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Nanodroplets have great, promising medical applications such as contrast imaging, embolotherapy,

or targeted drug delivery. Their functions can be mechanically activated by means of focused ultra-

sound inducing a phase change of the inner liquid known as the acoustic droplet vaporization (ADV)

process. In this context, a four-phases (vapor þ liquid þ shell þ surrounding environment) model of

ADV is proposed. Attention is especially devoted to the mechanical properties of the encapsulating

shell, incorporating the well-known strain-softening behavior of Mooney-Rivlin material adapted to

very large deformations of soft, nearly incompressible materials. Various responses to ultrasound

excitation are illustrated, depending on linear and nonlinear mechanical shell properties and

acoustical excitation parameters. Different classes of ADV outcomes are exhibited, and a rele-

vant threshold ensuring complete vaporization of the inner liquid layer is defined. The depen-

dence of this threshold with acoustical, geometrical, and mechanical parameters is also provided.
VC 2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1121/1.5019467
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I. INTRODUCTION

Nanoparticles with a liquid core are receiving an

increasing interest because of their potential medical appli-

cations such as contrast imaging, embolotherapy or targeted

drug delivery.1 Their size, typically a few hundreds of nano-

meters, and their stability thanks to their liquid core, allow

them to circulate into the smallest capillary vessels, and also

to extravasate towards tumoral tissues. Indeed, unlike normal

blood vessels, tumor vessels are more permeable to well

sized therapeutic agents:2 this key mechanism is called the

enhanced permeability and retention (EPR) effect.3

Extravasation towards tumoral tissues can be enhanced by

functionalizing particles with specific ligands.4,5 Meanwhile,

they can be made stealth to macrophages by means of

PEGylated encapsulation.6 Those particles are therefore a

promising tool to circumvent some tumors’ defense barriers

and cargo anti-tumoral drugs as close as possible to target tis-

sues. They can be dedicated to both diagnostic (contrast

imaging) and therapy (drug cargos). Their medical functions

can be mechanically activated by means of focused ultra-

sound. Actually, an adequate supply of acoustic energy can

induce a phase change of the inner liquid:1,7 this process is

known as acoustic droplet vaporization (ADV). Ultrasound

can be controlled to concentrate and localize the energy non-

invasively but also to improve drug passage into tissue. ADV

may then enhance echogenicity and turn nanoparticles into

contrast agents for imaging within the tumor.8 The volume

expansion thus achieved can also occlude feeding blood

vessels, reduce or even stop regional blood flow, and

damage targeted tumors tissue: this process is known as

embolotherapy.9 Encapsulated bubbles can also carry drugs

to be released specifically and selectively near tumoral cells,

thus preserving healthy organs and reducing tumor cell resis-

tance to anti-tumoral drugs. The drug might be placed inside

the particle (within the liquid or trapped in an oiled phase) or

attached to the shell material8 depending on the therapeutic

use. All these features are investigated with high interest

since the early 2000s because they represent a promising way

to treat malignant diseases.

The particles’ content is necessarily made of biocompat-

ible organic molecules, and perfluorocarbons (PFCs) are

extensively considered. Encapsulated nanodroplets of PFCs

can be obtained through nanoemulsions that succeed to pro-

vide calibrated particles.10 PFCs are attractive candidate for

ADV due to their physicochemical properties and especially

the low boiling temperature of the lightest species, below

human body temperature. Because of the additional Laplace

pressure inside the droplet due to the surface tension, PFC

droplets remain metastable at body temperature until a suffi-

cient acoustic energy dose induces the vaporization.1

Regarding the shell, encapsulation process generally favors

the use of albumin layer,9 polymeric shell,11,12 phospholi-

pids,13 or fluorinated surfactants14 to reach a sufficient life-

time for the droplet. Nevertheless, a trade-off is necessary

between mechanical resistance of encapsulation to achieve

stability, and compliance to enable vaporization. When the

nucleation conditions are fulfilled, one or several small vapor

bubbles of PFCs can be created within the liquid phase.15

Furthermore, experimental in vitro studies suggest that the

nascent bubble may collapse irremediably until its volume

vanishes, or succeed to expand depending on thea)Electronic mail: thomas.lacour@upmc.fr
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insonification characteristics,7 and droplet geometry.

Modeling the dynamics of the ADV process and exploring

the minimum threshold required for vaporization is the

objective of the present study, in order to provide the con-

ceptual tool to optimize the ADV process, in terms of both

mechanical properties of the encapsulating shell and acousti-

cal parameters.

To reach this objective, the modeling of the acoustic

droplet vaporization focuses on the radial dynamics of an

initial vapor nucleus of perfluoropentane (PFP) originating

in its liquid phase, surrounded by a nonlinear viscoelastic

encapsulating material, itself immersed within an unbounded

outer liquid. Considering a centered vapor seed is a common

assumption that remains valid for submicrometric drop-

let15,16 (�1 lm) and that obviously simplifies the modeling.

It is worth noting that all theoretical models investigating

ADV rely, for the sake of simplicity, on the assumption of

spherical symmetry, even though recent ultrafast optical

measurements indicate more complex geometries may occur

such as toroidal deformation15 or multiple nuclei.17

The dynamical behavior of a spherical cavity originates

from the work of Besant18 and was later applied to the con-

text of cavitation damage by Lord Rayleigh.19 These basic

models have since been generalized to take into account var-

ious properties of the cavity environment: surface tension,20

viscosity,21 heat diffusion,20,22 compressibility.23 The related

model of ADV starts with the growth description of a single

bubble in a pure liquid-vapor system. This has already been

modeled24 and compared with ultrafast optical imaging25 for

droplets with initial radii on the order of a few micrometers.

Indeed, high-speed optical microscopy cannot observe a sin-

gle droplet on the order of a few hundreds of nanometers.

For micrometric droplets, the focusing effect of the droplet

itself, especially if the exciting signal is nonlinearly distorted

with superharmonic content, has also been shown necessary

to take into account.26,27 Influences of heat transfer16,28 and

of dissolved inert gases16 have also been theoretically

described and compared favorably to experiments. Nano- or

micro-particles have recently been considered as a vapor

bubble within a liquid layer of finite thickness.13 However, a

realistic representation of such particles during the ADV

process requires one to incorporate into the model the

mechanical effects of the encapsulating shell, thus leading to

a four-phase model (vapor þ liquid þ shell þ surrounding

environment). A complete formulation for the vapor bubble

dynamics in an encapsulated droplet has recently been pro-

posed in the case of linear elasticity for the shell rheology,29

combining the previously reviewed models of vapor bubble

growth, with a well-known description of contrast agent

encapsulation.30

However, linear elasticity approximation turns out to be

too restrictive regarding the large shell deformations result-

ing from the liquid to vapor phase change (typically a five-

fold radius increase31 for the PFP). Several models for shell

nonlinear behavior are available in the literature for ultra-

sonic contrast agents. Nevertheless, these models are limited

to the case of an interface whose thickness is assumed negli-

gible with respect to the particle size.32–34 In this context,

the first objective of the present paper is to generalize the

previous model (Ref. 29) in order to handle such large defor-

mations by incorporating nonlinear elasticity in the shell rhe-

ology. This is based on the well-known strain-softening

material behavior of Mooney-Rivlin material,35,36 well

adapted to very large deformations (several hundreds of per-

cent) of nearly incompressible materials. Indeed, harder shell

components for which the Mooney-Rivlin model assump-

tions are invalid, would turn out too rigid for an efficient

ADV process anyways.

Section II summarizes the theoretical formulation, first

accounting for phase change at the liquid-vapor interface

(Sec. II A), before incorporating shell elastic nonlinearities

(Sec. II B). For the PFP vapor/PFP/shell/water system

described in Sec. III, various responses to ultrasound excita-

tion will be illustrated in Sec. IV, depending on linear and

nonlinear mechanical shell properties and acoustical excita-

tion parameters. The second objective is to open ways to elu-

cidate the key question of ADV threshold for optimization

of nano- or micro-droplets design or/and acoustical parame-

ters. This is the purpose of Sec. V which exhibits different

classes of ADV outcomes and defines a relevant threshold

ensuring complete vaporization of the inner liquid layer. The

dependence of this threshold with acoustical and geometrical

parameters will finally be investigated.

