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Association of counterions on polyelectrolytes: Thermodynamic
properties in the binding mean spherical approximation

O. Bernard*, J.-P. Simonin
UPMC Univ. Paris 06, CNRS, Laboratoire PHENIX UMR 8234, Sorbonne Universités, Paris 75005, France

A B S T R A C T

We present a model for polyelectrolyte solutions within the binding mean spherical approximation.
An approach developed previously, to describe polyelectrolytic chain solutions and on the other hand
to describe the association of counterions on spherical polyions is generalized, considering both the
polyelectrolytic chain formation and the association of counterions on the chains. Thermodynamic
properties deduced from this model are presented. The associative part of the Helmholtz energy is deduced
from the thermodynamic perturbation theory. Analytic expressions for the electrostatic contributions to the
internal and Helmholtz energies are established.

1. Introduction

Understanding the properties of polyelectrolyte solutions is
essential to biological processes and in many industrial applications.
Extensive efforts have been made to develop theories and models
for this type of solution. Linear polyelectrolytes are generally seen
as a sequence of charged subunits linked together to form a chain.
Counterions are also present in solution to electrically neutralize the
chains. Because of the electrostatic repulsion between the charges
on the chain, polyelectrolytes are often described as charged rods
at low concentrations. On the other hand, when their concentra-
tion is high, or in the presence of added salts, the polyelectrolytes
are deemed to adopt the conformation of random coils. Moreover,
in the same way as in colloidal solutions, in some cases, a part of
the counterions is expected to be bound to the charged sites on the
chains. This association can be of purely electrostatic nature when
the density of charge along the chains is sufficiently high. In this
case, association is usually called condensation of the counterions. In
order to account for this electrostatic association at low concentra-
tions, a polyelectrolyte is often represented as a uniformly charged
infinite cylinder. The distribution of counterions in the vicinity of a
polyelectrolyte chain can be described using the Poisson-Boltzmann
equation [1,2] in the framework of the cell model [3]. Additionally,
the degree of condensation of counterions can be assessed ana-
lytically [4–6]. However, specific interactions exist also between
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charged subunits and counterions. This is particularly the case when
charged monomers along the chains have acid-base properties or
with certain counterions that can form specific complexes. These
interactions are in particular necessary to account for the differences
in the degree of association observed for different counterions of
similar charges and sizes. Thus, for a long time, the polyelectrolytes
have been described as chains of charged monomers bearing sites,
in particular to describe the titration of their solutions [7–12]. On
the other hand, when the solutions are sufficiently concentrated, the
screening length between the ions can become much smaller than
the length of the stretched polyion. As a result, the repulsion between
the charged monomers along the chains, becomes weaker and the
polyions may adopt a more collapsed conformation. Moreover, for
an infinitely long polyion, the association of a counterion on a given
monomer is independent of the position of this monomer along the
polyion. On the other hand, for small polyions, the electrostatic inter-
action between a counterion and a given monomer depends on the
distance of this monomer to the center of the polyion [13–16]. Under
these conditions, it is desirable to explicitly take into account the
various subunits constituting a polyion.

Moreover, an integral equations theory has been developed
to describe polymers consisting of hard spheres linked together
by sticky points [17,18]. These equations have been solved and
used to represent the thermodynamic properties for uncharged
chain solutions [19–24]. Charged chains have also been described
within this framework [25–30], using the mean spherical
approximation [31,32]. However, the strong interactions between
counterions and charged monomers are not properly taken into
account in this approximation. Besides, a thermodynamic perturba-
tion theory (TPT) has been developed to describe the thermodynamic
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properties of polymers [18,21] and polyelectrolytes [33]. Expres-
sions of thermodynamic quantities have been established and used
to describe the polyelectrolyte solutions [33–35]. Interestingly, the
association between sites carried by counterions and monomers was
included in these models [35]. However, only interactions between
nearest neighbors were taken into account in order to evaluate the
associative contribution to the thermodynamic properties. Besides,
a previous study of polyelectrolyte solutions has been carried out
using integral equation [28]. In this case, when calculating the
thermodynamic properties, the interactions between all the subunits
of the chain are taken into account. Therefore, in order to evaluate
the associative contribution to thermodynamic properties, other
interactions than those between the nearest neighbors could be
taken into account within the framework of integral equations. We
therefore decided to continue this study of polyelectrolyte solutions,
within this approach, taking into account the association between
the polyion subunits and the counterions. Integral equations are
expected to take more systematic account of all interactions.

In the next section, the polyelectrolyte model is presented.
In the following section the thermodynamic properties deduced
from this model are established. The various contributions to the
Helmholtz energy are presented. The contribution of association
between neutral species is introduced first. Then, the calculation of
the screening parameters is carried out. This allows one to derive the
electrostatic contributions to the internal and Helmholtz energies
in the last subsection. Finally, a discussion and a conclusion are
presented in the last section.

2. The model of polyelectrolyte

We consider an ionic system with an arbitrary number of
components m in a solvent. The solvent is regarded as a continuum
of relative permittivity 4r. The temperature of the system is T,
Boltzmann’s constant is denoted as kB and we use b = 1/kBT
throughout. The ionic components have number densities qi, charge
ezi (e is the elementary charge) and hard core diameter s i.
As previously [28], we consider that the particles 1, 2, · · · n with
z1 = z2 = · · · = zn and s1 = s2 = · · · = sn are the con-
stituents of the polyelectrolyte chain. The first element of the chain
(taken arbitrarily as head) will be denoted with index 1. It possesses
a bonding site of type S1. The other end of the chain (the tail), of
index n, will have a bonding site of type S2. All elements with indices
2, · · · , n − 1 have two different sites S1 and S2 and we allow only
bonds between sites S1 and S2 of components that have neighbor-
ing indices. Initially, the bond between two consecutive atoms is
described using an association equilibrium between the sites S1 and
S2 of these two atoms. The set of particles with indices 1, 2, · · · n
participate in the bonding to form the polyelectrolyte chains.

In order to consider only the totally formed chain, it is considered
that the association constant between these sites is large enough
so that the balance between the free sites and the linked sites is
completely displaced in favor of the linked sites. The chain thus
formed of constituents {1, · · · , n}, will be called a polyion, and it will
be denoted by p. There is also counterions c of charge zc, diame-
ter sc and number density qc such that the system is electroneutral.
The system may also contain coions of arbitrary sizes and charges.
In order to allow association of counterions on the elements of the
chains, we also consider that each constituent of the chain bears an
additional site of type S4 which can be bound solely to counterions.
Each counterion bears only one site of type S4. The system is depicted
in Fig. 1.

