hand side.
If (P, P) % Q then (P}, Puin) 7 Q as Puin C P, hence Ord%(e(a) ® X§) =0.

(23)  Ord (e(omm) ® X§) =
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If (P,P) D Q but (P, Pnin) 7 @, then Ord%l(e(a) ® XS) = 0 and we now prove

Olrd%mﬁ1 o = 0. Our hypothesis implies that there exists a root o € Ap which does not
belong to A1 U Ain. The root subgroup U_,, is contained in M N Ny ind acts trivially on
o. Reasoning as in the proof of Proposition 7.13, Hom,, 5 (C°(M N N1, R),0) = 0 hence

M _
OrdMﬁﬁ1 oc=0.

If (P1, Pnin) O Q then J C Ay = Ap, where J = Ap \ Apin. The extensions to M of
Ordyy 5 0 = (Homp 5 1 (C(M NNy, R), o)) 2N M)~
(see (4)) and of Ord%‘“f“mﬁl Omin are equal as we show now:

The group M N N is generated by the root subgroups U, for o in ®3; not in ®;. Noting
that ®ps \ Ppin = P is disjoint from P,;, and contained in 1 = Py, a root « in @, not
in ®; belongs to ®yin; hence M NNy = Myin N Ny.

The group Z(M N M) is contained in Z(Mpyin N M7). Moreover T'N M/, acts trivially on o
and on M N N; and, reasoning as in 7.20, Z(M N M1)(Z(Muyin N M7) N M) has finite index
in Z(Muyin N My). Consequently taking Z(Mpin N My)-finite vectors or Z(M N Mj)-finite
vectors in Hom g 57 (CP(M NNy, R),0) gives the same answer. This finishes the proof of

Theorem 6.1 (ii) .
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