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SUMMARY 17 

The electrical potential at the interface between mineral and water is traditionally 18 

computed from the Poisson-Boltzmann (P-B) equation. Nevertheless, this partial 19 

differential equation is non-linear and has no analytical solution for cylindrical 20 

geometries for instance. For that reason, the linearized P-B equation is mostly used in 21 

the literature. In our study, we present a short and easy-to-handle Matlab® code to solve 22 

the full (i.e., non-linearized) P-B equation inside a cylinder. Electrical potentials inside 23 

amorphous silica and montmorillonite nanotubes, containing NaCl or CaCl2 24 

electrolytes, are computed. The zeta potential, which is an input parameter of our code, 25 

is first predicted from basic Stern and extended Stern models. We show that the 26 

linearized P-B equation overestimates the electrical potential from the full P-B equation 27 

when the zeta potential magnitude is above kT/e ~ 25.7 mV at a temperature T of 298 K 28 

with k the Boltzmann’s constant and e the electron charge, especially for Ca
2+

 ion in 29 

solution. This effect increases when salinity decreases from 0.1 to 0.001 mol L
−1

 30 

because of zeta potentials of higher magnitude, and when the cylinder radius decreases 31 

to the nanometric range because of overlapping diffuse layers. Our results may have 32 

strong implications for simulating the electrical properties of highly charged 33 

nanomaterials such as clays and low-pH cements. 34 

 35 

Keywords: Electrical Properties, hydrogeophysics, non-linear differential equations, 36 

numerical modelling. 37 

38 
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1 INTRODUCTION 39 

Many research areas in Earth sciences, physics, chemistry, and medicine are focused 40 

on investigating the electrochemical properties of cylinders (Bocquet & Charlaix 2010; 41 

Daiguji 2010; Schoch et al. 2008). For instance, in hydrology, the electrical potential on 42 

the internal wall of cylinder can be considered in pore network models simulating water 43 

flow and solute transport (Li et al. 2014; Obliger et al. 2014; Xiong et al. 2016). It is 44 

also used in rock physics to simulate the electrical properties of porous media to 45 

interpret, for instance, their self-potential and induced polarization (IP) response 46 

(Bernabé 1998; Jougnot et al., 2012; Bücker & Hördt, 2013a). In hydrogeophysics, 47 

researchers are actually interested in relating the permeability to the IP response of 48 

rocks and, to date, there is a debate about whether it is the grain or pore size that 49 

controls it (Revil & Florsch 2010; Revil et al. 2012, 2015; Kruschwitz et al. 2016; 50 

Weller et al. 2016). Knowing the electrochemical properties of cylinders is essential to 51 

model the induced polarization of rocks using the membrane polarization model and to 52 

better assess the effect of pore size on IP (Bücker & Hördt 2013a,b; Bairlein et al. 2016; 53 

Hördt et al. 2016, 2017; Chuprinko & Titov 2017). 54 

In electrokinetics and more generally in hydrogeophysics, most transport models use 55 

the zeta potential and the linearized Poisson-Boltzmann equation, based on the Debye-56 

Hückel (D-H) approximation, to model the electrochemical properties of pores (Bernabé 57 

1998; Pride 1994; Conlisk 2005; Schoch et al. 2008; Jougnot et al. 2012; Bücker & 58 

Hördt 2013a). The D-H approximation is accurate for surface electrical potentials, 59 

considered equal to zeta potentials, of magnitude inferior or equal to 25.7 mV at a 60 

temperature of 25°C (Hunter 1981; Lyklema 1995). Because zeta potentials on mineral 61 

surfaces are often much larger, it would be better to use the Poisson-Boltzmann 62 

equation without any approximation regarding the surface electrical potential to 63 
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compute the electrical potential at the interface between mineral and water (Leroy & 64 

Revil 2004; Sverjensky 2005; Vinogradov et al. 2010; Li et al. 2016). For instance, 65 

amorphous silica and the basal surface of montmorillonite, two minerals that are 66 

common in the subsurface, exhibit negative zeta potentials that can easily exceed 25.7 67 

mV in magnitude (Rasmusson et al. 1997; Sonnefeld et al. 2001; Leroy et al. 2013, 68 

2015). 69 

As far as we know, there is no code available in the literature to solve numerically 70 

the Poisson-Boltzmann equation inside cylinders. We propose a short and easy-to-71 

handle Matlab® code to model the electrochemical properties of cylinders. After a brief 72 

presentation of the P-B equation and associated boundary conditions, electrical potential 73 

profiles inside amorphous silica and montmorillonite nanotubes, computed from the full 74 

and linearized P-B equation, are showed, compared and discussed. Two different 75 

electrolytes representative of natural waters, NaCl and CaCl2, are considered, and zeta 76 

potentials were computed from well-established surface complexation models 77 

describing Stern and diffuse layers at the interface between mineral and water (Leroy et 78 

al. 2013, 2015). 79 

 80 

2. THE POISSON-BOLTZMANN EQUATION INSIDE A CYLINDER 81 

Let us consider a cylinder saturated with an aqueous electrolyte and having its 82 

internal wall electrically charged. The distribution of the electrical potential  (V) in the 83 

direction normal to the charged surface is usually computed using the Poisson-84 

Boltzmann (P-B) equation (Hunter 1981; Lyklema 1995; Leroy et al. 2010, 2012). The 85 

input parameters of this equation are the chemical composition of the bulk electrolyte 86 

and the surface electrical potential, often equated with the zeta potential (), or the 87 

surface charge density (Hunter 1981; Bourg et al. 2007; Leroy et al. 2015). The zeta 88 
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potential is the surface electrical potential at the plane of shear or slip plane and can be 89 

inferred from electrokinetic experiments for instance (Lyklema 1995; Leroy & Revil 90 

