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ABSTRACT

The use of a mixture of propylene carbonate (PC) and Nyy14 TFSI ionic liquid (50:50% w.t) has been
investigated as an optimal electrolyte for symmetric micro-supercapacitors based on SINWs using a large
and stable cell voltage of 3.5 V. The device showed an areal capacitance of 150 wF cm™2, an energy density
of 1 mJ cm~2 and a power density of 16 mW cm~2 maintaining an outstanding cycling stability after 3-10°
galvanostatic charge-discharge cycles at room temperature. Such properties were comparable to those
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obtained using the pure ionic liquid. Additionally, the excellent electrochemical performances reported
in this study reflect the potential of such mixture to be employed as a promising electrolyte in wide
operating temperatures ranging from 0 to 80°C at large electrochemical windows.

1. Introduction

In recent years, the research of new electrolytes has awakened
an enormous interest in the development of high performance
supercapacitors due to their important influences on the
electrochemical properties of such devices. Thus, electrolytes play
a key role on the cell voltage (V), which is directly related to both
energy (E) and power (P) densities, as illustrated in the following
equations: E=0.5CV? and P™®: V?|(4ESR), where C is the
capacitance and ESR is the equivalent series resistance. Within
this context, pioneer works reported by Thissandier et al.
demonstrated the potential of CVD-grown doped silicon nano-
wires (SiNWs) to be employed as electrochemical double layer
(EDL) capacitive electrode materials in the field of micro-super-
capacitors (MSCs) using organic solvent (e.g. a PC solution
containing 1M NEt4BF,) [1-3] or ionic liquid (EMIM-TESI) [4]
electrolytes. Precisely, the use of aprotic and protic ionic liquid
electrolytes have recently allowed us to improve greatly the
electrochemical performances of SiNW-based MSCs due to the
synergistic effect produced at the electrode-electrolyte interface
using stable and wide cell voltages up to 4V [5-7]. Consequently, a
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clear enhancement of the capacitive properties in terms of high
power density (182 mW cm™2), ultra-fast charge-discharge rate
(3.5ms) and extraordinary cycling stability (capacitance retention
of 75% after 8-10° complete galvanostatic cycles) were achieved in
presence of PYR3TFSI electrolyte [5]. In this direction, ionogel
electrolytes, as a new tendency in the field of ionic liquids for
energy storage devices, based on sol-gel silica with ionic liquid
(EMIM TFSI) demonstrated also their potential to withstand solder
reflow process (e.g. 280 °C during 40s), which is one of the critical
points in the Si-based micro-electronics industry for the integra-
tion of components such as micro-supercapacitors [8]. In overall,
the performance of SINW-MSCs using different electrolytes based
on organic solvents, ionic liquids or ionogels have attracted a great
deal of attention to be integrated as reliable micro-power sources
in miniaturized electronic devices [9]. In spite of the excellent
results reported in literature, important efforts should be still
investigated concerning high voltage electrolytes for MSC appli-
cations. In this regard, new strategies focused on mixtures made of
organic and nitrile-based solvents with ionic liquid electrolytes
[10-12] or eutectic ionic liquids (e.g. PIP;3-FSI/PYR4-FSI) [13,14]
have emerged as promising alternatives in order to achieve
excellent electrochemical performances in carbon-based SCs at a
wide range of temperatures Accordingly, to the best of our
knowledge, very preliminary results dealing with organic solvent/
ionic liquid electrolyte mixtures [e.g. EMIM TFSI (1 M) — PC] were
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addressed to SiNW-based symmetric MSCs [15], demonstrating
the potential of such strategy for doped silicon nanostructures in
the field of supercapacitors. Therefore, in this work, we present for
the first time a complete and exhaustive electrochemical study
focused on a new electrolyte mixture (PC-Nyj14 TFSI) to be
employed as electrolyte in EDL MSC made of SiNW electrodes able
to operate at a wide operating temperature range (0 to 80°C)
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within a large cell voltage of 3.5V. The choice of employing Nyj14
TFSI as electrolyte for the mixture of this study is ascribed to its
excellent performance reported in our previous work dealing with
SiNWs for supercapacitor devices [16] and its potential also for
battery applications [17,18]. Additionally, ammonium structure-
based ionic liquids have already demonstrated their enormous
potential as electrolytes for carbon supercapacitors [19].
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Fig. 1. a) SEM image of SiNWs grown on silicon substrates. b) Conductivity of N1y14 TFSI as a function of volume percentage in PC. c) Nyquist plot at a frequency range from
400 kHz to 10 mHz for a SINW-MSC using Nq114 TFSI (blue diamond) and PC:Ny;14 TFSI (50-50% w.t) (green square) electrolytes. The inset corresponds to the enlarged view of
the high frequency region. d) Bode plot of the device obtained from Nyquist plot for Nq;14 TFSI and PC:Nqq14 TESI (50-50% w.t). Solid lines correspond to the fitting of the
experimental data to the equivalent circuit displayed in the inset. ) CV curves of a SINW-based MSC using different ECWs from 1 to 4V at a scan rate of 1 Vs~'. f) Current
density (j) versus scan rate (v) for SiINW-based MSCs using PC:Nyy14 TFSI (50-50% w.t) (green line) and Nyq14 TFSI (blue line).



