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Abstract. Soil moisture is a key variable of land surface hy-
drology, and its correct representation in land surface mod-
els is crucial for local to global climate predictions. The
errors may come from the model itself (structure and pa-
rameterization) but also from the meteorological forcing
used. In order to separate the two source of errors, four
atmospheric forcing datasets, GSWP3 (Global Soil Wet-
ness Project Phase 3), PGF (Princeton Global meteorologi-
cal Forcing), CRU-NCEP (Climatic Research Unit-National
Center for Environmental Prediction), and WFDEI (WATCH
Forcing Data methodology applied to ERA-Interim reanal-
ysis data), were used to drive simulations in China by the
land surface model ORCHIDEE-MICT(ORganizing Carbon
and Hydrology in Dynamic EcosystEms: aMeliorated Inter-
actions between Carbon and Temperature). Simulated soil
moisture was compared with in situ and satellite datasets
at different spatial and temporal scales in order to (1) esti-
mate the ability of ORCHIDEE-MICT to represent soil mois-
ture dynamics in China; (2) demonstrate the most suitable
forcing dataset for further hydrological studies in Yangtze
and Yellow River basins; and (3) understand the discrep-
ancies of simulated soil moisture among simulations. Re-
sults showed that ORCHIDEE-MICT can simulate reason-
able soil moisture dynamics in China, but the quality varies
with forcing data. Simulated soil moisture driven by GSWP3

and WFDEI shows the best performance according to the
root mean square error (RMSE) and correlation coefficient,
respectively, suggesting that both GSWP3 and WFDEI are
good choices for further hydrological studies in the two
catchments. The mismatch between simulated and observed
soil moisture is mainly explained by the bias of magnitude,
suggesting that the parameterization in ORCHIDEE-MICT
should be revised for further simulations in China. Underes-
timated soil moisture in the North China Plain demonstrates
possible significant impacts of human activities like irriga-
tion on soil moisture variation, which was not considered in
our simulations. Finally, the discrepancies of meteorological
variables and simulated soil moisture among the four simu-
lations are analyzed. The result shows that the discrepancy
of soil moisture is mainly explained by differences in precip-
itation frequency and air humidity rather than differences in
precipitation amount.

1 Introduction

Climate change strongly influences the hydrological cycle,
which in turn affects ecosystems services, food security, and
water resources (Bonan, 2008; Piao et al., 2010; Seneviratne
et al., 2010; Zhu et al., 2016). More importantly, the main
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mechanisms governing hydrological processes vary across
climate regimes affected by anthropogenic factors (Guim-
berteau et al., 2012; Wada et al., 2016, 2017). Covering dif-
ferent climate zones and most types of human activities (An
et al., 2017; Basheer and Elagib, 2018; Bouwer et al., 2009;
Feng et al., 2016; Rogers et al., 2016; Wu et al., 2018), China
is a good test bed to investigate the hydrological complexity
of climate–water–human interactions. In China, annual pre-
cipitation has increased in the south but declined in the north
over the last several decades (Ye et al., 2013; Zhai et al.,
2005). This dipole of precipitation trends is partly reflected in
the discharge trends of Yangtze and Yellow rivers (Piao et al.,
2010), but other factors than precipitation changes affect
river discharge including changes in rainfall intensity, land
surface state or condition, and water management (Ayalew
et al., 2014; Grillakis et al., 2016; Williams et al., 2015). A
prerequisite to understand how precipitation changes trans-
fer into river discharge changes is to analyze and evaluate
the various components of the surface water budget and es-
pecially the key variable relationships between precipitation
and soil moisture (SM), the result of the partition of precipi-
tation among evapotranspiration, infiltration, and runoff.

SM indeed plays a crucial role in adjusting local cli-
mate (Seneviratne et al., 2013; Teuling et al., 2010), reg-
ulating productivity and ecosystem dynamics (Schymanski
et al., 2008; Yin et al., 2014), and affecting carbon budgets
(Calvet et al., 2004). SM controls vegetation photosynthesis
through transpiration, which in turn significantly influences
surface temperature (Bonan, 2008; Dai et al., 2004). It also
impacts the infiltration rate of precipitation in the soil, and
its state before rainfall events determines the ratio of surface
runoff to precipitation (Grillakis et al., 2016). Therefore SM
is not only of importance in understanding land surface pro-
cesses, but also is a key indicator for predicting and address-
ing extreme events, such as heatwaves, floods, and droughts
(Hirschi et al., 2011; Teuling et al., 2010; Wanders et al.,
2014).

In the investigation of spatial and temporal SM variations,
in situ measurements (Dorigo et al., 2011; Liu et al., 2001;
Piao et al., 2009; Robock et al., 2000) are too sparse and
not always representative of larger scales. Although they can
provide firsthand records of SM fluctuations, the density of
in situ networks cannot meet the requirement for continental-
scale studies., and the different measurement techniques
make it difficult to combine different datasets. Satellite-based
SM products (Dorigo et al., 2015; Njoku et al., 2003; Su
et al., 2003; Wagner et al., 2012) provide excellent spatial
coverage and temporal sampling, but their accuracy varies
between instruments and retrieval algorithms used (Liu et al.,
2012). Moreover, these estimations concern only the first few
centimeters of soil depth, so the root-zone SM cannot be di-
rectly assessed, unless a model simulating the water transfer
processes is used. To overcome the uneven coverage of raw
data, data assimilation is widely applied to analyze SM from
in situ or satellite observations (Draper et al., 2012; Martens

et al., 2016; Reichle et al., 2007). Analyzed products help us
to understand SM variation and its relation to climate (Liu
et al., 2015b, 2017; Taylor et al., 2012). However, to capture
changes of hydrological mechanisms for future projection,
such measurements are not enough.

Land surface models (LSMs) are able to simulate the
short- and long-term SM dynamics consistently with atmo-
spheric forcing and surface information (Pierdicca et al.,
2015; Rebel et al., 2012; Xia et al., 2014) by reproducing
physical processes and interactions with other climatic, hy-
drological, and ecological factors (Seneviratne et al., 2010).
The uncertainty of simulated SM depends on the accuracy
of atmospheric forcing, in particular precipitation frequency
and intensity, as well as radiation. However, LSMs’ complex-
ity is a source of structural errors (missing processes) and bi-
ased parameters. Thus it is necessary to validate simulated
SM by observations in order to diagnose the source of errors
and estimate the ability of the chosen LSM to simulate SM
dynamics in the area of interest.

In this study, the land surface model ORCHIDEE-MICT
(ORganizing Carbon and Hydrology in Dynamic Ecosys-
tEms: aMeliorated Interactions between Carbon and Temper-
ature; Guimberteau et al., 2018) is used to simulate SM over
China. Besides land surface hydrology, ORCHIDEE-MICT
simulates energy budgets and vegetation dynamics (mecha-
nistic phenology, photosynthesis, and ecosystem carbon cy-
cling) which interact with the water cycle and climate (Guim-
berteau et al., 2012). Moreover, the evaluation of simulated
SM controlled by natural processes is useful to identify hu-
man effects (e.g., crops, irrigation, dam operation) on the wa-
ter budget in regions where there is a large misfit between the
model and observations.

Four global atmospheric forcing datasets are chosen to
drive the simulations in China, including GSWP3 (Global
Soil Wetness Project Phase 3), PGF (Princeton Global me-
teorological Forcing), CRU-NCEP (Climatic Research Unit-
National Center for Environmental Prediction), and WFDEI
(WATCH Forcing Data methodology applied to ERA-Interim
reanalysis data), due to their wide application in numer-
ous hydrological studies (Getirana et al., 2014; Guimberteau
et al., 2014, 2017, 2018; Hirschi et al., 2014; Van Den Hurk
et al., 2016; Polcher et al., 2016; Müller Schmied et al., 2016;
Tangdamrongsub et al., 2018; Yang et al., 2015; Zhao et al.,
2017; Zhou et al., 2018). Although they provide gridded sur-
face climate variables at the global scale, their uncertainties
of representing regional climate are not clear. Through com-
parison of simulated SM to various datasets, our study also
addresses which forcing has the best performance in SM sim-
ulation in China.