2004; Delgado et al. 2007; Heuser et al. 2012).  91 

The P-B equation can be written as (Appendix A): 92 

2 A

1

1000 N
exp

M
i

i i

i

q
q C

kT




 

 
    

 
 , (1) 93 

where NA is Avogadro’s number ( 6.02210
23

 mol
–1

),  is the dielectric permittivity of 94 

the electrolyte (F m
–1

), and M is the number of ionic species. The quantity qi is the ion 95 

charge (C), qi = esi where e is the elementary charge (~1.602×10
–19

 C) and si is the 96 

signed ion valence (si =  zi with zi the ion valence, “+” standing for cations and “” for 97 

anions). The quantity Ci is the concentration of ion i (mol L
–1

, M), k is Boltzmann’s 98 

constant ( 1.38110
–23

 J K
–1

) and T is the temperature (K). Note that the factor 1000 99 

converts Ci, expressed in mol L
–1

, into mol m
–3

. 100 

Eq. (1) can be linearized using the first two terms of the power series of exp(–101 

x) = 1 – x where x = qi / kT, which works well in the case of small electrical potentials 102 

satisfying the condition || << kT / |qi|. This yields: 103 

2 A

1

1000 N
1

M
i

i i

i

q
q C

kT




 

 
    

 
 . (2) 104 

Considering the electroneutrality condition in the bulk electrolyte, i.e.: 105 

1

0
M

i i

i

q C


 , (3) 106 

Eq. (2) becomes the Poisson-Boltzmann equation with the Debye-Hückel (D-H) 107 

approximation: 108 

2 2    , (4) 109 

where  = –1
 is the Debye length (m), which is given by: 110 
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2

A

1

1000 N
M

i i

i

kT

q C









. (5) 111 

Here we consider an infinite cylinder of radius r0 filled with saline water, with an 112 

electrical potential set to  on its internal wall. In radial coordinates, Eq. (1) writes: 113 

     2

A

2
1

1000 N1
exp

M
i

i i

i

d r d r q r
q C

dr r dr kT

  

 

 
    

 
 . (6) 114 

The boundary conditions are: 115 

 0r  , (7) 116 

and for symmetry reasons: 117 

0

0
r

d

dr





 . (8) 118 

Solving Eqs. (6) to (8) allows us to obtain the electrical potential profile ( )r . For 119 

numerical reasons, it is more convenient to solve a dimensionless equation. For that 120 

purpose, we replaced in Eq. (6) the quantity qi by esi – by doing so, the electronic 121 

charge is taken out of the summation. Eq. (6) thus becomes: 122 

     2

A

2
1

1000 N1
exp

M
i

i i

i

d r d r s e re
s C

dr r dr kT

  

 

 
    

 
 . (9) 123 

We define the following quantities: 124 

r
R


 , (10) 125 

which is the dimensionless radius; 126 

 
 e r

R
kT


  , (11) 127 

which is the dimensionless electrical potential; and 128 

e

kT


  , (12) 129 
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which is the dimensionless zeta potential. 130 

Eq. (9), (7) and (8) then become: 131 

 2

1

2
2

1

exp
1

M

i i i

i

M

i i

i

s C s
d d

dR R dR
s C





 
 
  




, (13) 132 

 0R   , (14) 133 

0

0
R

d

dR 


 . (15) 134 

Eqs. (13) to (15) were rewritten in a form usable by the Matlab® procedure bvp4c, 135 

which solves ordinary differential equations given their boundary conditions using the 136 

collocation method. The code, which computes ( )R  and then  r , is presented in 137 

Appendix B. 138 

Finally, let us consider the Poisson-Boltzmann equation in radial coordinates with 139 

the Debye-Hückel approximation (from Eq. (4)): 140 

   
 

2

2 2

1 1d r d r
r

dr r dr

 



  . (16) 141 

The solution for the boundary conditions (7) and (8) is given by (e.g., Bernabé 1998): 142 

 
0

0
0

J ( )

J ( )

ri
r

r
i


 



 , (17) 143 

where 0J  is the zero-order modified Bessel function of the first kind and i the imaginary 144 

number. 145 

 146 

3. APPLICATIONS TO AMORPHOUS SILICA AND MONTMORILLONITE 147 

NANOTUBES 148 

We used our code to compute the electrical potential profiles inside cylinders 149 
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assuming amorphous silica or montmorillonite surfaces. These two minerals are of 150 

particular interest because silicon dioxide is often used in nanofluidics (Schoch et al. 151 

2008; Bocquet & Charlaix 2010; Daiguji 2010). It is also the major compound of quartz 152 

sand and sandstones, which are very common in the subsurface (Leroy et al. 2008; 153 

Vinogradov et al. 2010; Revil et al. 2015), and one of the main constituents of cement 154 

(Labbez et al. 2006; Grangeon et al. 2013; Lerouge et al. 2017). Montmorillonite is 155 

often found in sedimentary soils and rocks, and is the major compound of bentonite, 156 

which is used for instance for the ground storage of domestic wastes and underground 157 

storage of highly radioactive and long-lived nuclear wastes (Malusis et al. 2003; 158 

