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Abstract We explore a novel and spatially extensive data set obtained from Biogeochemical-Argo
(or BGC-Argo) floats, containing 16,796 profiles of the particulate backscattering coefficient at 700 nm
(bbp(700)) measured with three different sensors. We focus at the 900–950m depth interval (within the
mesopelagic), where we found values to be relatively constant. While we find significant differences
between estimates of bbp(700) obtained with different sensors (≈30% disagreement), the median values in
most oceanic regions obtained with a single type of sensor are within 50% of each other and are consistent
with measurements of suspended mass conducted in the early 1970s. Deviations from the quasi-constant
background value likely indicate times and locations associated with higher particulate export to depth.
Indeed, we observe that in productive high-latitude regions, a deep seasonal signal is observed, with
enhanced values recorded a few months after surface spring/summer maximal concentrations. In addition,
the deep bbp(700) is highest in regions exhibiting suboxic-anoxic conditions (e.g., Northern Indian Ocean),
which have been associated with local particulate production as well as reduced particle flux attenuation.

1. Introduction

The concentration of particles in a given layer below the productive sunlit surface layer of the oceans reflects
a balance between supply (e.g., sinking of particles from above, aggregation, and local release of fecal pellets),
sinking to depth, and local respiration (e.g., consumption by bacteria and other organisms). Since these pro-
cesses regulate one of the main processes contributing to the sequestration of atmospheric carbon dioxide
into the deep ocean, it is of great interest to be able to monitor the concentration and dynamics of par-
ticles at depth. To date, monitoring particle concentrations in the mesopelagic has been conducted using
research vessels and the maintenance of a few long-term time series (e.g., the Bermuda and Hawaii time
series). Back in the 1970s, the Geochemical Ocean Sections Study program performed basin-scale sampling
to map the distribution of particulate material throughout ocean basins [Brewer et al., 1976]. Filtration of large
water samples were used initially but provided poor vertical resolution. Introduction of optical technology,
the forward-scattering measurements using Nephlometers, provided high vertical resolution of particulate
distribution based on the derivation of proxy relation between particulate mass and scattering [Ewing and
Thorndike, 1965a; Biscaye and Eittreim, 1977]. Side scattering sensors have been used on profiling floats since
2004 [Boss et al., 2008] and were later replaced by backscattering sensors [e.g., Whitmire et al., 2009]. These
sensors have become ubiquitous on profiling floats since 2010, and there are currently more than 130 floats
with such sensors profiling the world’s ocean. In this paper we present evidence that optical measurements
done using autonomous profiling floats equipped with a backscattering sensor provide quantitative infor-
mation on the distribution and seasonal dynamics of particulate material concentration in these extremely
clear waters.

2. Methods
2.1. Data Source
All the data used in this manuscript come from Argo Global Data Assembly Center (ftp://ftp.ifremer.fr/ifremer/
argo) and correspond to all the data available as of 31 December 2016 from a snapshot of Argo GDAC
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Figure 1. Geographical distribution of all bbp(700) data analyzed in this study. They are colored based on the technology used, Eco-Triplet 124∘ in red, Eco-FLBB
142∘ in green, and MCOMS 149∘ in blue. Black rectangles designate zones in which sufficient floats and profiles exist to perform zonal analysis. The Southern
Ocean was further separated into two zones, north and south (identified by crosses) of the Polar Front.

[Argo, 2017]. This data set includes data collected from September 2010 to December 2016. It involves a vari-
ety of float platforms (NKE’s PROVOR, Webb’s APEX, and SeaBird’s NAVIS) performing different missions (in
dive depths, frequency of profiling, and data acquisition) and equipped with different sensors for backscat-
tering at 700 nm (Seabird MCOMS, WETLabs Eco-Triplet, and Eco-FLBB). Those sensors differ in measurement
angle (nominal angles of scattering are 149∘, 124∘, and 142∘, respectively (Figure 1 and Table 1)).