Our SM simulations are evaluated with different SM
datasets including in situ data, remote sensing measure-
ments, and reanalysis. In situ measurements including ISMN
(International Soil Moisture Network; Dorigo et al., 2011)
and PKU (in situ SM from Peking University; Piao et al.,
2009) are used to evaluate temporal validation of simulated
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SM. To evaluate spatiotemporal variations of simulated SM,
the satellite-based dataset ESA CCI SM (European Space
Agency Climate Change Initiative Soil Moisture; Wagner
et al., 2012) is applied in the comparison. Note that both
in situ and satellite SM datasets represent the truth to some
extent. This implies that real-world SM is influenced by pro-
cesses that are not modeled such as irrigation and wetlands.
Thus mismatches between measured and simulated SM may
exist in some regions strongly affected by anthropogenic fac-
tors. Moreover, satellite instruments do not measure SM di-
rectly; it is derived via a complex modelization of the radia-
tive transfer at the soil–vegetation interface calibrated with
in situ data.

Finally, GLEAM SM data (Global Land Evaporation Am-
sterdam Model; Martens et al., 2017) are compared to the
simulated SM. Different from other SM datasets, GLEAM
SM results from a land surface model constrained by a num-
ber of satellite and in situ observations. This reanalysis prod-
uct was shown to reproduce reasonable long-term SM dy-
namics at the global scale (Martens et al., 2017), which is
valuable to evaluate ORCHIDEE-MICT simulations for both
surface and root-zone SM. Furthermore, GLEAM assimilates
CCI SM data, so that evaluation of our model against root-
zone SM from GLEAM is consistent with evaluation against
surface SM from CCI.

Through the simulations and comparisons, three questions
will be addressed:

– Is the model able to provide a reasonable estimation of
SM dynamics in China, as a prerequisite for further hy-
drological studies?

– Which atmospheric forcing gives the best SM simula-
tion according to the comparisons with available obser-
vations?

– Which meteorological variable drives the differences of
SM among the simulations?

The study area, atmospheric forcing, and SM datasets used
in this study are described in Sect. 2. Section 3 presents the
model experiments. Evaluation of simulated SM and discus-
sion are given in Sects. 4 and 5, respectively.

2 Study area, forcing, and evaluation datasets

2.1 Study area

China has multiple climate regimes, which creates hydro-
logical situations influenced by different variables in differ-
ent regions. The land water budget in China is affected by
anthropogenic factors, such as irrigation (Puma and Cook,
2010), afforestation (Liu et al., 2015a; Peng et al., 2014), de-
forestation (Wei et al., 2018), polders (Yan et al., 2016), dams
(Deng et al., 2016), and inter-basin water transfer (Li et al.,
2015). Two main river basins are of interest: the Yangtze

River basin (YZRB) and the Yellow River basin (YLRB) (red
and magenta contours, respectively, in Fig. 1), which cover
the main regions of industry and agriculture (gray regions in
Fig. 1). The Yangtze River originates in the Qinghai–Tibetan
Plateau and flows through two wetted traditional agricultural
zones, the Sichuan Basin, and the plain downstream of the
Yangtze River (Fig. 1). The Yellow River originates in the
Qinghai–Tibetan Plateau as well, but it flows through another
two agricultural regions (the Loess Plateau and the North
China Plain) under semi-arid and semi-humid zones (Kottek
et al., 2006). Our simulations cover the main part of China
([85–124◦ E]× [20–44◦ N]) including these two watersheds
to assess SM dynamics at the catchment scale. Note that in
the analysis, the specific regions of the two river basins are
coarser than the exact basin contours shown in Fig. 1 due to
the interpolation of routing files at the resolution of our sim-
ulations.

2.2 Atmospheric forcing

Four gridded atmospheric forcing datasets are used to force
the model over China: GSWP3, PGF, CRU-NCEP, and
WFDEI. All input variables needed are the air temperature at
2 m (Ta), rainfall and snowfall rates, atmospheric specific hu-
midity at 2 m (Qa), surface pressure, downward short-/long-
wave radiation (Rs and Rl), and wind speed (W ). The four
forcing datasets are combinations of reanalysis and observa-
tion data. These datasets, although built by different meth-
ods, are not independent from each other since they share
some common inputs. Detailed descriptions are listed below
and general information is summarized in Table 1. Prepro-
cessing of the datasets for ORCHIDEE-MICT is described
in Sect. 3.2.

2.2.1 GSWP3

The GSWP3 v0 (http://hydro.iis.u-tokyo.ac.jp/GSWP3, last
access: 16 October 2018); Kim, 2017) provides 3-hourly
climate data at 0.5◦ resolution from 1901 to 2010. It is
based on the 20th Century Reanalysis (20CR; Compo et al.,
2011), which is downscaled from 2 to 0.5◦ by a spectral
nudging technique in a Global Spectral Model (Yoshimura
and Kanamitsu, 2008), in order to maintain both low- and
high-frequency signals at a high spatiotemporal scale. Sin-
gle ensemble correction and vertically weighted damping
are applied to remove known artifacts in high latitude re-
gions (Hong and Chang, 2012; Yoshimura and Kanamitsu,
2013). Moreover, observation data are used for bias correc-
tion, such as GPCC v6 (Global Precipitation Climatology
Centre; Becker et al., 2013) for precipitation, SRB (Surface
Radiation Budget; Stephens et al., 2012) for radiation, and
CRU TS v3.21 (Climate Research Unit; Harris et al., 2014)
for temperature.
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Figure 1. Four important regions mentioned in this paper (green rectangles). The grey background is the cropland fraction.

Table 1. General information of the climate forcing datasets. “Reanalysis” and “Observations” are corresponding datasets used in producing
the atmospheric forcing. Detailed description can be found in Sect. 2.2.

Dataset Resolution Duration Reanalysis Observations

Spatial Temporal

GSWP3 0.5◦ 3-hourly 1901–2010 20CR GPCC, CRU TS, SRB
PGF 1◦ 3-hourly 1901–2012 NCEP-NCAR CRU TS, GPCP, TRMM, SRB
CRU-NCEP 0.5◦ 6-hourly 1901–2015 NCEP CRU TS
WFDEI 0.5◦ 3-hourly 1979–2009 ERA-Interim CRU TS, GPCC

2.2.2 PGF

The PGF (http://hydrology.princeton.edu/data.pgf.php, lat-
est version released: 13 July 2014, last access: 16 October
2018) provides 3-hourly data at 1◦ resolution from 1901 to
2012 (Sheffield et al., 2006). It is constructed by combin-
ing the NCEP-NCAR (National Centers for Environmen-
tal Prediction-National Center for Atmospheric Research)
reanalysis of Kalnay et al. (1996) with several observa-
tion datasets. Precipitation is corrected by downscaled CRU
TS v3.1, GPCP (Global Precipitation Climatology Project;
Adler et al., 2003), and TRMM (Tropical Rainfall Measuring
Mission; Huffman et al., 2007) data. SRB and CRU TS data
are used in the assimilation of radiation and air temperature,
respectively. Other variables (e.g., specific humidity, surface
air pressure, wind speed) are just spatially downscaled from
NCEP-NCAR according to the local elevation.

