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The theory of life-history evolution provides a powerful framework to

understand the evolutionary dynamics of pathogens. It assumes, however,

that host populations are large and that one can neglect the effects of demo-

graphic stochasticity. Here, we expand the theory to account for the effects of

finite population size on the evolution of pathogen virulence. We show that

demographic stochasticity introduces additional evolutionary forces that can

qualitatively affect the dynamics and the evolutionary outcome. We discuss

the importance of the shape of the pathogen fitness landscape on the balance

between mutation, selection and genetic drift. This analysis reconciles

Adaptive Dynamics with population genetics in finite populations and

provides a new theoretical toolbox to study life-history evolution in realistic

ecological scenarios.
1. Introduction
Why are some pathogens virulent and harm their hosts while others have

minimal effect on host fitness? Our ability to understand and predict the evol-

utionary dynamics of pathogen virulence has considerable implications for

public-health management [1–3]. A classical explanation for pathogen viru-

lence involves trade-offs with other pathogen life-history traits. If certain

components of pathogen fitness, such as a high transmission rate or a low clear-

ance rate, necessarily require that the pathogen incidentally increase host

mortality, then virulence is expected to evolve [4]. A now classical way to

develop specific predictions from this hypothesis is invasion analysis and evol-

utionary game theory, under assumptions that have been since formalized as

Adaptive Dynamics [1,4–6]. This approach relies on the assumption that the

mutation rate is small so that the epidemiological dynamics occur on a faster

timescale than the evolutionary dynamics [4,7–9]. Under simple epidemiological

assumptions (e.g. well-mixed population, no co-infection or superinfection with

different genotypes, a single infection pathway, etc.) the evolutionarily stable

level of virulence maximizes the basic reproduction ratio R0 of the pathogen

[7,10,11], but see e.g. [12–17] for more complex epidemiological scenarios.

The above-mentioned theory allows one to determine the level of virulence

expected to evolve under a broad range of epidemiological scenarios but it still

suffers from the fundamental shortcoming of being a deterministic theory. The

number of infected individuals, however, can be very small (e.g. at the onset of

an epidemic or after a vaccination campaign) and demographic stochasticity—

i.e. randomness in individual mortality and reproduction [18]—is likely to

affect both the epidemiological and evolutionary dynamics of the disease. If

all that such stochasticity did was to introduce random noise, then the predic-

tions of deterministic theory would likely suffice. However, several recent
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studies have demonstrated that this is not the case. For

example, [19,20] each used different theoretical approaches

to demonstrate that finite population size tends to select for

lower virulence and transmission, using perturbation series,

and assuming fixed numbers of infecteds, respectively, to

estimate fixation probabilities. Likewise, [21] analysed the

effect of finite population size in a complex epidemiological

model with unstable epidemiological dynamics and showed

that finite population size could induce an evolutionary

instability that may either lead to selection for very high or

very low transmission.

Taken together, the existing literature presents a complex

picture of the factors that drive virulence evolution and it

remains unclear how all of these factors are related to one

another and how they might interact. In this paper, we

develop a very general theory of pathogen evolution that

can be used to examine virulence evolution when the above-

mentioned factors are at play. First, we use an individual-

based description of the epidemiological process to derive a

stochastic characterization of the evolutionary epidemiology

dynamics of the pathogen. This theoretical framework is

used to pinpoint the effect of finite population size on the

interplay between epidemiology and evolution. Second, we

analyse this model under the realistic assumption that the

rate of mutation is small, so that pathogen evolution can be

approximated by a sequence of fixations. We derive the prob-

ability of fixation of a mutant pathogen under both weak and

strong selection regimes, and for different epidemiological

scenarios. Third, we use this theoretical framework to derive

the stationary distribution of pathogen virulence resulting

from the balance between mutation, selection and genetic

drift. This yields new predictions regarding the effect of the

shape of pathogen fitness landscape and the size of the popu-

lation on the long-term evolution of the pathogen. As the

question of virulence evolution can be viewed as a specific

example of the more general notion of life-history evolution

[22,23], our results should be directly applicable to other life-

history traits and other organisms as well, providing a new

theoretical approach for studying life-history evolution in realis-

tic ecological scenarios based on the principles advocated in

[24]: Stochastic Adaptive Dynamics (SAD).
2. Model
We use a classical SIR epidemiological model with demogra-

phy, where hosts can either be susceptible, infected or

recovered. The number of each of these types of hosts is

denoted by NS, NI and NR, respectively. Because we are inter-

ested in the effect of demographic stochasticity the model is

derived from a microscopic description of all the events

that may occur in a finite—but not fixed—host population

of total size NT ¼ NS þ NI þ NR living in an area of

size n (the details of the model are given in the electronic

supplementary material).

