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ARTICLE

Reference-point centering and range-adaptation
enhance human reinforcement learning at the cost
of irrational preferences
Sophie Bavard 1,2,3, Maël Lebreton4,5,6, Mehdi Khamassi7,8, Giorgio Coricelli9,10 & Stefano Palminteri 1,2,3

In economics and perceptual decision-making contextual effects are well documented, where

decision weights are adjusted as a function of the distribution of stimuli. Yet, in reinforcement

learning literature whether and how contextual information pertaining to decision states is

integrated in learning algorithms has received comparably little attention. Here, we investi-

gate reinforcement learning behavior and its computational substrates in a task where we

orthogonally manipulate outcome valence and magnitude, resulting in systematic variations

in state-values. Model comparison indicates that subjects’ behavior is best accounted for by

an algorithm which includes both reference point-dependence and range-adaptation—two

crucial features of state-dependent valuation. In addition, we find that state-dependent

outcome valuation progressively emerges, is favored by increasing outcome information and

correlated with explicit understanding of the task structure. Finally, our data clearly show that,

while being locally adaptive (for instance in negative valence and small magnitude contexts),

state-dependent valuation comes at the cost of seemingly irrational choices, when options

are extrapolated out from their original contexts.
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In everyday life, our decision-making abilities are solicited
in situations that range from the most mundane (choosing
how to dress, what to eat, or which road to take to avoid traffic

jams) to the most consequential (deciding to get engaged, or to
give up on a long-lasting costly project). In other words, our
actions and decisions result in outcomes, which can dramatically
differ in terms of affective valence (positive vs. negative) and
intensity (small vs. big magnitude). These two features of the
outcome value are captured by different psychological concepts—
affect vs. salience—and by different behavioral and physiological
manifestations (approach/avoidance vs. arousal/energization
levels)1–3.

In ecological environments, where new options and actions are
episodically made available to a decision-maker, both the valence
and magnitude associated with the newly available option and
action outcomes have to be learnt from experience. The
reinforcement-learning (RL) theory offers simple computational
solutions, where the expected value (product of valence and
magnitude) is learnt by trial-and-error, thanks to an updating
mechanism based on prediction error correction4,5. RL algo-
rithms have been extensively used during the past couple of
decades in the field of cognitive neuroscience, because they par-
simoniously account for behavioral results, neuronal activities in
both human and non-human primates, and psychiatric symp-
toms induced by neuromodulatory dysfunction6–10.

However, this simple RL model is unsuited to be used as is in
ecological contexts11,12. Rather, similarly to the perceptual and
economic decision-making domains, growing evidence suggests
that reinforcement learning behavior is sensitive to contextual
effects13–16. This is particularly striking in loss-avoidance con-
texts, where an avoided-loss (objectively an affectively neural
event) can become a relative reward if the decision-maker has
frequently experienced losses in the considered environment. In
that case, the decision-maker’s knowledge about the reward dis-
tribution in the recent history or at a specific location, affects her
perception of the valence of outcomes. Reference-dependence,
i.e., the evaluation of outcomes as gains or losses relative to a
temporal or spatial reference point (context), is one of the fun-
damental principles of prospect theory and behavioral econom-
ics17. Yet, only recently have theoretical and experimental studies
in animal and human investigated this reference-dependence in
RL18–20. These studies have notably revealed that reference-
dependence can significantly improve learning performances in
contexts of negative valence (loss-avoidance), but at the cost of
generating post-learning inconsistent preferences18,19.

In addition to this valence reference-dependence, another
important contextual effect that may be incorporated in ecolo-
gical RL algorithms is range adaptation. At the behavioral level, it
has long been known that our sensitivity to sensory stimuli or
monetary amounts is not the same across different ranges of
intensity/magnitude21,22. These findings have recently paralleled
with the description of neuronal range adaptation: in short, the
need to provide efficient coding of information in various ranges
of situations entails that the firing rate of neuron adapts to the
distributional properties of the variable being encoded23. Con-
verging pieces of evidence have recently confirmed neuronal
range-adaptation in economic and perceptual decision-making,
although its exact implementation remains debated24–27.

Comparatively, the existence of behavioral and neural features
of range-adaptation has been less explored in RL, where it could
critically affect the coding of outcome magnitude. In the RL
framework the notion of context, which is more prevalent in the
economic or perception literatures, is embodied in the notion of
state. In the RL framework the environment is defined as a col-
lection of discrete states, where stimuli are encountered, decisions
are made and outcomes are collected. Behavioral and neural

manifestations of context-dependence could therefore be
achieved by (or reframed as) state-dependent processes.

Here, we hypothesized that in human RL, the trial-by-trial
learning of option and action values is concurrently affected by
reference-point centering and range adaptation. To test this
hypothesis and investigate the computational basis of such state-
dependent learning, we adapted a well-validated RL
paradigm19,28, to include orthogonal manipulations of outcome
valence and outcome magnitude.