The pair potential for this model is given by

uij(r) = uHS
ij (r) + uel

ij (r) +
∑
Sk ,Sl

U(SkSl)
ij (r12) (1)

where the indices i and j denote the ionic species, uHS
ij (r) is the

hard sphere potential, uel
ij (r) is the electrostatic Coulomb potential,

and U(SkSl)
ij (r12) is a short-ranged site-site potential responsible for

association. r is the vector joining the centers of ions i and j, r12 is
the vector joining the sites Sk and Sl. The Coulomb potential, uel

ij (r), is
given by

uel
ij (r) =

e2zizj

er
(2)

where e = 4p404r with 40 the permittivity of vacuum. By averaging
the correlation functions over the orientations of each site, the
orientation dependence of the site-site potentials is eliminated to
obtain the total orientation-averaged pair correlation function, hij(r).
The short-ranged site-site potential U(SkSl)

ij (r) between sites of type
Sk and Sl on ions i and j are defined in terms of the Mayer function,

f (SkSl)
ij (r), as

f (SkSl)
ij (r) = exp

[
−bU(SkSl)

ij (r)
]

− 1 = B(SkSl)
ij d

(
r − s−

ij

)
(3)

where B(SkSl)
ij is an element of the matrix of the sticky interactions.

The orientation-averaged pair correlation function hij(r) can be split
into orientation-averaged partial contributions h(ab)

ij (r) as,

hij(r) = h(00)
ij (r)+

∑
a

a
(a)
i h(a0)

ij (r)+
∑

b

a
(b)
j h(0b)

ij (r)+
∑
a,b

a
(a)
i a

(b)
j h(ab)

ij (r).

(4)

In this relation, the superscripts denote states of bonding for the sets
of sites a and b on ions i and j, respectively. The case a = 0 means
a non-bonded particle and a

(a)
i represents the fraction of ion of type

i for which the sites of the set a are not bonded. As previously [45],
we label the states (a) by using consecutive numbers in the follow-
ing way: (1) ≡ S1, (2) ≡ S2, (3) ≡ S1S2, (4) ≡ S4, (5) ≡ S1S4, (6) ≡
S2S4, (7) ≡ S1S2S4. The case a = Sk means that only the site Sk is
bonded, a = SkSl means that only the sites Sk and Sl are bonded,
etc. The partial correlation functions h(a,b)

ij (r) can be coupled with

the partial direct correlation functions c(a,b)
ij (r) through the following

Wertheim-Ornstein-Zernike (WOZ) equation [17,18]

hij(r) = cij(r) +
∑

k

qk

∫
dr1cik(|r1 − r|) ak hkj(r1) (5)

where hij(r) and cij(r) are matrices containing the partial correlations
h(a,b)

ij (r) and c(a,b)
ij (r). In order to solve this set of equations, different

closure relations can be used. In order to obtain analytical results, the
associative mean spherical approximation (AMSA), also called bind-
ing mean spherical approximation (BiMSA), closure relation has been
used. For the pair correlation function matrix, the closure condition
is,

h(ab)
ij (r) = − da0 db0+(1 − da0) (1 − db0)

t(ab)
ij

2psij
d

(
r − s−

ij

)
for r ≤ sij

(6)

where the constants t(ab)
ij are proportional to the sticky parameters

B(SkSl)
ij (defined by Eq. (3)) involved in the association of the ions i
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Fig. 1. Sketch of chain, consisting of five subunits. The subunit 1 has a bonding site of type S1 and one of type S4. The subunit 5 (the last in this chain), has a site S2 and a site
S4. The other subunits have the three types of sites: S1, S2 and S4. A site S1 of a subunit can associate with the site S2 of the following subunit. The chain is formed when all these
bonds are achieved. Each of the sites S4 on these subunits can associate with a site S4 carried by a counterion.

and j and to the contact values of the cavity function [25,36]. For the
direct correlation function, the closure condition is [37,38],

c(ab)
ij (r) = −be2

e

zizj

r
da0 db0 for r > sij (7)

with s ij = (s i + s j)/2 the i-j distance of closest approach and da0

the Kronecker’s delta function, dnp = 1 if n = p and dnp = 0
otherwise. Eq. (7) means that only the c(ab)

ij (r) with a = b = 0 has a
contribution for r > s ij. This approximation is a generalization of the
MSA, used previously to describe simple electrolytes [31,32,39,40].
A formal solution of the OZ equations with these closure conditions
has been obtained previously for ionic mixtures in which an arbitrary
finite number of bonds is allowed [36,41]. The solution of this model
had led to relations between various parameters and the excess
internal energy of the studied system. Previously, this approach
was used, on the one hand, to describe polyelectrolytic chain solu-
tions without association [28], and on the other hand to describe
the association of counterions on spherical polyions [42–45]. In the
present work, we establish a generalization of these studies consid-
ering both the polyelectrolytic chain formation and the association
of counterions on the subunits of the chains.

3. Thermodynamic properties of charged chains

3.1. Background

Similar to our previous work [28,34,46], the excess Helmholtz
energy is expressed as being constituted of four contributions,
namely,

DA = DAHS + DAchain + DAass + DAel (8)

where the first, DAHS is a hard sphere term, the second, DAchain,
is a term related to the connectivity in the uncharged chain, the
term DAass is a contribution arising explicitly from the association
between the counterions and the subunits of the polyion and DAel is
the electrostatic contribution arising explicitly from the charges on
the associated chains and counterions. The hard sphere contribution
can be computed from the expressions of Boublik or Mansoori et
al. [47]. From the solution of Eq. (5) for uncharged chains, the chain
contribution DAchain can be determined using the compressibility
or virial equations [18,21-23]. As an alternative the chain contri-
bution can be deduced from the thermodynamic perturbation the-
ory [17,18,21]. From the thermodynamic relation bDA =

∫ b
0 DE db′,

the electrostatic contribution to the Helmholtz energy DAel, can be
deduced by thermodynamic integration of the excess electrostatic
energy DEel. The electrostatic energy DEel can be deduced from the
solution of the WOZ Eq. (5), for the closures defined by Eqs. (6)– (7),
using the following expression:

DEel = 2p
∑

ij

qiqj

∫ ∞

0
dr r2 uel

ij (r) hij(r). (9)

However, in view of the specific form of the functions hij(r) given by
Eq. (4), it is obvious that the electrostatic contributions to these prop-
erties are dependent of the model used to express the association
between counterions and polyions. In our previous study of associa-
tion on a spherical polyion [45], all the sites were equivalent. In this
case, the description of association was expressed either in terms
of species in chemical equilibrium, or in a mean field approxima-
tion in terms of the association on the different sites of the polyion.
The description of association in terms of different species in chemi-
cal equilibrium is more general. However, when the number of sites
on each polyion becomes large, the solution of the set of equations



describing all the possible chemical equilibrium becomes increas-
ingly tedious. As an alternative, in the mean field approximation, it
has been assumed that equations defining the fractions of indepen-
dent sites and counterions are those defined in the thermodynamic
perturbation theory (TPT) [17,18] or in the statistical associating fluid
theory (SAFT) [48–50]. Now, in the present study, the subunits of
the polyions are clearly not equivalent. It is therefore much more
complicated to describe all the possible species obtained with many
counterions at different position along the polyelectrolyte chain. This
is why, in this work, we have again used the mean field approxima-
tion deduced previously in order to get a tractable description of this
system.