We use l to denote the rate at which new susceptible

hosts enter the population per unit area, and therefore the

total rate is given by ln. We focus on the case of frequency-

dependent transmission; i.e. new infections occur at rate

(b/NT)NSNI, where b is a constant quantifying the combined

effects of contact rate among individuals and the probability

of pathogen transmission, given an appropriate contact

occurs. Note, however, that other forms of transmission
(e.g. density-dependent transmission [25]) yield qualitatively

similar results [26]. We also assume that already infected

hosts cannot be reinfected by another pathogen strain (i.e.

no co-infections). All hosts are assumed to suffer a constant

per capita death rate of d, whereas infected hosts die due to dis-
ease at per capita rate a and they recover at per capita rate g.

Finally, to study pathogen evolution, we need to introduce

genetic variation in the pathogen population. Therefore, we

consider d pathogen strains which differ in their transmission

rate bi, and virulence ai, with i [ f1, . . ., dg. Likewise, we use

the subscripted variable NIi
to denote the number of hosts

infected with strain i.
The above assumptions give a continuous-time Markov

process tracking the number of individuals of each type of

host. To progress in the analysis, we use a diffusion approxi-

mation and work with host densities defined as S ¼ NS/n,

Ii ¼ NIi
/n and N ¼ NT/n and we define the total density of

infected hosts as I ¼
Pd

i¼1 Ii. When n is sufficiently large

(but finite) these variables can be approximated using a con-

tinuous state space and so this model can be described by a

system of stochastic differential equations (see electronic

supplementary material, §3).
2.1. Deterministic evolution
In the limit where the habitat size (and thus the host popu-

lation size) becomes infinite, demographic stochasticity

becomes unimportant and the epidemiological dynamics

are given by the following system of ordinary differential

equations:

_S ¼ l� �b
N SI � dS,

_I ¼ �b
N SI � (dþ �aþ g)I

and _N ¼ l� dN � �aI:

9>=
>; ð2:1Þ

The bars above a and b refer to the mean of the transmission

rate and the virulence distributions of the infected host popu-

lation (i.e. �a ¼
Pd

i¼1 aiIi=I). In the absence of the pathogen,

the density of hosts equilibrates at S0 ¼ l/d. A monomorphic

pathogen (d ¼ 1, �b ¼ b and �a ¼ a) is able to invade this equi-

librium if its basic reproduction ratio, R0 ¼ b/(d þ a þ g) is

greater than one. If this condition is fulfilled, then the

system reaches an endemic equilibrium, where Seq/Neq ¼

1/R0, Ieq/Neq ¼ (d/(d þ g))(1 2 1/R0) and Neq ¼ (l(d þ g)/

d(b 2 a))R0.

When several strains are present in the population, the

evolutionary dynamics of the pathogen can be tracked with

[27,28]:

_pi ¼ pi(ri � �r), ð2:2Þ

where pi ¼ Ii/I is the frequency of hosts infected with strain i.
The quantity ri ¼ bi(S/N ) 2 (d þ ai þ g) is the instantaneous

per capita growth rate of strain i and �r ¼
Pd

i¼1 piri is the aver-

age per capita growth rate of the infected host population.

When d ¼ 2 only two strains are competing (a wild-type,

strain 1, and a mutant, strain 2) and the change in the

frequency p2 of the mutant strain is given by:

_p2 ¼ p1p2
S
N
Db� Da

� �
, ð2:3Þ

where Db ¼ b2 2 b1 and Da ¼ a2 2 a1 are the effects of the

mutation on transmission and virulence, respectively.
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Figure 1. Schematic of the effect of finite population size on the evolution
of pathogen virulence. The grey line in the top figure represents the effect
of pathogen virulence, a, on R0 ( for an asymmetric fitness function). The
grey line in the bottom figure represents the effect of pathogen virulence,
a, on pathogen transmission, b. In the deterministic version of our model,
the marginal value theorem can be used to find the optimal pathogen
virulence, a0 (dashed black arrow). In this model, optimal virulence maxi-
mizes R0 in the absence of demographic stochasticity. Finite population
size modifies selection and favours pathogen strategies with lower
virulence (see equation (3.4)). The mode of the stationary distribution
of pathogen virulence is indicated by a dashed red arrow, amode

(see equation (3.7)). This geometrical construction indicates that finite
population size is expected to favour slower strains even if they have
a lower R0.
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The above formalization can be used to understand the

evolution of pathogen life history under different scenarios.

First, under the classical Adaptive Dynamics assumption

that the mutation rate is very small, one may use a separation

of timescales where the epidemiological dynamics reach an

endemic equilibrium (set by the resident pathogen, strain 1)

before the introduction of a new variant (strain 2) by

mutation. In this case, evolution favours the strain with the

highest basic reproduction ratio, R0,i ¼ bi/(d þ ai þ g). In

other words, evolution favours strains with higher

transmission rates and lower virulence. According to the

trade-off hypothesis, however, transmission and virulence

cannot evolve independently. For example, the within-host

growth rate of pathogens is likely to affect both traits and

result in a functional trade-off between transmission and

virulence [4,7–9]. Under this assumption, equation (2.3) can

be used to predict the evolutionary stable virulence strategy

(figure 1).1 The above model can also be used to predict viru-

lence evolution when the evolutionary and epidemiological

dynamics occur on a similar timescale [27–29]. For instance,

these models can be used to understand virulence evolution

during an epidemic [4,30–32]. In this case, a pathogen strain

i with a lower R0 may outcompete other strains if its

instantaneous growth rate, ri, is higher.