2.2.3 CRU-NCEP

The CRU-NCEP v6.1 (ftp://nacp.ornl.gov/synthesis/2009/
frescati/model_driver/cru_ncep/analysis/readme.htm, last
access: 16 October 2018) provides 6-hourly 0.5◦ data. It
combines the coarse temporal resolution (monthly) CRU TS
dataset with the NCEP reanalysis, which has a higher time
interval (6-hourly) but is only available at 2.5◦. Monthly
climate (except for precipitation) is identical to CRU TS, and
NCEP is used only to reconstruct the 6-hourly variability
within each month after bi-linearly interpolated to 0.5◦.
For precipitation the original NCEP values are used for
temporal linear interpolation in those CRU grid cells (0.5◦)
covered by the specific NCEP grid cell (2.5◦) in each month.
CRU-NCEP dataset is available from 1901 to 2015 at the
global scale and it is updated every year.
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2.2.4 WFDEI

The WFDEI forcing (version 31 July 2012) is generated
by applying the WATCH Forcing Data methodology (http:
//www.eu-watch.org, last access: 16 October 2018; Weedon
et al., 2014) to the ERA-Interim reanalysis (Dee et al., 2011)
providing 3-hourly data at 0.5◦ from 1979 to 2009. The
ERA-Interim blends Global Climate Model (GCM) mod-
eled variables and a suite of observations using a 4D-Var
(four-dimensional variable analysis) data assimilation system
(Weedon et al., 2014). All variables are bias-corrected using
CRU TS. For precipitation, we use a version that has been
bias-corrected by GPCC v5 and v6.

2.3 Soil moisture datasets

2.3.1 International Soil Moisture Network (ISMN)

The ISMN is an international cooperative project providing a
global gauged SM database (Dorigo et al., 2011). It is based
on in situ measurements from multiple monitoring regional
subprojects. Here only data from the CHINA subproject are
used (Robock et al., 2000) with in situ volumetric water con-
tent (depth of water column over depth of soil in m3 m−3)
from 40 stations between 1981 and 1999. SM profiles on 11
vertical layers were collected three times per month (on 8th,
18th, and 28th of each month). The 11 sampled soil layers are
0–5, 5–10, and then every 10 cm layers until 1 m. Most sta-
tions are located in cropland or grasslands, but information
about land use types and soil texture of each site is not pro-
vided. Moreover, there is no information about management
practices affecting SM, such as irrigation or tillage.

In spite of the long length of this dataset, the data avail-
ability and monitoring period among stations vary widely.
Some stations only recorded SM during the growing sea-
son, while others have a full year record. Furthermore, the
measurements including the five deep layers (below 50 cm)
are fewer in number than those including the top six layers.
Only stations with more than 15 years of data were selected,
which at least cover the same period (1984–1999). To make
sure that at least half of the data are available in the 15-year
time series, stations with fewer than 270 measurement points
in the top six layers are removed. This leads to selecting a
subset of 20 stations, and given the sparseness of data be-
low 50 cm, only SM in the top six layers is used for model
evaluation.

2.3.2 In situ SM from Peking University

The SM was measured over 778 stations of agro-
meteorological stations over China by the Chinese Meteoro-
logical Administration and collected and harmonized by the
research team in Peking University (PKU; Piao et al., 2009).
The dataset provides 10-day SM variation during the grow-
ing season (mainly between May and September) from 1991
to 2007. It provides SM profiles in seven soil layers (0–10,

10–20, 0–30, 30–40, 40–50, 50–70, and 70–100 cm), but the
bottom four layers often have missing records. This dataset
concerns exclusively croplands but there is no explicit infor-
mation of soil texture and irrigation. Similar to the ISMN, the
monitoring durations among gauging stations are different. A
total of 203 stations that cover the period of 1992–2006 are
chosen.

2.3.3 ESA CCI SM

The ESA CCI SM is a multi-satellite-based product (Liu
et al., 2011, 2012; Wagner et al., 2012) and has been vali-
dated both at the global scale (Dorigo et al., 2015) and in
China (Peng et al., 2015; An et al., 2016). The daily SM is
retrieved from a suite of microwave sensors spreading the
period of 1979–2010 with 0.5◦ resolution. The representa-
tive soil layer depth is approximately 0.5–2 cm. Multiple sen-
sors ensure long-term records of SM dynamics; however the
uncertainty of the data varies with the change of available
sensors and corresponding algorithms. Moreover, the remote
sensing technique limits its ability to detect SM in frozen
soils or under snow cover. Therefore SM data are not avail-
able during winter in high-latitude regions (e.g., northern
China). The data availability also varies through the period
according to the number of available instruments and the in-
crease of their temporal and spatial resolutions. In China, the
fraction of days with available records (Fig. 4 of Dorigo et al.,
2015) is lower than 20 % from 1979 to 2006. More impor-
tantly, large spatial variation of gaps exists as well before
2006 (Fig. S1). The period after the launch of MetOp-A AS-
CAT (Advanced Scatterometer) at the end of 2006 appears to
be more stable. To provide a reliable validation, we only use
the CCI SM data between 2007 and 2009.

2.3.4 GLEAM v3.0A SM

GLEAM v3.0 is a multiple-algorithm, observation-based
model reconstructing the components of the land evapora-
tion process, including daily SM, evapotranspiration, and in-
terception at 0.25◦ resolution (Martens et al., 2017). It has
three subversions. Due to the short duration of version B
(2003–2015) and C (2011–2015), only version A, which cov-
ers the period 1980–2014, is used here. Radiation and air
temperature used in GLEAM 3.0A are from ERA-Interim,
and precipitation is from MSWEP (Multi-Source Weighted-
Ensemble Precipitation; Beck et al., 2017).

Both surface and root-zone SM from GLEAM, which has
been validated by Martens et al. (2017), are used for com-
parison. The surface SM in the top 0–10 cm is a combination
of simulated SM from the GLEAM soil module, SMOS (the
Soil Moisture Ocean Salinity satellite mission; Kerr et al.,
2001), and ESA CCI SM (ESA Climate Change Initiative
Soil Moisture; Liu et al., 2011, 2012; Wagner et al., 2012)
through the data assimilation system developed by Martens
et al. (2016). The Community Noah land surface model SM
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fields in GLDAS (Global Land Data Assimilation System;
Rodell et al., 2004) were used to estimate the errors of these
SM products. Root-zone SM is derived from the GLEAM
soil module based on mass balance. GLEAM provides SM
in separate land cover tiles of bare soil (0–10 cm), low veg-
etation (0–100 cm), and tall vegetation (0–250 cm). These
tiles are based on MODIS Vegetation Continuous Fields
(MOD44B; Hansen et al., 2003).