2. Experimental
2.1. Materials and reagents

Round highly p-doped Si (111) substrates (doping level: 5-10'®
doping atoms cm—3) and resistivity less than 0.005 {2 cm were used
as the substrate for SiNWs growth (Silicon Materials Inc.).
Butyltrimethylammonium bis(trifluoromethylsulfonyl)imide
(N1114 TFSI) and anhydrous propylene carbonate (PC) were
purchased from IOLITEC (lonic Liquids Technologies GmbH,
Germany) and Sigma Aldrich. Both chemical reagents were used
without further purification. The water content of ionic liquid was
determined to be 42 ppm according to our previous work [16].

2.2. Growth of SiNWs

SiNWs were grown in a CVD reactor (EasyTube3000 First Nano,
a Division of CVD Equipment Corporation) by using the vapor-
liquid-solid (VLS) method via gold catalysis using an optimal
procedure reported previously [20]. A SiNWs mass of approxi-
mately 750 g cm~2 was estimated according to our previous work
[21]. The developed surface (Sqey) of SINWs was calculated using
the following equation Sge,: 7*D*L*d*Ssampie» Where D is the SINWs
average diameter, L is the length of SINWs, d is the density of SINWs
and Sggmpie is the sample’s plain surface (1.76 cm?) [3].

2.3. Morphological characterization

The morphology of SINWs was examined by using a ZEISS Ultra
55 scanning electron microscope operating at an accelerating
voltage of 10kV using a tilt angle of 45°.

2.4. Conductivity measurements

A MMultyConductimeter from MaterialsMates was used to
perform conductivity measurements on electrolytes using differ-
ent ratios of Nq114 TFSI and PC. The experiments were conducted at
5°C, 25°C and 50°C inside a glove box under a controlled argon
environment.

2.5. Electrochemical performance of single electrodes (SiNWs) and
micro-supercapacitor devices

The areal capacitance (AC) of single electrodes was evaluated by
cyclic voltammetry using a 3-electrode cell configuration employ-
ing the corresponding mixtures as electrolyte. SiNWs were
employed as working electrode, Pt wire as counter electrode
and a Ag/Ag" electrode was used as reference electrode [1072M
silver trifluoromethanesulfonate (AgTf) in a PYR;3 TFSI solution]
[16]. The AC was calculated using the following equation: AC=Q/
(AVA), where Q is the average voltammetric charge, which is
determined by integrating either the oxidative or reduction scans
of the corresponding CV curve, AV is the potential range, and A is
the geometric surface of the electrode (0.7 cm?).