Over two experiments we found that human RL behavior is
consistent with value-normalization, both in terms of state-based
reference-dependence and range-adaptation. To better char-
acterize this normalization process at the algorithmic level, we
compared several RL algorithms, which differed in the extent and
in the way they implement state-dependent valuation (reference-
dependence and range adaptation). In particular, we contrasted
models implementing full, partial or no value normalization29.
We also evaluated models implementing state-dependent valua-
tion at the decision stage (as opposed to the outcome evaluation
stage) and implementing marginally decreasing utility (as pro-
posed by Bernoulli)22. Overall, the normalization process was
found to be partial, to occur at the valuation level, to progressively
arise during learning and to be correlated with explicit under-
standing of the task structure (environmental). Finally, while
being optimal in an efficient coding perspective, this normal-
ization leads to irrational preference when options are extra-
polated out from their original learning context.

Results
Behavioral paradigm to challenge context-dependence. Healthy
subjects performed two variants of a probabilistic instrumental
learning task with monetary rewards and losses. In those two
variants, participants saw at each trial a couple of abstract sti-
muli (options), which were probabilistically paired with good or
bad outcomes, and had to select the one they believed would be
most beneficial for their payoff. The options were always pre-
sented in fixed pairs, which defined stable choice contexts.
These contexts were systematically manipulated, so as to
implement a 2 × 2 factorial design across two qualities of the
option outcomes: outcome valence (reward or loss) and out-
come magnitude (big: 1€; or small: 10c). In all contexts, the two
options were associated with different, stationary, outcome
probabilities (75% or 25%). The ‘favorable’ and ‘unfavorable’
options differ in their net expected value. The favorable option
in the reward and big magnitude context is paired with a
reward of 1€ with probability 75%, while the unfavorable option
only 25% of the time. Likewise, the favorable option in the loss
and small magnitude context is paired with a loss of 10 cents
with probability 25%, while the unfavorable option 75% of the
time (Fig. 1). Subjects therefore had to learn to choose the
options associated either with highest reward probability or
those associated with lowest loss probability. After the last
learning session, subjects performed a transfer test in which
they were asked to indicate the option with the highest value, in
choices involving all possible binary combinations—that is,
including pairs of options that had never been associated dur-
ing the task. Transfer test choices were not followed by feed-
back, to not interfere with subjects’ final estimates of option
values. In the second variant of the experiment, an additional
factor was added to the design: the feedback information about
the outcomes (partial or complete) was manipulated to make
this variant a 2 × 2 × 2 factorial design. In the partial context,
participants were only provided with feedback about the option
they chose, while in the complete context, feedback about the
outcome of the non-chosen option was also provided.
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Outcome magnitude moderately affects learning performance.
In order to characterize the learning behavior of participants in
our tasks, we first simply analyzed the correct response rate in the
learning sessions, i.e., choices directed toward the most favorable
stimulus (i.e., associated with the highest expected reward or
the lowest expected loss). In all contexts, this average correct
response rate was higher than chance level 0.5, signaling sig-
nificant instrumental learning effects (T(59)= 16.6, P < 0.001).
We also investigated the effects of our main experimental
manipulations (outcome valence (reward/loss), outcome magni-
tude (big/small), and feedback information (partial/complete,
Experiment 2 only)) (Table 1). Because there was no significant
effect of the experiment (i.e., when explicitly entered as factor
‘Experiment’: F(59)= 0.96, P > 0.3), we pooled the two experi-
ments to assess the effects of common factors (outcome valence
and magnitude). Replicating previous findings19, we found that
the outcome valence did not affect learning performance (F(59)
= 0.167, P > 0.6), and that feedback information significantly
modulated learning in Experiment 2 (F(39)= 7.4, P < 0.01).
Finally, we found that the outcome magnitude manipulation,

which is a novelty of the present experiments, had a significant
effect on learning performance (F(59)= 9.09, P < 0.004); Post-hoc
test confirmed that across both experiments subjects showed
significantly higher correct choice rate in the big-magnitude
compared with the small-magnitude contexts (T(59) > 3.0,
P < 0.004), and similar correct choice rate in the reward compared
to the losses contexts (T(59)= 0.41, P > 0.13).