3.2. Associative part of the Helmholtz energy

The thermodynamic perturbation theory was developed in order
to calculate the free energy of linear polymers from the reference
free energy of its dissociated constituents. The statistical associating
fluid theory is a generalization of this approach for associating fluids
with an arbitrary number of bonding sites. In these theories, the
associative part of the Helmholtz energy DAass is a function of the
set of fractions of free sites ai of the counterions and subunits of
the polyion. Initially, the subunits are involved both in polymer-
ization equilibria and in association with the counterion. Then, we
consider that the chains are completely formed. The subunits are
then involved only in equilibria of association with the counterions.
Subsequently, we shall consider only the association between the
subunits and the counterions:

bDAass = bDATPT1

= qc

[
ln(ac) +

1
2

(1 − ac)

]
+ qp

n∑
k=1

[
ln(ak) +

1
2

(1 − ak)

]
.

(10)

The fractions ak of free sites on ions k is related to the association
constant kck by the following relation

1 = ak + akqcackck with: 1 ≤ k ≤ n. (11)

In the same way, the fractions ac of free counterions is given by

1 = ac + acqp

n∑
k=1

akkck. (12)

Now, in our mean field approximation, the association constant kkc

are related to the various interactions by the following exponential
relation [45]

kck = k0
ck ĝck = k0

ck gHS
kc (sck) exp (−bWck) (13)

where ĝck expresses the departure of the equilibrium constant
kck from that of the corresponding uncharged system, k0

ck, at
infinite dilution. This term is approximated by the product of the
pair distribution gHS

ck (sck) for uncharged hard spheres and of an
electrostatic contribution exp( −bWck). By differentiation of Eq. (10)
and utilizing Eqs. (11)– (12), one gets,

∂bDAass

∂b
= −qp

n∑
k=1

(1 − ak)
∂ ln kck

∂b

= −qp

n∑
k=1

(1 − ak)

[
∂ ln k0

ck

∂b
− ∂bWck

∂b

]
. (14)

In view of the Eq. (13), the partial derivative ∂ lnkck/∂b depends on
the derivative of bWck. As in previous work, this relation will be
used in a step of the thermodynamic integration used to obtain the
Helmholtz energy from the energy. Then the suitable function Wck

allowing this integration will be determined.

3.3. Screening parameters used for the electrostatic energy

A formal solution of the WOZ equation, Eq. (5), for the class
of closures defined by Eqs. (7)– (6) was obtained earlier [41]. The
thermodynamic properties, such as the internal energy, the pressure,
and the compressibility, can be deduced from this solution. The
electrostatic contributions to these quantities are all expressed
in terms of the screening parameter, CB, given by the following
equation:

[
CB

]2
= p

be2

e0

∑
k

qkX T
k ak Xk (15)

where X T
k stands for the transpose of matrix Xk which are obtained

by solving the following linear system

∑
k

Mik Xk = Zi (16)

with

Mik =
(

1 + CBsk

)
dikI +

p

2D
sks

2
i

[
1 0
0 0

]
qkak − sitik qkak (17)

where the zeros in bold, in a matrix of the right-hand side, indicate
that the set of the other elements of the rows and columns are null.

Xi =

⎡⎢⎢⎢⎢⎢⎣
X (0)

i

X (1)
i

X (2)
i
.
.

⎤⎥⎥⎥⎥⎥⎦ Zi =

⎡⎢⎢⎢⎢⎣
zi

0
0
.
.

⎤⎥⎥⎥⎥⎦ (18)

where I is the identity matrix and,

D = 1 − pf3/6 (19)

fn =
∑

k

qks
n
k . (20)

Moreover, in order to solve the system of Eqs. (15)– (20), one needs
to define the matrices ai and tij. The elements of these two matrices
are related to the fractions a

Sk
i of free site Sk on element i and to

the sticky parameters B(SkSl)
ij respectively. When only two sites S1 and

S2 are allowed on each particle there are simple expressions for the
matrices ai and tij.

When there are more than two sites per particle, an extension
of this approach called ideal network approximation (INA) has been
introduced [24,51-54]. This approximation considers that association
on each site is independent of the association on other sites. We will
use this approximation in this study to define the matrices ai and tij.
First, we recall the forms taken by these matrices when only two sites
per atom can be present, for polyelectrolytes without association.

We have previously considered a model of a fixed length polymer
chain where the individual beads have two different sites S1 and
S2, and we allow only bonds between S1 and S2, and only between
particles that have contiguous indices.



In the case of only two different sites on each particle, the matrix
ai appearing in Eqs. (5), (15) and (17) had the form [20,26],

ai =

⎡⎢⎢⎢⎣
1 a

(1)
i a

(2)
i a

(3)
i

a
(1)
i 0 a

(3)
i 0

a
(2)
i a

(3)
i 0 0

a
(3)
i 0 0 0

⎤⎥⎥⎥⎦ (21)

in which the matrix element a(1)
i = a

S1
i is the fraction of free site S1,

a
(2)
i = a

S2
i , and a

(3)
i is the fraction of ions i which have the sites S1

and S2 free at the same time. Upon the simplifying assumption that
the sites are independent, the INA leads to use the relation, a(3)

k =
a

(1)
k a

(2)
k , which permitted us to represent the matrices ai as a tensor

product of smaller matrices [45]

ai = a(1)
i ⊗ a(2)

i (22)

where the matrix a(a)
i are defined by

a(a)
i =

[
1 aSa

i
aSa

i 0

]
(23)

with (a) = (1) or (2). In the INA, the mathematical form of
the matrices ai expressed by Eq. (22) can be extended to the case
where three sites are present, which leads to the remarkably simple
relation,