II. THEORETICAL MODEL

A. Vapor bubble dynamics

A spherical inviscid vapor bubble with a dynamical

radius R(t) is centered in its viscous liquid phase (inner liq-

uid) as schematized in Fig. 1. This two-phase content consti-

tutes a metastable mixture of liquid and vapor. We consider

here especially perfluoropentane (C5F12), which is an attrac-

tive PFC candidate for its low boiling temperature (29 �C at

1 atm) below body temperature. This droplet is encapsulated

within a spherical incompressible viscoelastic shell with

inner a(t) and outer b(t) dynamical radii immersed in an

unbounded incompressible viscous liquid free of body force

(external liquid). Incompressibility assumptions are justified

by the small size of the droplet (typically 100 to 1000 nm)

much smaller than the acoustic wavelength (larger than

0.3 mm for medical frequencies considered here smaller than

5 MHz), and by the even smaller shell thickness. Shell com-

pressibility has to be considered only for thick and hard

layers,37 a case not considered here as such shells would pre-

vent ADV at sufficiently low acoustical pressure levels.

FIG. 1. Schematic sketch of the geometry.
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Initial radii are denoted by a0 and b0, respectively, for the

inner and outer shell interfaces. It is assumed there is no

mass exchange at the shell interfaces r¼ a and r¼ b. This is

justified by the timescales considered here, on the order of

microseconds, which are much shorter than the reported

timescales for mass diffusion7,38 on the order of at least

milliseconds. For the present geometry, the subscripts V, L,

S, and E will denote quantities relative to the vapor phase,

inner liquid phase, shell, and external liquid, respectively.

From mass conservation, incompressibility assumption, and

spherical symmetry, the radial velocity u outside the bubble

at distance r>R from the center satisfies19

uðr; tÞ ¼ ðR=rÞ2UðtÞ; (1)

where U¼UL is the radial velocity in the liquid at the bubble

interface r¼R. Because of the mass flux J across the surface

r¼R, the radial velocity of the inner liquid near the bubble

wall is not identical to _R. The mass flux occurs during con-

densation and evaporation, namely,28,39

J ¼ qLðUL � _RÞ ¼ qvðUV � _RÞ; (2)

with UV the vapor velocity at r¼R and qV the vapor density

which depends on the bubble surface temperature hV.

Regarding the small size of the bubble and the ratio of heat

diffusion coefficient between the liquid and vapor phases,

the vapor phase is commonly assumed of uniform pressure,

temperature, and density.28 Moreover, it satisfies the perfect

gas law qV ¼ pV=ðrVhVÞ, where rV is the specific gas con-

stant of the vapor (equal to 28.8 J kg�1 K�1 for PFP). Using

relation (1), the radial component of the momentum equation

for r � R reduces to

R2 _U

r2
þ 2R _RU

r2
� 2R4U2

r5
¼ 1

q
@Trr

@r
þ 3

q
Trr þ p

r
; (3)

where q is density, p ¼ �ðtr TÞ=3 is the hydrostatic pressure

associated to the internal constraint of incompressibility, and

Trr is the radial component of the stress tensor T. Equation (1)

for velocity and Eq. (3) for momentum are valid within inner

liquid, shell, and external liquid. The density is constant in

each of these three layers. The radial component of the stress

tensor is postulated to be the sum of a viscous part Tv
rr

¼ 2gð@u=@rÞ ¼ �4gUR2=r3 and an elastic part Te
rr. Assuming

both liquids behave as Newtonian fluids (Te
rr;E ¼ Te

rr;L ¼ 0),

only the shell has a non-zero elastic part Te
rr;S. The latter dif-

fers from previous works29,30 as nonlinearities have to be taken

into account due to the large droplet growth occurring because

of the vapor bubble expansion. The shell is assumed to act like

a Kelvin-Voigt material with a non linear spring (the elastic

part) in parallel with a linear dashpot (the viscous part).

Integrating Eq. (3) in the different layers out of the bubble

from r¼R to r¼þ1 with boundary conditions at the three

interfaces (r¼R, r¼ a, r¼ b), the following generalized

Rayleigh-Plesset equation for the bubble dynamics is obtained:

R _U þ 4n� C4=C1ð Þn2

2
_R

2 ¼ pR � p1
C1

; (4)

where Ci (i¼ 1, 4) are coupling coefficients, n ¼ U= _R. The

resulting pressure pR at the liquid-vapor interface r¼R is

given by

pR ¼ pV �
2�r þ 4�gU

R
þ Uþ S; (5)

while the pressure at infinity in the outer liquid is p1. This

driving pressure is the sum of the static pressure p0 and an

acoustic component pa with angular frequency x. We choose

paðtÞ ¼ �P sin xt (t> 0) to get initial expansion when

acoustic excitation is turned on. This choice is discussed in

Appendix B.

Note that, the waveform distortion that amplifies peak

positive pressures, shortens compression phase, and broadens

rarefaction for moderate-to-high excitation pressures used in

nearly all droplet studies [see, for instance, Fig. 5(b) in Ref.

27], is not investigated here for the sake of simplicity.

Moreover, Shpak et al.26 demonstrated the influence of non-

linear harmonics focusing by the droplet itself (so-called

“superharmonic focusing”) on the threshold for nucleation.

We can remark, however, that according to this study the

influence of superharmonic focusing is most sensitive for

droplets larger than a few micrometers. As both effects would

add new parameters in our study, we do not consider here

such a complex excitation that would deserve further investi-

gations. Especially, the nonlinear waveform distortion would

need special attention as it would impact droplets of any size.

In Eq. (5), the coefficient �r is an effective surface ten-

sion, �g is an effective viscosity, while U represents the con-

tribution due to the mass flux J and S ¼ 3
Ð b

a ðT
e
rr;S þ pÞdr

describes the shell elastic response (see Sec. II B for more

details). Coupling coefficients (i¼ 1, 4), viscosity contribu-

tion and effective surface tension are, respectively, given by

the relations

Ci ¼ qL þ ðqS � qLÞðR=aÞi þ ðqE � qSÞðR=bÞi; (6a)

�g ¼ gL þ ðgS � gLÞðR=aÞ3 þ ðgE � gSÞðR=bÞ3; (6b)

�r ¼ rþ r1ðR=aÞ þ r2ðR=bÞ: (6c)

For simplicity, the surface tensions r1 and r2 associated with

internal and external curvature of the shell are assumed to be

negligible so that �r ’ r. The coefficient C1 is the effective

density of the domain outside the bubble. It is an analogue to

the external liquid density involved in the classical form of

Rayleigh-Plesset equation for a spherical cavity in an incom-

pressible fluid free of body force and mass transport across

the interface19 (free bubble geometry). In the present geome-

try, a growing of the vapor bubble yields to a decreasing

apparent density C1 (Fig. 2 left). The coefficient before _R
2

depends on both Ci and n in the generalized form Eq. (4).

But assuming n � 1 this coefficient is equal to 3/2 when

R� 1 or R¼ a (Fig. 2 right) so that inertial part of Eq. (4) is

consistent with the one involved in the classical Rayleigh-

Plesset equation19 R €R þ ð3=2Þ _R
2
. It should be noted that for

the present case of thin shell (a � b), the Ci coefficients

mostly vary due to the density contrast between inner and

outer liquids and Ci � qL þ ðqE � qLÞðR=aÞi.
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Assuming thermodynamical equilibrium (saturation

condition) and a heavy liquid phase relative to its vapor

qL � qV, the vapor pressure pV is given by the Clausius-

Clapeyron law28,40

dpV

dhV

� L

rV

pV

h2
V

; (7)

where L is the latent heat of vaporization (independent of

hV). Using the perfect gas law, the phase change of liquid

PFP droplet can be estimate. Assuming that the whole mass

of liquid PFP turns into vapor without any loss, then the rela-

tive change in volume is ðRfinal=a0Þ3 ¼ qL=qV. Furthermore,

assuming the system after complete vaporization to be nearly

isothermal at the temperature hE;1 far from the bubble

vaporization, the final bubble radius after complete vaporiza-

tion is

Rfinal ¼ a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rVhE;1qL=pVðhE;1Þ3

q
� 4:8a0: (8)

The shell radius would thus increase almost fivefold to enable

the maximum expansion of the vapor phase and the total

vaporization of the inner liquid. A similar ratio (�5.22)

would be obtained for perfluorobutane (C4F10) which is also

a good candidate for ADV because of its very low boiling

point (�1 �C) or for other PFCs like perfluorohexane

(C6F14), which is less appealing because of its higher boiling

point (56 �C) above body temperature.

