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ARTICLE

Active intermixing of indirect and direct neurons
builds the striatal mosaic
Andrea Tinterri1,2,3, Fabien Menardy 4, Marco A. Diana5, Ludmilla Lokmane 1, Maryama Keita1,

Fanny Coulpier6, Sophie Lemoine6, Caroline Mailhes7, Benjamin Mathieu8, Paloma Merchan-Sala9,

Kenneth Campbell9, Ildiko Gyory10, Rudolf Grosschedl10, Daniela Popa4 & Sonia Garel 1

The striatum controls behaviors via the activity of direct and indirect pathway projection

neurons (dSPN and iSPN) that are intermingled in all compartments. While such cellular

mosaic ensures the balanced activity of the two pathways, its developmental origin and

pattern remains largely unknown. Here, we show that both SPN populations are specified

embryonically and intermix progressively through multidirectional iSPN migration. Using

conditional mutant mice, we found that inactivation of the dSPN-specific transcription factor

Ebf1 impairs selective dSPN properties, including axon pathfinding, while molecular and

functional features of iSPN were preserved. Ebf1 mutation disrupted iSPN/dSPN intermixing,

resulting in an uneven distribution. Such architectural defect was selective of the matrix

compartment, highlighting that intermixing is a parallel process to compartment formation.

Our study reveals while iSPN/dSPN specification is largely independent, their intermingling

emerges from an active migration of iSPN, thereby providing a novel framework for the

building of striatal architecture.
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The dorsal striatum controls major brain functions, such as
motor behaviors and habit formation, through the coor-
dinated activation of descending direct and indirect path-

ways. Consistently, loss or damage of striatal projection neurons
(SPN) is associated with a spectrum of pathologies that include
Parkinson’s disease, Huntington’s disease and obsessive-
compulsive disorders. SPN are medium-spiny GABAergic neu-
rons that account for 90–95% of striatal neurons and are divided
into two subtypes: (i) direct SPN (dSPN), which project to the
substantia nigra (SN), express the D1 dopamine receptor and the
neuropeptide Substance P; (ii) indirect SPN (iSPN), which send
axons to the globus pallidus (GP), express D2 dopamine receptor
and the opioid peptide Enkephalin. Functionally, it is proposed
that dSPN activation promotes action selection and positive
reinforcement, whereas iSPN are important to suppress unwanted
motor sequences1–4. dSPN and iSPN are completely intermixed
within the striatum, thereby forming a relatively uniform
mosaic5,6. Building on this relatively simple cellular organization,
the dorsal striatum is split into at least two major compartments,
cellular islands known as striosomes and a surrounding matrix,
which form immunohistologically and functionally distinct
modules differing by their input and output patterns of con-
nectivity7–11. In such precise three-dimensional organization, the
intermingling of dSPN and iSPN ensures the balanced activation
of direct and indirect pathways.

While functional studies revealed distinct roles for dSPN/iSPN
and striosomes/matrix, much less is known on how they develop.
SPN are generated in the embryonic lateral ganglionic eminence
(LGE) and migrate radially to form the striatum12–17. Both SPN
subtypes are present in the entire striatum, except for a restricted
caudal domain5, and several transcription factors have been
involved in their generation and differentiation including Ctip2,
FoxP1, and FoxP218–23. In addition, distinct transcriptomic
programs have been involved in the specification of either dSPN
or iSPN, including Islet1 and Ebf1 for dSPN, or Sp9 and Six3 for
iSPN16,24–29. In particular, the conditional inactivation of Islet1
impairs the differentiation of early-born dSPN24,28 and the full
inactivation of Ebf1 leads to a defective development of late-born
dSPN, disorganized projections to the SN and altered survival of
matrix dSPN at postnatal stages25–27. Regardless of their subtype,
early progenitors give rise to striosome SPNs whereas later-
derived progenitors generate matrix SPN, which delineate the two
compartments potentially via migration and selective cell-
sorting11,17,30–33. In sharp contrast, how dSPN and iSPN are
specified and integrated into striatal circuits remains largely to be
characterized.

Here we show that formation of the striatal mosaic relies on
the early specification of SPN subtypes combined with a dSPN-
dependent tangential migration of iSPN. We found that dSPN
and iSPN form two molecularly defined populations through-
out development, which only progressively intersperse. Using
time-lapse imaging, we observed that iSPN undergo multi-
directional migration, thereby intermixing with dSPN. Fur-
thermore, we took advantage of a unique combination of
genetic tools, including embryonic in vivo fate map and con-
ditional knockout models, to examine the role of Ebf1 in the
differentiation of dSPN and striatal mosaic formation. We
found that Ebf1 deletion in dSPN (i) perturbed specific aspects
of direct neurons differentiation, leading to defective axogenesis
and integration in cortico-striatal circuits, without affecting
iSPN cardinal properties (ii) impaired intermixing of dSPN and
iSPN in the matrix. These results establish Ebf1 as a master
regulator of dSPN connectivity and intermixing with iSPN in
the matrix compartment. Furthermore, our study reveals that
the active intermingling of early-specified dSPN and iSPN is
required to assemble the striatal mosaic.

Results
Defining a molecular fingerprint of embryonic dorsal dSPN.
To investigate how dSPN and iSPN are specified, positioned and
assembled in the striatum, we searched for specific markers of
these two neuronal populations during embryogenesis. To this
aim, we took advantage of the BAC transgenic mouse line Drd2-
EGFP34, which has been widely used to label iSPN in neonates
and is expressed embryonically35,36. In addition, we crossed R26mt/
mt reporter mice37 with Islet1Cre transgenic mice, which mediate
Cre-recombination in dSPN from embryonic stages24,28. We first
confirmed that these two distinct transgenic lines respectively
labeled iSPN and dSPN at postnatal day (P) 5, when the two
populations can be unambiguously defined35. In Islet1Cre;R26mt/+;
Drd2-EGFP mice, we found that tdTomato-positive (tom+) cells
constituted approximately half of all Ctip2+ SPN18 in both
striosome and matrix compartments (as defined in Supplemen-
tary Fig. 1) and were largely unlabeled by Drd2-EGFP (Fig. 1a–d).
Using these two mouse lines, we found that iSPN and dSPN
lineages are non-overlapping throughout embryogenesis, con-
sistently with previous studies focusing on SPN subtypes speci-
fication16,24,26–29. We furthermore identified high expression of
transcription factors FoxP2 and Ebf1 as specific of dSPN at E13.5
and E17.5 (Fig. 1e–h). These results identify a dSPN develop-
mental fingerprint which, combined to the iSPN-specific Drd2-
EGFP expression, delineates two segregated populations of Ctip2
+/Foxp1+SPN throughout development (Fig. 1i). Our findings
thus indicate that dSPN and iSPN exhibit distinct molecular
identities from the earliest steps of striatogenesis and provides us
with tools to follow their integration in the striatal architecture.