ai = a(1)
i ⊗ a(2)

i ⊗ a(4)
i (24)

ai =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 a
(1)
i a

(2)
i a

(3)
i a

(4)
i a

(5)
i a

(6)
i a

(7)
i

a
(1)
i 0 a

(3)
i 0 a

(5)
i 0 a

(7)
i 0

a
(2)
i a

(3)
i 0 0 a

(6)
i a

(7)
i 0 0

a
(3)
i 0 0 0 a

(7)
i 0 0 0

a
(4)
i a

(5)
i a

(6)
i a

(7)
i 0 0 0 0

a
(5)
i 0 a

(7)
i 0 0 0 0 0

a
(6)
i a

(7)
i 0 0 0 0 0 0

a
(7)
i 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(25)

where a
(1)
i ,a(2)

i and a
(3)
i have the same meaning as before and:

a
(4)
i = a

S4
i ; a

(5)
i = a

S1
i a

S4
i ; a

(6)
i = a

S2
i a

S4
i ; a

(7)
i = a

S1
i a

S2
i a

S4
i .

(26)

In the case of two different sites on each particle, the matrices tij

appearing in Eq. (17) had the form [28],

tik =

⎡⎢⎢⎣
0 0 0 0
0 0 t12

ik 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ when k = i + 1 and

tik =

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 t21

ik 0 0
0 0 0 0

⎤⎥⎥⎦ when k = i − 1. (27)

In other words, our tij ( or the sticky interaction Bij matrix) had non-
zero elements only when j = i ± 1. In the INA, only the elements
t12
i,i+1 = t21

i+1,i of the matrix tij have non-zero values. The elements of
the matrix tij with upper label (3) ≡ S1∩S2 have been neglected. Now,
when a third site S4 is added on the subunits i of the polyion, we need
to consider also a matrix tic which contain only one element t44

ic . With

only one site per particle, the matrix tik was a 2 × 2 matrix [37,38,42].
In the case of two different sites on each particle, we had to use
4 × 4 matrices. With a third site, we have 8 × 8 matrices. The matri-
ces ai are given by Eq. (24) or Eq. (25). As before, all the elements
of the matrices tij are null except the terms t12

i,i+1 = t21
i+1,i for the

constituents i of the chain.In the matrices tic = tci between the
constituents i of the chain and the counterions c, all the elements are
null except the terms t44

ic at the intersection of the fifth line and of
the fifth column.

Using these results, we can deduce general expressions from
Eqs. (16)– (17). The results are given in Eqs. (30)– (32) further. We
note that only the functions X (a)

i with the exponents (a) = 0, 1, 2
and 4 are different from zero. This is due to the choice of the func-
tions tij used. To solve the expressions given by Eqs. (16)– (17), we
have used 8 × 8 matrices ai and tik, which is tedious. However, we
note that the matrix tik has a great number of rows and columns filled
with zeros. This particularity can be used to simplify the problem.
First, we define a compact form of the matrix tik given by:

tik =

⎡⎢⎢⎣
0 0 0 0
0 0 t12

ik 0
0 t21

ik 0 0
0 0 0 t44

ik

⎤⎥⎥⎦ (28)

where we have kept the first row and column of the initial matrix tik,
which are related to the unassociated part of the MSA in our system
of equations. We recall that: the term t12

ik �= 0 only when k = i + 1,
the term t21

ik �= 0 only when k = i − 1 and the term t44
ik �= 0

only when i and k are a subunit of the polyion and a counterion. By
keeping only the rows and columns which contain elements which
can interact with the kept elements of the compacted matrix tik, the
compact form of the matrix ai is obtained:

ai =

⎡⎢⎢⎢⎣
1 a

(1)
i a

(2)
i a

(4)
i

a
(1)
i 0 a

(3)
i a

(5)
i

a
(2)
i a

(3)
i 0 a

(6)
i

a
(4)
i a

(5)
i a

(6)
i 0

⎤⎥⎥⎥⎦ . (29)

We have now a set of 4 × 4 matrices in place of 8 × 8 matrices.
Extension can be made easily to ions with more sites. We have
verified by substitution that we obtain the same results with the big
and the smaller matrices. So, from Eqs. (16)– (17), we find:

X 0
i =

zi − gTs2
i

1 + CBsi
(30)

where now gT is given by

gT =
p

2D

[∑
k

qksk

4∑
a=0

a
(a)
k X (a)

k

]
(31)

and for (a) > 0

X (a)
i =

si

1 + CBsi

∑
k

qk

4∑
b=1

tab
ik a

(b)
k

⎛⎝X 0
k +

4∑
c �=b

a
(c)
k X (c)

k

⎞⎠ . (32)



Using Eqs. (30) and (32) in Eq. (15), we find:

[
CB

]2
= p

be2

e

⎡⎣ m∑
j=1

qj

(
X 0

j

)2
+ 2

n∑
k=1

q∗
c (k) X 0

k X
0
c

+
n−1∑
k=1

n−k∑
l=1

q∗(k, k + l)
(
X 0

k X
0
k+l + S∗

C(k, k + l)
)

+
n∑

k=2

k−1∑
l=1

q∗(k, k − l)
(
X 0

k X
0
k−l + S∗

C(k, k − l)
) ⎤⎦ . (33)

The functions q∗
c (k) are related to the condensation of counterions on

the unit k of the polyelectrolyte chain

q∗
c (k) = qcact44

c,kak qk
(
s∗

c + s∗
k

)
(34)

where the following notation has been used

s∗
i =

si

1 + CBsi
(35)

with i = c or k. The functions q∗(k, k ± l) are equal to q∗
k,k±l defined

in the previous article without condensation (Eq. (36) of Ref. [28]).
The explicit expressions of these functions for l = 1.2 and 3 were
given in Eq. (36) of this previous article. The terms SC(k, k ± l) used in
Eq. (33) are given by

S∗
C(k, k±l) = X 0

c

[
q∗

c (k, k ± l)
q∗(k, k ± l)

X 0
k±l +

q∗
c (k ± l, k)

q∗(k, k ± l)
X 0

k +
q∗

cc(k, k ± l)
q∗(k, k ± l)