Rotenberg et al. 2007; Tournassat et al. 2013; Leroy et al. 2015, 2017). 159 

We consider cylindrical pores of diameters 10, 100, and 1000 nm, and containing 160 

1:1, NaCl, or 2:1, CaCl2, salts of concentrations 1, 10 and 100 mM at a temperature of 161 

25°C (mM stands for 10
−3

 mol L
−1

). Pore diameters and chemical compositions of the 162 

bulk electrolyte were chosen to encompass values typical for nanopores containing 163 

monovalent and multivalent electrolytes (Dufreche et al. 2001, 2005; Wang & Revil 164 

2010; Wang et al. 2010). These salts were also chosen because they contain some major 165 

ions found in natural waters (McCleskey 2011). Electrochemical properties of 166 

amorphous silica were investigated as a function of pH because of the presence of 167 

silanol surface sites exchanging protons with surrounding electrolyte, responsible for its 168 

negative surface charge and zeta potential (Sonnefeld et al. 2001). Those of the basal 169 

surface of montmorillonite were considered independent on pH because of its 170 

permanent negative surface charge and zeta potential due to ion substitution in the 171 

crystal (Tournassat et al. 2011). 172 

 173 

3.1 Surface complexation models 174 
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Zeta potentials were computed using the surface complexation models of Leroy et al. 175 

(2013) for amorphous silica and Leroy et al. (2015) for the basal surface of 176 

montmorillonite, considering the additional adsorption of calcium ions in the Stern 177 

layer. They were not measured because of the high uncertainties associated with 178 

interpretation of electrokinetic measurements into zeta potentials (Hunter 1981; 179 

Lyklema 1995; Delgado et al. 2007). In the surface complexation models of Leroy et 180 

al., the charged surface does not electrostatically interact with another charged surface. 181 

Therefore, one limitation of our approach is that the zeta potentials are computed using 182 

one plane surface in contact with an infinite electrolyte where electroneutrality occurs in 183 

the bulk part. To properly consider interacting diffuse layers when the pore is 184 

completely filled by them, it would be better to develop a P-B code considering as input 185 

parameter the surface charge density rather than the zeta potential. Nevertheless, actual 186 

geophysical codes are more familiar with the zeta potential than the surface charge 187 

density (Vinogradov et al. 2010; Jougnot et al. 2012; Bücker & Hördt 2013a). 188 

Therefore, developing a P-B code considering as input surface charge density rather 189 

than zeta potential will be carried out in the future when geophysical codes will also 190 

consider this input parameter. 191 

Electrostatic surface complexation models describe electrical potential and ion 192 

distributions at the mineral/water interface (Gouy 1910; Chapman 1913). Their input 193 

parameters typically are the temperature, chemical composition of the bulk electrolyte, 194 

total density of surface groups, equilibrium adsorption constants of the protons and 195 

counter-ions, and capacitance(s) (Hiemstra et al. 1989). In the triple layer model (TLM) 196 

or extended Stern model (Fig. 1), the “0-plane” corresponds to the surface of the 197 

mineral where protonation and deprotonation reactions occur, the “-plane” is located at 198 

the center of the compact Stern layer made of adsorbed counter-ions, and the “d-plane” 199 
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delimits the onset of the diffuse layer containing counter-ions and co-ions (Yates et al. 200 

1974). The basic Stern model (BSM) is a simplified TLM where the “-plane” 201 

coincides with the “d-plane” (no capacitance necessary to describe the electrical 202 

potential between these two planes, Westall & Hohl 1980). In these two models, the 203 

zeta potential, , which is the electrical potential at the shear plane, is traditionally 204 

assumed to be located slightly further way from or at the “d-plane” because no water 205 

flow is considered between the mineral surface and the onset of the diffuse layer 206 

(Hunter 1981; Lyklema et al. 1998). 207 

 208 
 209 

Figure 1. Sketch of the surface complexation models to compute the zeta potential () 210 

for amorphous silica (BSM, a., modified from Leroy et al. 2013) and montmorillonite 211 

(TLM, b., modified from Leroy et al. 2015). The symbols , Q, and C respectively 212 

represent the electrical potential, surface charge density, and capacitance. Note the 213 

different types of surface sites, with the silanols >Si-OH for amorphous silica and >X
−
 214 

resulting from isomorphic substitutions in the solid for montmorillonite. 215 

 216 

Besides zeta potential measurements, and tritium experiments and crystallographic 217 

considerations for the total surface site densities, one way to calibrate the parameters of 218 

the surface complexation model (the adsorption equilibrium constants and 219 

capacitance(s)) is to use surface charge density measurements from acid-base 220 

potentiometric titration and cation exchange capacity (CEC) (Tournassat et al. 2004; 221 

Bourg et al. 2007; Leroy et al. 2013, 2015). 222 
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 223 

3.1.1 Amorphous silica 224 

The negative surface charge density of amorphous silica arises from the 225 

deprotonation of the silanol surface sites >SiOH to form >SiO

 surface species. It 226 

attracts cations in the Stern layer. Surface charge density measurements of amorphous 227 

silica nanoparticles, Degussa Aerosil 380 of average size 7 nm, in contact with NaCl or 228 