2.2. Particulate Backscattering Data
The data used are all derived particulate backscattering coefficients at 700 nm measured between 900 and
950 m all taken, while the float is profiling in the ascent mode (some floats collect data in drift mode which
we do not use here). The particulate backscattering coefficient in this database is computed following the
methodology described in Schmechtig et al. [2015]. However, it is important to mention here two sources of
uncertainties: (1) the dark current value used in the computation of the backscattering and (2) the 𝜒(𝜃) factor
which is used to convert angular scattering measurements (known as the volume scattering function) per-
formed at an angular range around a specific angle, 𝜃, to the (hemispherical) backscattering coefficient (we
use values provided in Sullivan et al. [2013]). We found a total of 21,283 distinct profiles from 248 different
floats with bbp(700) data between 900 and 950 m and computed the median for each profiles. To avoid con-
tamination with detached nepheloid layers [e.g., Gardner et al., 2017], we only use data where depth is deeper
than 2000 m, reducing our data set by 2566 bbp(700) values. We visually inspected all the times series. For
22 floats we identified fouling of sensors sometime along the time series and removed all the values at and
following where we identified a monotonic rise in backscattering at depth, reducing further our data set by
1920 bbp(700) values. Additionally, we removed one negative outlier. After those procedures were applied,
the final data set comprises 16,796 bbp(700) values between 900 and 950 m. We quantify the variability at
the basin-scale data by computing the “spread” defined as (84th–16th percentile)/2, equivalent to the stan-
dard deviation for the normally distributed data. For monthly climatologies we further divide the spread by
N, which corresponds to the number of floats associated to each monthly calculation, hence obtaining the
“spread of the median.” This is equivalent to a standard error of the mean for a normally distributed variable,
where we consider each float to provide an independent realization.
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Table 2. Statistics for Zones in Which at Least 10 Profiles From Three Distinct Floats Per Month Were Available, Also
Used to Derive the Seasonal Dynamics in Figure 3

Eco-Triplet 124∘ Eco-FLBB 142∘ MCOMS 149∘

Zone Median bbp(700) (spread) Median bbp(700) (spread) Median bbp(700) (spread)

North Atl. Subpolar gyre 1.7 10−4 (0.5 10−4) - -

North Polar Front 2 10−4 (0.5 10−4) 2.9 10−4 (0.65 10−4) 3.6 10−4 (0.6 10−4)

South Polar Front 1.7 10−4 (0.6 10−4) 2.4 10−4 (1 10−4) 2.4 10−4 (0.6 10−4)

North Atl. Subtropical gyre 1.7 10−4 (0.5 10−4) - -

Indian Ocean - 3.3 10−4 (0.8 10−4) 2.4 10−4 (0.3 10−4)

Eastern Med. Sea 2 10−4 (0.4 10−4) - -

Western Med. Sea 1.9 10−4 (0.4 10−4) - -

Results are presented in Table 2 for regions in which we had at least 10 profiles from three distinct floats
per month. Specifically, we divided the Southern Ocean data set into two distinct zones, based on the local
depth-averaged temperature between 190 and 210 m following Swart and Speich [2010] and Pollard et al.
[2002]. Temperatures <6.5∘C are representative of waters south of the Polar Front, while temperatures>6.5∘C
are representative of waters north of the Polar front. When we compute zonal statistics (Table 1), 2902 bbp(700)
from floats that did not belong to any zone are lumped into one group. The distribution of all the measure-
ments done with a given sensor type (Figure 2) suggests that bbp(700) is nearly normally distributed at depth,
in contrast to particulate properties near the surface that are nearly log-normally distributed [Campbell, 1995;
Boss et al., 2013]. This result is likely due to the relative uniformity of concentrations at depth in contrast to
the large and nonlinear change in surface concentrations, specifically in the productive regions of the ocean.
In regions where different sensors types on floats have been deployed, we observed that a statistically sig-
nificant differences existed between floats with ECO-Triplet (acceptance angle centered at 124∘) from those
measuring with Eco-FLBB (centered at 145∘) or MCOMS (centered at 149∘). We therefore separate the results
according to each sensor used (Tables 1 and 2).

3. Results and Discussion
3.1. Median Value of bbp(700) Between 900 and 950 m
We find that different technologies provide significantly different estimates of median mesopelagic bbp(700),
with the ECO-Triplet being the lowest, with a median of 1.8 × 10−4 m−1, while the MCOMS and Eco-FLBB’s
median is about 2.8×10−4 m−1, higher by about 50% (Table 1 and Figure 2). This difference is also observed, in
general, at specific regions where all these technologies have been deployed on different floats (e.g., north and

Figure 2. Histogram of median bbp(700) measured with each type of sensor for all profiles listed in Table 1.

POTEAU ET AL. MESOPELAGIC PARTICLES FROM BGC-ARGO 6936
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Figure 3. Histograms of monthly bbp(700) median values and resulting annual cycle at different oceanic regions with at least 10 profiles from three distinct floats
per month, with blue denoting data with Eco-triplets and green combined Eco-FLBB and MCOMS at both surface (10–50 m, red lines) and 900–950 m. Black
lines represent the spread of the median.

south of the Southern Ocean’s Polar front). These differences cannot be explained solely based on our current
understanding of the uncertainties in the conversion of measurements at one angle in the back direction and
the backscattering coefficient (less than 10%) [e.g., Boss and Pegau, 2001, Sullivan et al., 2013], or based on
the difference of factory and on-the-float measured dark counts (see below). Nevertheless, variability within
each region is smaller than 1 × 10−4 m−1 while the difference in the median value between regions for a
given technology is smaller than 2.5 × 10−4 m−1 (Table 1). This attests to the relative stability of particulate
concentration at this depth horizon. We have discovered through the years that the dark currents measured
on floats are different from those provided by the sensor manufacturer. When we compared the differences
for all the floats and sensor types for which we have access to such data (N = 76), we find that the median of
factory darks underestimate the median of darks made on floats by 3 counts on average (48 versus 51), which
represents a potential bias of 0.000035 m−1. Removal of this possible bias would have made the data more
consistent in particular with past values in the North Atlantic (see below).