iSPN progressively intermix with dSPN via intrastriatal
migration. We took advantage of the early molecular fingerprints
to monitor the dynamics of SPN distribution and thereby extend
our comprehension of how the two populations are specified and
assembled (Fig. 2). Previous studies showed that all SPN are
generated in the LGE over an extended period of time and
migrate radially to form the striatum12–15,17. Moreover, birth-
dating experiments indicate that a majority of earliest-born SPN
are dSPN17,30. Consistently, we found that the striatum at E12.5
contained mostly dSPN neurons and few scattered GFP+ iSPN
(Fig. 2a, b). GFP+ iSPN were detected in larger numbers at E13.5
and E14.5, albeit concentrated in the lateral striatum (Fig. 2c–h),
which contains early-born neurons that will mostly contribute to
striosomes14,38. From E15.5 onwards, we detected a progressively
increasing number of GFP+ iSPN in the initially dSPN-dense
part of the medial striatum (Fig. 2i–n). Thus iSPN generated in
the LGE proliferative zones intersperse into dSPN-dense terri-
tories, first in the lateral striatum and then medially, in a gradual
process that spans several days (Fig. 2o). This phenomenon was
temporally and spatially overlapping with the formation of
striosome and matrix compartments14,15,17,31.

Such progressive emergence of Drd2-EGFP+ cells in dSPN-
dense territories could be explained by: (i) delayed expression of
Drd2-EGFP compared to dSPN markers; (ii) sequential genera-
tion of dSPN and iSPN for each territory; (iii) tangential
dispersion of iSPN in the striatal mantle. To discriminate
between these non-exclusive possibilities, we first examined
whether immature iSPN in the LGE subventricular zone (SVZ)
expressed Drd2-EGFP and whether timed EdU injections showed
preferential labeling of either iSPN or dSPN. We found that
immature iSPN already expressed Drd2-EGFP in the SVZ
(Supplementary Fig. 2a-b) and that both iSPN and dSPN neurons
were produced continuously from E11 onwards (Supplementary
Fig. 2c-e), consistently with previous studies17,36. iSPN, however,
constitute a minority of the early-born SPN, as revealed by EdU
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staining (Supplementary Fig. 2c-e) as well as labeling with the
dSPN-specific Foxp2 immunostaining and Islet1Cre-driven
recombination (Supplementary Fig. 2f-h). Taken together, our
results indicate that Drd2-EGFP labels iSPN as they differentiate
and enter the striatum primordium.

It is thus unlikely that mosaic formation is entirely due to
either a delay in Drd2-EGFP expression or a sequential
production of SPN subtypes. To examine whether iSPN disperse
tangentially inside the striatum, we performed two-photon time-
lapse imaging on Drd2-EGFP embryonic slices39. We found that
GFP+ iSPN show multidirectional saltatory migration within the
striatal mantle at E15.5 (Fig. 3a–e; Movie 1). By performing cell
behavior analyses over several time-lapse acquisitions, we found
that iSPN have a global displacement away from the SVZ but

present multidirectional trajectories inside the striatum (Fig. 3f–i
and Supplementary Fig. 3). In particular, iSPN changed their
migration direction over time (Movie 1). Importantly, we
confirmed that Drd2-GFP+ cells in slices are Ctip2+ SPN and
that the processes of these neurons also present multiple
orientations in fixed embryonic tissue (Supplementary Fig. 3).
Thus, in contrast to the assumption that SPN only migrate
radially, iSPN undergo a tangential migration within the striatum
and intermix with dSPN.

Taken together, our work shows that dSPN and iSPN form
segregated embryonic populations that intermix over time, first in
the lateral early-born proto-striosomes and then in the medial
region. This process occurs at least in part via a multidirectional
migration of iSPN thereby raising questions about the underlying
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mechanisms and possible interactions between the two
populations.

Ebf1 conditional deletion affects specific aspects of dSPN dif-
ferentiation. To address these issues, we searched for mouse
models selectively perturbing the development of one of the SPN
subtypes. Transcription factors specifically involved in either
dSPN or iSPN differentiation include Islet1 and Ebf1 or Sp9 and
Six3, respectively16,24–29. In contrast to Islet1, Six3, or Sp9 dele-
tions, which induce cell death in the targeted population16,24,28,29,
Ebf1 inactivation has been previously proposed to impair dSPN
wiring in the striatal matrix25–27. We thus generated and com-
pared two different conditional Ebf1 mutants (cKO), using the
dSPN-restricted Islet1Cre line and the Dlx5/6::Cre. Indeed,
Islet1Cre drives recombination in dSPN and cholinergic inter-
neurons24,28,40 and Dlx5/6::Cre recombines in all SPN and all
interneurons41–44. Importantly, Ebf1 is not expressed in striatal
interneurons (Supplementary Figs. 1a-c) and the two cre lines are
non-overlapping outside of the ventral telencephalon40,41,44,45.
Thus comparing the phenotypes shared in these two conditional
mutants (cKO) allowed us to determine the deficits due to Ebf1
inactivation in dSPN. As expected, Ebf1 was absent from the
entire striatal mantle at E17.5 in both cKOs (Fig. 4b–d) and
striatal size was slightly reduced, as in Ebf1−/− mice25. However,
all the generic early SPN markers we examined, including Ctip2
(Fig. 4e–g), Foxp1, Gad1 (not shown), DARPP-32 (Fig. 8j–l)