CaCl2 electrolytes (Dove & Craven 2005), were used to adjust the adsorption 229 

equilibrium constants of the Na
+
 and Ca

2+
 counter-ions in the Stern layer (Table 1). For 230 

that purpose, the following cost function, based on the least-square method (Caceci & 231 

Cacheris 1984), was minimized for each electrolyte using the gradient method: 232 

 
2

0 0

1

( ) ( )
P

i cal obs

i

R w Q i Q i


  , (18) 233 

where P is the number of surface charge density measurements for each electrolyte, wi 234 

is a weighting coefficient (we took wi = 1), and Q0cal and Q0obs are the calculated and 235 

measured surface charge density, respectively (C m
–2

). The other parameters of the 236 

BSM, which are the total surface site density S, the equilibrium adsorption constant of 237 

the H
+
 ion and the C1 capacitance, were set following the work of Hiemstra et al. 238 

(1989): S = 4.6 sites nm
–2

, logKSi,H = 7.5 and C1 = 3.3 F m
–2

 (Table 2). The detailed 239 

procedure to compute the surface charge density is explained in Leroy et al. (2013). It 240 

was calculated as a function of the computed surface sites densities i  using (Davis et 241 

al. 1978; Leroy & Revil 2004): 242 

 0 SiO SiO McalQ e     
    , (19) 243 

where 
SiO

  and 
SiO M  

  are respectively the surface site densities of deprotonated 244 

silanols and adsorbed counter-ions in the Stern layer (sites m
–2

), which were computed 245 

with Matlab using the approach of Leroy et al. (2013). 246 
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 247 

Table 1. Ion adsorption reactions on amorphous silica. 248 

 249 

Surface complexation reactions  “0-plane” “-plane” Adsorption 

constants  

SiO H SiO H     +1 0 KSi,H 

SiO Na SiO Na        0 +1 KSi,Na 
2 2SiO Ca SiO Ca        0 +2 KSi,Ca 

 250 

Table 2. Parameters of the basic Stern model for amorphous silica. 251 

 252 

Parameters  Values 

Log(H
+
 adsorption constant) LogKSi,H 7.5 

1
 

Log(Na
+
 adsorption constant) LogKSi,Na –3 

2
 

Log(Ca
2+

 adsorption constant) LogKSi,Ca –0.5 
2
 

Total surface site density S (nm
-2

) 4.6 
1
 

Inner capacitance C1 (F m
–2

) 3.3 
1
 

 
253 

1
 From Hiemstra et al. (1989). 254 

2 
Optimized according to the surface charge density measurements of Dove & Craven 255 

(2005). 256 

 257 

Predicted surface charge densities of amorphous silica nanoparticles are showed in 258 

Fig. 2a. Our surface complexation model reproduces very well increasing magnitude of 259 

the negative surface charge density when pH and salinity increases, observed especially 260 

in the case of CaCl2 electrolyte because of the adsorption constant of Ca
2+

 ions higher 261 

than for Na
+
 ions in the Stern layer (Table 2). Negative zeta potentials predicted for the 262 

chemical conditions of electrical potential calculations inside cylinders are presented in 263 

Fig. 2b. Calculated zeta potential increases in magnitude when pH increases and salinity 264 

decreases, especially for NaCl electrolyte because of weaker adsorption of Na
+
 than 265 

Ca
2+

 ions in the Stern layer. Computed zeta potentials of amorphous silica also largely 266 

exceed 25.7 mV, which is the zeta potential value below where the linearized Poisson-267 

Boltzmann equation is applicable at a temperature of 298.15 K (Eq. 2). 268 
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 269 

Figure 2. a: Surface charge density of amorphous silica nanoparticles (Degussa Aerosil 270 

380 of average size 7 nm) versus pH in aqueous solutions containing NaCl or CaCl2 271 

electrolyte. The measurements from acid-base potentiometric titrations of Dove & 272 

Craven (2005) are represented by the symbols and the results of the modelling by the 273 

solid lines. b: Zeta potential of amorphous silica nanoparticles predicted by the basic 274 

Stern model versus pH at different NaCl and CaCl2 concentrations. The gray shaded 275 

area represents electrical potentials where the linearized P-B equation is applicable (|| 276 

 kT/e = 25.7 mV at a temperature of 298.15 K, Eq. 2). 277 

 278 

3.1.2 Basal surface of montmorillonite 279 

On the contrary to amorphous silica, we do not consider hydroxyl surface sites 280 

exchanging protons with the surrounding electrolyte for montmorillonite because we 281 

focus on the electrochemical properties of the basal surface, the dominating surface in 282 

terms of specific surface area and electrochemical properties (Leroy et al. 2007, 2017; 283 

Tournassat et al. 2011). The negative and permanent surface charge of the basal surface 284 

of montmorillonite originates from the isomorphic substitutions inside the crystal, for 285 

instance, the replacement of Fe
3+

 by Mg
2+

 or Fe
2+

 ions in the octahedral sheet (Grim, 286 

1962). It is responsible for the presence of >X

 surface sites that adsorb counter-ions, 287 

H
+
, Na

+
 or Ca

2+
 ions here, in the Stern layer (Table 3). The surface charge density of 288 

montmorillonite (Mt) was calculated according to the measured CEC (meq g
–1

), which 289 

approximately corresponds to the negative structural charge, divided by the total 290 

specific surface area of the basal surface, SSAb (m
2
 g

–1
), which can be given by 291 

crystallography or measured, using the following equation (Leroy et al. 2007; Okay et 292 
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al. 2014): 293 