2.2. Stochastic evolution
Finite population size introduces demographic stochasticity

and the epidemiological dynamics can be described by the

following system of (Itô) stochastic differential equations:
dS ¼ l�
�b

N
SI � dS

� �
dtþ

ffiffiffi
l

n

r
dB1 �

ffiffiffiffiffiffi
dS
n

r
dB2 �

ffiffiffiffiffiffiffiffi
�bSI
nN

r
dB3,

dI ¼
�b

N
SI � (dþ �aþ g)I

� �
dtþ

ffiffiffiffiffiffiffiffi
�bSI
nN

r
dB3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(dþ �a)I

n

r
dB4 �

ffiffiffiffiffi
gI
n

r
dB5

and dN ¼ (l� dN � �aI) dtþ
ffiffiffi
l

n

r
dB1 �

ffiffiffiffiffiffi
dS
n

r
dB2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(dþ �a)I

n

r
dB4,

9>>>>>>>>=
>>>>>>>>;

ð2:4Þ
where B1, . . ., B5 are independent Brownian motions. As

expected, when n! 1 this set of stochastic differential

equations reduces to the deterministic equations in (2.1)

(n.b., both (2.4) and (2.1) require that one knows the strain fre-

quencies, as given by (2.2) or (2.5) below, respectively, for a

complete description of the dynamics).

In finite populations, the pathogen, and indeed the host

population itself, are destined to extinction with probability

1. The time it takes for this to occur, however, depends criti-

cally on the parameter values. For example, in a host

population infected with a monomorphic pathogen (i.e. d ¼
1), if R0 is larger than 1 the size of the infected host popu-

lation reaches a quasi-stationary distribution which is

approximately normal. The mean of this distribution is of

order n and its standard deviation is of order
ffiffiffi
n
p

[33,34].

The extinction time from the quasi-stationary distribution

increases exponentially with n [33,34], and so, in the remain-

der of the paper, we will assume that n is large enough

so that we can focus on the dynamics conditional on

non-extinction.

As in the deterministic case, one can study evolutionary

dynamics by focusing on the change in strain frequencies.
We obtain a stochastic differential equation analogous to

(2.2) (see electronic supplementary material, §4):

dpi ¼ pi(ri � �r)� 1

nI
pi(vi � �v)

� �
dt

þ 1ffiffiffiffiffi
nI
p

Xd

j¼1

(dij � pi)
ffiffiffiffiffiffiffiffiffi
v jp j

p
dB j,

ð2:5Þ

where vi ¼ bi(S/N ) þ (d þ ai þ g) is the variance in the

growth rate of strain i (while ri ¼ bi(S/N ) 2 (d þ ai þ g) is

the mean) and �v ¼
Pd

i¼1 pivi is the average variance in

growth rate of the infected host population. The first (advec-

tive, dt) component in equation (2.5) is analogous to (2.2).

The second (diffusive, dB) component shows that finite popu-

lation size (i.e. when the pathogen-infected population size,

as measured by the total number of infected hosts, nI is not

too large) can affect the direction of evolution. In contrast

with the deterministic model, the evolutionary dynamics

are not driven exclusively by the expected growth rate ri,

but also by a minimization of the variance. This effect is

akin to bet-hedging theory stating that a mutant strategy

with lower variance in reproduction may outcompete a
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resident strategy with a higher average instantaneous growth

rate [35,36]. To better understand this effect, it is particularly

insightful to examine the case d ¼ 2 when only two strains

are competing and the change in frequency p2 of the

mutant strain is given by:

dp2 ¼ p1p2
S
N
Db 1� 1

nI

� �
� Da 1þ 1

nI

� �� �
dt

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2

nI
(p1v2 þ p2v1)

r
dB: ð2:6Þ

The first component (the advective component) in equation

(2.6) is similar to (2.3) except for the 1/nI terms. Those

terms are due to the fact that a transmission (or a death)

event of the mutant is associated with a change in the

number of mutants as well as an increase (decrease) of the

total infected host population size by one individual. This

concomitant variation of infected host population size affects

the effective change of the mutant frequency (relative to the

change expected under the deterministic model where the

population size is assumed to be infinite). This effect

decreases the benefit associated with higher transmission

and increases the cost of virulence. In the long-term, this

effect (the first term in (2.5)) is thus expected to select for

lower virulence. But this long-term evolutionary outcome

cannot be described by an evolutionary stable state because

demographic stochasticity is also expected to generate noise

(the diffusion term in (2.5)). Indeed, this stochasticity (i.e.

genetic drift) may lead to the invasion and fixation of strains

with lower per capita growth rates. In the following, we fully

characterize this complex evolutionary outcome with the

stationary distribution of pathogen virulence under different

epidemiological scenarios.
3. Results
The above theoretical framework embodied by the stochastic

differential equations (2.4) and (2.5) subsume the determinis-

tic model and can be used to study the interplay of all the

relevant factors affecting virulence evolution. In the follow-

ing, we will assume that pathogen mutation is rare, so that

evolution can be described, as in classical Adaptive

Dynamics, as a chain of fixations of new pathogen mutations.