indicated that the striatum was still formed by GABAergic neu-
rons with a SPN-like identity. In order to compare the pheno-
types in the two cKOs and gain insights in the molecular
programs controlled by Ebf1, we performed RNA-sequencing
(RNA-seq) in striatal tissue of control, Islet1Cre;Ebf1fl/− and Dlx5/
6::Cre;Ebf1fl/− embryos at E17.5 (Fig. 4h–k and Supplementary
Data 1 and 2). Importantly, most genes were commonly
deregulated in the two cKOs (Figs. 4h–k and Supplementary
Data 1 and 2) suggesting that inactivation of Ebf1 in dSPN or all
SPN lead to similar phenotypes. To compare the data sets, we
examined genes that were previously identified as representative
of the core SPN generic identity, versus specific of dSPN or iSPN
identity24,26,28,29,46. We found that genes associated with a gen-
eric SPN identity or with iSPN identity were not significantly
altered in both mutants (Fig. 4h, i and Supplementary Data 1 and
2). In contrast, the expression of genes associated with dSPN were
either preserved (Drd1, Foxp2, Islet1, Pdyn), or severely deregu-
lated in both mutant models (Fig. 4j, k and Supplementary Data 1
and 2). The preserved expression of Foxp2 and Islet1 shows that
these transcriptional regulators must act in a partially distinct
pathway. Deregulated genes encoded selective transcriptional
regulators such as Zfp521,Mef2c27,47,48, transmembrane receptors
such as PlexinD1, which is involved in synaptogenesis19, and
intracellular effectors such as Slc35d3, which regulates D1
receptor trafficking49. These results were validated by in situ
hybridization on selected key genes (Supplementary Fig.4).
Finally, Gene Ontology analyses revealed specific alterations of
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factors regulating axon development, cell–cell adhesion proper-
ties, and synaptogenesis in both cKOs (Supplementary Figs. 4m-
o). Taken together, our findings indicate that, while dispensable
for the acquisition of a generic SPN transcriptomic profile, Ebf1
regulates the expression of genes involved in selective aspects of
dSPN differentiation.

Ebf1 conditional deletion selectively impairs dSPN differ-
entiation. Since our transcriptomic analysis revealed that Ebf1
controls the prenatal expression of major regulators of axon
development and synaptogenesis (Fig. 4 and Supplementary
Fig. 4), we examined striatonigral and striatopallidal projections
in both cKOs (Fig. 5). In P5 controls, DARPP-32 immunostain-
ing labels SPN axons including the ones of dSPN which crossed
the globus pallidus (GP) and the entopeduncular nucleus (EP),
joined the cerebral peduncle (CP), and reached the substantia
nigra (SN) (Fig. 5a). In both cKOs, DARPP-32+ projections
extended to the EP but only a small fraction of them reached the
SN (Fig. 5a–c), with axonal density in the CP showing an
approximatively 60% reduction compared to controls (Fig. 5d–g).
In contrast, when we examined striatopallidal projections by
measuring the density of Enkephalin signal in the GP we found
no major differences between cKOs and controls (Fig. 5h–k).
Thus, Ebf1 inactivation selectively impaired the capacity of dSPN
to form the direct pathway.

In contrast to Ebf1−/−25–27, cKOs survive up to adult age,
allowing us to examine the long-term impact on SPN properties
and pathway formation. We observed in cKOs that dtTomato-
labeled dSPN were reduced in number and size at P45 in cKO
mice (Fig. 6a–g), indicating possible functional impairment. To
further analyze the impact of Ebf1 inactivation on dSPN
connectivity, we recorded glutamatergic miniature excitatory
postsynaptic currents (mEPSCs) in the whole-cell configuration
from adult control and cKO mice. We used either dtTomato or
Drd2-EGFP expression as selective SPN subtype markers
(Fig. 6h–j). Moreover, neurons were filled with biocytin during
recording for later morphology reconstructions. Consistent with
dtTomato labeling, reconstruction of mutant biocytin-filled
neurons showed overall reduced dSPN morphology, in contrast
to iSPN (Fig. 6k–m). In addition, in both cKOs, dSPN mEPSC
frequency was severely reduced, with most cells presenting no
detectable spontaneous synaptic activity. In contrast, iSPN did
not show significant differences from controls (Fig. 6g–l and
Supplementary Figs. 5a-f). We further examined the functional
impact on direct and indirect pathways using a pharmacological
approach in vivo, by testing motor responses to injections of
either D1 or D2 receptor agonists24. In baseline conditions, we
found that neither cKOs showed major locomotion deficits, Dlx5/
6::Cre; Ebf1fl/− mutants exhibiting only a mild hyperactivity
phenotype (Supplementary Fig. 5g). Such phenotype, which is
likely due to extra-striatal defects, precludes a full interpretation
of pharmacological challenges (Supplementary Fig. 5). We thus
focused on Islet1Cre; Ebf1fl/− mutants and first activated the direct
pathway by injection of the D1 receptor agonist SKF82958
(Fig. 6n). In contrast to control mice, D1 receptor agonist
injections in Ebf1 cKOs did not lead to significant locomotion
increases, indicating important functional disruptions of the
direct pathway in line with the anatomical defects observed
(Fig. 5a–f). Conversely, activation of the indirect pathway through
injections of the D2 receptor agonist quinpirole (Fig. 6o) caused
strong, statistically similar decreases in the mobility in both
control and cKOs, confirming that direct pathway functions are
selectively affected by Ebf1 inactivation. Notably, we found that
the indirect pathway is also functionally preserved in Dlx5/6::Cre;
Ebf1fl/− mutants (Supplementary Fig. 5h).
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Our results reveal that development and functioning of the
direct pathway is selectively impaired in adult Ebf1 cKOs, while
cardinal properties of iSPN, including circuit integration and
electrophysiological properties, are preserved. Thus, iSPN differ-
entiation and maturation are largely independent of dSPN.