3 Land surface model, simulation protocol, and
model–data comparison metrics

3.1 Land surface model

ORCHIDEE (Organizing Carbon and Hydrology In Dy-
namic EcosystEms; Krinner et al., 2005) is a physical-based
land surface process model. It is mainly composed of two
modules. The SECHIBA (surface–vegetation–atmosphere
transfer scheme) module calculates the exchange of water
and energy between land and the atmosphere with a high-
frequency time interval (half an hour), while the STOMATE
(Saclay Toulouse Orsay Model for the Analysis of Terrestrial
Ecosystems) module estimates the carbon cycle at the daily
timescale. The ORCHIDEE-MICT (aMeliorated Interactions
between Carbon and Temperature, SVN version 3952; Guim-
berteau et al., 2018; Zhu et al., 2015) is a recent version of
ORCHIDEE including new processes such as the interac-
tions among frozen soil, snow, plants, and soil carbon pools.
It accounts for soil freezing, soil carbon discretization, snow
processes, and lateral water flows to improve the simulation
of the main biogeochemical cycles in permafrost regions. It
has been chosen in this study because China has a large per-
mafrost area, especially in the Tibetan Plateau, where both
Yellow and Yangtze rivers originate. To simulate the SM dy-
namics, ORCHIDEE-MICT uses a scheme with 11 soil lay-
ers, whose depth increases exponentially down to 2 m. The
respective depths (in meters) of the calculation nodes are the
following: 0.0005, 0.002, 0.006, 0.014, 0.03, 0.06, 0.12, 0.25,
0.5, 1.0, and 1.75. Each grid cell can include up to three soil
tiles: bare soil, trees, and grass/crops, which are filled by the
corresponding plant functional types (PFTs) of the 13-PFT
scheme of ORCHIDEE-MICT to allow better representation
of their specific hydrology. The hydrological budget is cal-
culated separately in each soil tile. The amplitude of SM de-
pends on soil texture, which is a part of boundary conditions.
Explicit description of the ORCHIDEE-MICT model can be
found in Guimberteau et al. (2018). ORCHIDEE will be re-
ferred to ORCHIDEE-MICT for brevity in the following text.

There are two main outputs of SM in ORCHIDEE. The
total SM (θt) indicates the total amount of soil water vol-
ume in the top 2 m soil layer in a grid cell. The SM profile
(θp) records the vertical distribution of soil water content in
the 11 soil layers. Note that the θp in each soil layer is an

average value among the three soil tiles. The initial unit of
ORCHIDEE SM is m3 m−3.

3.2 Simulation protocol

Four simulations were performed driven by different forc-
ing datasets described in Sect. 2.2. In the simulations, CO2
rise and land use change are taken into account but with-
out human processes like irrigation. The 13-PFT map is
from LUH2 (http://luh.umd.edu) and the soil texture map is
from Zobler (1986). For the 3-soil texture scheme of Zobler
(1986), the minimum residual and maximum saturated SM
are 0.065 and 0.43 m3 m−3, respectively. The model domain
covers the main part of China ([85–124◦ E]× [20–44◦ N]).
The spatial resolution is the same as the atmospheric forcing
(Table 1). The simulation period covers 39 years, from 1971
to 2009, except for the one driven by WFDEI, which is from
1979 to 2009. To make sure that carbon (LAI and biomass)
and water cycle variables can reach equilibrium, a 100-year
spin-up was performed by repeating the forcing of the pe-
riod 1971–1980 10 times (for WFDEI, 50 times the period
1979–1980). Starting from the end of the spin-up, simula-
tions were run from 1981 to 2009. The output driven by PGF
forcing was re-gridded at 0.5◦×0.5◦ to match the resolution
of other simulation outputs.

The temporal resolution of forcing datasets is either 3-
hourly or 6-hourly (CRU-NCEP), which is larger than the
simulation time step of SECHIBA (30 min). To have a rea-
sonable precipitation intensity, and thus a good infiltration
of water in the soil, the default precipitation splitting algo-
rithm of ORCHIDEE is applied in our simulations. At the
beginning of each forcing time step, if precipitation occurred,
the precipitation amount (precipitation rate multiplied by
the time interval of specific forcing) will be uniformly dis-
tributed to the first half of the forcing time step.

3.3 Model–data comparison methodology and metrics

3.3.1 Comparison protocol

As the soil depths, periods, and spatiotemporal resolutions
are different in the four SM datasets (Sect. 2.3), we have to
choose corresponding ORCHIDEE outputs for each compar-
ison. For the comparison with the in situ data of ISMN and
PKU, we first extracted the modeled daily SM profile (θp)
from the nearest grid cell for each station. Then the SM above
a certain soil depth was chosen (50 cm for ISMN and 20 cm
for PKU). PKU SM is provided in degrees of saturation, de-
fined as the volume ratio of actual water content to its maxi-
mum value when the soil is saturated. As the soil porosity is
unknown, the PKU SM dataset cannot be directly compared
with simulated SM from ORCHIDEE, which is defined from
modeled porosity. To overcome this problem, normalization
was applied in both datasets before comparison. The normal-
ized data at each station and in the corresponding grid cell of
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Table 2. Summary of the SM datasets for validation. “M+RS+RA” indicates that the dataset is a model output driven by both remote sensing
and reanalysis data. More details can be found in Sect. 2.3.

Dataset Type Unit Resolution Duration Contents Corresponding ORCHIDEE
soil layer

Analysis Analysis depth
period

ISMN in situ m3 m−3 station, 10-day
1981–1999 11 layers; 0–100 cm

1–9 layers (0–75 cm)
1984–1999 0–50 cm

PKU in situ % of porosity station, 10-day
1991–2007 7 layers; 0–100 cm

1–8 layers (0–37 cm)
1992–2006 0–30 cm

ESA CCI RS m3 m−3 0.25◦, daily
1979–2010

top layer, depth≈ 0.5–2 cm 1–4 layers (0–2 cm)
2007–2009

GLEAM
M+RS+RA m3 m−3 0.25◦, daily

1980–2014
0–10 cm 1–6 layers (0–9 cm)

surface 1981–2009

GLEAM
M+RS+RA m3 m−3 0.25◦, daily

1980–2014 mixture of bare soil (1–10 cm),
all layers (0–200 cm)

root zone 1981–2009 low vegetation (0–100 cm), and
high vegetation (0–250 cm)

the model are the ratio of the difference between the origi-
nal value and its mean (during the observation period) to its
standard deviation.

According to the sampled depth of the ESA CCI SM, the
daily top four-layer (2.2 cm) averaged SM from ORCHIDEE
is used. Regarding the definition of GLEAM SM (Sect. 2.3),
we used the daily top six-layer (approximately 9.2 cm depth)
averaged SM and the total SM of ORCHIDEE for the com-
parison with GLEAM surface and root-zone SM, respec-
tively. The period length and soil depth of each compari-
son are shown in Table 2. In addition, the timing of all SM
datasets is made uniform according to coordinated universal
time (UTC).

3.3.2 Metrics

Pearson’s correlation coefficient (r) is calculated to esti-
mate the correlation between simulated and observed SM.
Daily SM corresponding to the measurement date reported
in ISMN was collected to calculate r . As there is no date in-
formation from the 10-day PKU dataset, we used the 10-day
averaged SM from ORCHIDEE for comparison.

The root mean square error (RMSE) is applied in order
to estimate the temporal differences between simulation and
observation. The same data pairs are used for RMSE calcula-
tion as the correlation coefficient except for PKU due to the
normalization. Note that RMSE is related to the magnitude
of SM, which varies significantly in China. To make it com-
parable in space, the relative RMSE is calculated by dividing
the mean of the simulated and observed SM.

According to Kobayashi and Salam (2000), the mean
squared deviation (MSD), which is RMSE2, can be decom-

posed into the squared bias (SB), the squared difference be-
tween standard deviation (SDSD), and the lack of correlation
weighted by the standard deviation (LCS), as

MSD= RMSE2
= SB+SDSD+LCS. (1)

SB is the bias between simulations and observations. It is
independent from other two components:

SB= (s−m)2, (2)

where s and m are the mean of simulated and measured val-
ues, respectively. The SDSD indicates the mismatch of vari-
ation magnitude between simulated and observed variables,
defined as

SDSD= (SDs−SDm)
2, (3)

where SDs and SDm are the standard deviation of simula-
tions and measurements, respectively. High SDSD implies a
failure of the model in simulating the degree of fluctuation
across the n measurements. Note that SDSD correlates with
LCS, which accounts for SDs and SDm as well:

LCS= 2SDsSDm(1− r), (4)

where r is the Pearson’s correlation coefficient. The LCS is
an indicator of the performance of the model to simulate the
pattern of fluctuation of the measurements. The lower the
LCS is, the better the model performs.