The mass flux contribution U ¼ JðUV � UÞ in Eq. (5)

arises from the evaporation process. It appears by writing the

continuity of the normal stress41 Trr;V þ JUV ¼ Trr;L þ JU
þ 2r=R at the liquid-vapor interface (r¼R). With Eq. (2),

the contribution U is reduced to

U ¼ J2ðq�1
V � q�1

L Þ: (9)

Furthermore, the mass flux J can be approximated from con-

tinuity of the energy flux by neglecting viscous dissipation

for the inner liquid and by considering adiabatic process for

the vapor phase.42 Consequently J ’ qL=L, where qL is the

radial heat flux in the liquid at the bubble surface r¼Rþ.

Generalized Rayleigh-Plesset Eq. (4) has to be completed by

the diffusion equation for temperature in the liquid phases,

neglecting thermal dissipation in the shell. This provides the

heat flux qL, and therefore the mass flux J. Neglecting vis-

cous and thermal losses in the vapor phase, the conservation

of energy leads to the following differential equation govern-

ing the bubble surface temperature:13

L

rV

_hV

h2
V

þ 3c
R

qL

qVL
þ _R

� �
¼ 0; (10)

where c¼ 1.05 is the ratio of specific heats of the vapor.13

The reader is referred to Ref. 29 for further details on the

numerical resolution.

B. Shell elasticity

The terms in the pressure pR are almost entirely

explained. The elastic response S of the shell given by

S ¼ 3

ðb

a

Te
rr;S þ p

r
dr (11)

remains to be defined. To close the formulation, a constitu-

tive law for the stress/strain dependence must be assumed.

Nonlinearities are indeed expected to be important due to

large deformations of the shell. The corresponding stress is

fully determined by the class of materials used to model the

shell elastic behavior. Assuming the shell is sufficiently thin

compared to the particle outer radius, which itself is much

smaller than the wavelength, it is a very good approximation

to consider the shell material as an incompressible viscoelas-

tic solid.37 The modeling of the elastic part is based on the

point of view of continuum mechanics in finite transforma-

tions.43 The shell is assumed to be an isotropic and incom-

pressible hyperelastic body deforming while keeping its

spherical symmetry. The coating shell is also assumed to

keep on covering homogeneously the bubble/droplet system

all over the ADV process despite the undergone very large

deformation. The rupture of the shell is thus not considered

here. This assumption is justified by observations indicating

that some coating materials (like phospholipids) remain after

vaporization, though others (albumin) cover the bubble only

partially, in heterogeneous patches.44 The shell motion is

represented by the relation x ¼ vðX; tÞ, where X ¼ r0er

denotes the coordinates in the reference configuration of a

point whose actual coordinates are x ¼ rðr0; tÞer; v being a

bijective mapping function. Vector er is the unit vector in the

radial direction. For two sufficiently close points that experi-

ence a finite transformation, all the derivatives are supposed

to be meaningful and the first order deformation gradient

FðX; tÞ ¼ @v=@X has the following nonzero components:

Frr ¼ @r=@r0 and Fhh ¼ F// ¼ r=r0 ¼ k; (12)

where k is the ratio between the radial coordinates at inflated

and uninflated states. A hyperelastic body is associated with

a strain energy density function, denoted W ¼ WðFÞ, that

characterizes the way the shell material stores elastic energy

while undergoing a deformation. This function is subject to

the principle of frame indifference.45 For an elastic material,

the stress tensor is explicitly Te
S ¼ F@W=@F. Because of

FIG. 2. Variation of inertial coupling coefficients Ci normalized (left) and of

the coefficient in front of _R
2

in Eq. (4) with n¼ 1 (right). Dashed lines cor-

respond to the particular case qL ¼ qE equivalent to a bubble in an

unbounded liquid. Values use for density are collected in Table I.
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incompressibility assumption, the volume conservation

requires that the Jacobian of the transformation satisfies

det F ¼ 1 at all times. This implies that

@r=@r0 ¼ ðr0=rÞ2; (13)

so that r3 ¼ r3
0 þ d3ðtÞ, which can also be written as follows:

kðr; tÞ ¼ ð1� d3=r3Þ�1=3; (14)

where d3ðtÞ ¼ a3ðtÞ � a3
0 ¼ b3ðtÞ � b3

0. The deformation gra-

dient being F ¼ diag ðk�2; k; kÞ, the stress tensor is reduced

to a diagonal matrix43 and the energy only depends on the

principal stretch k (circumferential stretch). The radial com-

ponent of the shell elastic stress tensor may be separated into

a deviatoric part Te
rr;S � trðTe

SÞ=3 and a spherical part p
¼ �trðTe

SÞ=3 so that45

Te
rr;S ¼ �p� 1

3
kW0ðkÞ: (15)

The pressure p is an internal strain arising from incompressi-

bility condition and the prime denotes the first derivative

with respect to k. Replacing the radial component (15) in

Eq. (11) and noting that dk=dr ¼ ðk� k4Þ=r leads to

dS ¼ W0 kð Þ
k3 � 1

dk; (16)

a relation equivalent to Eq. (2.11) of Ref. 46 describing the

inflation of rubber balloons. Relation (16) is fundamental to

express the elastic stress in the generalized Rayleigh-Plesset

Eq. (4). To figure out how the shell reacts to a mechanical

stress, it is necessary to focus on the mathematical form of

the energy W.

In the literature, a wide variety of formulations that esti-

mate the strain energy density exists. The common approach

leads to a Taylor expansion of W that involves algebraic spa-

tial invariants and elastic constants. Because of symmetry

arguments, the maximum number of independent invariants

is three for an isotropic body, and is reduced to 2 for an

incompressible material. In addition to those invariants,

some mathematical considerations show that incompressibil-

ity requires exactly the same number of independent elastic

constants as the order of approximation with respect to strain

measurement.47 A straightforward extension of the linear

constitutive law is the Saint Venant-Kirchhoff material that

assumes a linear stress–strain relation, with geometrical non-

linearities arising only from the nonlinear strain–displace-

ment relation. In this case, W is expanded only up to the

second order of the deformation and depends on the invari-

ants of the Green-Lagrange strain tensor e ¼ ðFtF� IÞ=2,

namely, W ¼ GL2, where G is the linear shear modulus and

Li ¼ trðeiÞ (i¼ 1, 2, 3) is the set of invariants defined by

Landau. When expanding the energy to the next order, the

material nonlinearities appear through an additional term

proportional to Landau48 third order elastic constant A and

W ’ GL2 þAL3=3. This truncature is problematic for nega-

tive values of A for which one may get W < 0. Indeed, the

term L3 becomes dominant when jkj exceeds a critical value

so that the energy has the same sign as A. This form has

therefore to be disregarded, because experimental measure-

ments reveal that A is negative for many materials such as

steel,49 inviscid fluids,50 and soft solids.51 Increasing the

order of approximation to fourth order would allow us to use

negative values but this would introduce a new elastic con-

stant and therefore an additional unknown parameter to

handle [Eq. (23) in Ref. 52]. Another approach is to include

material nonlinearities through a phenomenological polyno-

mial expansion of W depending on the invariants of b ¼ FFt

(left Cauchy-Green tensor). In order to favor the deformation

of the shell, the rheology must preferably be of the “strain-

softening” kind, with the apparent elastic modulus decreas-

ing with deformation. A first order approximation, linear

with respect to these invariants of b, is the Mooney-Rivlin

stored-energy function for an incompressible solid35

W ’ G

4

X1

i¼�1

1þ ibð ÞIi; (17)

where b is a nonlinear coefficient that satisfies b ¼ 3

þA=2G [see Eq. (64) in Ref. 53]. This form of stored energy

function is reliable on the range 1 � k < 5, therefore suit-

able for the expected stretch after complete vaporization of

the droplet.35 The invariants Ii are scalar functions of the

principal stretch k given by

IiðkÞ ¼ tr ðbiÞ � 3 ¼ k�4i þ 2k2i � 3: (18)

These invariants Ii have the advantage of being connected to

basic geometric quantities. Actually, I1 is related to the square

of the stretch ratio on an infinitesimal line element averaged

over all possible orientations and I�1 to the stretch ratio on an

infinitesimal area element averaged over all possible orienta-

tions.54 Because of incompressibility assumption, these invari-

ants are associated with two reciprocal deformations (an

increased shell surface leads to a decreased thickness and vice

versa) so that I1ð1=kÞ ¼ I�1ðkÞ. Consequently, the coefficient

b turns out as a measure of the relative importance of these

reciprocal deformations and is called an asymmetry coefficient

by Mooney.35 As mentioned earlier, there are only two inde-

pendent invariants for incompressible isotropic materials and it

should be noted that Ii and Li are related to one another.