Ebf1 deletion affects iSPN migration and intermix in the
striatal matrix. Next, we examined whether, in addition to its
role in dSPN differentiation, Ebf1 could play a role in SPN
intermix and striatal mosaic formation. As is the case for other
dSPN markers such as Islet1 and Drd1 (Fig. 4 and Supplementary
Fig. 4), the transcriptional levels of FoxP2 were preserved in both
early Ebf1 cKOs (Fig. 4 and Supplementary Fig. 4). Therefore, we
used its expression to analyze the distribution of dSPN in the
embryonic striatum. We consistently observed non-overlapping
populations of Ctip2+ FoxP2+ dSPN and Ctip2+Drd2-EGFP+

iSPN in mutant striata (Fig. 7). However, we found that dSPN
and iSPN distribution was strikingly different in the striatum of
controls and of the two cKOs at E17.5 (Fig. 7). Indeed, on one
side the density of dSPN in both cKOs was reduced in the dorsal
striatum and increased in the lateral region in comparison to
controls (Fig. 7a–k). Conversely, the density of Drd2-EGFP+
iSPN was enhanced dorsally and reduced laterally (Fig. 7l–u).
Thus, although the overall respective proportions of dSPN and
iSPN were preserved, Ebf1 inactivation perturbed the distribution
of the two SPN populations.

The dorsal accumulation of iSPN near progenitor zones raised
the possibility that their migration might be indirectly impaired
in Ebf1 cKO. To test this hypothesis, we first performed timed
EdU injections to follow SPN progression into the striatal mantle
of Ebf1 mutants, using Drd2-EGFP and either Foxp2 or

dtTomato as respective markers of iSPN and dSPN (Supplemen-
tary Fig. 6). We observed that EdU-stained iSPN abnormally
accumulated in the dorsolateral part of the striatum in cKOs
(Supplementary Fig. 6), suggesting that Ebf1 non-cell-
autonomously regulates their migration. To directly monitor
iSPN migration, we performed two-photon time-lapse imaging in
E15.5 Islet1Cre;Ebf1fl/−;Drd2-EGFP and Dlx5/6::Cre;Ebf1fl/−;Drd2-
EGFP slices. We found that in both genetic backgrounds, mutant
iSPN still harbored pattern of multidirectional migration as in
controls (Fig. 7v and Movies 2–4). However, analyses over several
time-lapse movies showed that iSPN average speed was
significantly decreased (Fig. 7w), thereby revealing that Ebf1
non-cell-autonomously controls the migration efficiency of iSPN.
Thus Ebf1 inactivation in dSPN impairs iSPN migration and their
process of intermixing. Since Ebf1 and Islet1 both control dSPN
differentiation, we investigated the specificity of such intermixing
defect by comparing the distribution of D2 receptor (Drd2)
transcripts in Ebf1 and Islet1 cKOs (Supplementary Fig. 7). In
contrast to Ebf1 cKO, we found that iSPN distribution was not
drastically altered in Islet1 cKO (Supplementary Fig. 7). There-
fore, iSPN intermixing specifically relies on Ebf1 expression in
dSPN, indicating a novel and specific role for this transcription
factor in the acquisition of dSPN properties.

In addition to changes in dorso-ventral distribution, we
observed that iSPN presented a higher degree of segregation,
especially in the lateral region (Fig. 7l–t). This observation raised
questions about possible disruptions of the striosomes/matrix
organization. Using early striosome markers such as DARPP-3250

(Supplementary Fig. 1), we found that the two compartments
could be unambiguously identified in both cKOs (Fig. 8a–c).
However, we observed that the matrix contained Enkephalinhigh

SN

Islet1Cre;Ebf1fl/– Dlx5/6::Cre;Ebf1fl/–Control

EP
CP

GP

P5

EP
CP

GP

SN
GP EP

CP

SN

P5P5
D

A
R

P
P

-3
2 

H
oe

ch
st

d e f

P5 P5 P5

CP CP
CP

h i j

P5

P5

E
nk

ep
ha

lin
 H

oe
ch

st GP

Str
Str

Str

GP
GP

Direct pathway

Indirect pathway

La
be

lli
ng

 in
de

x

Enkephalin+ in GP
k

0

3000

S
ig

na
l p

er
 1

00
 µ

m
2

2500

2000

1500

1000

500

DARPP-32+ in CP

g

0%

100%

80%

60%

40%

20%

*
*

n.s.
n.s.

Islet1Cre;Ebf1fl/–

Dlx5/6::Cre;Ebf1fl/–

Controla b c

P5

P5 P5

P5

Fig. 5 Ebf1 conditional inactivation affects direct pathway formation. a–c DARPP-32 staining of striatal axons on P5 sagittal sections reveal that, instead of
reaching their target in controls (n= 3) (a), striatofugal axons show limited extension passed the entopeduncular nucleus (EP) in both Islet1Cre;Ebf1fl/− (n=
4) (b) and Dlx5/6::Cre;Ebf1fl/− (n= 4) (c) mutants (solid arrowheads). d–g DARPP-32 staining in coronal sections showing reduced axonal projections in
the cerebral peduncle (CP) of Ebf1 cKOs, quantified in (g). Labeling Index is a function of signal area and mean intensity (p= 0.028 for Islet1Cre;Ebf1fl/− and
p= 0.023 for Dlx5/6::Cre;Ebf1fl/−). h–k Indirect pathway terminals in GP, labeled by Enkephalin immunostaining, show similar densities in controls and both
Ebf1 cKOs, as quantified in k (p= 0.17 for controls versus Islet1Cre;Ebf1fl/− and p= 0.32 for controls versus Dlx5/6::Cre;Ebf1fl/−, n= 3 mice for each
condition). Results are presented as mean values ± s.e.m. Two-tailed non-parametric Mann–Whitney U test was used for statistical comparison. * indicates
p-value < 0.05. Scale bars equal 400 μm (a–c), 200 μm (d–j), and 25 μm (bottom insets). CP cerebral peduncle, EP entopeduncular nucleus, GP globus
pallidus, SN substantia nigra, Str striatum