A
0 3

N CEC

10 b

e
Q

SSA
  . (20) 294 

The Mt surface charge density, Q0, was set to 0.15 C m
–2

 according to Eq. (20), using 295 

a measured CEC of 1.24 meq g
–1

 and a specific surface area of the basal surface of 750 296 

m
2
 g

–1
 (Leroy et al. 2015). The C2 capacitance was set to 5.5 F m

–2
 and no C1 297 

capacitance was considered because no surface complexation reaction was assumed to 298 

occur at the “0-plane” (Leroy et al. 2007, 2015). Adsorption equilibrium constants of 299 

sodium and calcium ions in the Stern layer were directly taken from the works of 300 

Gaucher et al. (2009), Leroy et al. (2015), and Tournassat et al. (2016) (Table 4). 301 

 302 

Table 3. Ion adsorption reactions on the basal surface of montmorillonite. 303 

 304 

Surface complexation reactions  “0-plane” “-plane” Adsorption 

constants  

X Na X Na        0 +1 KMt,Na  

X H X H        0 +1 KMt,H 

2

22 X Ca X Ca     0 +2 KMt,Ca 

 305 

Table 4. Parameters of the extended Stern model for the basal surface of 306 

montmorillonite. 307 

 308 

Parameters  Values 

Surface charge density Q0 (C m
-2

) 

Log(Na
+
 adsorption constant) LogKMt,Na 

Log(H
+
 adsorption constant) LogKMt,H 

0.15 
1
 

0.05 
2
 

0.55 
3
 

Log(Ca
2+

 adsorption constant) LogKMt,Ca 0.7 
4
 

Outer capacitance C2 (F m
–2

) 5.5 
1
 

 
309 

1 
From Eq. (20).  310 

2
 From Leroy et al. (2015) according to electrophoretic mobility measurements and 311 

molecular dynamics simulations (Sondi et al. 1996; Tournassat et al. 2009; Bourg & 312 

Sposito 2011). 313 
3 

From Leroy et al. (2015) and Tournassat et al. (2016) using KMt,H = KMt,NaKMt,NaH with 314 

KMt,NaH = 10
0.5 

for the exchange of adsorbed Na
+
 by H

+
 ion. 315 

4 
From Leroy et al. (2015) and Gaucher et al. (2009) using KMt,Ca = KMt,Na²KMt,NaCa with 316 

KMt,NaCa = 10
0.6 

for the exchange of adsorbed Na
+
 by Ca

2+
 ion. 317 

Note that >X
–
 surface site represents the negative surface site arising from isomorphic 318 
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substitutions in the crystal of montmorillonite; 2>X
–
 means that there are two >X

–
 319 

surface sites. 320 

 321 

Finally, the approach of Leroy et al. (2007) was used to compute the negative zeta 322 

potential of the basal surface of montmorillonite at pH = 7 (neutral condition) as a 323 

function of NaCl or CaCl2 concentration in the salinity range 1 to 100
 
mM (more details 324 

on the calculation procedure is given in Leroy et al. 2007) (Fig. 3). As in the case of 325 

amorphous silica, predicted zeta potential increases in magnitude when salinity 326 

decreases, especially for NaCl electrolyte because of weaker adsorption of Na
+
 than 327 

Ca
2+

 ions in the Stern layer (Table 4). Computed zeta potentials also largely exceed 25.7 328 

mV. 329 

 330 
 331 

Figure 3. Zeta potential of the basal surface of montmorillonite predicted by the 332 

extended Stern model versus concentration of NaCl or CaCl2 electrolyte at pH = 7. The 333 

gray shaded area represents electrical potentials where the linearized P-B equation is 334 

applicable (||  kT /e = 25.7 mV at a temperature of 298.15 K, Eq. 2). 335 

 336 

3.2 Electrical potential profiles 337 

The main output of the surface complexation modelling is the -potential (as 338 

function of pH and salinity) associated to the considered system. Its values for 339 

amorphous silica (pH = 7 and pH = 9) and the basal surface of montmorillonite (pH = 7) 340 

in contact with NaCl or CaCl2 electrolyte are reported in Table 5. The so-determined 341 
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values of the -potential are then used as input to solve the full P-B equation (Eqs. 12-342 

15). We took two different pH for amorphous silica because of its surface charge 343 

becoming more negative when pH increases (Fig. 2a). 344 

 345 

Table 5. Zeta potentials () of amorphous silica and basal surface of montmorillonite 346 

computed from our surface complexation models. 347 

 348 

 

Salinities (mM) 

 

NaCl CaCl2 

1 10 100 1 10 100 

Amorphous silica  

 (mV) at pH = 7 

 

–82.1 

 

–62.3 

 

–43.1 

 

–71.3 

 

–51.0 

 

–31.4 

Amorphous silica  

 (mV) at pH = 9 

 

–153.9 

 

–127.8 

 

–98.5 

 

–102.1 

 

–76.2 

 

–51.6 

Montmorillonite  

 (mV) at pH = 7 

 

–178.0 

 

–120.0 

 

–64.6 

 

–85.5 

 

–58.1 

 