Expression (17) allows negative values for A, but to ensure

the positivity of W, the partial derivatives @W=@Ii (i¼�1,1)

have to be positive. The nonlinear coefficient is therefore

restricted to the range �1 < b < 1 and consequently, the

third-order elastic constantA lies in the range

�8G < A < �4G: (19)

To account for Mooney-Rivlin behavior of the shell in the

Rayleigh-Plesset Eq. (4), the derivative of the strain energy

density function has to be evaluated and then the relation

(16) has to be integrated to give

S ¼ 2G
X1

i ¼ �1

i 6¼ 0

X1

k¼0

1þ ib
�i� 3k

k�i�3k

2
64

3
75

k¼b=b0

k¼a=a0

:
(20)
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Details for obtaining above expression are provided in

Appendix A. Linear elasticity can be recovered from Saint

Venant-Kirchhoff and Mooney-Rivlin material. Under the

assumption of small displacements d3=r3 � 1, the principal

stretch can be approximated by

kk ¼ 1þ kd3=3r3: (21)

The resulting linear Hooke elastic stress

S0 ¼
4

3
G

d3

r3

� �r¼b

r¼a
(22)

is deduced, consistently with previous works.29,30 Resulting

elastic stress S normalized by the linear one S0 is displayed

in Fig. 3. The theoretical deformation expected for the com-

plete vaporization is, in particular, highlighted. For small

displacements, all models are equivalent, in agreement with

Hooke’s law. When the shell undergoes a greater deforma-

tion (a> 1.25a0) caused by the expansion of the vapor phase,

the different rheologies react differently. The Mooney-

Rivlin one gives a stress ranging between one (b¼ 1) and

two (b¼�1) magnitudes greater than linear elasticity.

Neglecting nonlinearities clearly tends to artificially make

the system softer and consequently to ease the shell inflation

and the vaporization. As soon as b>�1 the elastic response

of a Mooney-Rivlin material gets softer. In order to optimize

the bubble growth, the variation of S associated with the

deformation suggests that the shell material should ideally

behave as the softest Mooney-Rivlin material with b¼ 1,

which corresponds to the class of neo-Hookean solids55

depending only on the invariant I1.

III. CHOICE OF PARAMETERS

The vapor radial dynamics is numerically simulated for

a micrometric droplet of perfluoropentane (PFP) C5F12

immersed in water at human body temperature 37 �C and

atmospheric pressure. At initial time, the shell inner radius is

a0 ¼ 1 lm and its thickness is h0 ¼ b0 � a0 ¼ 10 nm. The

particle size, content, and thermophysical parameters are

chosen to be consistent with previous studies13,29 and are

collected in Table I. Even if the vapor behavior is strongly

dependent on the size of the initial vapor nucleus, it is arbi-

trarily fixed to Rðt ¼ 0Þ ’ 80 nm in the following simula-

tions, unless specified otherwise (see Secs. IV and V), to

focus on the shell mechanical properties. This value is cho-

sen to be below the critical radius of unstable equilibrium20

R? ¼ 2r= pVðhv;1Þ � p0

� �
: (23)

A nucleus larger than R? would spontaneously grow while a

smaller one would spontaneously collapse in the absence of

acoustical excitation. Shell mechanical properties (G and b
parameters) are here considered as free parameters. In our

simulations, the product Gh0 is, however, limited to the max-

imum value 5 N/m (G¼ 480 MPa in Fig. 6). Such high val-

ues of shear modulus are more adapted to describe soft

polymer shells, though much stiffer polymers have also been

considered for encapsulation, for instance, poly lactic-co-

glycolic acid (PLGA) with shear modulus on the order of

3 GPa.14 However, such stiff encapsulation turns out unfa-

vorable for the ADV process, which justifies our choice to

consider smaller G values. At least in the linear regime, the

product Gh0 is also a good measurement for surface tension

that could describe encapsulation by phospholipids. In this

case, the typical values for Gh0 are not much larger than

1 mN/m, which amounts to G< 1 MPa (see, for example,

Table I in Ref. 34). It will be shown (see Sec. V) that such

low values induce a weak mechanical influence of the encap-

sulation. However, the assumption of incompressibility will

lead to a very thin layer after vaporization, which may not

perfectly represent the behavior of surfactants. We rather

expect an enlargement of the interspace between the shell

molecules with a more or less constant layer thickness.

Alternative models considering a variable surface ten-

sion34,57 would be in this case more suitable and are cur-

rently considered in ongoing studies. The value of density

qS ¼ 1100 kg m�3 is chosen slightly higher than that of

water and cells30 for a soft material. Actually, for a small

thickness b – a compared to the radius a, the shell inertia is

negligible in the bubble dynamics (see qE ¼ qL dashed lines

in Fig. 2). Regarding numerical parameters, the simulations

are stopped when either the inner liquid layer is zero at

machine precision (typically 10�14 nm for total vaporization,

see Fig. 4), or the vapor bubble nucleus is smaller than

R0=100 nm for collapse. Note our numerical model could

FIG. 3. Nonlinear Mooney-Rivlin elastic response normalized by the linear

one. Gray colormap indicates the value of b nonlinear parameter. Thin verti-

cal line at 400% denotes the deformation expected after complete vaporiza-

tion of the PFC liquid core.

TABLE I. Parameters used in numerical simulations. K stands for the ther-

mal conductivity and c for the isochoric specific heat per unit mass.

Interface (Ref. 56) Liquid Shell (Ref. 30) External

— (PFP) (Parametric) (water)

q (kg m�3) 1630 (Ref. 56) 1100 998

g (mN s m�2) 0.652 (Ref. 56) 50 1

K (W m�1 K�1) 0.056 (Ref. 13) 0.6

r (mN m�1) 9.5

L (kJ kg�1) 88

c (J kg�1 K�1) 1089 (Ref. 13) 4200
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not consider the case of a completely vaporized droplet that

condenses back during the acoustic compression phase.

Although we cannot rule such a re-condensation event, it has

not been observed experimentally in the work of Doinikov

et al.13 Moreover, spontaneous re-condensation process has

been recently observed for perfluorohexane nanodroplets

with a boiling point (56 �C) above body temperature thus

leading to so-called “blinking droplets” activated by laser

excitation.58,59 The heat diffusion equations are transformed

by introducing new spatial coordinates which allow us to fix

the moving boundaries [r¼R(t) and r¼ b(t)]. The resulting

equations are discretized with 32 points per diffusion length,

by centered (except at the boundaries) second order finite

differences. Time evolution is solved by a numerical solver

adapted for stiff differential equations (see Ref. 29 for more

details). An example of numerical simulation illustrating the

bubble radius evolution over several acoustic cycles is dis-

played on Fig. 4. In this case, the bubble radius reaches

six maxima and approaches collapse twice before complete

vaporization. One can notice that the bubble expansion and

compression phases are partly out of phase with the acoustic

excitation, as the bubble radius reaches a local maximum

more or less at the peak of acoustic compression. Similar

bubble dynamics has already been observed experimentally,

see, for instance, Fig. 2 in Ref. 16.

IV. BUBBLE BEHAVIORS

A. Influence of acoustic amplitude

Numerical simulations reveal different bubble outcomes

according to the shell elasticity and the acoustic excitation.

Figure 5 displays the bubble radius as a function of time for

selected acoustic pressures associated with noteworthy

dynamics. When applied amplitude excitation is increased at

a given frequency, the bubble history exhibits at least three

distinct behaviors. If the amplitude of acoustic excitation is

below a critical value, the vapor nucleus spontaneously

shrinks as the acoustic excitation is too low to counterbal-

ance its natural trend to collapse. This is defined as regime I.