SiNW-based (micro)-supercapacitors were built from CR2032
coin cell devices (MSK-160D, MTI, USA) using a symmetric
configuration. SINW electrodes with a diameter of 15mm in
contact with stainless steel disk current collectors were separated
by a Whatman separator soaked by the corresponding electrolyte
mixture. Cyclic voltammetry (CV) curves, galvanostatic charge-
discharge (GCD) cycles and electrochemical impedance spectros-
copy (EIS) were performed using a multichannel VMP3 potentio-
stat/galvanostat with Ec-Lab software (Biologic, France). CV curves
were measured at scan rates between 0.1 and 20Vs~! and GCD
cycles were performed at current densities between 0.1 and
10mAcm~2. EIS measurements (Nyquist and Bode plots) were

measured using a signal amplitude of 10mV and a studied
frequency range from 400 kHz to 10 mHz. The stability of the coin
cells was tested by performing 3-10® galvanostatic charge-
discharge cycles between 0 and 3.5V at 23mAcm 2 The
capacitive properties in terms of AC, energy and power density
and coulombic efficiency () were calculated using the geometric
surface of the electrodes (1.76 cm?). The AC of the device was
evaluated from GCD profiles according to the following formula:
AC=I/A(dV/dt), where the I is the discharge current, A is the surface
of the electrode and dV/dt corresponds to the slope of discharging
curve. The energy (E, wWh cm~2) and power density (P, wW cm™2)
values were calculated by using E =[0.5AC( AV)?]/3600 and P=E/t,
where t is the total time of discharge. The coulombic efficiency ()
was evaluated as the ratio between the discharging and charging
times (n=ty/t;) [22]. The corresponding volumetric capacitive
properties (E, and P,) were calculated taking into account the
volume of SiNWs as a cylinder. Thereby, the volume was estimated

by the following formula: V = %L-dﬂ, where D is the diameter of
nanowires (average distribution of approximately 50 nm), L is the
length of nanowires (50 wm), d is the density of nanowires (3-10°
NWs) and A is the geometric surface of the electrode. Based on this
approximation, a total volume of 3.2-10~% cm® cm~2 was reported.
Temperature tests from 20 °C were carried out in an oven using a
stabilization time of 4 h to ensure the correct thermalisation of the
device. In the case of 0 °C a fridge was employed. All measurements
were carried out in an argon-filled glove box with oxygen and
water levels less than 1 ppm.

3. Results and discussion

Fig. 1a depicts the cross-sectional view of SiINWs grown on p-
doped silicon substrates by CVD. The morphological and structural
characterization of SiNW electrodes were already reported in our
previous works [7,16,20]. Briefly, doped SiNWs with a length of
50 um and a diameter range between 20 and 200nm were
estimated. In addition, a density of 3-10° NWs per cm? [20] and a
developed surface (Sgey) of 920 cm? have also reported. Regarding
the electrochemical performances no significant differences were
observed between type p and n doped SiNWs for supercapacitor
applications [1]. Fig. 1b shows the variation of conductivity versus
the content of PC in Ny;14 TFSI at different temperatures. As can be
seen, the maximal conductivity (o) was obtained at 50% w.t PC in
N1114 TFSI for all temperatures. Thus, o values of 3.7, 4.7 and 5.6 mS.
cm~! were obtained at 5°C, 25 °C and 50 °C respectively. This trend
was found in good agreement with similar electrolyte mixture
configurations based on PYR.4TFSI and nitrile or carbonate
solvents (e.g. maximal conductivity values around of 50% w.t)
[10]. Particularly, this approach results interesting since the
properties of PYRy4 TFS], in terms of viscosity (n: 62 mPa s) and
conductivity (o: 2.6 mScm 1) [23], were found similar to Nq;14 TFSI
(n: 95 mPa s and o: 2mScm™') at room temperature. In this
direction, a ratio of 50% w.t using different mixtures of ionic liquids
(e.g. PYRy4 TFSI or Me5STFSI) and organic solvents (e.g. PC) showed
m and o values close to pure PC containing 1M Et4NBF4, which
exhibited the highest conductivity and lowest viscosity values by
comparison between both the pure ionic liquids and the
corresponding mixtures [23,24]. Based on this criteria, this mixture
ratio was chosen as an optimal electrolyte for the electrochemical
performances reported in this study. EIS technique is a useful tool
to evaluate the electrode-electrolyte interface of a SC device. Fig. 1c
illustrates the Nyquist plot at a frequency range from 400 kHz to 10
mHz for SiNW-based MSCs using both Nj;14 TFSI and the
corresponding optimal mixture electrolyte. The plot shows two
important regions at high and low frequency range. At high
frequency, the intersection of the semi-circle with the x-axis