In contrast with Adaptive Dynamics, however, demographic

stochasticity in the resident population may allow neutral, or

even mildly deleterious, mutations to go to fixation. The

analysis of the effect of finite population size requires specific

ways to quantify the stochastic fate of a genotype [37]. To

determine the fate of a new mutation we need to compute

the probability of fixation of a mutant pathogen in a resident

population. In the absence of selection, the fixation probability

of a mutant allele depends only on the demography of the popu-

lation. When the size of the population is fixed and equal to N the

fixation probability of a neutral allele is 1/N. When the fixation

probability of a mutant is higher than neutral it indicates that the

mutant is selectively favoured. This is particularly useful in

many complex situations where the interplay between selection

and genetic drift are difficult to disentangle like time-varying

demography [38,39] or spatial structure [40]. In our model, the

difficulty arises from (i) the stochastic demography of the

infected host population and (ii) the fact that pathogen life-

history traits feedback on the epidemiological dynamics and

thus on the intensity of genetic drift.
3.1. Stationary distribution of pathogen virulence at
equilibrium

Here we assume, as in the Adaptive Dynamics framework,

that the pathogen mutation rate m is so low that the mutant

pathogen (strain 2) arises when the resident population

(strain 1) has reached a quasi-stationary distribution tightly

peaked about nIeq (i.e. close to the endemic equilibrium

derived in the deterministic model). The R0 of the two strains

may be written in the following way: R0,2 ¼ R0,1(1 þ s) where

s measures the magnitude of selection.

When selection is strong (i.e. s�1/n) the probability of

fixation of the mutant when NI2
(0) mutants with R0,2 . 1

are introduced into a resident population at equilibrium is

(see electronic supplementary material, §5.2):

Ustrong � 1� R0,1

R0,2

� �NI2
(0)

� NI2
(0)s, ð3:1Þ

which may be obtained by approximating the invading strain

by a branching process (see electronic supplementary

material, §8.2 for a rigorous justification).

When the mutant and the resident have similar values of

R0 . 1 (i.e. s is of order 1/n) selection is weak, and the deri-

vation of the probability of fixation is a much more difficult

problem. The classical population genetics approach under

the assumption that population size is fixed (or is character-

ized by a deterministic trajectory independent of mutant

frequency) is to use the diffusion equation of mutant fre-

quency to derive the probability of fixation [38,39]. But in

our model, equation (2.3) is not autonomous and is coupled

with the epidemiological dynamics. To derive the probability

of fixation we use a separation of timescale argument to

reduce the dimension of the system (see [41] for a discussion

of the approach). Indeed, if selection is weak, as n! 1, the

deterministic component of the model sends the system

rapidly to the endemic equilibrium, which is now a manifold

of fixed points, on which coexistence is possible at all mutant

frequencies. After this, it is possible to approximate the

change in frequency of the mutant by tracking the dynamics

of the projection of the mutant frequency on this manifold

(see electronic supplementary material, §5.3). This one-

dimensional system can then be used to derive the

probability of fixation under weak selection. A first-order

approximation in s and s is:

Uweak � pþ p(1� p)

2
(nIeqsþ s)

� nI2(0)
1

nIeq
þ 1

2
sþ s

nIeq

� �� �
, ð3:2Þ

where p ¼ I2(0)/Ieq and s ¼ (b1 2 b2)/b2. The first term in

(3.2) is the probability of fixation of a single neutral mutation

introduced in an infected host population at the endemic

equilibrium, nIeq. The second term takes into account the

effect due to selection. First, selection may be driven by

differences in R0. Second, even if strains have identical R0

(i.e. s ¼ 0) selection may be driven by s which measures

the difference in transmission rate; this effect selects for

lower transmission rates, and, since under weak selection

the R0 values are approximately equal, for lower virulence.