Finally, to evaluate the characteristic timescale of modeled
SM response to hydrological processes, the lag-k autocorre-
lation coefficient (Rk) is computed. The Rk is the correlation
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coefficient of a time series with itself but with a k time step
lag, as

Rk =

∑n−k
i=1 (xi − x)(xi+k − x)∑n

i=1(xi − x)
2 , (5)

where n (n > k) is the length of the specific time series; x is
the mean value. For SM time series in a specific grid cell,
Rk was computed for different k values. The value of Rk
decreases with increasing k and the k-lag time series are
considered not auto-correlated if Rk is less than a thresh-
old 1/e (Maurer et al., 2001; Rebel et al., 2012). The day
number when Rk first drops below a threshold of 1/e is
called the number of lag days (NLD). The NLD difference
is used to compare the overall characteristic timescales be-
tween datasets. The difference of Rk profiles gives additional
information on the autocorrelations for lag. The Rk compar-
ison was implemented between GLEAM and ORCHIDEE
because other datasets do not have complete daily records.

The linear trend of SM change in the 29 years is of interest
as well. The Mann–Kendall test (Kendall, 1975; Mann, 1945)
is applied to test if simulations capture observed trends of
SM, with a p value < 0.05 indicating a significant trend.

3.4 Correlation of uncertainties between SM and
meteorological factors

In our simulations, the difference in atmospheric forcing is
the only source of difference in simulated SM. We look at
different climate variables to explain SM differences among
simulations. These variables include monthly precipitation
amount (P ) and the number of precipitation days in one
month (Np) excluding days with P < 0.01 mm d−1. Precipi-
tation days are categorized into five classes of 0.01–1, 1–5,
5–10, 10–15, and > 15 mm d−1. The number of days with
precipitation amount in each class was calculated, denoted
by N i

p with 1≤ i ≤ 5. Other meteorological variables are in-
coming short-/long-wave radiation (Rs/Rl), air temperature
(Ta), air humidity (Qa), and wind speed (W ). Regarding SM,
both total SM (θt) and SM in each soil layer (θ ip, i is the in-
dex of soil layer) were correlated with these variables. To
estimate the difference of a variable x among the four simu-
lations, the averaged MSD (Dx) is computed as

Dx =

1
n

∑N
i 6=j

∑n
t=1
(
xt,i − xt,j

)2(
n
2

) , (6)

where N = 4 is the number of simulations; i and j (1≤
i,j ≤N ) are indexes of the four simulations;

(
n
2

)
is the bi-

nomial coefficient; n is the length of the time series; t is the
time step. Note that we use the absolute value of Dx not the
relative Dx (Dx over averaged value of x in the specific grid
cell) for the analysis because the relative Dx cannot reflect
the linkage of uncertainty between inputs and outputs. De-
tailed explanation is shown in Sect. S1 in the Supplement.

4 Results

4.1 SM evaluation against multiple datasets

4.1.1 Comparison with ISMN and PKU in situ data

In most cases, the correlations between modeled and mea-
sured SM at ISMN stations (see Sect. 2.3) are significantly
positive (Fig. 2). High correlations (r > 0.6) are found over
the Loess Plateau in the semi-arid zone, which is a re-
gion of rainfed agriculture where SM is less affected by
anthropogenic processes. In the North China Plain water
is limited as well, whereas irrigation is widely applied for
agriculture, leading to low r (below 0.5). To further com-
pare the simulated and measured SM, three ISMN stations
(marked by squares in Fig. 2a) are chosen to represent differ-
ent wet conditions, and model–data comparisons are shown
in Fig. 3. Xifeng is located in the semi-arid zone (MAP=
556 mm yr−1), where θt is low (0.2 m3 m−3 on average) with
a large inter-annual variation. The variability of simulated
θt is consistent with observations (0.73< r < 0.87; when
CRU-NCEP is excluded) due to lower human impacts on
rainfed agriculture in this region (Li et al., 2014). Xinx-
ian is located in the North China Plain with similar MAP
(580 mm yr−1) to Xifeng, but in a traditional irrigation re-
gion (Wang et al., 2016). θt at Xinxian is underestimated,
possibly because irrigation is not included in our simulations.
Thus the model cannot capture the seasonal variations of θt,
given r values ranging between 0.11 and 0.21. Xuzhou is
in the North China Plain as well, but with a higher MAP
(847 mm yr−1). The fluctuation of simulated and observed θt
is coherent, leading to r from 0.55 to 0.64. However the mag-
nitude of θt is systematically underestimated as well (Fig. 3).

The correlation coefficients of θt between simulations and
PKU dataset are shown in Fig. 2 as circles. Modeled θt has a
better performance in the Loess Plateau and the North China
Plain than other regions, suggesting that ORCHIDEE is able
to capture the variations of SM in semi-arid and temper-
ate zones. In comparison to ISMN, r between ORCHIDEE
and PKU θt is lower. This may be caused by the shallower
depth of the PKU data (20 cm), with a stronger influence
from fast infiltration and transpiration processes than in the
ISMN records (1 m). Moreover, the PKU dataset only records
θt during the growing season, leading to lower r in absence
of full seasonal variations. Negative correlations are found
in several sites located along river networks. The negative r
(−0.4< r <−0.2) coincides with the coupling of wetness
anomaly and irrigation: when droughts occur (reflected by
low simulated SM), more water will be withdrawn from the
river and irrigated on the croplands (reflected by high ob-
served SM). Thus the negative r found in Fig. 2 reveals that
SM dynamics cannot be well understood without considering
anthropogenic activities.

According to the r shown in Fig. 2, we find that GSWP3
and WFDEI provide better simulated SM than the other two.
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Figure 2. Pearson’s correlation coefficients of modeled and measured SM at each gauging station from ISMN (triangles) and PKU (circles).
Symbols with a dark border indicate significant correlations (p < 0.05). The locations of three ISMN stations shown in Fig. 3 are marked by
black squares in panel (a).

Figure 3. Time series of 10-day SM from ORCHIDEE and ISMN at three stations. The station locations are shown in Fig. 2a. The mean
annual precipitation values at Xifeng, Xinxian, and Xuzhou (according to GSWP3) are 556, 580, and 847 mm yr−1, respectively. Dark
dashed lines indicate ISMN SM. Red, green, blue, and orange lines indicate simulated SM based on GSWP3, PGF, CRU-NCEP, and WFDEI,
respectively.
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Figure 4. (a, c, e, g) Correlation coefficients of the ESA CCI SM and the corresponding ORCHIDEE SM. Gray pixels indicate no correlation
and negative correlation. (b, d, f, h) Decomposition of the MSD between the daily ESA CCI SM and the corresponding ORCHIDEE SM
(Eq. 1). Cyan, magenta, and yellow indicate the fractions of SB, SDSD, and LCS, respectively.

The main difference is found in the North China Plain, where
the r values of GSWP3 and WFDEI are higher. It indi-
cates that simulation can be improved by selecting suitable
atmospheric forcing. Nevertheless, the r is still limited by
the lack of measurement information (soil texture, irrigation
flag, land cover, etc.) and anthropogenic processes in OR-
CHIDEE. The disagreements between simulated and mea-
sured SM are caused by the spatial scale as well. The spatial
resolutions of forcings (0.5◦ ≈ 55 km) are too coarse to rep-
resent the specific climatic conditions of gauging stations.
On the other hand, the comparison cannot provide a compre-
hensive validation in the YZRB, where there are few mea-

surements. Thus remote sensing and hybrid SM datasets are
required to evaluate the simulations.