On the contrary, for the largest amplitude (Fig. 5 with

P¼ 5 MPa), the initial trend to collapse is quickly counter-

balanced by the applied negative pressure. Then the vapor

bubble grows monotonically until complete vaporization:

this is regime III. Note that the two shell material behaviors

(linear or Mooney-Rivlin) are indistinguishable in these two

regimes. Between these two extremal behaviors, the radius

first decreases according to its natural trend to collapse [see

(A) in Fig. 5], then increases under the action of acoustic

pressure up to a maximum value. However, the acoustic

pressure level is not sufficient to reach the complete vapori-

zation during the first acoustic expansion phase (0.125 ls). A

competition begins between the applied compression phase

and the natural trend of the bubble to grow as it is now

beyond its critical radius R? (indicated by the horizontal line

in Fig. 5). Then various outcomes may occur in numerical

simulations depending on the amplitude of excitation applied

and the shell rheology employed. This regime with at least

one local maximum of the radius is called regime II. The

vapor bubble can collapse and rebound one or several times

before irremediably shrinking (dashed line at 2.6 MPa in Fig.

5 with two rebounds) or finally it reaches a state of complete

vaporization (at 2 MPa in the linear case or 1.3 MPa for non-

linear case, as visible in Fig. 5).

B. Influence of shell elasticity

At the same acoustical parameters, if the material rheol-

ogy switches to nonlinear elasticity, bubble outcomes are

rather different and the complete vaporization is not

observed anymore for the same excitation pressures (Fig. 5,

2 and 2.6 MPa, solid lines). This indicates a sensitivity of the

bubble ultimate fate with regard to the shell nonlinear elastic

properties: a Mooney-Rivlin behavior induces higher shell

stiffness as previously outlined in Fig. 3 and therefore leads

to bubble collapse whereas it would vaporize in the linear

case. A threshold for applied acoustic amplitude pth above

which vaporization is achieved without any rebound can

therefore be defined. This threshold depends, among others,

on frequency and initial bubble radius.

FIG. 4. Normalized inner liquid thickness ða� RÞ=a history (solid line),

applied acoustic pressure of 3.64 MPa at 5 MHz (for b¼ 1 and G¼ 20 MPa).

Small box: corresponding bubble radius history and acoustic excitation

(dashed line).

FIG. 5. Radius R of vapor bubble vs time curves for 6 excitation amplitudes

P (0, 1, 1.3, 2.6, and 5 MPa at a given frequency f¼ 4 MHz. Solid lines are

associated with a Mooney-Rivlin material with b¼ 1 and dashed lines with

linear elasticity. The shear modulus value of the shell is G¼ 20 MPa. The

initial droplet size is a0¼ 1 lm and the initial bubble radius is R0¼ 80 nm.

The small graph represents a zoomed view from 0 to 0.02 ls. Figures

indicate the pressure excitation. Horizontal dotted-line shows the critical

radius R?.
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But the level of nonlinearities also plays a significant

role on the vapor bubble dynamics. Figure 6 illustrates the

bubble radius history for two encapsulations with a Mooney-

Rivlin material for the two extreme values of nonlinear

parameter b. It also underlines the importance of the shear

modulus on the vaporization process at a given acoustical

excitation. For hard shells (G¼ 480 MPa), the vapor nucleus

succeeds to initially grow, but it then smoothly oscillates

around its critical radius R? � 0:63 lm (identified by hori-

zontal line in Fig. 6) and finally shrinks, without noticeable

variations between the cases b¼ 1 and b ¼ �1. Soft shells

(G¼ 20 MPa) ensure the complete vaporization and for this

low rigidity, the nonlinear parameter b slightly affects the

characteristic time required for the entire vaporization. On

the contrary, the intermediate behaviors depend on the choice

of b. The numerical simulation indicates that the vaporization

occurs in a large range of G (G< 310 MPa) for the case b¼ 1

(solid lines in Fig. 6). On the contrary for the case b¼�1,

the process is inhibited for a shear modulus as low as

G¼ 60 MPa (dashed lines in Fig. 6). This confirms the evolu-

tion of the normalized elastic response S=S0 in Fig. 3, where

the nonlinear elastic response is separated by almost one

order of magnitude between the two extreme values of b in

the deformation range a/a0< 5. The coefficient b appears in

fact as a stiffness measurement associated with material non-

linearities. When b¼�1 (dashed lines in Fig. 6), a shear

modulus value G¼ 80 MPa produces an oscillating regime

with several rebounds, with a decreasing maximum radius

between two consecutive ones, continuing until the vapor

bubble finally vanishes. Obviously, the predicted rebounds

and collapses from numerical results in Figs. 5 and 6 should

be carefully interpreted because they are associated with high

temperature and high liquid-vapor interface speed. Even if

rebounds are observed experimentally,13,16 such conditions

may not be compatible with the incompressibility and the

thermodynamical equilibrium assumptions used in the pre-

sent model. This enforces our choice for the unambiguous

definition of the acoustic vaporization threshold as being the

minimal pressure required to reach the numerical outcome

R¼ a without rebounds (regime III).

V. DIRECT VAPORIZATION THRESHOLD

A. Definition and computation

As shown in Sec. IV, the numerical simulations predict

different ends of life for the bubble dynamics that can be

sorted at least into three families. Compared to the case of a

vapor bubble in an unbounded liquid, the confinement within

a shell introduces an upper limit in that growth and condition

0<R< a must be satisfied at all times. The direct threshold

pth is defined as the minimum acoustic pressure for which

complete vaporization is achieved without any rebounds

(regime III). This threshold should be here clearly distin-

guished from the more usual nucleation threshold27,60,61

required to nucleate the vapor bubble from an unperturbed

liquid droplet with no gas. Direct threshold is computed

numerically by solving the nonlinear system and searching

for the minimum pressure that leads to the regime III at a

given frequency. Starting from a given maximum excitation

level, a dichotomy iterative algorithm is used until the pres-

sure difference between two values leading to regime III on

the one side and to regime I or II on the other side, is less

than 1 Pa. Figure 7 displays this threshold obtained for a shell

whose elasticity follows the behavior of a Mooney-Rivlin

material with G¼ 20 MPa and b¼�1. An optimum pressure

p? and its corresponding optimum frequency f ? can be

extracted from numerical simulations for any set of G and b.

B. Frequency dependence

The direct threshold varies differently depending on

whether the frequency is higher or lower than the optimum

one f ?. In the low frequency regime (f < f ?) the direct

FIG. 7. Acoustic amplitude threshold for the direct vaporization of an

encapsulated PFP droplet immersed in water. The shell is a Mooney-Rivlin

material with G¼ 20 MPa and b¼ 1. The value of the initial droplet size is

a0¼ 1 lm and the initial bubble radius is R0¼ 80 nm. Markers denote the

acoustical parameters used for simulations in Fig. 5 (�). Small boxes display

the three typical regimes for R(t): collapse below dashed line (I), direct

vaporization above black line (III), and intermediate behaviors between (II).

The frequency f ? and the pressure p? are the optimal acoustic parameters for

direct vaporization at a given set of parameters.

FIG. 6. Numerical solutions for bubble radius as a function of time for vari-

ous shear moduli G, at a given excitation frequency f¼ 1 MHz and a pressure

amplitude P¼ 4 MPa. Continuous lines denote the use of a Mooney-Rivlin

model for the shell material with b¼ 1 and the dashed lines correspond to

b¼�1. The value of the initial droplet size is a0¼ 1 lm and the initial bub-

ble radius is R0¼ 80 nm. Arrows indicate the value of the shear modulus G.

Horizontal dotted-line shows the critical radius R?.
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threshold is inversely proportional to the frequency and sep-

arates regimes I and III. No regime II is observed. This fre-

quency dependence has already been observed for the

majority of experimental studies for both micrometric7,62,63

and nanometric64,65 particles in the 1–10 MHz range. It is

also consistent with the rectified growth threshold pgr of a

vapor bubble of PFP in an infinite liquid PFP.29 This growth

threshold (pgr / f�1) is displayed in Fig. 7 as the lower

dashed curve. Rectified growth threshold and direct vapori-

zation threshold are superimposed for f < f ?. When the fre-

quency exceeds the optimum (f > f ?), the direct threshold

starts to increase with frequency. However, below the direct

threshold (solid line in Fig. 7) and above the growth thresh-

old (dashed curve in Fig. 7), intermediate solutions of regime

II are obtained for the bubble dynamics. This increase in the

amount of acoustic energy needed to vaporize the droplet

with frequency is reported to our knowledge in at least three

experimental studies. In the first one, an increase of vapori-

zation threshold (see Fig. 11 in Ref. 66) is observed between

3 and 4 MHz for quite large droplets in the range 5–27 lm.