Note, however, that the effect of s rapidly overwhelms the

effect of s as the infected host population size nIeq becomes

large (unless s is of order 1/n). The probability of fixation
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Figure 2. Probability of fixation for (a) different values of s (strong selection effect) and (b) different values of s for fixed R0 (weak selection effect). Simulation
results for the model described in §2 are indicated with a dot, weak selection approximation is indicated with a grey line and its linear approximation (equation
(3.2)) is indicated with a green line, the strong selection approximation is indicated with a red line (equation (3.1)). Parameter values of the resident population:
n ¼ 100, R0 ¼ 4, d ¼ 1, a ¼ 3, g ¼ 1, l ¼ 2, b1 ¼ 20. For the simulation, a single mutant (an individual host infected with a mutant pathogen) is intro-
duced at the endemic equilibrium set by the resident pathogen: Seq ¼ 24 and Ieq ¼ 35. 106 simulations are realized for each parameter values and we plot the
proportion of the simulations where the mutant goes to fixation. We implement strong selection by setting b1 ¼ b2(1 þ s) so that R0,1 ¼ R0,2(1 þ s), and weak
selection by setting b1 ¼ b2(1 þ s), while holding R0,1 ¼ R0,2 by setting a2 ¼ (d þ a1 þ g)/(1 þ s) 2 d 2 g.
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given in (3.2) confirms that evolution tends to push towards

higher basic reproductive ratio but when the population

size is small other forces may affect the evolutionary out-

come. In particular, when nIeq is small, strains with lower

R0 can reach fixation. Figure 2 shows the result of stochastic

simulations that confirm the approximations (3.1) and (3.2)

under different epidemiological scenarios, and show that

our approximations already perform extremely well for

populations as small as the order of 100 hosts (see electronic

supplementary material, §7 for details of the simulations).

Even though the probability of fixation helps understand

the interplay between selection and genetic drift it does not

account for any differences in the time to fixation and it is

often difficult to measure this probability experimentally as

well (but see [42]). What may be more accessible is a charac-

terization of the phenotypic state of the population across
different points in time (or in space among replicate popu-

lations)—that is, the stationary distribution of the virulence

of the pathogen under the action of mutation, selection and

genetic drift [43–45] (figure 3).

To derive the stationary distribution of pathogen viru-

lence, we first need to impose a trade-off between virulence

and transmission rate, setting b ¼ b(a), and introduce the

mutation kernel K(am, a), the probability that a mutant with

strategy am appears in a monomorphic population with strat-

egy a. Here, we assume that this distribution has mean equal

to the current resident trait value and variance n. Under the

assumption that the mutation rate m remains small, pathogen

polymorphism is limited to the transient period between the

introduction of a mutant and a fixation, and we may consider

the (monomorphic) resident virulence as a random process

evolving in time.
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Figure 3. Dynamics of pathogen virulence across time (one time unit on the graph is 107 time steps in the simulation) and stationary distribution of pathogen
virulence for two different fitness landscapes: (a) symmetric fitness landscape with b(a) ¼ (d þ g þ a)R0,max(1 2 w(a0 2 a)2), R0,max ¼ 4.5 and a0 ¼ 3,
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100
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0 otherwise:

(

The dashed vertical line indicates the position of a0. Other parameter values: n ¼ 200, d ¼ 1, a ¼ 3, g ¼ 1, l ¼ 2, m ¼ 0.001.
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The probability of fixation (3.2) accurately describes the

direction of evolution, and the evolution of pathogen

virulence can then be described by the following Fokker–

Planck diffusion equation (see electronic supplementary

material, §6):

@c(a, t)
@t

¼ �mn

2

@

@a
nIeq(a)

R00(a)

R0(a)
� 1

nIeq(a)

b0(a)

b(a)

� �
c(a, t)

� �

þ mn

2

@2c(a, t)
@a2

, ð3:3Þ

where c(a, t) is the probability of observing pathogen viru-

lence a at time t and 0 indicates the derivative with respect

to a, and we write R0(a) and Ieq(a) to emphasize that these

quantities depend on the resident virulence. The first term

of the above equation indicates a strong deterministic trend,

with R00(a) indicating a trend towards a higher basic repro-

duction ratio, offset by a finite population effect
proportional to 2b0(a) that tends to select for lower trans-

mission. Under the classical assumption that pathogen

transmission and pathogen virulence are linked by a genetic

trade-off one can ask what the level of pathogen virulence is

where the advective term is zero. This trait value corresponds

to the mode of the stationary distribution of pathogen viru-

lence and is given by the following condition (see electronic

supplementary material, equation S.39):

b0(a) ¼ R0(a) 1þ 1

nIeq(a)� 1

� �
: ð3:4Þ

When the infected host population is very large (i.e. n! 1)

we recover the marginal value theorem, while finite popu-

lation size increases the slope b0(a) and reduces the mode

of the stationary distribution (figure 1). Thus, provided the

transmission–virulence trade-off function is concave, finite

population size is expected to decrease virulence and
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transmission rates. In other words, pathogen avirulence may

be viewed as a bet-hedging strategy because even if it reduces

the instantaneous growth rate ri, the reduced variance in

growth rate vi is adaptive in finite populations.