represents an ESR value of 11() for the mixture electrolyte,
whereas an ESR value of 27 {) was estimated for pure ionic liquid.
This value was found close to another pure ionic liquids, as for
example PYR;3 TFSI (22 Q) [5] or EMIM TFSI (17 )) [7] employing
SiNW electrodes. Thus, the decrease of ESR through the dilution of
PC in Nyq14 TFSI results a very interesting strategy owing to the
increase of conductivity and lower viscosity in mixtures, which
represent one of the most important drawbacks for pure ionic
liquids [25]. At low frequency, the slight deviation of the vertical
line demonstrates the good ionic diffusion and capacitive
behaviour predominated by an electrical double layer mechanism.
Based on these results, an equivalent circuit was proposed in the
inset of Fig. 1d, which was expressed as R[Cqi(RcW)], where Ry is
the internal resistance of the supercapacitor, Cq; is the double layer
capacitance, R is the charge transfer resistance in serial
connection with a Warburg element, W, associated to the diffusion
process of the electrolyte ions. EIS technique can also provide an
important insight on the electrochemical characterisation of
supercapacitor devices by evaluating the relaxation time constant
(7o), which is defined as the minimum time needed to discharge all
the energy from the device with an efficiency of more than 50%
[26]. This property was determined from Bode plot (phase angle
versus frequency) using the following relation T9=1/f, where f
corresponds to the frequency at 45° phase angle [27]. Thus, a T
value of 19.7 ms and 39.5 ms weres calculated for the mixture and
pure ionic liquid respectively (Fig. 1d). These values were found
similar to those related to SINW-uSCs using pure ionic liquid
electrolytes (e.g. values ranging from 4 ms to 32 ms for EMIM TFSI,
PYR3TFSI or NEtsH TFSI respectively) [4-7]. The determination of
an operating electrochemical window (ECW) results also crucial
for evaluating the capacitive properties of a supercapacitor device.
Fig. 1e displays the CV curves at various ECWs (1, 2, 3, 3.5 and 4V
respectively) at a scan rate of 1 Vs~ The CV curves reflect a good
capacitive behavior with a slight distortion of the profile from 3V,
which was ascribed to silicon oxidation [28]. This effect was
evidenced during the first cycles and subsequently a disappearance
of the peak was observed due to the passivation of the surface [28].
As a result, wide ECWs up to 4V evidenced an excellent capacitive
behaviour (quasi-ideal rectangular CV shapes) even after long
cycling tests [5]. Taking into account this phenomenon, an ECW of
3.5V was considered as an appropriate cell voltage for further
analysis of this study. In order to provide a better comprehension of
the importance of such electrolyte mixture, a comparative
electrochemical study with pure Ny;i4 TFSI ionic liquid was
conducted using CV curves. Fig. 1f shows the relationship between
the current density (j) and the scan rate (v) for both electrolytes.
The linear regression depicted in the plot demonstrates the
predominant effect of a double layer capacitive behaviour.
Accordingly, AC values of 0.13 and 0.12 mF cm~2 (j=AC v) were
obtained for the mixture and pure ionic liquid electrolytes
respectively. This tendency illustrates that the effect of dilution
preserves the large electrochemical window (3.5 V) and capacitive
properties maintaining an excellent capacitive behaviour even at
high scan rates. In this direction, a comparative study concerning
different mixture configurations was reported in Fig. 2 using a 3-
electrode cell configuration. The CV curves displayed in Fig. 2a
reflect the clear enhancement of the stored charge by the optimal
50:50 w.t ratio compared to both the pure ionic liquid and the 90
(PC):10 (Nq114 TFSI) w.t mixture. This electrochemical behaviour
was also analyzed in terms of AC by comparison with other
mixtures according to Fig. 2b. As can be seen, the maximal AC value
was obtained using the PC-Nq;14 TFSI (50:50% w.t) mixture, which
corresponds to the maximal conductivity value (Fig. 1b). This
optimal ratio (50:50% w.t) has been widely employed as mixture
electrolyte for electrochemical energy storage devices in presence
of different ionic liquid chemical structures, as for example
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Fig. 2. Electrochemical performance of single electrodes based on hyperbranched
SiNWs (silicon nanotrees) under the growth experimental conditions described in
Ref. 15. a) CV curves of SiNW electrodes using different electrolyte mixture ratio at a
scan rate of 1Vs~'. b) Variation of the AC of SiINWs as a function of the PC volume
percentage in Ny;14 TFSI obtained from the CV curves at scan rates of 0.1 Vs~! (black
triangle), 0.4 Vs~! (blue diamond) and 1 Vs~! (red square) respectively.