The authors of this study speculate, however, that the increase

of ADV threshold with frequency may be due to the complex

geometry of their setup likely enhancing the actual pressure

field at the bubble location. In the second one, an increase of

the threshold is observed for both nanometric (260 nm) and

micrometric (2.2 lm) droplets comparing 1 and 18 MHz exci-

tations (last two lines of Table I in Ref. 67). The third one also

notices this trend in the range 1–8 MHz for large particles

(5–8 lm mean diameter) but with a large dispersion in their

sizes (see Fig. 8 in Ref. 68), though this trend is observed here

in a statistical way which may be different from the behavior

of a single droplet. These observations are not incompatible

with our numerical results as we observe an increase of the

threshold with frequency either at very large frequencies as

noted by Martin et al.,67 or for large particles as reported by

Kripfgans et al.66 and Sheeran et al.68 Moreover, it should be

recalled here that vaporization may occur also in regime II

(after one or several rebounds, see Fig. 4). Vaporization occur-

ring in this regime is difficult to detect experimentally but may

have been recorded at least once: see Fig. 2(D) in Ref. 16,

where the radius of a single droplet passes by a maximum,

then shrinks to the lowest observable size before finally grow-

ing. In our study, when the numerical solution presents at least

one rebound event, the solution is disregarded and the ampli-

tude of excitation is increased before solving again the system

at the new pressure. Actually, when the acoustic amplitude is

relatively close to the growth threshold (dashed curve in Fig.

7), the complete vaporization could appear after at least one

rebound and vaporization events exist relatively close to the

growth of the initial vapor nucleus (see, for example, excita-

tion at 1.3 MPa in Fig. 5). One can also remark that the direct

threshold may be of interest for medical applications; indeed

bubble collapse may induce tissue damages and direct vapori-

zation reached in regime III would avoid this.

C. Influence of shell elasticity

The numerical results of Fig. 6 also highlight that the

shell rheological properties G and b are significant for the

bubble outcome. Therefore, it is interesting to compare the

threshold for different rheologies. Figure 8 shows several

phase diagrams for a set of parameters ðG; bÞ in order to

evaluate the influence of these mechanical parameters. The

direct threshold for nonlinear elasticity with b¼ 1 is slightly

above the one for linear elasticity. When b¼�1, nonlinear-

ities are heightened, the shell is made stiffer for large defor-

mations and the direct threshold increases by about 5 MPa.

The second parameter that governs the shell behavior is the

shear modulus G. First of all, one observes that the low fre-

quency part of direct threshold does not depend on G and

keeps identical to the growth threshold. One can also notice

that a bottom limit for the threshold is observed when

G! 0 MPa. This shows the vaporization outcome is also

controlled by the finite size of the droplet to be evaporated,

and not only by the shell elasticity. Indeed, the decrease in

the modulus of elasticity results in a reduction of the differ-

ence between the direct thresholds for b¼ 1 and b¼�1. As

soon as G increases, the optimum frequency decreases and

the optimum pressure gets higher. Although the optimal

point is moved, the low frequency part of the direct threshold

curve remains unchanged. Consequently, the shell stiffness

should be ideally minimal to ensure the lowest optimum,

though a trade-off has to be kept with other effects on in vivo
performances such as control of dissolution rate. Actually,

other numerical simulations (not presented here) show that

the relevant parameter that governs the elastic response is

indeed the product Gh0 of the initial shell thickness h0

¼ b0 � a0 times the shear modulus G: varying G or h0 but

keeping the product constant leads to an almost unchanged

phase diagram.

D. Influence of geometrical parameters

To understand the high frequency behavior of the direct

threshold pressure (when f > f ?), another shell characteris-

tics that can be investigated is the particle radius at initial

time. The initial shell inner radius a0 and the initial vapor

FIG. 8. Direct vaporization threshold as a function of frequency f for differ-

ent values of shear elasticity G indicated by figures in MPa for b¼ 1 (solid

lines) and b¼�1 (dashed lines). The marker (�) denotes the acoustical

parameters used for simulations in Fig. 6. The geometrical values at initial

time are 1 lm and 80 nm, respectively, for the droplet radius a0 and the bub-

ble radius R0.
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bubble radius R0 are together linked to the actual quantity of

liquid to be vaporized to completely turn the particle content

into vapor. Numerical simulations for the direct threshold

have thus been computed for three values of a0 in the cases

R0¼ 40 nm and R0¼ 80 nm as displayed in Fig. 9, for the

limit case where elasticity has been removed for the shell

(G! 0). The obtained phase diagrams (Fig. 9 top) still

exhibit the same low-frequency and high-frequency varia-

tions as previous curves: a decreasing phase below the mini-

mal value p?ðf ?Þ, followed by an increasing one. For the low

frequencies f < f ?, the growth threshold depends mostly on

the value of the initial vapor nucleus radius R0. The influence

of the radius a0 on the low-frequency threshold exists but is

negligible in front of the pressure scale precision considered

here (1 Pa). This is a very important observation showing

that vaporization dynamics at relatively low frequencies is

controlled by the nucleus size rather than by the droplet size.

The growth threshold therefore amounts from a competition

between the time needed for the nucleus to collapse on one

side, and on the other side the time of acoustical expansion.

As a consequence, even if the nucleus is not centered (as is

frequently observed15,16,26,66 mostly for large micrometric

particles), we can expect a very similar behavior because the

influence of the encapsulation is weak. So, the effect of

nucleus centering will influence the vaporization process

mostly for micrometric particles or maybe nanometric ones

but only at very high frequencies beyond the optimum point

(p?; f ?) (see Fig. 9 top). Consequently, this effect might be

of secondary importance for nanodroplets excited at a few

MHz (for example, below 5 MHz for 250 nm droplets).

Another new feature appearing here in the high frequency

domain f > f ? is the varying slope for the five selected val-

ues of a0. After the turn point f ¼ f ?, the direct threshold

slope is significantly dependent on the value of a0. But what-

ever the initial bubble radius R0, this threshold behavior

follows the same frequency power law for a given radius a0.

Obviously, when the initial shell inner radius increases, it

also means the liquid volume to evaporate is higher and thus

more acoustic energy must be supplied. The acoustic pres-

sure required is therefore greater. According to the value

imposed on the initial radius a0, the different curves have

strong similarities in their frequency dependence either in

the micrometric or nanometric range. If the pressure and the

frequency are, respectively, normalized by the optimum

pressure and frequency, then the phase diagrams become

identical for the whole couples (R0, a0) as shown in a log-log

representation in Fig. 9 bottom [y ¼ logðpth=p?Þ versus

x ¼ logðf=f ?Þ]. Two different dependencies on frequency

are observed on both sides of the origin x¼ y¼ 0. When x is

negative, y¼ –x and the direct threshold is inversely propor-

tional to the frequency. One recovers here the fact that the

direct threshold is equal to the growth threshold for f < f ?.
On the other hand, positive values approach the law y¼ 2 x,

highlighting the quadratic frequency dependence.

E. Approximate expression

With these different phase diagrams (Figs. 8 and 9), it is

possible to give an approximate analytical expression for the

frequency dependence of the direct threshold, valid at least

for the particular pressure range]0, 20] MPa. For frequencies

f < f ?, the direct threshold, that is almost identical to the

rectified growth threshold, is29

pthðf < f ?Þ ’ A lnðR?=R0Þf�1R�2
0 : (24)

A is a characteristic constant (unit: kg m s�3) likely linked to

the physical properties of the inner liquid (here the PFP).