Let us now consider the limiting case when all the patho-

gen strains have the same R0. This corresponds to a very

special case where the fitness landscape is flat. The determi-

nistic model predicts that pathogen life-history variation is

neutral near the endemic equilibrium (see (2.2)). The prob-

ability of fixation (3.2) shows, however, that selection is

quasi-neutral and favours pathogens with lower transmission

and virulence rates [19,20,26,46]. The stationary distribution

results from the balance between selection (pushing towards

lower values of pathogen traits) and mutation (reintroducing

variation). If we focus on virulence and allow variation

between the minimal viable value amin and the maximal

viable value amax, the stationary distribution is (see electronic

supplementary material, equation S.33):

cflat(a) ¼ 1

ln ((dþ amax þ g)=(dþ amin þ g))

1

(dþ aþ g)
:

ð3:5Þ

It is worth noting that this distribution is independent of the

pathogen-infected population size. Indeed, near the endemic

equilibrium, when pathogens have the same R0, the prob-

ability of fixation (3.2) is independent of infected

population size. So this prediction holds even in very large

populations. The time to fixation may, however, be consider-

ably longer in large populations and the assumption that

polymorphism is always reduced to the resident and a

single mutant may not always hold as the population size

increases. Yet, stochastic simulations confirm that (3.5) cor-

rectly predicts the stationary distribution, which is relatively

insensitive to the infected population size, but varies with

d þ g (figure 4a).

Second, we consider a general fitness landscape with a

single maximum. It is possible to derive a good approxi-

mation for the stationary distribution (see electronic

supplementary material, S.38):

capprox(a) ¼ b(a0)

b(a)
N (a0,62), ð3:6Þ

where a0 is the virulence that maximizes R0, N (a0,62) is

the Gaussian distribution with mean a0 and variance

62 ¼ 1/(nIeq(a0)jR0
0 0(a0)j/R0(a0)), and nIeq(a0) is the
expected number of infected individuals at the endemic

equilibrium when the virulence is a0. We thus see the

effect of demographic stochasticity is to bias the Gaus-

sian, putting more weight on values of the virulence

below a0: if R0(a0) � R0(a), then, b(a0)/b(a) � (d þ a0 þ
g)/(d þ a þ g) . 1 for a , a0. This becomes more clear

when we consider the mode and mean of the (true)

stationary distribution (see electronic supplementary

material, §6.3):

amode ¼ a0 �
62

dþ a0 þ g
ð3:7Þ

and

amean ¼ a0 � 62 1

dþ a0 þ g
þ
jI0eq(a0)j
Ieq(a0)

þ R0000 (a0)

jR000(a0)j

 !
, ð3:8Þ

respectively. Equations (3.7) and (3.8) indicate that, as

expected from the simple optimization approach used

above in (3.4) and illustrated in figures 3 and 4, a lower

infected population size tends to decrease pathogen viru-

lence. However, the above derivation of the stationary

distribution goes far beyond this optimization criterion.

First, it accurately predicts the mode of the stationary dis-

tribution; in particular, it shows that the peakedness of the

fitness landscape may affect the mode of the stationary dis-

tribution. The skew of the fitness landscape can also have

huge effects on the stationary distribution (figure 3): a posi-

tive skew leads to a higher mean virulence and may thus

counteract the effect of a small pathogen-infected popu-

lation. In other words, whether demographic stochasticity

favours lower or higher virulence also depends on the

shape of the fitness landscape. Second, our analysis predicts

the amount of variation one may expect to see around this

mode. Unlike the criteria used to derive a single optimal

strategy, our approach predicts accurately the expected vari-

ation around this mode (figures 3 and 4). Note that the

population remains monomorphic most of the time

(because mutation is assumed to be small) but the variance

of the stationary distribution refers to the distribution of

phenotypes explored through time (or through space if sto-

chastic evolution is taking place in multiple isolated

populations).
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4. Discussion
Evolutionary theory has led to the development of different

mathematical tools for studying phenotypic evolution in a

broad diversity of ecological scenarios [47–49]. For instance,

Adaptive Dynamics is a powerful theoretical framework to

study life-history evolution when mutation is assumed to

be rare so that demographic and evolutionary processes can

be decoupled [5,6]. This analysis yields evolutionarily stable

life-history strategies and captures the ultimate outcome of

evolution. This approach, however, relies on the assumption

that population size is infinite and that the epidemiological

trajectory is deterministic. Finite population size, however,

can also affect evolutionary trajectories. In particular, even

the fittest genotype can be invaded by a deleterious mutant

when population size is reduced. This leads to the collapse

of the concept of evolutionarily stable strategy. On the

other hand, population genetics allows us to consider the

effect of finite population size and drift, but at the cost of

assuming fixed population sizes and ignoring ecological

processes (however, see, e.g. [38,50,51]). Here we build

upon Stochastic Adaptive Dynamics (SAD) [43,45,49], a

new theoretical framework where the evolutionary outcome

of life-history evolution is studied by systematically scaling

from ecologically complex individual-based stochastic

models to the stationary distribution of the phenotype

under mutation–selection–drift equilibrium. Under the

assumption that the mutation rate is small, the long-term

stochastic dynamics and equilibrium distribution can be

derived from a diffusion approximation. In contrast with pre-

vious population genetics models, the present framework

also allows life-history evolution to affect population size

and, consequently, the amount of demographic stochasticity.