3.2. Spatial Distribution of bbp(700) Between 900 and 950 m
Between zones where a large number of floats equipped with a given sensor have been deployed we find no
significant differences in bbp(700) (Table 2). The exception is the Indian Ocean where most of the floats were
deployed at a region with anoxic/suboxic sub-surface conditions. In such zones particulate material is less
respired [Roullier et al., 2014], as well as locally produced [Morrison et al., 1999] consistent with the elevation
of particulate concentration [Whitmire et al., 2009]. This is also the likely reason why the few floats deployed in
the Black Sea show high bbp(700) values (Table 1). Besides these specific areas, an explanation for the relative
consistency in value at depth is that the deep particles are likely dominated by a background of refractory
material.

POTEAU ET AL. MESOPELAGIC PARTICLES FROM BGC-ARGO 6937
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3.3. Seasonal Dynamics bbp(700) Between 900 and 950 m
An annual cycle at depth is observed at the Southern Ocean polar front and North Atlantic, region with
the largest amplitude in the seasonal cycles (Figure 3). There seems to be about 2 months delay between
peak surface bbp(700) and peak bbp(700) at the 900–950 m depth (Figure 3), which suggests that the back-
ground concentration of particles at depth (which we quantify using the median operator) is likely mostly
affected by small particle settling (large aggregates and particles settle at rates of 100 m per day). However,
we note that disaggregation of large particles can also affect the background concentration. The annual cycle
is absent at other regions (e.g., Mediterranean basins, North Atlantic subtropical gyre, and Indian Ocean).
The variability of particle concentration of each month (computed using the spread of the median) appears
to be nearly constant throughout the year at one location and between locations (Figure 3). Despite the
significant differences in bbp(700) between sensors, we find the measured values to be consistent with
past measurements of suspended particulate at depth; Brewer et al. [1976] report values varying from 5 to
20 μg/kg between 900 and 1000 m [Brewer et al., 1976, Figure 1] in the North Atlantic. Assuming a specific
attenuation coefficient at 660 nm of 0.8 m2/mg and a specific backscattering coefficient at 660 nm of
0.008 m2 mg−1, Boss et al. [2015] predicted that the range of beam attenuation measured in such waters will
be 0.005–0.015 m−1 while that for backscattering will be 5–15 ×10−5 m−1. Uncertainties in these conversion
factors are expected to be on the order 100% [Hill et al., 2011; Neukermans et al., 2012]. While these values
are small relative to the accuracy of current technology, we find them to be of similar magnitude (though lower)
relative to the values we report here (but given our uncertainties they are not significantly different). Many
practitioners, e.g., Gardner et al. [2006] and references therein, not having appropriate calibration facilities on
research vessels, prefer to use the minimal value at depths of several hundreds of meter as a reference for the
rest of the water column. In this manuscript, using data acquired with commercially available backscattering
sensors, we demonstrate their ability to resolve seasonal variations on the order of ∼0.00001 m−1 equiva-
lent to a change of about 1 ± 0.5μg kg−1 in suspended particulate matter, and, in addition, we are able to
significantly resolve a positive signal of particles at depth.

4. Summary

We find the background bbp(700) measurements between 900 and 950 m to be relatively constant through-
out most of the world’s ocean and consistent with particulate mass concentration measurements performed
in the 70s. Seasonal dynamics is nearly absent at depth except in regions with large seasonal variability at
the surface. Observations of significant deviations from this value are therefore indicative of a regions where
extraordinary processes take place or of a malfunctioning sensor. We found different technologies designed
to estimate the particulate backscattering coefficient at 700 nm to differ significantly. Resolving this issue
requires further investment in sensor characterization and/or in the study of the assumptions made regard-
ing the behavior of particulate angular scattering (which at 900–950 m, could be significantly different from
near-surface observations).

The Biogeochemical-Argo (BGC-Argo) program is progressively gaining maturity with a long-term vision of
a sustainable global network [Biogeochemical-Argo Planning Group, 2016; Johnson and Claustre, 2016]. This
paper is, to our knowledge, the first illustrating the benefits of access to a “global” BGC-Argo database.
Furthermore, as BGC-Argo expands we hope to revisit these data and link them to the dynamics of ocean
biology (chlorophyll, backscattering, and PAR (Photosynthetically Available Radiation)) and biogeochemistry
(nitrate and oxygen evolution, pH), to better constrain the processes determining particle concentrations at
depth and how these concentrations reflect global upper-ocean processes and their change.
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