4.1.2 Comparison with ESA CCI SM data

Figure 4 (left panel) shows r between CCI and ORCHIDEE
θs from 2007 to 2009. High r is found in both the North
China Plain and southern China. In southern China, SM is
less disturbed by anthropogenic factors due to its wet condi-
tions. Thus SM has little variation driven by climate, which
can be well simulated by the model. On the other hand, hu-
man activities strongly affect SM in the North China Plain,
whereas their impacts on r are neutralized by the large an-
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nual variation due to seasonality. Weak correlations only ex-
ist in the transition zone from the south to the north along the
Yangtze River network, where there are both human distur-
bances and little annual variation.

Figures S2 and 4 (right panel) show the relative RMSE and
the MSD decomposition of θs between CCI and ORCHIDEE.
Low relative RMSE (< 0.3) is found in the YZRB, but in the
YLRB the value is higher (> 0.4). The mean source of MSD
is the LCS (phase mismatch). It implies that the magnitude of
the simulated θs is reasonable, but the timing of the fluctua-
tions differs between ORCHIDEE and CCI. The coincidence
of magnitude is reflected in the relative difference (Fig. S3),
the absolute value of which is less than 0.1 in 76% grid cells,
excluding the CRU-NCEP case. A large LCS might be due to
human activities and the discretization of the CCI SM time
series. Irrigation in northern China may significantly affect
the fluctuation of θs, which leads to underestimation of simu-
lated SM and contributes to the LCS. Simultaneously, due to
the incomplete records of CCI SM (Fig. S1), the seasonal
variation of SM cannot be fully taken into account in the
comparison. The r is consequently declined and the LCS in-
creases (Eq. 4).

The availability and uncertainty of CCI SM vary with
space and time (Sect. 2.3 and Fig. S1). To provide a reliable
estimation, we performed the analysis exclusively in the pe-
riod 2007–2009. In fact, there is little difference when the
comparison covered the whole period of 1981–2009. The
patterns of r and MSD decompositions (Fig. S4) are simi-
lar to those of the comparison of 2007–2009. The r of 1981–
2009 is lower with no doubt because a longer period contains
more errors due to the fragmentary records of CCI SM data.

4.1.3 Comparison with GLEAM v3.0A data

The left panel of Fig. 5 shows correlation coefficients be-
tween GLEAM surface SM (θs) and corresponding modeled
SM in the surface layer (0–10 cm). Simulated θs is signif-
icantly correlated with GLEAM (median r = 0.54). In the
Sichuan Basin, r is lower than its surroundings. According
to the spatially averaged r of θs, GSWP3 (0.55) and WFDEI
(0.66) lead to better performances with ORCHIDEE than
PGF (0.43) and CRU-NCEP (0.51). Note that both WFDEI
and GLEAM v3.0A used ERA-Interim reanalysis to recon-
struct the time series of precipitation, which can explain the
higher r when ORCHIDEE is forced by WFDEI. The corre-
lation coefficients of simulated and GLEAM root-zone SM
(θr, Fig. S5) have similar patterns to the θs but higher values
(median r = 0.57) due to the lower variability of θr, which
smoothes out misfits related to differences in individual rain-
fall events between ORCHIDEE and GLEAM for θs. Com-
pared to CCI θs, the r between ORCHIDEE and GLEAM
θs is much higher. It is probably due to the shallower depth
of the CCI θs, which is more sensitive to surface processes
and forcing data errors. Moreover, CCI θs is a purely satel-
lite product while GLEAM θs (v3.0A) is a combination of

modeled, in situ, and satellite SM. The latter is not totally
independent of the forcing datasets and therefore more com-
parable to our simulations.

Figure S6 and the right panel of Fig. 5 show the rel-
ative RMSE and the MSD decomposition of θs between
GLEAM and ORCHIDEE. A low relative RMSE (< 0.3)
covers most regions except for the North China Plain (> 0.5),
where the MSD is dominated by the squared bias values
(SB, Fig. 5b). This is clearly shown in the relative difference
(Fig. S7) between GLEAM and ORCHIDEE, where simu-
lated θs is approximately 30% lower than in GLEAM. South-
ern China has a lower relative RMSE (< 0.2), and MSD is
dominated by SB as well. Different from the North China
Plain, SB in southern China may be due to the mismatch of
land cover and soil parameterization between ORCHIDEE
and GLEAM. For instance, the saturated SM in southern
China is 0.36 m3 m−3 while the maximum SM in GLEAM is
0.45 m3 m−3. A high contribution of LCS to MSD is found
in the Qinghai–Tibetan Plateau, the upper part of the YZRB
and the YLRB, suggesting a mismatch of the phase of SM
variability. The MSD is dominated by SDSD in northwest-
ern China (P < 200 mm yr−1), suggesting different magni-
tudes of SM fluctuations. Nevertheless, the relative RMSE
in the Qinghai–Tibetan Plateau and northwestern China is as
low as in southern China (< 20%). Overall, ORCHIDEE is
able to give a reasonable estimation of θs in regions where
irrigation is not widespread.

Figure 6a–e show NLD of ORCHIDEE and GLEAM θs
computed based on the k-lag autocorrelation coefficient Rk .
High NLD implies that θs has a longer memory in response
to rainfall inputs. However, the spatial distribution of NLD
depends not only on rainfall frequency and intensity but also
on evapotranspiration and runoff losses after SM recharge
by rainfall. The NLD patterns of GLEAM and ORCHIDEE
θs are similar, which is encouraging in terms of how OR-
CHIDEE simulates the processes controlling the decrease
of SM after each rainfall. Both southern and southeastern
China have higher NLD, like in GLEAM. A lower NLD
(≈ 20 days) prevails around 30◦ N in eastern China, whilst
the North China Plain has NLD values of 40 days. The main
difference of NLD between GLEAM and ORCHIDEE is
in Inner Mongolia and over the Loess Plateau, where the
ORCHIDEE NLD has values of 20 days, against 40 days
in GLEAM. Rk of spatially averaged θs in three regions is
shown in Fig. 6f–h. Overall, Rk of ORCHIDEE θs is consis-
tent with that of GLEAM. The GLEAM Rk is close to the
ORCHIDEE Rk in the YZRB, with a difference of less than
6 days. In the YLRB, GLEAM Rk is larger than ORCHIDEE
Rk , suggesting that modeled θs has a faster response to
rainfall input. Such bias can be explained by higher simu-
lated evapotranspiration in the YLRB compared to GLEAM
(Fig. S8), suggesting that the decline of ORCHIDEE θs is
faster after rainfall events than in GLEAM and leads to a
lower Rk .
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Figure 5. (a, c, e, g) Pearson’s correlation coefficients of the GLEAM surface SM and the corresponding ORCHIDEE SM. Gray indicates no
correlation and negative correlation. (b, d, f, h) Decomposition of the MSD between the daily GLEAM surface SM and the corresponding
ORCHIDEE SM (Eq. 1). Cyan, magenta, and yellow indicate the fractions of SB, SDSD, and LCS, respectively.

The trend of ORCHIDEE θs (Fig. S9) is less sig-
nificant than that of GLEAM θs (Fig. S9). In north-
western China, increasing θs is found in simula-
tions (< 0.2× 10−3 m3 m−3 yr−1) and GLEAM (0.2–
0.4× 10−3 m3 m−3 yr−1). The trend may be due to
increasing P (Fig. S10). GLEAM θs decreased dramatically
in eastern China ([103–122◦ E]× [20–35◦ N]), while the
trends of ORCHIDEE θs are not homogeneous in this region.
In addition, all forcing datasets show an increasing P in
the North China Plain, which leads to a slight increase of
simulated θs. However, GLEAM shows decreasing θs in
most areas of the North China Plain. The mismatch of θs and

P trends suggests that the change of precipitation amount is
not the only driver of the trend of SM.