X 0
c

]
(36)

where the ratios of functions q∗
c (k, k ± l)/q∗

k,k±l, and q∗
c (k ± l, k)/q∗

k,k±l
are related to the association of one counterion on subunits k and k±l
respectively. The ratio of functions q∗

cc(k, k ± l)/q∗
k,k±l, is related to the

association of two counterions on subunits k and k ± l. The functions
q∗

c (k, k±l), q∗
c (k±l, k) and qcc(k, k±l) have mathematical forms similar

to those of the functions q∗(k, k ± l). The explicit expressions of these
functions for l = 1, 2 and 3 are recalled in Appendix A. From these
expressions, we deduce by induction that the ratios appearing in
Eq. (36) are given by

q∗
c (k, k + l)

q∗(k, k + l)
= qcact44

c,k s∗
k

s∗
c + S∗

k+l

S∗
k+l

q∗
c (k + l, k)

q∗(k, k + l)
= qcact44

c,k+ls
∗
k+l

s∗
c + S∗

k+l

S∗
k+l

q∗
cc(k, k + l)
q∗(k, k + l)

= qcact44
c,k qcact44

k+l,c s∗
k s∗

k+l

(
2 s∗

c + S∗
k+l

)
S∗

k+l

(37)

with

S∗
k+l =

l∑
j=0

s∗
k+j. (38)

In previous work without association, we established links
between the q∗(k, k ± l) functions and the densities of the various
aggregates formed during polymerization of the chain. We consid-
ered the limit of large dilution of various electrostatic quantities such
as the screening parameter. In this limit, we studied the q(k, k ± l)
functions – noted without the star exponent – which are deduced
from the q∗(k, k ± l) functions considering that the CB parameter
is zero in this limit. Subsequently, for finite concentrations, the CB

dependence is reintroduced when the link between the q(k, k ± l)

functions and the various aggregates has been established. We have
imposed that electrostatic quantities satisfy the limiting laws of
Debye and Hückel. Moreover, when the constants of association
become very large, we have also studied the limit of complete poly-
merization obtained for chains formed with various numbers of
subunits. When the polymerization is incomplete, chains of various
lengths are present. The q(k, k ± l) functions must account for this
mixture of chains of various lengths. Therefore, without association
to recover this limiting law, we have found that q(k, k + 1) must be
the sum of the densities of all the polymers containing at least sub-
units k and k + 1. In the same way, q(k, k + 2) must be related to
the set constituted by the trimer formed with k, k + 1 and k + 2,
and all the higher polymers (tetramers, pentamers and so on) con-
taining k, k + 1 and k + 2. The same deduction must be made for
higher polymers appearing in the equation of [CB]2. Now, when the
association between subunits and counterions occurs, in the limit of
high dilution, we studied the functions qc(k, k ± l) and qcc(k, k + l) –
noted without the star exponent – which are also deduced from the
functions q∗

c (k, k ± l) and q∗
cc(k, k + l), considering again that the CB

parameter is zero in this limit. We noted that the functions qc(k, k + l)
and qcc(k, k + l) have the same mathematical form as the functions
q(k − 1, k + l) and q(k − 1, k + l + 1), respectively. They must
therefore represent the same set of aggregates as these functions,
replacing the subunits k − 1 and k + l + 1 by counterions. Then
the same deduction must be made for the functions qc(k, k + l) and
qcc(k, k + l), containing counterions at their ends, as for the func-
tions q(k, k + l). Therefore, when association occurs, qc(k) must be
the sum of densities of all the polymers containing c bonded on sub-
unit k; qc(k, k ± l) must be the set of polymers containing at least
the subunits comprised between k and k ± l and with a counterion c
bonded on subunit k. Finally, qcc(k, k ± l) must be the set of polymers
containing at least the subunits comprised between k and k ± l and
with counterions c bonded on subunits k and k ± l.

Now, to obtain more explicit expressions, we consider only the
case where the subunits of the chains and the other ions all have
the same diameter s . When the chain is completely formed q(k, k ±
l) = qp = q1 = q2 = · · · = qn. Then in this case from Eq. (66),
we have:

q∗(k, k ± l) =
q(k, k ± l)
(1 + CBs)l

=
qp

(1 + CBs)l
= qp yl (39)

where

y =
1

(1 + CBs)
. (40)

Now, we consider the functions related to the association
between counterions and the subunits of the chain. When the chain
is completely formed, the functions qc(k), must be the density of the
chains containing the counterion c bonded on subunit k

qc(k) = qp(1 − ak) = qpāk (41)

where

āk = 1 − ak (42)

is the fraction of bonded site k. In order to obtain similar expressions
for the other functions related to the association of counterions on
the chains, we used the INA and assumed the simplifying hypoth-
esis of apparent independence of the sites. Consequently, all the
functions qc(k, k± l) must be equal to qc(k). Furthermore, all the func-
tions q∗

cc(k, k ± l), related the interactions between two associated
counterions, bound to subunits k and k±l, are proportional to (1 −ak)



and (1 − ak±l). Consider first, the expressions of q∗
c (k, k± l), qc(k± l, k)

and q∗
cc(k, k ± l) when CB tends to zero (i.e., without the star in

exponent).

qc(k, k ± l) = q(k, k ± l)(1 − ak) = qpāk

qc(k ± l, k) = q(k, k ± l)(1 − ak±l) = qpāk±l

qcc(k, k ± l) = q(k, k ± l)(1 − ak) (1 − ak±l) = qpāk āk±l. (43)

In the above equations, the first equality is a consequence of the
hypothesis of independence of the sites. The second equality results
from the complete polymerization limit, when all the chains have
reached their maximum size.

Let us consider now the expressions of q∗
c (k), q∗

c (k, k± l), qc(k ± l,k)
and q∗

cc(k, k± l), when CB is different from zero (that is to say with the
star in exponent)

q∗
c (k) =

qp(1 − ak)
1 + CBs

= qpāk y (44)

q∗
c (k, k ± l) =

qc(k, k ± l)
(1 + CBs)l+1

= qpāk yl+1 (45)

q∗
c (k ± l, k) =

qc(k ± l, k)
(1 + CBs)l+1

= qpāk±l yl+1 (46)

q∗
cc(k, k ± l) =

qcc(k, k ± l)
(1 + CBs)l+2

= qpākāk±l yl+2. (47)

Then from the Eq. (33) for (CB)2 we deduce:

[
CB

]2
=p

be2

e

⎡⎣ m∑
j=1

qj

(
X 0

j

)2
+ 2

n∑
k=1

qc(k) X 0
k X

0
c y

+ qp

n−1∑
k=1

n−k∑
l=1

(
X 0

k X
0
k+l + SC(k, k + l)

)
yl

+qp

n∑
k=2

k−1∑
l=1

(
X 0

k X
0
k−l + SC(k, k − l)

)
yl

⎤⎦ (48)

where X 0
k is given by Eq. (30) and with

SC(k, k±l) = X 0
c

[
qc(k)
qp

X 0
k±l y +

qc(k ± l)
qp

X 0
k y +

qcc(k, k ± l)
qp

X 0
c y2

]
.