–32.8 

 349 

We also defined another parameter, , to characterize the thickness of fully 350 

developed diffuse layer, , relative to the cylinder radius: 351 

0r


  , (21) 352 

where  = 5 (Manciu & Ruckenstein 2003; Leroy et al. 2010, 2015). Debye lengths, , 353 

computed as a function of salt concentration (Eq. 5) and ratios between diffuse layer 354 

thickness and r0 (Eq. 21) are reported in Table 6. Our calculations show that 355 

overlapping diffuse layers may appear for salinities of 1 and 10 mM NaCl and CaCl2 356 

and 100 mM NaCl when r0 = 5 nm and for 1 mM NaCl when r0 = 50 nm because  ~ 1 357 

and  > 1. 358 

 359 
Table 6. Debye lengths and ratios of thickness of diffuse layer to cylinder radius 360 

computed as a function of salt concentration (T = 298.15 K) (Eqs. 5 and 21). 361 

 362 

Salt concentration (mM)  1 10 100 

NaCl  (nm) 9.61 3.04 0.96 

2CaCl  (nm) 5.55 1.76 0.56 
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NaCl  ( 0 5r   nm) 9.61
*
 3.04

*
 0.96

*
 

2CaCl  ( 0 5r   nm) 5.55
*
 1.76

*
 0.56 

NaCl  ( 0 50r   nm) 0.96
*
 0.30 0.10 

2CaCl  ( 0 50r   nm) 0.56 0.18 0.06 

NaCl  ( 0 500r   nm) 0.10 0.03 0.01 

2CaCl  ( 0 500r   nm) 0.06 0.02 0.01 

 
363 

* 
Diffuse layer overlapping. 364 

 365 

Results of the modelling for a cylinder of radius r0 = 5 nm are presented in Fig. 4 366 

(amorphous silica) and Fig. 5 (montmorillonite). The linearized P-B equation 367 

significantly overestimates the electrical potential computed from the full P-B equation, 368 

except when the salinity is high (100 mM), because of the high zeta potential 369 

magnitudes and interacting diffuse layers. Observed effect increases when salinity 370 

decreases and pH increases for amorphous silica, and is particularly strong when 371 

calcium ion is in solution because of the approximation  << kT/(2e)  12.8 mV for 372 

Ca
2+

 (Debye-Hückel approximation of the Poisson-Boltzmann equation, Eq. 2). Note 373 

that the Matlab computations for the full P-B equation were checked using a partial 374 

differential equations (PDE) solver based on the finite-element method (the 375 

Electrostatics module of COMSOL Multiphysics™ 3.5). 376 

 377 
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 378 
 379 

Figure 4. Electrical potential profiles in amorphous silica nanotubes computed from our 380 

code (full P-B equation) (solid lines) and the linearized P-B equation (dashed lines) 381 

(r0 = 5 nm). 382 

 383 

 384 
 385 

Figure 5. Electrical potential profiles in montmorillonite nanotubes computed from our 386 

code (full P-B equation) (solid lines) and the linearized P-B equation (dashed lines) 387 

(r0 = 5 nm). 388 

 389 

When the radius of the cylinder increases from 5 to 50 nm, the linearized P-B 390 

equation only significantly overestimates the electrical potential computed from the full 391 
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P-B equation when the salinity of the electrolyte is very low (1 mM) because of the high 392 

magnitude of the zeta potential (Fig. 6 and Fig. 7). At the center of the pore, the 393 

electrical potential is not significantly overestimated because the electroneutrality 394 

condition nearly occurs (1 mM NaCl) or applies (other salinities). 395 

 396 

 397 
 398 

Figure 6. Electrical potential profiles in amorphous silica nanotubes computed from our 399 

code (full P-B equation) (solid lines) and the linearized P-B equation (dashed lines) 400 

(r0 = 50 nm). 401 

 402 
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 403 
 404 

Figure 7. Electrical potential profiles in montmorillonite nanotubes computed from our 405 

code (full P-B equation) (solid lines) and the linearized P-B equation (dashed lines) 406 

(r0 = 50 nm). 407 

 408 

When the radius of the cylinder is 500 nm, the electroneutrality condition is always 409 

respected in the bulk electrolyte at the center of the pore. Nevertheless, the electrical 410 

potential calculated from the full P-B equation is still overestimated by the linearized P-411 

B equation when zeta potential is high, especially for CaCl2 electrolyte (Fig. 8 and Fig. 412 

9). 413 
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 414 
 415 

Figure 8. Electrical potential profiles in amorphous silica nanotubes computed from our 416 

code (full P-B equation) (solid lines) and the linearized P-B equation (dashed lines) 417 

(r0 = 500 nm). 418 

 419 

 420 
 421 

Figure 9. Electrical potential profiles in montmorillonite nanotubes computed from our 422 

code (full P-B equation) (solid lines) and the linearized P-B equation (dashed lines) 423 

(r0 = 500 nm). 424 

 425 

Our calculations show that the linearized P-B equation may overestimate the 426 

electrical potential predicted by the full P-B equation for highly charged nanocylinders. 427 



   

22 

For such nanopores, the P-B equation may also have some shortcomings such as not 428 

considering the fine size of the ion, specific ion-surface interactions, attractive ion-ion 429 

interactions and ion-ion correlations (Borukhov et al. 1997; Wernersson et al. 2010; 430 

Bonthuis & Netz 2013). Despite these shortcomings, the P-B equation is still widely 431 

used because it can describe the electrostatic behaviors of most charged systems when 432 

surfaces are separated by a distance superior to 5 nm (Montes Ruiz-Cabello et al. 2014). 433 