Note that no dependence on the shell properties is observed

(see Fig. 8). Indeed, in the low frequency domain, the bubble

growth is initiated by rectified heat transfers:42 the larger the

bubble surface is, the more heat conduction can take place

and the lower the threshold is. The logarithm dependence

lnðR?=R0Þ ensures the spontaneous bubble growth for

R0 < R?. The direct threshold is finally inversely propor-

tional to fR2
0 as displayed in the left small box in Fig. 9. The

dependence in terms of the product fR2
0 may arise from the

competition between applied acoustic expansion and natural

condensation. This natural trend to collapse is scaled69 by

the characteristic time

tc �
R2

0

D
/ðJaÞ; (25)

with D the heat diffusion coefficient of the inner liquid and

Ja the Jakob number [see for the precise definition Eq. (8) of

FIG. 9. Top: Direct threshold pth as a function of excitation frequency f for

two values of initial vapor radius R0¼ 40 (solide line) and 80 nm (dashed

line), both computed for five values of initial shell inner radius a0¼ 0.25,

0.5, 1, 2, and 4 lm. A curve follows the shortest path from ingoing arrows to

outgoing ones. Bottom: log-log representation of the direct threshold nor-

malized by the minimal pressure p? as a function of the excitation frequency

normalized by the frequency f ? associated to the minimal pressure.
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Ref. 70 involving the latent heat L and the difference

between the temperature of the outer fluid and the boiling

temperature of the PFP]. Note that different expressions for

the function / are available in the literature.69 As a conse-

quence, the acoustic excitation has to be sufficiently fast to

counterbalance the natural collapse of the bubble during the

time tc, which would explain the fR2
0 dependence of the

direct threshold pthðf < f ?Þ.
If the frequency excitation is above f ? and G approaches

zero, the threshold for direct vaporization satisfies the fol-

lowing approximation:

pthðf > f ?;G ¼ 0Þ ’ B0f 2a2
0; (26)

where B0 is a characteristic constant (unit: kg m�3) likely

linked again to the liquid properties. When the initial droplet

size decreases, the optimum frequency f ? shifts to the high

frequency. Then, assuming the initial vapor radius to be con-

stant, the minimum pressure required to reach the complete

vaporization decreases at a given frequency. However,

experimental observations do not show this dependence for

nanodroplets.65,66,68,71,72 This discrepancy is probably linked

to the fact that the initial vapor radius is arbitrarily fixed.

Actually, this one is very likely dependent on the initial

droplet radius, R0 ¼ R0ða0Þ, according to the complex pro-

cess of homogeneous or inhomogeneous nucleation not

investigated here. The increase of the experimentally

observed threshold with a decreasing a0 is therefore compati-

ble with our so-called growth threshold model, provided

smaller droplets have a sufficiently smaller vapor nucleus.

This seems to be a reasonable assumption. In particular, the

coalescence of several nucleation sites for large droplets can

generate this situation. This approximated expression is dis-

played in the right small box in Fig. 9 bottom. By combining

Eqs. (24) and (26) both written for the optimum point

(denoted by p?0 and f ?0 in Fig. 8), one gets the following

approximate expression for this one:

f ?0 ’ ðAB�1
0 lnðR?=R0ÞR�2

0 a�2
0 Þ

1=3;

p?0 ’ ðAB2
0ln2ðR?=R0Þa2

0R�2
0 Þ

1=3:

(
(27)

Moreover, Fig. 8 indicates that, at least for the relatively

small values of Gh0 with b¼ 1, the pressure for the direct

threshold increases linearly with the shear modulus G, inde-

pendently on frequency. One can therefore assume that

pthðf > f ?Þ ’ B0f 2a2
0 þ CGh0 þ OðG2h2

0Þ; (28)

where C is a function expected to depend on the shell initial

radius a0, on its nonlinear elastic coefficient b and on some

fluid properties. Plotting f ? extracted from Fig. 8 versus G
for the fixed value b¼ 1, one finds a linear dependence of f ?

with elasticity: f ? ¼ f ?0 � aGh0 (see Fig. 10 left). Using this

approximate law in Eqs. (24) and (28) for the optimum value

f ?, equating the two expressions and performing a first order

Taylor expansion with respect to G yields C ¼ 3aB0a2
0f ?0 and

finally leads to

p?ðGÞ ’ B0a2
0ðf ?2

0 þ af ?0 Gh0 þ a2G2h2
0Þ (29)

giving the acoustic pressure direct threshold as a function of

the thickness and linear elasticity of the shell. This quadratic

dependence of the optimum pressure p? with G is compared

in Fig. 10 (right) with the values of p? extracted from Fig. 8

with a very good agreement up to 100 MPa.

VI. CONCLUSION

The acoustic vaporization of an encapsulated droplet

has been theoretically and numerically investigated by fol-

lowing the growth of a vapor bubble, already nucleated

within a droplet. Particular attention has been given to the

influence of the mechanical properties of the encapsulating

shell. Given the large changes in volume during the vapori-

zation dynamics, nonlinear elasticity has been taken into

account through the strain softening Mooney-Rivlin model

describing large but finite deformations of soft materials.

Nonlinearities turn out to have a significant influence on

the vaporization process. This one has been classified into

three main regimes: collapse (regime I), direct vaporization

(regime III), and intermediate behaviors (regime II). The

final outcome of the vapor bubble turns out strongly depen-

dent on the shell elastic properties, softest shells with a low

value of the shear modulus G and a nonlinear parameter b
approaching its maximal value 1, being the most favorable

materials for vaporization. However, in the time history of

the bubble evolution, the initial phase is mostly a competi-

tion between the applied acoustic expansion and the natural

collapse of the nucleus: acoustic forcing must be sufficiently

fast and strong to counterbalance the collapse. This initial

phase is therefore independent on the droplet size and the

shell properties, but is strongly influenced by the size of the

vapor nucleus. Regarding the threshold necessary to reach

direct vaporization (regime III), this explains the observed

decreasing low frequency behavior given by Eq. (24) as also

reported by several experiments.

This formulation also provides the influence of the ini-

tial nucleus size R0. The dependence on the inner fluid ther-

mal properties is contained in coefficient A and would need

further investigations to confirm the role of the characteristic

time of condensation. In the high frequency regime, the

acoustic excitation is sufficiently fast to allow the bubble to

go beyond its critical radius R?. The bubble now grows natu-

rally but the process needs some time to complete the vapor-

ization of the whole inner liquid. As a consequence, it has to

compete with the acoustic excitation which after some time

FIG. 10. Left: values (�) for f ? and linear fit (dashed line) versus shear

modulus. Right: values (�) for p? and fit [Eq. (29), dashed line] versus shear

modulus.
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tends to compress the bubble. This explains the increasing

high frequency threshold given by Eq. (26) and proportional

to the square of frequency. The high frequency threshold is

also given in terms of the initial droplet size and mechanical

properties Gh0 (in the particular case b¼ 1). The existence

of these two behaviors induces an optimal frequency for

which the direct vaporization is achieved at a minimum pres-

sure amplitude. Approximate formulas for these optimum

frequency and pressure level have also been provided.

Nevertheless, vaporization has also been shown to occur

after one or several rebounds, a case which has still to be

explored in more details.

That study would deserve many further investigations.

From the acoustical point of view, instead of a pure sine

wave alternating favorable expansion phases and unfavor-

able compression phases, the excitation signal could be

adapted to minimize the compression phases in order to

ease the bubble expansion. The role of nonlinear distortion

and superharmonic focusing would also need to be

explored. Regarding medical applications, the influence of

surrounding tissues, considered as soft elastic solids,

would also require attention, especially for targeted drug

delivery. For embolotherapy, droplets would be trapped in

capillary vessels, which also may modify the droplet

growth. This effect is presently not taken into account.