(49)

Eq. (48) for [CB]2 can be simplified by expressing the qc(k) and
qcc(k, k± l) functions in terms of the āk (assuming that qcc(k, k± l) are
simply proportional to the product ākāk±l) :

[
CB

]2
= p

be2

e

⎡⎣ m∑
j=1

qj

(
X 0

j

)2
+ 2qp

n∑
k=1

ākX 0
k X

0
c y

+ qp

n−1∑
k=1

n−k∑
l=1

(
X 0

k + ākX 0
c y

) (
X 0

k+l + āk+lX 0
c y

)
yl

+qp

n∑
k=2

k−1∑
l=1

(
X 0

k + ākX 0
c y

) (
X 0

k−l + āk−lX 0
c y

)
yl

⎤⎦ . (50)

In the same way, using again Eqs. (30) and (32) in Eq. (31), the
parameter gT can be explicitly expressed as a function of the charges,
diameters and of the CB parameter. The expressions obtained are
given in Appendix B.

3.4. Internal and Helmholtz energies

The electrostatic contributions to the thermodynamic properties
of the present model can be expressed with the parameters defined
in the previous section. An expression for the electrostatic contribu-
tion to the internal energy DEel has been obtained as a function of the
parameters involved in the solution of Eqs. (5)– (6) [36,41,45]:

DEel =
e2

e

∑
k

qk
1
sk

[
ZT

k ak (Xk − Zk)
]

(51)

where ZT stands for the transpose of matrix Z given by Eq. (18) and
in which the elements of the vectors Xk are given by Eqs. (30) and
(32). We find

DEel =
e2

e

⎡⎣ m∑
j=1

qjzjM
0
j +

qp

2s

n∑
k=1

āk

(
zcX 0

k + zkX 0
c

)
y

+
qp

s

n−1∑
k=1

n−k∑
l=1

(
zkX 0

k+l

(l + 1)
+

āk(zk+lX 0
c + zcX 0

k+l)y
(l + 2)

+
ākāk+l zcX 0

c y2

(l + 3)

)
yl

+
qp

s

n∑
k=2

k−1∑
l=1

(
zkX 0

k−l

(l + 1)
+

āk(zk−lX 0
c + zcX 0

k−l)y

(l + 2)
+

ākāk−l zcX 0
c y2

(l + 3)

)
yl

⎤⎦
(52)

with

M0
k =

X 0
k − zk

sk
. (53)

The energy route is known to be an accurate way to determine
the thermodynamic properties of charged systems for MSA-type
closures [39]. In order to determine the excess Helmholtz energy,
one starts from the thermodynamic relation ∂(bDA)/∂b = DE. By
integrating the electrostatic contribution by parts, one gets [41,45]

bDA = bDEel −
∫ b

0
db′b′ ∂

∂b′ DEel. (54)

First, we remark that bDEel depends on CB and on the fractions of
bonded sites āk. Then we deduce

bDA =bDEel−
∫ b

0
db′b′

[
∂DEel

∂C′

]
[ā]

∂C′

∂b′ −
∫ b

0
db′b′

n∑
k=1

[
∂DEel

∂qpāk

]
CB

∂qpāk

∂b′

(55)

where [ā], in the first integral after the equality, is the set of all the
āk’s. By differentiation of Eq. (52), we find as usual the relation

pb

[
∂DEel

∂CB

]
[ā]

= −[CB]2. (56)

Using the simplifying Eq. (56) in Eq. (55) and integrating by parts, we
get:

bDA = bDEel +
[CB]3

3p
− b

n∑
k=1

qpāk

[
∂DEel

∂qpāk

]
CB

+
∫ b

0
db′

n∑
k=1

qpāk
∂

∂b′b′
[

∂DEel

∂qpāk

]
CB

. (57)



It is found that the derivatives
[
∂DEel/∂qpāk

]
can be written as the

following products

[
∂DEel

∂qpāk

]
CB

= X 0
c Vk. (58)

Starting from Eq. (52), by differentiation of DEel, one gets for the
subunits k for which 1 < k < n,

Vk =
e2

es

⎡⎣X 0
k + 2

n−k∑
l=1

(
X 0

k+l yl

(l + 2)
+

āk+l X 0
c yl+1

(l + 3)

)

+ 2
k−1∑
l=1

(
X 0

k−l yl

(l + 2)
+

āk−l X 0
c yl+1

(l + 3)

)⎤⎦ . (59)

In the same way, for the subunits 1 and n, one gets

V1 =
e2

es

[
X 0

1 + 2
n−1∑
l=1

(
X 0

1+l yl

(l + 2)
+

ā1+l X 0
c yl+1

(l + 3)

)]
(60)

Vn =
e2

es

[
X 0

n + 2
n−1∑
l=1

(
X 0

n−l yl

(l + 2)
+

ān−l X 0
c yl+1

(l + 3)

)]
. (61)

In order to integrate the last term of the right-hand side of
Eq. (57), one can relate, as before, the expression to be integrated
with the derivative of the Helmholtz energy, bDAass. As in a previous
work [45], we introduce the relation

[
∂DEel

∂qpāk

]
CB

= Wck (62)

between the above derivatives of DEel and the functions Wck,
introduced in Eq. (13), which makes a link with our mean field
approximation. It can be shown that the term in the right-hand
side of Eq. (14) is equal to the term inside the integral in Eq. (57).
Therefore, by utilizing Eq. (14) in Eq. (57), we deduce

bDA = bDEel +
[CB]3

3p
− bqp

∑
k

ākVkX 0
c + bDATPT1. (63)

It is noticed that this DA, obtained by the latter thermodynamic
integration, comprises both an electrostatic part and an associative
part. The other contributions (ideal, hard spheres and chains) must
be added to obtain the complete expression of A.

4. Discussion and conclusion

Previously, to describe linear polyelectrolytes in solution, we
considered the polyions as being formed of charged subunits bonded
together to form chains. The electrostatic properties of these ions
in solution were calculated in the framework of the mean spherical
approximation. The results obtained with this approximation take
into account the fact that the polyions consist of subunits linked
together. In order to take into account the association of counterions
on polyelectrolytes, we considered that each of the subunits con-
stituting the polyions has an additional attracting site allowing the
formation of a bond with a counterion. As before, we considered that
the intensity of the attraction between the consecutive subunits is
very high and that the chains constituting each of the polyions are
totally formed. On the other hand, we left unchanged the equilibria
of association between the subunits and the counterions.