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07171-4 ARTICLE

NATURE COMMUNICATIONS |          (2018) 9:4725 | DOI: 10.1038/s41467-018-07171-4 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


domains (Fig. 8d–f) which segregated from cellular islands
containing matrix dSPN (Supplementary Fig. 8) in both cKOs,
suggesting an intermixing deficit between iSPN and dSPN. To
further test this possibility, we examined Drd2-EGFP controls
and cKOs at E17.5, when compartment segregation is largely
engaged14,15,30–33,38 and proto-striosomes can be identified by
the expression of Substance P (not shown) and DARPP-32
(Fig. 8j–l), a maturation marker, which is turned on in the matrix
only at later stages. We observed that the deficit in iSPN and
dSPN intermixing was more pronounced in the matrix (Fig. 8k–l),
consistently with previous reports showing that Ebf1 inactivation
more specifically affects matrix dSPN27. This specificity was
further highlighted by the finding that dopaminergic innervation
is selectively impaired in matrix dSPN-rich territories (Supple-
mentary Fig. 9). Collectively, our findings reveal that the
intermixing of iSPN and dSPN in the matrix specifically relies
on Ebf1 expression in dSPN (Fig. 8m-n). This major step in the
emergence of a balanced striatum parallels the formation of
compartments, thereby revealing that multiple migratory pro-
cesses regulate the assembly of the striatal mosaic (Supplementary
Fig. 10).

Discussion
Striatal functioning depends on the balanced activation of inter-
mixed direct and indirect pathway neurons51. It is thus essential
to understand how the two subtypes are specified and how they
assemble into a mosaic striatal architecture. Here, we show that
while dSPN and iSPN differentiation is largely independent, their
intermixing relies on a developmental crosstalk, which is crucial
to organize striatal architecture and is largely independent from
striosome and matrix compartment formation.

While both SPN derive from the LGE13,16,17,31, producing fully
differentiated dSPN or iSPN in vitro52 has remained a challenge.
While there was increasing evidence that distinct transcriptional
programs underlie the specification of both subtypes16,24,28,29,
in vitro studies raised questions regarding the mechanisms con-
trolling SPN differentiation. Our results confirm that dSPN and
iSPN possess distinct genetic fingerprints from early embryonic
stages, reinforcing the idea that the two cell types are already
specified when they enter the striatal mantle.

Furthermore, iSPN progressively invade dSPN-rich areas
through dynamic multidirectional migration. Intriguingly, iSPN
are initially detected in the lateralmost part of the striatum,
consistently with the observation that transcription factors reg-
ulating iSPN development, Six3 and Sp9, are located in the dorsal
part of the LGE16. Tangential migration is a well-known
mechanism for increasing neuronal diversity in different brain
structures. In the telencephalon, tangential migration has mostly
been associated with interneuron behavior53, but has also been
involved in the positioning of other LGE-derived projection
neurons, including arkypallidal neurons of the globus palli-
dus54,55, corridor neurons56,57 and dSPN-like neurons of the
central58 and extended amygdala59. Further investigation will be
required to determine the cellular and molecular mechanisms
governing the migration and interaction of different LGE-
generated populations. Nevertheless, tangential migration of
projection neurons is emerging as a shared mechanism to build
and increase cellular diversity in basal ganglia nuclei, in contrast
to the laminated cerebral cortex where projection neurons
migrate radially from the underlying proliferative
neuroepithelium60.
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Regarding the transcriptional cascades governing SPN identity,
our work indicates that Ebf1 plays a major role in dSPN differ-
entiation, independently of the other known regulators Islet1 and
Foxp2. Ebf1 is a member of the COE family that plays a key role
in the specification of B cells and the differentiation of neuronal
subtypes52,61–63. Ebf1 acts both as a direct regulator of down-
stream target genes61–63 and as a chromatin remodeler, poising or
regulating the accessibility of enhancers64,65. Ebf1 is expressed in
the developing striatum25 and analyses of Ebf1 full knockout mice

showed normal proliferation in the LGE but defective survival of
matrix dSPN and disorganized projections to the SN26,27. By
combining analysis of two distinct cKOs, we first showed that
Ebf1 is dispensable for the fate choice between dSPN and iSPN
identity and the core aspects of differentiation into GABAergic
SPN neurons. Indeed, Ebf1 inactivation leads to an abnormal
differentiation of dSPN-like neurons that nonetheless retain their
GABAergic identity and expression of DARPP-32, Ctip2, FoxP1,
Drd1, Islet1, and FoxP2. Notably, deregulated genes included
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Zfp521 and Mef2c, which are directly bound by Ebf1 in pro-B
cells and thus likely direct targets61,62. Second, Ebf1 is not
expressed in the ventral striatum and its inactivation selectively
perturbs the matrix compartment of the dorsal striatum, poten-
tially revealing a subdivision of dSPN neurons. Third, Ebf1 reg-
ulates expression of genes controlling axon and synaptogenesis,
thereby highlighting a major role in circuit integration. Impor-
tantly, Ebf1 and Islet1 both regulate direct pathway formation and
the expression of PlexinD119,24,25,28, suggesting that the two genes
might cooperatively regulate specific features of dSPN neurons.

Finally, we found that Ebf1 non-cell-autonomously regulates
iSPN intermixing with dSPN in the matrix compartment. In Ebf1
cKOs, iSPN are correctly specified and functional, but their
progression and intermixing with dSPN is impaired. This inter-
mixing deficit occurs independently of the formation of strio-
somes/matrix and is more pronounced in the matrix
compartment. Remarkably, this phenotype is absent in Islet1
cKO, indicating a novel and specific role for Ebf1 in the building
of striatal functional organization. The underlying mechanisms
remain to be deciphered and could include the production of
membrane-bound or secreted factors acting on iSPN. Our study
also reveals that the intermix of dSPN/iSPN and the formation of
striosomes/matrix compartments constitute parallel processes.
Indeed, it has been shown that early-born and late-born SPN
interact in late embryogenesis to respectively form the striosomes
and the matrix via migration and ephrinA/EphA4-dependant
cell-sorting14,15,17,31–33,38. In Ebf1 cKOs, striosomes do form but
the intermix of matrix neurons is defective. Our study thus
reveals that distinct steps of migration and reorganization control
the emergence of two compartments comprising intermixed
dSPN/ iSPN (Supplementary Fig. 10), an architecture which is
essential for striatal functioning.