Finally, rebounds of the collapsing bubble may be eased

by adding dissolved gases. This could be a way to also use

regime II in the model with confidence to completely

vaporize the inner liquid and to handle a threshold defini-

tion with a lower value.
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APPENDIX A: DETAILS FOR THE CALCULATION OF
THE SHELL HYPERELASTIC RESPONSE

The shell elastic reponse S is associated to the following

integral:

S ¼
ðkðbÞ

kðaÞ
ŜðkÞdk ¼

ðk bð Þ

k að Þ

W0 kð Þ
k3 � 1

dk; (A1)

where W0 is the first derivative of the strain energy function,

kðrÞ ¼ r=r0 is the principal stretch of the deformation, and a
and b are, respectively, the inner and the outer radius of the

hyperelastic shell. In this work, all the strain energy function

considered can be expressed in terms of a linear combination

of the principal stretches [see Eq. (13) in Ref. 73] which

leads to the formulation of the energy function for an incom-

pressible transformation preserving its spherical symmetry

W ¼
X

r

HrwðarÞ; (A2)

where a is a real number, Hr is the hyperelastic (nonlinear)

coefficient, and

wðaÞ ¼ ðk�2a þ 2ka � 3Þ=a ða 6¼ 0Þ;
0 ða ¼ 0Þ;

(
(A3)

are strain invariants linked to the Mooney-Rivlin invariants

such as I1 ¼ 2 wð2Þ and I�1 ¼ �2 wð�2Þ. Because of the

nature of the Mooney-Rivlin strain energy, a is restricted to

integer values of i and energy becomes

W ¼
X

i

Hiwð2iÞ: (A4)

Thus, assuming this form of the energy

Ŝ ¼
X

i

HiŜ i ¼ 2
X

i

Hi
k2i�1 � k�4i�1

k3 � 1
; (A5)

the shell elastic response satisfies

S ¼
X

i

Hi

ðkðbÞ

kðaÞ
Ŝ idk ¼

X
i

HiSi

� �kðbÞ

kðaÞ

: (A6)

Two cases must be considered depending on the sign of i
before recognizing the sum of the terms of a geometric series

valid until k 6¼ 1. For positive values one has

Ŝ i ¼ 2
k2i

k4

1� k�6i

1� k�3
¼ 2k2i�4

X2i�1

k¼0

k�3k; (A7)

whereas for negative ones,

Ŝ i ¼ �2
k�4i

k4

1� k6i

1� k�3
¼ � 2k�4i

k4

X�2i�1

k¼0

k�3k: (A8)

These two cases can be combined in a unique way with the

following expression:

Ŝ i ¼ 2 SgnðiÞ
X2jij
k¼1

k3jij�i�1�3k; (A9)

where the function SgnðxÞ is introduced that returns the sign

of x. This expression remains valid for all integer values of

i 6¼ 0. It can be finally integrated to give the general elastic

response of the shell,

Si ¼ 2 SgnðiÞ
X2jij
k¼1

k3jij�i�3k

3jij � i� 3k
: (A10)

Relation (A10) holds for i 6¼ 3p (p 2 Z�), otherwise
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Si ¼ 2 SgnðpÞ lnðkÞ þ
X1

q¼0

XM

k¼1

k3k 2q�1ð Þ

3k 2q� 1ð Þ

2
4

3
5; (A11)

with M ¼ 3jpj þ ð1� 2qÞp� q. When Eq. (A10) is applied

to the Mooney-Rivlin material for which

Hi ¼
G 1þ ibð Þ

2i
and i ¼ f�1; 1g; (A12)

then jij ¼ 1 and SgnðiÞ=i ¼ j1j�1 ¼ 1, and the following

elastic response is obtained:

S ¼
X1

i¼�1

X1

k¼0

G 1þ ibð Þ
�i� 3k

k�i�3k

" #k bð Þ

k að Þ

; (A13)

or in its expanded form

S=G ¼ 1þ bð Þ a0

a
� b0

b
þ a4

0

4a4
� b4

0

4b4

� �
;

þ 1� bð Þ b

b0

� a

a0

� b2
0

2b2
þ a2

0

2a2

� �
: (A14)

When assuming an infinite elastic medium with Mooney-

Rivlin elasticity outside the droplet (b0 !1), this result is

consistent with the result of Gaudron et al.74 given by Eq.

(A4) for 1þ b ¼ �2g and 1� b ¼ 2g.

APPENDIX B: REMARK ON ACOUSTIC EXCITATION

In the present study, an acoustic forcing of the form paðtÞ
¼ �P sin xt has been chosen, assuming the vapor nucleus is

already nucleated at initial time. However, most studies indi-

cate that initial nucleation occurs near the peak of the negative

half-cycle rather than at the beginning of it as a result of the

initial energy barrier to homogeneous nucleation.

In a recent study, Miles et al.27 compared experimen-

tal results of ADV threshold with the classical homoge-

neous nucleation theory for micrometric particles (from 3

to 30 lm) excited at 7.5 MHz taking into account both the

nonlinear distortion of the pressure field and the droplet

scattering. They duly pointed out that the quasi-static

nucleation theory would need to be completed by a dynam-

ical bubble growth model such as the present one. To

match the expectation that homogeneous nucleation occurs

not at initial time but most likely around the peak negative

pressure, they suggested a driving pressure of the form

paðtÞ ¼ �P cos xt (t> 0). We have tried such simulations

with a cosine excitation instead of a sine one with other

initial conditions unchanged. The discontinuity in the driv-

ing pressure induces indeed a high frequency excitation.

As a consequence, all of our observed low frequency

behaviors are discarded and we observe only an increasing

direct threshold with frequency. As this is not consistent

with most of the experimental observations, it is likely that

the full mechanism is more complex to model and would

require coupling the present model of bubble dynamics

with one of nucleation.

Another study25 provides quantitative data about the

phase of the “nucleation moment” relative to the acoustic

excitation. By recording the droplet radius versus time using

high speed imaging and deducing from it the actual pressure

excitation thanks to the Rayleigh-Plesset equation, the so-

called “nucleation moment” could be estimated. Note this

moment is indeed rather the moment at which the bubble

growth begins to inflate the droplet. The present model

allows us to simulate this “nucleation moment” and to com-

pare it with those previous experimental observations. This

is presented in the two insets of Fig. 11, where the bubble

radius R(t) and the droplet inner radius a(t) are plotted as a

function of time for three different cases: (a) f¼ 1 MHz,

P¼ 4 MPa, and a0 ¼ 1 lm [R(t) was already shown in Fig.

6], (b) f¼ 4 MHz, P¼ 5 MPa, and a0 ¼ 1 lm [R(t) was

already shown in Fig. 5], and (c) f¼ 3.5 MHz, P¼ 4.5 MPa,

and a0 ¼ 5 lm (corresponding to the experimental condi-

tions of Ref. 25). In all cases, the shell parameters are

G¼ 20 MPa and b¼ 1 so as to keep a weak influence of the

encapsulation, and R0 ¼ R?=8 � 80 nm.

The two first cases lead to a direct droplet vaporization

(regime III). The bubble first grows without disturbing the

droplet, and this one inflates only when the bubble size has

almost reached its initial size. Then, there remains very little

liquid to vaporize, the droplet begins to grow following very

closely the bubble growth until the remaining tiny liquid

film completely evaporates. The last case (c) leads to a final

collapse after the droplet has undergone three oscillations

(regime II). The early dynamics of the process is quite simi-

lar (though much more visible because of the larger droplet

size). However, because there remains much more liquid to

vaporize than in cases (a) and (b), the complete vaporization

cannot be achieved here before acoustic recompression

inhibits the ADV process. Note that in the experiment,25 the

acoustic excitation was turned off after a few cycles thus

FIG. 11. Time of the “nucleation moment” (	) and time of complete vapor-

ization (�) superimposed to the acoustic excitation (solid line) in dimen-

sionless variable xt and normalized amplitude for three different cases: (a)

a0 ¼ 1 lm, f¼ 1 MHz, and P¼ 4 MPa, (b) a0 ¼ 1 lm, f¼ 4 MHz, and

P¼ 5 MPa, and (c) a0 ¼ 5 lm, f¼ 3.5 MHz, and P¼ 4.5 MPa. Insets: corre-

sponding bubble radius (dashed lines) and droplet radius (solid lines) in

micrometer versus time in ms.

J. Acoust. Soc. Am. 143 (1), January 2018 Lacour et al. 35



allowing a growth of the droplet. The figure superimposes to

the acoustic excitation in dimensionless variable xt, (i) the

vaporization moments for cases (a) and (b) (denoted as black

squares) and (ii) the moment at which the droplet begins to

inflate, which is defined arbitrarily as the first time at which

aðtÞ > 1:1a0 (denoted as white circles). This last event is to

be compared to the “nucleation moment” estimated in Fig. 6

in Ref. 25. For the cases (a) and (b), this event occurs before

the peak negative pressure. Increasing the frequency tends

however to delay this event closer to the negative peak. The

time of complete vaporization occurs of course later, either

before [case (a)] or after [case (b)] the negative peak. For

larger droplets [case (c)], the nucleation moment occurs after

the peak, in qualitative agreement with experimental obser-

vations.25 These simulations also indicate a significant sensi-

tivity of the phase shift between acoustic and droplet

response with geometrical and acoustical parameters. This

issue would require a deeper investigation and more compar-

isons with experiments.
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