Analytical expressions of internal energy and screening param-
eters have been established. Due to the electrostatic interactions,
the association between a counterion and a given site on a polyion
depends on the possible association of counterions with the other
sites of the polyion. This is particularly obvious in the expression
of internal energy Eq. (52). This expression includes three types of
terms:

• terms that do not directly depend on the quantities āk,
• terms proportional to āk,
• terms proportional to ākāk±l.

The first terms are those obtained previously for the polyions
without association of the counterions. The terms proportional only
to āk account for the electrostatic interactions between a counte-
rion c linked to k and all the elements of the chain. Finally, the
terms proportional to the products ākāk±l account for the electro-
static interaction between a counterion c linked to k and a counterion
c linked to k ± l.

In order to highlight the influence of the association between the
counterions and the monomers of the polyion, we calculated the
electrostatic energy DEel and its dependence on concentration in two
cases:

• without counterion-polyion association (āk = 0 for 1 ≤ k ≤ n)
• with complete association of the counterions on the charged

monomers of the polyion (āk = 1 for k 1 ≤ k ≤ n).

Experimentally, these two states can be encountered during the
titration of a polyelectrolyte whose charged groups have acid-base
properties. Depending on the pH, the protons will be free or bound
to the acid-base groups of the polyion. Eqs. (50) and (75), for CB and
gT respectively, were solved iteratively as previously. Knowing these
two quantities and all the āk’s, the internal energy can be deduced
from Eq. (52). As the energy increases sharply with the amount of
polyion, we chose to consider bDEel/q where q is the total number
density (monomers + counterions). Practically, we have plotted the
difference bDEexc/q defined as

bDEexc

q
=

bDEel

q
− bDE0

q
(64)

in which

bDE0

q
= lim

q→0

bDEel(āk = 0)
q

(65)

is the electrostatic energy due to the bonds between the charged
monomers on the chains at infinite dilution. We present in Fig. 2
the result for a polyelectrolyte chain with 32 monomers of equal
valency z1 = 1 and diameters s = 0.857 nm. The counterions
have a valency zc = 1 and the same diameter. The Bjerrum
length LB = e2b/4 is related to the diameter by: LB = 0.833s .
Without association, a strong variation of bDEexc/q with concen-
tration is observed. This variation is due to two contributions: one
that is related to the screening of electrostatic interactions of all
charged subunits, monomers and counterions (the terms propor-
tional to Mj in Eq. (52), that already are present for dissociated
electrolytes); and another one which is due to the weakening with
concentration of interactions between the monomers within each
chain (terms proportional to zkX 0

k±l). When association between
the counterions and the monomers is complete, only a very small



Fig. 2. Variation of bDEexc/q as a function of log(p q s3/6). Continuous line: with-
out association of counterions. Dashed and dotted line: with complete association of
counterions on the charged monomers along the chains.

variation of bDEexc/q is observed at the highest values of vol-
ume fraction (p/6)q s3. The value obtained at low concentrations
results from the electrostatic energy of interaction between the
counterions bound to the monomers and, besides, to the energy
between counterions bonded to different monomers along each
polyelectrolyte chain. When all the counterions are linked to the
monomers, the polyelectrolyte chains are overall neutral. Then, the
energy variation is much lower than when the polyelectrolytes are
charged.

In order to evaluate the Helmholtz energy by thermody-
namic integration, we have chosen to describe association using
Wertheim’s thermodynamic perturbation theory. Consequently, the
association energy Wck between a counterion and a subunit k also
depends on the potential association of counterions on the other
elements of the chain (see Eqs. (58) and (62)). This has the conse-
quence of complicating the evaluation of the fractions of associated
counterions, and of the electrostatic energy of these associated coun-
terions. Even if the constants of association between the subunits
and the counterions are taken equal initially, due to the forma-
tion of links between the subunits along the chain and due to the
charges carried by these subunits, the sites are clearly not equivalent
and the association is not the same at the center and at the ends
of a chain. This complication accounts for electrostatic interactions
existing within an associated polyelectrolyte. It is therefore perfectly
justified. In short, our model takes into account the interactions
between all the constituents of an associated polyelectrolyte and
not only the interactions between first neighbors. It was one of
the objectives that motivated the development of this study. As
an alternative, the Helmholtz free energy can be obtained using
exponential approximation and numerical integration of the expres-
sion for the internal energy. However, assumptions must be made
to define the association energy Wck between a counterion and a
subunit k, used in the exponential approximation. The use of the
association energies obtained in this study to deduce the Helmholtz
free energy using numerical integration should lead to the same
result.

Other thermodynamic quantities, such as osmotic and activity
coefficients, could be deduced from this model in the future.
Moreover, in order to evaluate the Helmholtz energy, more elaborate
expressions of the free energy of association DAass, taking into
account the cooperativity when associating different sites [18,56,57],
could be used.

Appendix A. The first clusters intervening in the expression for
CB in Eq. (33)

The functions q∗(k, k ± l), intervening in the expression for CB in
Eq. (33), are related to the electrostatic interactions between the
subunits k and k ± l. For l = 1, 2 and 3, they are given by

q∗(k, k + 1) = qkT12
k,k+1 qk+1 S∗

k+1

q∗(k, k + 2) = qkT12
k,k+1 qk+1T12

k+1,k+2 qk+2 s∗
k+1 S∗

k+2

q∗(k, k + 3) = qkT12
k,k+1 qk+1T12

k+1,k+2 qk+2T12
k+2,k+3 qk+3 s∗

k+1s
∗
k+2 S∗

k+3

... (66)

where we have used the following notation to represent terms relate
to the fraction of bond segments

Tab
ij = a

(a)
i tab

ij a
(b)
j (67)

and

S∗
k+l =

l∑
j=0

s∗
k+j. (68)

We recall that s∗
k = sk/(1 + CBsk). Accordingly, when all the

subunits have the same diameter s , the functions q∗(k, k + l) are
proportional s l/(1 + CBs)l.