Taken together, our work shows that while iSPN and dSPN
specification is largely independent, the assembly of striatal
mosaic emerges from a dSPN-dependent tangential migration of
iSPN. This study establishes a novel framework for the formation
of the striatum, a major structure associated with developmental
disorders, and provides key insights on how migration controls
the wiring of neural circuits.

Methods
Mouse lines. For fate mapping studies, Islet1Cre/+ animals43 were crossed with
either R26mt/mt or R26mt/mt;Drd2-EGFP mice34. To obtain Islet1Cre/+;Ebf1fl/−,
Islet1Cre/+;Ebf1fl/−;R26mt/+, and Islet1Cre/+:Ebf1fl/−;Drd2-EGFP conditional
mutants, we initially crossed Islet1Cre/+ mice with Ebf1+/−66 to generate Islet1Cre/+;
Ebf1fl/− animals. These were in turn backcrossed with either Ebf1fl/fl 62,67, Ebf1fl/fl;
R26mt/mt, or Ebf1fl/fl;Drd2-EGFP mice, respectively. Similarly, Dlx5/6::Cre;Ebf1fl/−

and Dlx5/6::Cre;Ebf1fl/−;Drd2-EGFP mice were obtained by crossing Dlx5/6::Cre44

mice with Ebf1+/− to generate Dlx5/6::Cre;Ebf+/− animals, which were in turn
backcrossed with Ebf1fl/fl or Ebf1fl/f;Drd2-EGFP mice. All transgenic lines were
maintained on a C57/Bl6 background, with the exception of Islet1Cre/+ and Drd2-
EGFP lines that remained on a B6D2F1/J genetic background. Heterozygous
embryos did not show any phenotype and were used as controls. Nkx2.1Cre/+ mice
provided by S. Anderson’s laboratory68. 12-μm-thick cryosections from Dlx1Cre/+;
Islet1fl/fl embryos provided by K. Campbell’s laboratory24. The day of vaginal plug
was considered as embryonic day (E) 0.5 and day of birth as postnatal day (P) 0.
Animals were bred under French and EU regulations, following recommendations
of the Charles Darwin ethics committee.

In situ hybridization and immunohistochemistry. For in situ hybridization,
brains were fixed overnight in 4% paraformaldehyde in PBS (PFA) at 4 °C. 80 to
100-μm-thick free-floating vibratome sections (Leica S1000) were hybridized as
described;67 Dlx1Cre/+;Islet1fl/fl and respective control cryosections were hybridized
as described69. For immunohistochemistry, mice were perfused with 4% PFA.
Brains were dissected and post fixed overnight at 4 °C. Immunohistochemistry was
performed on 60-μm-thick free-floating vibratome sections. Slices were incubated
1 h at room temperature (RT) in a blocking solution containing 0,25% Triton X-
100 (Sigma), 0,02% Gelatine in PBS, and incubated in the same blocking solution
with primary antibodies overnight at 4 °C. Primary antibodies were used at the
following concentrations: rat anti-CTIP2 1/500 (Abcam), mouse anti-DARPP-32 1/
100 (Santa Cruz), rabbit anti-DARPP-32 1/1000 (Millipore), rabbit anti-DsRed 1/
500 (Living colors), rabbit anti-Enkephalin 1/500 (Millipore), rabbit anti-Ebf1 1/
250 (Abcam), rabbit anti-FoxP1 1/200 (Abcam), goat anti-FoxP2 1/200 (Santa
Cruz), chicken anti-GFP 1/1000 (Aves), rabbit anti-Slc35d3 1/250 (Novusbio), rat
anti-Substance P 1/400 (Millipore), rabbit anti-Tyrosine Hydroxylase 1/1000
(Abcam), guinea pig anti-vGlut1 1/10000 (Millipore), and guinea pig anti-vGlut2
1/10000 (Millipore). Sections were rinsed several times in PBS and incubated from
2 h to overnight at 4 °C with the appropriate fluorescent secondary antibodies:
A488-conjugated donkey anti-rabbit, anti-rat or anti-chicken, Cy3-conjugated
donkey anti-rat, anti-goat, anti-mouse, Cy5-conjugated donkey anti-rabbit or anti-
rat, DyLight488-conjugated donkey anti-guinea pig (1/400, all antibodies from
Jackson ImmunoResearch). Hoechst (Sigma) was used for fluorescent nuclear
counterstaining and sections were mounted in Mowiol or Vectashield (Vector).

Birthdating. Pregnant dams were injected intraperitoneally at the appropriate
gestation day with a solution containing 5-Ethynyl-2’-deoxyuridine (EdU, Thermo
Fisher). 60–100-μm-thick free-floating vibratome sections were processed follow-
ing manufacturer instructions (Click-iT EdU Alexa Fluor 488 Imaging kit, Life
Technologies) for 30 min at RT. Sections were rinsed three times in 3% BSA and
then in PBS. Hoechst staining was performed for 30 min at RT before pursuing the
immunohistochemistry protocol as described above.