In other words, this framework retains key strengths of

Adaptive Dynamics but relaxes a major assumption by allow-

ing genetic drift to affect the evolutionary outcome (see also

[52], p. 1149). As such, our SAD framework is an important

step towards a better integration between Adaptive Dynamics

and classical population genetics.

We show that finite population size induces a selective

pressure towards strains with lower variance in growth rate

(but see also [35,39,46]). A simple way to understand this

effect is to compare the fate of two strains with the same R0

but with different life-history strategies. The fast strain is

very transmissible but has a short duration of infection (e.g.

because of high virulence or high clearance rate). The slow
strain has a long duration of infection but a small trans-

mission rate. As the two strains have the same R0,

deterministic models predict that these two strains should

coexist once common, but that neither can invade from

small numbers. With finite population size, however, inva-

sion is possible. When population size is assumed to be

fixed, say N, the two strains are forced to share the same

speed because when e.g. one strain infects a new host, the

artificial constraint on the pathogen population size requires

the death of a host infected by the other strain. By contrast,

when population size is allowed to vary stochastically, the

competing strains can have different speeds. The fast strain

has a higher extinction rate simply because more events

happen per unit of time: rare events, such as large fluctu-

ations, will happen more regularly for the faster strain. As

in Aesop’s fable, ‘slow and steady wins the race’: when popu-

lation size is allowed to vary stochastically, however, the race
has no finish line (unlike a fixed population model, you

cannot hit N and ‘win’) and a strain can succeed only by out-

lasting its competitors. The advantage thus falls to the slower

strain which persists by using longer infectious periods to

‘wait out’ periods of paucity of susceptibles, outliving the

more volatile fast strain.

Previous studies [19,20] pointed out the influence of finite

population size on the direction of virulence evolution, but

they focused mainly on the quasi-neutral case where all the

strains have the same R0. Humplik et al. [20] did look at scen-

arios where strains have different R0, but assumed a fixed

population, strong selection, and values of R0 so large that

all hosts are infected. None of these studies considered vary-

ing strengths of selection, and none provided a derivation of

the stationary distribution at mutation–selection–drift equili-

brium, which describes the long-term behaviour of pathogen

virulence, that we believe is key to explore the interaction

between finite population size and phenotypic evolution.

This distribution yields testable predictions on the mean as

well as other moments of the phenotypic distribution.

The approximation (3.6) shows that this distribution is

moulded by two main parameters: (i) the pathogen fitness

landscape, and (ii) the effective size of the infected host popu-

lation. First, the pathogen fitness at the endemic equilibrium

can be derived from (2.5) and depends mainly on the way R0

varies with pathogen life-history traits. Under the classical

transmission–virulence assumption, R0 is maximized for

some intermediate virulence. But the shape of the trade-off

also affects the shape of the fitness landscape and in particu-

lar its symmetry. When the fitness landscape of the pathogen

is symmetric, reducing the infected population size increases

the variance of the stationary distribution but also decreases

the mean (and the mode) of this distribution. This effect

results from the selection for a reduction of the variance

identified in (2.5). This is the effect that emerges in the

quasi-neutral case. When the fitness landscape is flat, this

may lead to an important bias towards lower virulence

(figure 4). When the fitness landscape of the pathogen is

asymmetric the skewness of the fitness landscape can affect

the mean of the stationary distribution when the equilibrium

host population size, nIeq, is reduced. More specifically, nega-

tive (positive) skewness reduces (increases) the mean of the

stationary distribution. It is interesting to note that classical

functions used to model the trade-off between virulence

and transmission tend to generate positive skewness in the

fitness landscape [4,8,14]. The asymmetry of these fitness

functions may thus counteract the effects of stochasticity

per se identified in symmetric fitness landscapes. In other

words, predictions on the stochastic evolutionary outcome

are sensitive to the shape of genetic constraints acting on

different pathogen life-history traits. This result is very simi-

lar to the deterministic effects discussed in [53,54] on the

influence of asymmetric fitness landscapes on phenotypic

evolution. Note, however, that the effect analysed by [54] is

driven by environmental effects on phenotypes. In our

model, we did not assume any environmental effects, and a

given genotype is assumed to produce a single phenotype.