Its relative simplicity makes it more useable than more elaborate theories, which need 434 

more parameters and do not necessarily agree with each other (Vlachy 1999; 435 

Grochowski & Trylska 2008; Ben-Yaakov et al. 2009; López-García et al. 2014). There 436 

is still not a universal theory supplanting the P-B equation to describe ion and water 437 

distribution at interfaces. Furthermore, our improved electrical potential profiles 438 

compared to those from the linearized P-B equation must be considered with caution 439 

because of the assumptions inherent to water flow and solute transport modelling at the 440 

macroscopic (laboratory) scale. Considering for instance pores as cylinders and the 441 

upscaling procedure of the model predictions to the laboratory scale may also bring 442 

some significant uncertainties that render the improvement considering the full P-B 443 

equation more negligible when simulating the electrical properties of charged materials 444 

at the macroscopic scale. 445 

 446 

4. CONCLUSIONS AND PROSPECTS 447 

We have developed a short Matlab® code to numerically solve the Poisson-448 

Boltzmann equation inside a charged cylinder filled by an electrolyte containing any 449 

type of ions. The input parameters of our code are the zeta potential and the chemical 450 

composition of the bulk electrolyte. Unlike the linearized P-B equation with the Debye-451 

Hückel approximation, our code is not limited to low zeta potentials of magnitude 452 
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inferior to 25.7 mV at a temperature of 25 °C. 453 

We applied our code to simulate the electrochemical properties of amorphous silica 454 

and montmorillonite nanotubes containing a NaCl or CaCl2 aqueous electrolyte. For that 455 

purpose, the zeta potentials were computed using well-established surface complexation 456 

models that consider the Stern and diffuse layer at the surface of the mineral. We show 457 

that the electrical potential inferred from the full P-B equation is overestimated by the 458 

linearized P-B equation when the zeta potentials are high (above 25.7 mV at a 459 

temperature of 25 °C) and the cylinder radius goes to the nm range where diffuse layers 460 

may overlap, especially for CaCl2 electrolyte. Diffuse layers overlap when the cylinder 461 

radius is smaller or equal to approximately five Debye lengths, which correspond for 462 

instance to approximately 50, 15 nm and 30, 10 nm for respectively 1, 10 mM NaCl and 463 

CaCl2 at a temperature of 25 °C. Underground, these conditions typically occur for 464 

highly charged nanopores containing a dilute aqueous electrolyte (ionic strength < 0.1 465 

M) such as those of clays and low-pH cements.  466 

As a perspective, it would be very interesting to combine our P-B code with transport 467 

codes in electrokinetics and hydrogeophysics that consider the electrochemical 468 

properties of charged cylinders (Daiguji 2010; Jougnot et al. 2012; Bücker & Hördt 469 

2013a). Compared to the use of the linearized P-B equation, this combination would 470 

improve, for instance, the simulation of electro-osmosis in highly charged nanopores in 471 

nanofluidics and of the self-potential and complex conductivity response of clayey 472 

rocks and low-pH cements in hydrogeophysics. In addition, to better describe 473 

interacting diffuse layers, it would be relevant to modify our P-B code to consider as 474 

input parameter the surface charge density instead of the zeta potential.  475 

 476 
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Appendix A: origins of the Poisson-Boltzmann equation 488 

The P-B equation is derived from the works of Poisson (1824) for the electrical 489 

potential and Boltzmann (1909) for the ion distributions at the interface between two 490 

phases such as mineral and water. In electrostatics, Poisson’s equation is derived from 491 

the differential form of Gauss’ law, which describes the divergence of the dielectric 492 

displacement D due to the volumetric charge density   of the medium (C m
–3

) (Hunter 493 

1981): 494 

 D . (A1) 495 

The dielectric displacement is: 496 

D E , (A2) 497 

where E is the electrical field (V m
-1

), which is defined by: 498 

 E  . (A3) 499 

Eq. (A2) shows that the effect of the electrical field on the dielectric displacement is 500 

weighted by the dielectric permittivity, which measures the capacity of a solvent to 501 

affect the electrical field strength, i.e. the capacity of the molecular dipoles to align 502 

themselves to cancel part of the electrical field. 503 

The Poisson equation is obtained by combining Eqs. (A1) to (A3) and assuming that the 504 

dielectric permittivity of the solvent is constant (Hunter 1981). This yields: 505 

2 



   . (A4) 506 

The volumetric charge density is: 507 

A

1

1000 N
M

i i

i

q C


 ,                        (A5) 508 

where iC
 is the ion concentration, for instance, at the interface between two phases 509 

such as mineral and water. Eq. (A5) shows that it is necessary to know iC
 to solve the 510 
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Poisson equation for the electrostatic potential . 511 

Boltzmann (1909) showed that it is possible to relate the ion concentration to the 512 

electrostatic potential at the interface when the medium is in or close to thermodynamic 513 

equilibrium. In that case, the chemical potentials µ (J) of the ion and solvent are the 514 

same at the interface and in the bulk solution (Lyklema 1995; Revil & Leroy 2004). 515 

This yields for the chemical potentials of the ion: 516 

i i

  , (A6) 517 

which are written as according to thermodynamics (Lyklema 1995): 518 

, lnR

i i i ikT a q       , (A7) 519 

lnR

i i ikT a   , (A8) 520 

where the superscript R for the chemical potentials corresponds to the reference 521 