Image acquisition, analysis, and quantification. Images were acquired on a
fluorescence microscope (Leica MZ16 F), a fluorescent microscope (Leica DM5000
B) or a confocal microscope (Leica TCS SP5). Images were then processed with
ImageJ and Adobe Photoshop software. For cell density and colocalization analysis,
three different rostro-caudal striatal levels of the striatum were initially defined,
using the anterior commissure as an anatomical landmark. Single-plane confocal
images were taken at each level in three different animals for each condition. For
cell distribution analysis in Fig. 7, a high-definition tilescan of the whole striatum at
medial level was imaged on a single confocal plane in at least three different
animals for each condition. The tilescans were later subdivided in lateral and dorsal
regions (Fig. 7d) for quantification. Cell counting was performed semi-
automatically using built-in functions in ImageJ. For each experiment, sample

Fig. 7 Ebf1 cKO affects iSPN migration and intermix with dSPN. a–j Distribution of FoxP2high; Ctip2+ dSPN is altered in Ebf1 cKOs at E17.5, with lower
density in the dorsal (Dor) and higher in the lateral (Lat) part of the striatum (Str); the two regions are defined in (j) (n= 3 for each condition). k In control
Dor Str, 53 ± 3.5% of all Ctip2+ SPN are Foxp2+, 24 ± 6% (p= 0.0079) in Islet1Cre;Ebf1fl/− and 21 ± 8%. (p= 0.03) in Dlx5/6::Cre;Ebf1fl/−. In control Lat Str,
Foxp2+ cells form 41 ± 11% of Ctip2+ SPN, raising to 54 ± 3% in Islet1Cre;Ebf1fl/− (p= 0.01) and to 58 ± 11% in Dlx5/6::Cre;Ebf1fl/− (p= 0.03). l–t
Distribution of Drd2-EGFP+;Ctip2+ iSPN is altered by Ebf1 cKO, with higher density in Dor Str and lower in Lat Str. u Quantification of iSPN distribution. In
control Dor Str, 22 ± 12% of Ctip2+ SPN are GFP+. This percentage increases to 37 ± 11% in Islet1Cre;Ebf1fl/−;Drd2-EGFP (p= 0.007) and to 33 ± 7% in Dlx5/
6::Cre;Ebf1fl/−;Drd2-EGFP (p= 0.03). Conversely, in the Lat Str, the percentage of of double-positive GFP+Ctip2+ iSPN equals 40 ± 6% in controls, 14 ± 6%
in Islet1Cre;Ebf1fl/−;Drd2-EGFP (p= 0.008) and 13 ± 4% in Dlx5/6::Cre;Ebf1fl/−;Drd2-EGFP embryos (p= 0.008). v, w Analysis of iSPN migration at E15.5 in
acute slices of Islet1Cre;Ebf1fl/−; Drd2-EGFP and Dlx5/6::Cre;Ebf1fl/−;Drd2-EGFP embryos. (v) Multidirectional displacement vectors from sample video
tracking of control, Islet1Cre;Ebf1fl/−; Drd2-EGFP and Dlx5/6::Cre;Ebf1fl/−;Drd2-EGFP iSPN (colors illustrate directionality). w Trajectory analysis (Islet1Cre;Ebf1fl/
−; Drd2-EGFP: 58 cells tracked, n= 3 independent experiments; Dlx5/6::Cre;Ebf1fl/−;Drd2-EGFP 29 cells tracked, n= 2 independent experiments) shows
reduction of iSPN average speed after 180’ in Ebf1 cKOs (17,25 ± 1 μm/h for Islet1Cre;Ebf1fl/−; Drd2-EGFP, p= 0.02; 16,56 ± 1 μm/h for Dlx5/6::Cre;Ebf1fl/−;
Drd2-EGFP p= 0.03) without significant alteration of maximum speed (117,8 ± 5 μm/h and 131 ± 6 μm/h, respectively; p= 0.47 for Islet1Cre;Ebf1fl/−; Drd2-
EGFP and p= 0.55 for Dlx5/6::Cre;Ebf1fl/−;Drd2-EGFP when compared to control iSPN). Results are presented as mean ± standard deviation (k, u) or s.e.m
(w). Two-tailed non-parametric Mann–Whitney U test was used for statistical comparison. * indicates p-value < 0.05, ** p-value < 0.01. Scale bars equal
200 μm (a,d,g,l,o,r), 50 μm (b,c,e,f,h,I,m,n,p,q,s,t). Dor, Dorsal; Lat, lateral; Str, striatum
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images were manually counted to double-check the quality of semi-automated
counting.

Time-lapse imaging and analysis. E13.5 and E15.5 Drd2-EGFP and Dlx5/6::Cre;
Ebf1fl/−;Drd2-EGFP embryos were dissected and kept in an ice-cold solution
consisting of L-15 Medium (SIGMA-Aldrich) supplemented with 3% Glucose.
Brains were included in 3,5% low-melting agarose (Promega) in L-15 Glucose+

solution and 350-μm-thick coronal slices were cut on a vibratome. Slices were
imaged using a multi-photon microscope (DIMM, IBENS Imaging Platform) over
a period of up to 240’, while being constantly perfused with a L-15 Glucose+

solution at 37 °C and bubbled with O2/CO2 (95% / 5%). 100-μm-thick z-stacks
were imaged every 6’ for each single frame. For time-lapse movie analysis, eventual
drift in the three dimensions was first corrected using IMARIS software (Bitplane,
Oxford); subsequently, z-stacks were flattened on a two-dimensional plane. The

high number of cells present in each single movie rendered automated analysis of
cell displacement unadvisable. Therefore, single cell displacement was measured
manually frame-by-frame using the “Manual Tracking” plugin in ImageJ. Cells
included in the analysis responded to two criteria: being readily identifiable from
the first to the last frame of the movie and showing a total net displacement of
more than 50 μm. In order to examine directionality and migratory pattern of iSPN
migration, stationary (total net displacement less than 50 μm) cells were not
included in the analysis.