The functions q∗
c (k, k± l) and q∗

c (k± l, k) characteristic of the inter-
actions between the condensed counterions in Eq. (36), are given by

q∗
c (k, k + 1) = qcT44

c,k qkT12
k,k+1 qk+1 s∗

k

(
s∗

c + S∗
k+1

)
q∗

c (k, k + 2) = qcT44
c,k qkT12

k,k+1 qk+1T12
k+1,k+2 qk+2 s∗

ks
∗
k+1

(
s∗

c + S∗
k+2

)
q∗

c (k + 1, k) = qkT12
k,k+1 qk+1 T44

k+1,cqc s∗
k+1

(
s∗

c + S∗
k+1

)
... (69)

Accordingly, when the counterions and all the subunits have the
same diameter s , the functions q∗

c (k, k + l) and q∗
c (k + l, k) are

proportional s l+ 1/(1 + CBs)l+ 1.
The functions q∗

cc(k, k ± l) characteristic of the interactions
between two condensed counterions in Eq. (36), are given by

q∗
cc(k, k + 1) = qcT44

c,k qkT12
k,k+1 qk+1T44

k+1,c qc s∗
k s

∗
k+1

(
2 s∗

c + S∗
k+1

)
q∗

cc(k, k + 2) = qcT44
c,k qkT12

k,k+1 qk+1T12
k+1,k+2 qk+2T44

k+2,c qc s∗
k s

∗
k+1s

∗
k+2

(
2 s∗

c + S∗
k+2

)
.
.
. (70)

Accordingly, when the counterions and all the subunits have the
same diameter s , the functions q∗

cc(k, k + l) are proportional
s l+ 2/(1 + CBs)l+ 2. The functions q∗

c (k, k±l), q∗
c (k±l, k) and qcc(k, k±l)

have mathematical forms similar to those of the functions q∗(k, k± l).
We note that the mathematical expression of the function q∗

c (k, k +
l) can be obtained from that of the function q∗(k − 1, k + l) by
replacing the subunit k − 1 by a counterion c. Similarly, the mathe-
matical expression of the function q∗

c (k + l, k) can be obtained from
that of the function q∗(k − 1, k + l + 1) by replacing the subunit
k + l + 1 by a counterion c. Finally, the mathematical expression
of the function q∗

cc(k, k + l) can be obtained from that of the function



q∗(k − 1, k + l + 1) by replacing the subunits k − 1 and k + l + 1
by two counterions c.

The ratio of functions (q∗
c (k, k ± l)/q∗

k,k±l), and (q∗
c (k ± l, k)/q∗

k,k±l)
are related to the association of one counterion on subunits k and k±l
respectively. For l = 1 or 2, they are given by

q∗
c (k, k + 1)

q∗(k, k + 1)
= qcT44

c,k s∗
k

(
s∗

c + s∗
k + s∗

k+1

)
(
s∗

k + s∗
k+1

)
q∗

c (k + 1, k)
q∗(k, k + 1)

= qcT44
c,k+1 s∗

k+1

(
s∗

c + s∗
k + s∗

k+1

)
(
s∗

k + s∗
k+1

)
q∗

c (k, k + 2)
q∗(k, k + 2)

= qcT44
c,k s∗

k

(
s∗

c + s∗
k + s∗

k+1 + s∗
k+2

)
(
s∗

k + s∗
k+1 + s∗

k+2

)
... (71)

The ratio of functions (q∗
cc(k, k ± l)/q∗

k,k±l), are related to the conden-
sation of two counterions on subunits k and k ± l . For l = 1 or 2,
they are given by

q∗
cc(k, k + 1)
q∗(k, k + 1)

= qcT44
c,k T44

k+1,c qc s∗
k s∗

k+1

(
2 s∗

c + s∗
k + s∗

k+1

)
(
s∗

k + s∗
k+1

)
q∗

cc(k, k + 2)
q∗(k, k + 2)

= qcT44
c,k T44

k+2,c qc s
∗
k s∗

k+2

(
2 s∗

c + s∗
k + s∗

k+1 + s∗
k+2

)
(
s∗

k + s∗
k+1 + s∗

k+2

)
... (72)

for those characteristic of the interactions between two condensed
counterions. In view of the relation between the function for k± l and
those for k ± l + 1, we deduce

q∗
c (k, k + l)

q∗(k, k + l)
= qcT44

c,k s∗
k

s∗
c + S∗

k+l

S∗
k+l

q∗
c (k + l, k)

q∗(k, k + l)
= qcT44

c,k+l s
∗
k+l

s∗
c + S∗

k+l

S∗
k+l

q∗
cc(k, k + l)
q∗(k, k + l)

= qcT44
c,k T44

k+l,c qc s∗
k s∗

k+l

(
2 s∗

c + S∗
k+l

)
S∗

k+l

(73)

... . (74)

Appendix B. Expressions of the parameter gT

By using Eqs. (30) and (32) in Eq. (31), the parameter gT can
be expressed as a function of the charges, diameters and of the CB

parameter. We make the same substitutions given by Eqs. (39)– (47)
for all the q(k · · ·). Then we obtain:

gT =
p

2D
s

⎡⎣ m∑
j=1

qjX0
j +

qp

2

n∑
k=1

āk

(
X0

k + X0
c

)
y

+qp

n−1∑
k=1

n−k∑
l=1

⎛⎝ X0
k+l

(l + 1)
+ āk

(
X0

c + X0
k+l

)
(l + 2)

y + ākāk+l
X0

c
(l + 3)

y2

⎞⎠ yl

+qp

n∑
k=2

k−1∑
l=1

⎛⎝ X0
k−l

(l + 1)
+ āk

(
X0

c + X0
k−l

)
(l + 2)

y + ākāk−l
X0

c
(l + 3)

y2

⎞⎠ yl

⎤⎦ .

(75)

Using again Eq. (30), the term X 0
k can be split in a term which

depends on zk and CB, and in a term proportional to gT. By grouping
together the terms depending on gT, we deduce:

gT =
p

2DYT
ys

[
m∑

k=1

qkzk +
qp

2

n∑
k=1

āk (zk + zc) y

+qp

n−1∑
k=1

n−k∑
l=1

(
zk+l

(l + 1)
+

āk(zc + zk+l)
(l + 2)

y +
ākāk+l zc

(l + 3)
y2

)
yl

+qp

n∑
k=2

k−1∑
l=1

(
zk−l

(l + 1)
+

āk(zc + zk−l)
(l + 2)

y +
ākāk−l zc

(l + 3)
y2

)
yl

⎤⎦
(76)

with

YT =1 +
p

2D
ys3

[
m∑

k=1

qk + qp

n∑
k=1

āk y

+qp

n−1∑
k=1

n−k∑
l=1

(
1

(l + 1)
+

2āk

(l + 2)
y +

ākāk+l

(l + 3)
y2

)
yl

+qp

n∑
k=2

k−1∑
l=1

(
1

(l + 1)
+

2āk

(l + 2)
y +

ākāk−l

(l + 3)
y2

)
yl

⎤⎦ . (77)
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