While we considered the standard SIR model, our

approach can be generalized to consider a number of var-

iants, including the SIRS model, the SEIR model, models

with multiple exposed and infected compartments, etc. Our

strong selection results for the fixation probability will

apply whenever invasion implies fixation [55] (this
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assumption is also necessary in general to derive (3.3); in par-

ticular, the diffusion approximation can fail if e.g. there is an

evolutionary branching, such as in a model with co-infection

[17]). Multi-type branching processes [56] would allow the

addition of e.g. exposed classes, whereas general (non-

Markovian) branching processes would allow the consider-

ation of arbitrary distributions for the infectious period

[57–59]. Weak selection results may be obtained when the

exchange of stability between resident and invader results

in a manifold of equilibria connecting the steady states. The

structure of the SIR model considered here lends itself to

computing the reduced diffusion (2.5); a general, albeit com-

putation-heavy, method to derive the reduced equation is

presented in [41]. If, on the other hand, multiple strains

could coexist at a stable node or focus or a saddle point for

the infinite population limit, then one would have to use

large deviations theory or adapt the results of [60], respect-

ively. An important extension would be to consider models

with less variance in the infectious period than the exponen-

tial distribution considered here, as they could diminish the

effects of demographic stochasticity.

We analysed the effects of demographic stochasticity

induced by finite population size but environmental stochas-

ticity may also affect evolution [36,61,62]. Environmental

factors are known to have dramatic impacts on pathogen

transmission and it would thus be particularly relevant to

expand the current framework to account for the effects of

random perturbations of the environment on pathogen evol-

ution [63]. Indeed, although we focused our analysis on the

stationary distribution at the endemic equilibrium of the clas-

sical SIR model, we can also explore the effect of

demographic stochasticity on the transient evolutionary

dynamics away from the endemic equilibrium, e.g. in

epidemic scenarios, under bottlenecks, etc. [64].

Further, to focus on the effects of finite populations, we

have considered a well-mixed population, whereas it is well

known that spatial spreading can facilitate coexistence of

competing strains and trade-offs between pathogen virulence

and host mobility [65–67]. Moreover, spatial structure can

result in smaller local effective population sizes, thus ampli-

fying the effects of demographic stochasticity. Other factors

may reduce the effective infected host population size as

well. For instance, variance in transmission among infected

hosts is likely to reduce the effective infected population

size below nIeq. One source of heterogeneity in transmissibil-

ity may be induced by public-health interventions (e.g.

vaccination, drug treatments), but intrinsic behavioural or

immunological heterogeneities among hosts may induce

superspreading transmission routes as well [68,69]. As such,
a structured stochastic model would be an important

extension.

Another possible extension of this model would be to

analyse the effect of demographic stochasticity on the

multi-locus dynamics of pathogens. Indeed, the interaction

between genetic drift and selection is known to yield complex

evolutionary dynamics resulting in the build-up of negative

linkage disequilibrium between loci. But the analysis of this

so-called Hill–Robertson effect is often restricted to popu-

lation genetics models with fixed population size. The

build-up of linkage disequilibrium in some epidemiological

models has been discussed in some simulation models

[70,71]. Our model provides a theoretical framework to

explore the effect of finite population size on multi-locus

dynamics of pathogens and to generate more accurate

predictions on e.g. the evolution of drug resistance [72].

Finally, although we have presented our results in the

context of pathogen evolution, it is hopefully clear that a

very similar theoretical framework could be used to study

other examples of life-history evolution in the context of demo-

graphic stochasticity. Current general life-history theory

largely neglects the evolutionary consequences of stochasticity

arising from small population sizes. Our results suggest that it

would be profitable to determine what sorts of insights might

be gained for life-history evolution more generally by using

the type of theoretical framework developed here.
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Endnote
1Equation (2.3) shows us that a rare mutant can invade if and only if
Db/Da . N/S ¼ R0 i.e. if the line through (2d 2g, 0) with slope Db/
Da lies above the curve (a, b(a)) at the resident virulence. If b(a) is
concave, then for all a, Db/Da � b0(a); in particular, if the line
through (2d 2g, 0) is tangent to the curve at a0, then no mutant
can invade, and a0 is an evolutionary stable strategy; see [73].
References
1. Dieckmann U, Metz JAJ, Sabelis MW, Sigmund K
(eds). 2005 Adaptive dynamics of infectious diseases:
in pursuit of virulence management. Cambridge, UK:
Cambridge University Press.

2. Bull JJ, Lauring AS. 2014 Theory and empiricism in
virulence evolution. PLoS Pathog. 10, 1 – 3. (doi:10.
1371/journal.ppat.1004387)

3. Gandon S, Day T, Metcalf CJE, Grenfell BT. 2016
Forecasting epidemiological and evolutionary
dynamics of infectious diseases. Trends Ecol.
Evol. 31, 776 – 788. (doi:10.1016/j.tree.
2016.07.010)

4. Frank SA. 1996 Models of parasite virulence. Quat.
Rev. Biol. 71, 37 – 78. (doi:10.1086/419267)

5. Metz JAJ, Nisbet RM, Geritz SAH. 1992 How should
we define ‘fitness’ for general ecological scenarios?
Trends Ecol. Evol. 7, 198 – 202. (doi:10.1016/0169-
5347(92)90073-K)
6. Geritz SAH, Kisdi G, Meszéna É, Metz JAJ. 1998
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