4.2 Comparison of the four forcing datasets

To find the most realistic forcing dataset for SM performance
given the ORCHIDEE model, several metrics were calcu-
lated and are shown in Fig. 7. Radar charts show the cor-
relation coefficients (r) and RMSE of simulated SM in com-
parison to different datasets. Histograms show MSD and its
three components. The median of specific metrics is listed
in Table 3. GSWP3 has the best performance in estimating
the magnitude of SM (lowest MSD), while WFDEI shows
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Figure 6. (a) Number of lag days (NLD) of GLEAM surface SM. (b–e) Difference of NLD between GLEAM and ORCHIDEE surface SM.
(f–h) Autocorrelation coefficient Rk of spatial averaged surface SM as a function of NLD. The dashed line (y = 1/e) is the threshold of
significant correlation.

the best score in simulating SM variation (highest r). PGF
provides as good an estimation as GSWP3 in the YZRB,
but performs more poorly in capturing SM variation in the
YLRB, which is also reflected in the components of MSD.
The largest MSD is found in CRU-NCEP in most of com-
parisons, which is mainly contributed by SB. The SDSD and
LCS of CRU-NCEP are also larger than others but the dif-
ferences are not as significant as SB. In addition, we per-
formed the comparison over the full period (1981–2009).
Corresponding metrics are shown in Table S1. The values
vary slightly, but they do not change our conclusions.

Thus we conclude that both GSWP3 and WFDEI are suit-
able to simulate SM dynamics in China with ORCHIDEE.
The best choice can be made based on the main focus of spe-
cific research. For estimating magnitude of SM, GSWP3 is
preferable; for investigating SM variation, WFDEI is the best
choice. Note that this study only provides the evaluation of
SM, but other hydrological components should be compared
with observations to confirm the superiority of GSWP3 and
WFDEI.

4.3 Source of SM difference among simulations

By investigating the D of meteorological variables and sim-
ulated SM among the four simulations (Dx for variable x;
Eq. 6), two questions are addressed. (1) How is D of simu-
lated SM and forcing variables spatially distributed? (2) Can
spatial patterns of D of SM be explained by that of meteoro-
logical variables? Note that the relative value of D, D over
the magnitude of specific variable in each grid cell, is not
suitable for the analysis (detailed explanation is in Sect. S1.

Figure S11 shows maps of D of θt and meteorological
variables. As the unit of D depends on specific variables,
it can only be used to compare spatial distributions, not
values. High Dθt is found in the southwest of China ([92–
104◦ E]× [28–35◦ N]). However, similar patterns do not ex-
ist in the DP (Fig. S11b), suggesting that the difference of
simulated θt is not caused by the difference of precipitation
amount of forcing data. Similarly, in southwestern China, no
high D is found in meteorological variables except for the
number of precipitation days (Np) and air humidity (Qa), al-
though the patterns of DNp and DQa overlap with Dθt but
extend to zones with low Dθt as well (Fig. S11c and g).
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Table 3. Median of metrics in specific comparisons. The subscripts of correlation coefficients indicate the quantile of stations (samples) with
significant correlation (p value< 0.05).

Dataset Simulations Correlation RMSE (m3 m−3)

ISMN

GSWP3 0.520.85 0.07
PGF 0.460.90 0.07
CRU-NCEP 0.360.95 0.10
WFDEI 0.550.95 0.08

PKU

GSWP3 0.380.91 NA
PGF 0.310.85 NA
CRU-NCEP 0.310.86 NA
WFDEI 0.450.93 NA

China Yangtze Yellow China Yangtze Yellow

ESA CCI

GSWP3 0.470.93 0.420.94 0.580.99 0.06 0.06 0.06
PGF 0.260.83 0.320.91 0.280.96 0.06 0.07 0.07
CRU-NCEP 0.510.94 0.500.94 0.540.99 0.06 0.07 0.07
WFDEI 0.610.97 0.600.96 0.681 0.05 0.05 0.06

GLEAM surface SM

GSWP3 0.541 0.601 0.521 0.07 0.07 0.10
PGF 0.421 0.511 0.351 0.08 0.08 0.10
CRU-NCEP 0.490.99 0.611 0.491 0.10 0.10 0.12
WFDEI 0.680.99 0.771 0.631 0.08 0.09 0.10

GLEAM root-zone SM

GSWP3 0.600.98 0.670.99 0.600.99 0.05 0.04 0.08
PGF 0.570.98 0.691 0.570.99 0.06 0.04 0.09
CRU-NCEP 0.400.96 0.480.97 0.370.97 0.08 0.08 0.11
WFDEI 0.630.98 0.741 0.591 0.06 0.04 0.10

NA: not available.

To look for clearer links between input and SM D, we de-
compose Np and θt by scales of P and soil layers, respec-
tively (Sect. 3.4). The r values of D between simulated SM
and meteorological variables are shown in Fig. 8. DQa , DNp ,
andDN2

p
are highly correlated withDθt , implying that the dif-

ference of simulated θt can be explained by the differences of
Qa and Np among the four forcing datasets. The r between
Dθt and DP is less than 0.3. All in all, the results suggest
that the uncertainty of precipitation frequency and intensity
is more important than that of precipitation amount in influ-
encing SM differences among the simulations.

5 Discussion

5.1 Performance of the model to simulate SM

Due to the spatiotemporal complexity of SM and its vertical
profile, four datasets were selected to drive the simulations,
and modeled SM at different depths was validated against
multiple datasets. The results showed that ORCHIDEE SM
coincides well with CCI (median r = 0.48; median RMSE=
0.06) and GLEAM SM (median r = 0.55; median RMSE =
0.07) in comparison to other model studies (Lai et al., 2016).

Higher r values were systematically found in southern
China, the Loess Plateau, and the North China Plain; lower

r values were found in northwestern China, the western Ti-
betan Plateau, the eastern Sichuan Basin, and downstream of
the YZRB. SM is underestimated significantly in the Loess
Plateau and the North China Plain, with modeled values be-
ing 20% and 30% less than in CCI and GLEAM, respectively
(Figs. S7 and S3). It is not only due to model parameteriza-
tion but also due to irrigation activities in those agricultural
regions (Fig. 1), which are not considered in the simulations.

Because the in situ SM measurements were only collected
for croplands and grasslands (Piao et al., 2009; Robock et al.,
2000), implying potential disturbances from human activi-
ties, r was low in the comparison to ISMN and PKU datasets
(median r = 0.37, Fig. 2). For instance, drought occurred in
northern China during 1987–1988 (Yang et al., 2012), which
is reflected in the variation of measured SM at Xifeng and
Xinxian (Fig. 3a–b). ORCHIDEE successfully reproduced
the drought-induced SM decline at the two stations. But SM
measured at Xinxian was maintained at a high level. A pos-
sible explanation is that the soil at Xinxian was irrigated.
Consequently SM at Xinxian did not vary with precipitation,
leading to a low r (< 0.23). Another possible reason leading
to the mismatch between simulations and in situ measure-
ments is scale effects. Local measurements can only be an
ideal choice for model validation if the atmospheric forcing
was provided at the same scale due to the spatial variability
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Figure 7. Evaluation of the forcing datasets for simulating SM dynamics in China, YZRB, and YLRB. (a) Radar charts of criteria of the
four forcing datasets. The center implies bad criteria. Red, green, blue, and orange lines indicate GSWP3, PGF, CRU-NCEP, and WFDEI,
respectively; “surf” and “root” indicate surface and root-zone SM of GLEAM 3.0A. (b) Composition of MSD from each comparison. The
x axis indicates the drivers of specific simulations; top labels indicate the dataset used in the specific comparison.

of precipitation and of landscape. Otherwise, remote sensing
products derived from multiple observations averaged or ag-
gregated at a daily time step are probably more comparable
to model simulations obtained using meteorological reanaly-
sis than local in situ measurements.