RNA-sequencing. E17.5 Dlx5/6::Cre;Ebf1fl/−, Islet1Cre/+;Ebf1fl/− and control
embryos were dissected in RNAse-free conditions on ice. Brains were conserved in
RNAlater stabilization reagent (Qiagen) solution. Following genotype identification
via PCR, messenger RNA was obtained from n= 3 brains from each condition
using RNeasy mini kit (Qiagen). Library preparation and Illumina sequencing were
performed at the Ecole Normale Supérieure Genomic Platform (Paris, France).
Messenger (polyA+ ) RNAs were purified from 400 ng of total RNA using oligo
(dT). Libraries were prepared using the strand specific RNA-Seq library prepara-
tion TruSeq Stranded mRNA kit (Illumina). Libraries were multiplexed by 9 on run
Nextseq 500. A 75 bp read sequencing was performed on a Nextseq 500 device
(Illumina). A mean of 37.5 ± 8.95 million passing Illumina quality filter reads was
obtained for each of the 9 samples. Analyses were performed using the Eoulsan
pipeline, including read filtering, mapping, alignment filtering, read quantification,
normalization and differential analysis. Before mapping, poly N read tails were
trimmed, reads ≤ 40 bases were removed, and reads with quality mean ≤ 30 were
discarded. Reads were then aligned against the Mus musculus genome from
Ensembl version 81 using STAR (version 2.4.0k). Alignments from reads matching
more than once on the reference genome were removed using Java version of
samtools. To compute gene expression, Mus musculus GFF3 genome annotation
version 81 from Ensembl database was used. All overlapping regions between
alignments and referenced genes were counted using HTSeq-count 0.5.3. Sample
counts were normalized using DESeq 1.8.3. Statistical treatments and differential
analyses were also performed using DESeq 1.8.370.

Slice preparation and electrophysiological recordings. In vitro electro-
physiological recordings were performed in coronal slices from the dorsal striatum
of control animals (either Islet1Cre/+;R26mt/+ or Drd2-EGFP mice), Dlx5/6::Cre;
Ebf1fl/−;Drd2-EGFP, and Islet1Cre/+;Ebf1fl/−;R26mt/+ mice. Mice were anesthetized
with isofluorane before decapitation. After isolation, the portion of the brain
containing the striatum was placed in bicarbonate-buffered saline (BBS) at 2–5 °C
for a few minutes. Slices (300 μm) were then cut using a 7000smz-2 vibratome
(Campden Instruments Ltd.). The slicing procedure was performed in an ice-cold
solution containing (in mM): 130 potassium gluconate, 15 KCl, 0.05 EGTA, 20
Hepes, 25 glucose, 1 CaCl2, and 6 MgCl2. Slices were then briefly transferred to a
solution containing (in mM): 225 D-mannitol, 2.5 KCl, 1.25 NaH2PO4, 25
NaHCO3, 25 glucose, 1 CaCl2, and 6 MgCl2, and finally stored for the rest of the
experimental day at 33 °C in oxygenated BBS, containing: 115 NaCl, 2.5 KCl, 1.6
CaCl2, 1.5 MgCl2, 1.25 NaH2PO4, 26 NaHCO3, and 30 glucose (pH 7.4 after
equilibration with 95% O2 and 5% CO2). For all recordings, slices were con-
tinuously superfused with oxygenated BBS, supplemented with the GABAa
receptor blocker SR95531 (Gabazine; 2 µM) and with Tetrodotoxin (TTX; 500 nM),
at 32–34 °C. Electrophysiological recordings were performed from either dSPN-
dTomato positive, iSPN-dTomato negative, dSPN-GFP negative, or iSPN-GFP
positive dorsal striatal cells. Cells were patched in the transmitted deep red light
with which slices were visualized using a CoolSnap HQ CCD camera (Photo-
metrics) run by Metamorph software (Universal Imaging) and mounted on either a
Slicescope (Scientifica), or a BX51 (Olympus) microscope. Before patching, Tomato
or GFP positive/negative cells were identified by the presence/absence of somatic
fluorescence using LEDs of the corresponding excitation wavelengths (Thorlabs)
coupled to the slice chamber via the epifluorescence pathway of the microscope.
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Fig. 8 Defective intermixing is observed in the matrix compartment. a–c
DARPP-32 staining in P5 striatal coronal sections reveals that striosomes
are still recognizable in Islet1Cre;Ebf1fl/− and Dlx5/6::Cre;Ebf1fl/− (empty
arrowheads) (n= 3 for each genotypes and markers). d–i Conversely, in
Ebf1 cKOs the matrix compartment is parceled in Enkephalin-rich and
Enkephalin-poor (full arrowheads) areas. j–l Intermixing anomalies are
prominent in the matrix compartment of both cKOs. In the lateral striatum,
iSPN are intermixed both within and outside DARPP-32+ striosomes in
controls (j and high magnification), whereas iSPN are intermixed in
striosomes (delineated by dotted lines) but not in the matrix of Ebf1 cKOs
(high magnifications). m, n Schematic representation of the functions of
Ebf1 in dSPN differentiation and in the non-cell autonomous regulation of
iSPN migration. n= 3 for each genotype. Scale bars equal 200 μm (a–l) and
30 μm (bottom panels, high magnification). Str striatum
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Pharmacology and Behavior analyses. The motor responses of Dlx5/6::Cre;Ebf1fl/−

and Islet1Cre/+;Ebf1fl/− mice and their corresponding controls were examined in a
round open field arena (diameter: 38 cm) following injection of pharmacological
agents. Minimum 2 weeks separated tests performed with different drugs on the same
cohort of mice. For each condition, animals were acclimated to the experimental
luminosity conditions (27–35 lux) of the test room for 1 h. Following adaptation,
baseline motor activity in the open field of each mouse was then measured for 8min
before subcutaneous injection with one of the following solutions: 0,9% NaCl (control
injection); 2 mg/Kg D1 receptor agonist SKF82958 (Sigma); and 1mg/Kg D2 receptor
agonist Quinpirole (Sigma). Drugs were administered in a volume of 10ml/Kg of
body weight. Following the injection, animals were left in their cage for 40min. They
were then re-introduced into the arena for recording their motor activity over another
8min-long timeperiod. Post hoc analysis of the total distance traveled was performed
using Ethovision software (Noldus).

Statistical analyses. All data are presented as mean ± SD or SEM (detailed in each
figure legend). Two-tailed non-parametric Mann–Whitney U test was used to
compare two distributions in all experiments, with the exception of RNA-seq
analysis (see above). All statistical analyses were performed using GraphPad Prism
software. p-values are as follows: *p < 0.05, **p < 0.01, ***p < 0.0001.

Data availability
All relevant data are available within the article, supplementary files or available
from the authors upon request. The raw RNA-seq data is deposited on GEO with
accession code GSE120898.
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