Me3;NHTFSI:PC, PYRNO3:PC, Me5STESI:PC or PYR4TFSI:PC in the
field of supercapacitors [29,24,23]. This ratio demonstrated in all
the aforementioned cases physical-chemical properties (n) and o)
close to pure PC containing salt electrolytes (e.g. NEt4BF4) and
ECWs larger than 2.7 V (e.g. ECW used commonly for PC containing
electrolyte salts). Such characteristics play a key role on the
electrochemical performances of supercapacitors since the dilu-
tion effect reduces the viscosity, enhaces the diffusion of the ions,
which enlarges the ionic conductivity [25,30]. This effect has been
demonstrated in the literature by the solvent-solute interaction
and solvation effects as the main driving forces to improve the
ionic conductivity of the mixtures [10,31].

Fig. 3 shows the electrochemical performance of the SiNW-
based micro-supercapacitor using the PC-Nyy14 TFSI (50:50% w.t)
mixture at a wide cell voltage of 3.5V. Fig. 3a shows the
galvanostatic charge-discharge cycles at different intensities from
1 to 20mA. Accordingly, the profiles reflect an excellent
reversibility, a good capacitive behaviour as well as an extraordi-
nary fast charge-discharge rate at high current densities (e.-
g.<10 ms at 20 mA) predominated by an EDL mechanism. The AC
was calculated from the discharge profiles displayed in Fig. 3a.
Initially, a drop of AC from 0.18 to 0.14 mF cm~2 at low current
densities ranging from 0.1 to 2.3 mA cm 2 was observed (Fig. 3b).
This decay was attributed mainly to the surface reactions occurring
on SiNWs surface due to the formation of a 1-2 nm nanometric
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Fig. 3. Electrochemical performance of a symmetric SINWs-based micro-supercapacitor. a) Galvanostatic charge-discharge cycles at different intensities from 1 to 20 mA. b)
Areal capacitance versus current density. ¢) Ragone plot (P vs E) of the device. The plot shows also the state-of-the-art dealing with previous SINW-MSCs. d) Cycling stability
test (blue line) and coulombic efficiency (green line) over 3-10° galvanostatic charge-discharge cycles at a current density of 2.3 mA.cm~2. Inset shows the CV curve after the
cycling test at a scan rate of 10 Vs~. e) CV curves at different operating temperatures ranging from 0 to 80°C at a scan rate of 20 Vs, f) Areal capacitance versus scan rate at
different working temperatures, 0°C (black square), 20°C (red triangle) and 80 °C (blue circle) respectively.

native silicon oxide layer by the presence of water traces, which
was recently confirmed by XPS [32]. Thus, a distortion of the
symmetry and linearity of GCD cycles was evidenced because of
electrolyte impurities such as halides, surface defects because of
inhomogeneous silicon oxidation layer or chemical reactions
between SiNW surface and the electrolyte. This electrochemical

tendency at low current densities and scan rates was already
evidenced in our previous works [5-7]. Subsequently, the device
exhibited an AC value of approximately 140 wFcm™2 at current
densities higher than 2 mAcm~2 (Fig. 3b). This value was found
higher than the previous results reported in literature concerning
SiNW-based MSCs using organic solvent (AC: 7-51 wFcm™2,