(standard) state, which is the point of zero charge for the interface (Sverjensky 2005) 522 

and the unit molar concentration of the ion at hypothetical infinite dilution for the bulk 523 

solution (Lyklema 1995). The quantity ia  is the activity coefficient of the ion 524 

(dimensionless), which is written as: 525 

0

i
i i

C
a

C
 , (A9) 526 

where i  and 0C  are respectively the ion activity coefficient (dimensionless) and 527 

standard molarity (1 mol L
–1

). The Boltzmann equation is obtained by combining Eqs. 528 

(A6)-(A9), considering 
,R R

i i

   and the same ion activity coefficient in the interface 529 

and bulk electrolyte ( i i

  ). This yields: 530 

exp i
i i

q
C C

kT

  
   

,                        (A10) 531 

where iC  is the ionic concentration in the bulk electrolyte. The P-B equation is finally 532 
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obtained by combining Eqs. (A4), (A5) and (A10), yielding: 533 

2 A

1

1000 N
exp

M
i

i i

i

q
q C

kT




 

 
    

 
 .         (A11)534 
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Appendix B: the Matlab® code 535 

Our numerical solution of the P-B equation is based on the Matlab® bvp4c function 536 

for solving boundary value problems. For implementation, Eq. (13) is rewritten as: 537 

 

1 2

1

1
2 2

2

1

'

exp
1

'

M

i i i

i

M

i i

i

y y

s C s y

y y
R

s C







 


  







. (B1) 538 

The term with the sums has to be defined as a singular term in bvp4c. The boundary 539 

conditions (14) and (15) become: 540 

 
 

1 0

2 0 0

y R

y

 



  .             (B2) 541 

The main program is: 542 

clear all 543 
close all 544 
fclose all; 545 
 546 
global s C xsi S 547 
 548 
elementary_charge=1.6021766208e-19; 549 
k=1.38064852e-23; 550 
NA=6.022140857e23; 551 
epsilon0=8.854187e-12; 552 
 553 
TC=input('temperature (°C, between 2 and 87°C): '); 554 
T=273.15+TC; 555 
 556 
a0=87.8950234752; % From Lide, D.R., 1990. CRC Handbook of Chemistry and  557 
a1=-0.4002899766;  % Physics, CRC Press, Boca Raton, p. 6-15 558 
a2=0.0008613222; 559 
a3=-0.0000009565; 560 
 561 
epsilon=(a3*TC^3+a2*TC^2+a1*TC+a0)*epsilon0; 562 
 563 
r0=input('radius of the cylinder (µm): '); 564 
r0=r0*1e-6; % radius in meter 565 
 566 
zeta=input('zeta potential (mV): '); 567 
zeta=zeta/1000; % zeta in V 568 
 569 
M=input('number of ionic species: '); 570 
for i=1:M 571 
    disp(['ion type n° ',num2str(i),': ']) 572 
    s(i)=input('  sign of the charge x valence: ');     573 
    C(i)=input('  concentration (mol/L): '); 574 
    C(i)=C(i)*1000; % concentration in mol/m3 575 
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end 576 
 577 
S=1/sum(s.^2.*C); 578 
Debye=sqrt(epsilon*k*T/(elementary_charge^2*NA*sum(s.^2.*C))); 579 
R0=r0/Debye; 580 
xsi=elementary_charge/k/T*zeta; 581 
 582 
[R,P]=f_PBE_solve(R0); 583 
 584 
r=R*Debye; 585 
potential=P/elementary_charge*k*T; 586 
 587 
figure (1) 588 
    plot(r*1e6,potential*1000,'r-','LineWidth',2) 589 
    xlabel('radial distance (µm)') 590 
    ylabel('potential (mV)') 591 
    box on 592 

 593 

The input parameters are the radius r0 (µm), the zeta-potential  (mV), the number of 594 

ionic species M, the sign of the charge times the valence si and the concentration iC  595 

(mol L
–1

) for each ion type. Note that the water temperature can also be changed in the 596 

program for a temperature between 2 and 87 °C. The dielectric permittivity of water is 597 

calculated according to the measurements reported in Lide (1990) at a pressure of one 598 

bar. In addition, to correctly solve the P-B equation, the bulk electrolyte must be 599 

electroneutral (the chemical composition must satisfy Eq. (3)). 600 

 601 

The function f_PBE_solve is: 602 

function [R,P]=f_PBE_solve(R0) 603 
global xsi 604 
 605 
% Singular term 606 
S=[0,0;0,-1]; 607 
options=bvpset('SingularTerm',S,'Nmax',250000,'RelTol',1e-12); 608 
 609 
% Initial solution 610 
solinit=bvpinit(linspace(0,R0,1000),[0 xsi]); 611 
 612 
% Solution 613 
sol=bvp4c(@f_PBEmts,@f_BCPBE,solinit,options); 614 
 615 
R=sol.x; 616 
P=sol.y(1,:); 617 

 618 

Note that the initial solution (defined using bvpinit) is a vector of size 1000. This size 619 
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should sometimes be increased if the code is unable to compute the Jacobian properly. 620 

 621 

The function f_PBEmts is: 622 

function dydx=f_PBEmts(x,y) 623 
global s C S 624 
 625 
dydx=[y(2);-sum(s.*C.*exp(-s.*y(1)))*S]; 626 

 627 

And the function f_BCPBE is: 628 

function y=f_BCPBE(ya,yb) 629 
global xsi 630 
 631 
y=[ya(2);yb(1)-xsi]; 632 

633 
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