In the comparison to CCI and GLEAM SM, low r did
not occur in northern China, such as the Loess Plateau and
the North China Plain, but was found in the climatic tran-
sition zone between southern and northern China (Figs. 4,
S5, and 5). Irrigation may strongly influence SM dynamics
in northern China, and in turn reduce r . However, such an
effect on r is not significant because of the large seasonal-
ity of SM in this region. Instead of r , the impacts of irri-
gation are mainly reflected in the RMSE and relative dif-
ference (Figs. S2, S3, S6, and S7). Thus for a region with
both irrigation and strong seasonality, bias and RMSE are
recommended to trace the footprint of irrigation rather than
correlation coefficients. In the climatic transition zone (e.g.,
Sichuan Basin, mid- and downstream of the YZRB), climatic
seasonality is not as large as in northern China. Meanwhile
irrigation is still needed for agriculture, which consequently
results in low r between simulated and observed SM.

From the results we conclude that ORCHIDEE provides
a satisfactory simulation of SM dynamics in China, except
in areas subject to irrigation. This calls for inclusion of irri-
gation and realistic crop phenology (Wang et al., 2017) as a
priority for future application of this model for SM and river
discharge dynamics.

5.2 Linkage of discrepancies between meteorological
factors and SM through ORCHIDEE

In Sect. 4.3, we showed that the spatial differences of sim-
ulated SM among the four forcing datasets were highly cor-
related with forcing differences in Np and Qa. This suggests
that the uncertainty of precipitation frequency is more criti-
cal than that of precipitation amount in determining variation
of SM patterns, as pointed out by other studies, especially in
arid and semi-arid regions (Baudena and Provenzale, 2008;
Cissé et al., 2016; Piao et al., 2009). To precise the result,
we studied the correlation coefficients between the spatial
averaged D of SM in different soil layers and of Np cate-
gorized by classes of precipitation intensity (Fig. 8). The re-
sult showed that differences in small rainfall events N i

p with
1< P < 5 mm d−1 are more important than other precipita-
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Figure 8. Matrix of correlation coefficients between the D of meteorological variables and the D of simulated SM. D is the averaged MSD
defined by Eq. (6). θt indicates total SM. θ ip indicates SM in the ith layer. P indicates annual precipitation. Rs and Rl indicate short- and
long-wave incoming radiation, respectively. Ta indicates air temperature.Qa indicates air humidity.W indicates wind speed.Np indicates the
number of days with precipitation no less than 0.01 mm d−1. Npi indicates the number of days with a specific precipitation range (Sect. 3.4).

tion classes in explaining SM differences due to atmospheric
forcing datasets.

Differences in Qa were also shown to explain a large
fraction of the simulated SM differences across different
forcings. Qa determines vapor pressure deficit, which in
turn controls transpiration (Farquhar and Sharkey, 1982) and
evaporation (Monteith, 1965), suggesting a strong control by
atmospheric dryness of the differences in SM found among
the four forcing datasets. Both Qa and Np have positive im-
pacts on SM, which enhances the correlation in Fig. 8.

Estimating impacts of meteorological factors on SM dy-
namics is difficult. First of all, the importance of a meteoro-
logical variable on SM may vary with climate regimes. For
instance, the importance of precipitation and radiation on SM
changes from water- to energy-limited regions. Secondly, im-
pacts of meteorological variables can be nonlinear through
interactions with local ecosystems (Seneviratne et al., 2010),
suggesting that even with the same meteorological variables,
the simulated SM can be totally different (e.g., with differ-
ent soil texture or land cover types). Moreover, SM can be
strongly coupled with the atmosphere (Koster, 2004; Taylor
et al., 2012), implying that meteorological factors can be in-
fluenced by SM as well (such as cloudiness, precipitation,
and air humidity), which is not included in this study. How-
ever, the logic of our importance analysis is simple. If the
model inputs (forcing data) are the same, the outputs (SM)
should be the same. In other words, the differences of out-
puts can only be caused by the difference of inputs in our
simulation results. It does not matter whether the quality of

atmospheric forcing is good. On the contrary, the more differ-
ences that exist among these forcing datasets, the better our
analysis is. To keep the analysis simple, we did not investi-
gate temporal correlations in each pixel, but focused on spa-
tial patterns of D at the continental scale. Therefore, our re-
sults provided a general estimation of the importance of me-
teorological variable uncertainties to SM simulation through
ORCHIDEE.

Indeed this approach is not able to demonstrate explicit
links between meteorological variables and SM. We under-
lined the impacts of Np and Qa uncertainties, but it does not
mean that other factors are unimportant. For instance, assum-
ing that a variable can strongly influence simulated SM, if
there was not much difference of the variable among forc-
ing datasets, its importance cannot be detected in this work.
Moreover, only one model was used in this study. Although
ORCHIDEE performed very well in SM simulation, the lack
of unknown mechanisms may weaken the linkage between
SM and specific atmospheric variables. In a word, our anal-
ysis only focused on the inputs and outputs of the model and
tried to diagnose the relationship between their differences.

6 Conclusions

Simulations in China were performed in ORCHIDEE-MICT
driven by different forcing datasets, GSWP3, PGF, CRU-
NCEP, and WFDEI. Simulated soil moisture was compared
to several datasets to evaluate the ability of ORCHIDEE-
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MICT in reproducing soil moisture dynamics in China. Re-
sults showed that ORCHIDEE soil moisture coincided well
with other datasets in wet areas and in non-irrigated areas.
It was suggested that ORCHIDEE-MICT is suitable for fur-
ther hydrological studies in China. However, the abnormal
variation of observed SM in North China Plain implied po-
tential impacts of irrigation, which was recommended to be
considered in further simulations. Moreover, results showed
that bias was mainly from model parameterization and at-
mospheric forcing. Thus parameterizations in ORCHIDEE-
MICT should be calibrated, and atmospheric forcing should
be carefully selected to reflect the situation of China.

Several criteria were chosen and compared among the four
simulations in China, YZRB, and YLRB. Results showed
that GSWP3 and WFDEI, which had the best performances
in correlation coefficients and RMSE, respectively, were
ideal choices for hydrological study in China. However,
higher MSD in the Yellow River basin reflected the com-
plicated climate conditions in northern China, which might
be significantly influenced by human activities as well. Fi-
nally, we used the differences of simulated soil moisture and
meteorological variables to simply investigate the linkage be-
tween them. Results showed that the differences of simulated
soil moisture were mainly explained by the differences of air
humidity and precipitation frequency among the four atmo-
spheric forcing datasets. However, this coarse analysis can-
not give explicit explanations about related mechanisms. Fur-
ther study is needed to discover the interactions between soil
water and climate through tracing the surface hydrological
cycles and energy balances.

Code and data availability. The SVN version of ORCHIDEE-
MICT used in this study is 3952, which is available at
https://forge.ipsl.jussieu.fr/orchidee/wiki/DevelopmentActivities/
ORCHIDEE-MICT-IMBALANCE-P (last access: 19 October
2018). The ORCHIDEE code and scripts of analysis are available
by contacting the corresponding author. The GSWP3, PGF,
WFDEI, ISMN, GLEAM, and ESA CCI datasets are freely avail-
able online; for the CRU-NCEP and PKU datasets, please contact
the corresponding author and Shilong Piao (slpiao@pku.edu.cn)
respectively.

The Supplement related to this article is available
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supplement
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