average values depending on morphological characteristics of
SiNWs and electrochemical conditions) [16], ionic liquids
(PYRy3TFSI, AC: 23 wFecm™2 or EMIM TFSI, AC: 13 wFcm™2)
[5,33], or ionogels (AC: 60 wF cm~2) [8] electrolytes. This tendency
demonstrates the potential of this mixture for micro-super-
capacitor applications. Apart from AC, energy and power density
are also two key properties to characterize the performance of a
supercapacitor device. For that purpose, a Ragone plot (P vs E) was
analyzed in Fig. 3c. Power and energy density values were ranged
from 0.2-10° to 16-10° puWcm 2 (1.4 to 50.8 mWcm3) and from
0.25 to 0.3 wWhcm 2 (0.75 to 0.95 mWhcm—3) at current densities
ranging from 0.1 to 11 mA.cm~2 respectively. These values were
compared to the state-of-the-art using similar studies dealing with
silicon nanostructures such as CVD-SiNWs [1,4-6,8,21], silicon
nanotrees (SiNTrs) [15] or silicon carbide nanowires (SiCNWs) [34]
in presence of various electrolytes. Additionally, a comparison with
other micro-supercapacitors based on the functionalization of
CVD-SiNWs by using pseudocapacitive materials such as electro-
active conducting polymers (PEDOT and PPy) [35,36] or transition
metal oxides (MnO,) [37] has been also reported. In this direction,
as expected according to the working principle of pseudocapaci-
tors, energy density (2.5 — 5 wWhcm2) was found to be higher
than the results reported in this study, whereas the power density
(0.6 — 1-10% wWcm~2) was lower compared to pure SINW EDLCs
(>2-10° wWcm2) [16]. Consequently, this study reports one of the
best electrochemical performances of SINW-based MSC in terms of
AC, E and P thanks to both: (i) the combination of a new
configuration device (coin cell), which was never reported before
for SiNWs and (ii) the corresponding PC-Ny;14 TFSI electrolyte
mixture. The cycling stability is another crucial factor to evaluate
the performance of a supercapacitor. From this point of view, the
end of life criterion for supercapacitor devices is 20% or 30% loss in
capacitance or doubling of the internal resistance [38]. In this
work, this property was evaluated by applying 3-10° galvanostatic
charge-discharge cycles at a current density of 2.3mAcm™2. A
capacitance retention of 63% was determined after the cycling test
with an excellent coulombic efficiency (~99%) as illustrated in
Fig. 3d. The lifetime of the device in this study can be considered as
an outstanding value taking into account both the mixture effect
and the results reported for pure protic and aprotic ionic liquids
with stability values around 70-80% after millions of GCD cycles
[4,5,7,8]. Based on the criteria aforementioned, a loss of capaci-
tance of 30% was achieved after 380000 cycles, which can be
considered still an excellent result based on EDLCs [39]. Further-
more, an excellent EDL capacitive behavior was kept even after
3.10° GCD cycles, as reflected the CV curve in inset in Fig. 3d.
Finally, the potential of this device was analyzed at various
operating temperatures. Fig. 3e shows the CV curves at 0, 20, 40, 60
and 80°C using a scan rate of 20 Vs~ ! at a large cell voltage of 3.5V
respectively. Interestingly, the quasi-ideal rectangular shape of the
curves, which corroborates a pure electrochemical double layer
capacitive behaviour at a wide range of temperatures from 0 to
80°C. The variation of AC versus scan rate at different working
temperatures is displayed in Fig. 3f. As can be seen, the areal
capacitance increases with the temperature leading to values of
94 WFecm ™2 (0°C), 147 wFecm 2 (20°C) and 344 wFcm 2 (80°C°) at

a scan rate of 1 Vs,

4. Conclusions

In summary, the performance of a SiNW-based symmetric
supercapacitor device using a coin cell configuration in presence of
a PC-Nyy14 TFSI mixture has been successfully demonstrated. The
dilution of Nyy14 TFSI in PC at 50% w.t exhibited a maximal
conductivity value of 4.7 mS cm™! at room temperature, which was
used in this study as an optimal electrolyte for electrochemical

performances. The device showed a high energy and power density
of 1mJcm 2 and 16 mW cm 2 as well as an outstanding capaci-
tance retention of 63% after 3-10° galvanostatic charge-discharge
cycles. In addition, a quasi-ideal electrochemical double layer
capacitive behaviour was kept at various operating temperatures
demonstrating the potential of this device to be employed in a
wide range of working temperatures for supercapacitive techno-
logical applications.
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