Transfer test choices do not follow expected values. Following
the analytical strategy used in previous studies18,19, we next
turned to the results from the transfer test, and analyzed the
pattern of correct choice rates, i.e., the proportion of choices
directed toward the most favorable stimulus (i.e., associated with
the highest expected reward or the lowest expected loss). Overall,
the correct choice rate in the transfer was significantly higher
than chance, thus providing evidence of significant value transfer
and retrieval (T(59) > 3.0, P < 0.004). We also analyzed how our
experimental factors (outcome valence (reward/loss), outcome
magnitude (big/small) and option favorableness (i.e., being the
symbol the most favorable of its pair during the learning sessions)
influenced the choice rate per symbol. The choice rate per symbol
is the average frequency with which a given symbol is chosen in
the transfer test, and can therefore be taken as a measure of the
subjective preference for a given option. Consistent with sig-
nificant value transfer and retrieval, the ANOVA revealed sig-
nificant effects of outcome valence (F(59)= 76, P < 0.001) and
option correctness (F(59)= 203.5, P < 0.001) indicating that—in
average—symbols associated with favorable outcomes were pre-
ferred compared to symbols associated with less favorable ones
(Table 2). However, and in line with what we found in simpler
contexts19,28, the analysis of the transfer test revealed that option
preference did not linearly follow the objective ranking based on
their absolute expected value (probability(outcome) ×magnitude
(outcome)). For example, the favorable option of the reward/
small context was chosen more often than the less favorable
option of the reward/big context (0.71 ± 0.03 vs. 0.41 ± 0.04; T
(59)= 6.43, P < 0.0001). Similarly, the favorable option of the
loss/small magnitude context was chosen more often than the less
favorable option of the reward/small context (0.42 ± 0.03 vs. 0.56
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Fig. 1 Experimental design and normalization process. a Learning task with four different contexts: reward/big, reward/small, loss/small, and loss/big. Each
symbol is associated with a probability (P) of gaining or losing an amount of money or magnitude (M). M varies as a function of the choice contexts
(reward seeking: +1.0€ or +0.1€; loss avoidance: −1.0€ or −0.1€; small magnitude: +0.1€ or −0.1€; big magnitude: +1.0€ or −1.0€). b The graph
schematizes the transition from absolute value encoding (where values are negative in the loss avoidance contexts and smaller in the small magnitude
contexts) to relative value encoding (complete adaptation as in the RELATIVE model), where favorable and unfavorable options have similar values in all
contexts, thanks to both reference-point and range adaptation

Table 1 Correct choice rate of the learning sessions as a
function of task factors in Experiments 1, 2 and both
experiments

Experiment 1
(N= 20)

Experiment 2
(N= 40)

Both experiments
(N= 60)

F-val P-val F-val P-val F-val P-val

Val 0.002 0.969 0.285 0.597 0.167 0.684
Inf – – 7.443 0.0095** – –
Mag 4.872 0.0398* 4.267 0.0456* 9.091 0.00378**
Val × Inf – – 1.037 0.315 – –
Val ×Mag 4.011 0.0597 0.08 0.779 1.755 0.19
Inf ×Mag – – 0.006 0.939 — —
Val × Inf ×
Mag

– – 0.347 0.559 — —

**P < 0.01; *P < 0.05, t-test
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± 0.03; T(59)= 2.88, P < 0.006). Crucially, while the latter value
inversion reflects reference-point dependence, as shown in pre-
vious studies19,28, the former effect is new and could be a sig-
nature of a more global range-adaptation process. To verify that
these value inversions were not only observed at the aggregate
level (i.e., were not an averaging artifact), we analyzed the transfer
test choice rate for each possible comparison. Crucially, analysis
of the pairwise choices confirm value inversion also for direct
comparisons.

Delineating the computational hypothesis. Although these
overall choice patterns appear puzzling at first sight—since they
would be classified as “irrational” from the point of view of the
classical economic theory based on absolute values30—we pre-
viously reported that similar seemingly irrational behavior and
inconsistent results could be coherently generated and explained
by state-dependent RL models. To hypothesize this reasoning, we
next turned to computational modeling to provide a parsimo-
nious explanation of the present results.

To do so, we fitted the behavioral data with several variations
of standard RL models (see Methods). The first model is a
standard Q-learning algorithm, referred to as ABSOLUTE. The
second model is a modified version of the Q-learning model that
encodes outcomes in a state-dependent manner:

RREL;t ¼
RABS;t

Vt sð Þj j þmax 0;
�Vt sð Þ
Vt sð Þj j

� �
ð1Þ

where the state value V(s) is initialized to 0, takes the value of the
first non-zero (chosen or unchosen) outcome in each context s,
and then remains stable over subsequent trials. The first term of
the question implements range adaptation (divisive normal-
ization) and the second term reference point-dependence
(subtractive normalization). As a result, favorable/unfavorable
outcomes are encoded in a binary scale, despite their absolute
scale. We refer to this model as RELATIVE, while highlighting
here that this model extends and generalizes the so-called
“RELATIVE model” employed in a previous study, since the
latter only incorporated a reference-point-dependence subtractive
normalization term, and not a range adaptation divisive normal-
ization term19.

The third model, referred to as HYBRID, encodes the reward
as a weighted sum of an ABSOLUTE and a RELATIVE reward:

RHYB;t ¼ ω � RREL;t þ ð1� ωÞ � RABS;t ð2Þ

The weight parameter (ω) of the HYBRID model quantifies at
the individual level the balance between absolute (ω= 0.0) and
relative value encoding (ω= 1.0).

The fourth model, referred to as the UTILITY model,
implements the economic notion of marginally decreasing
subjective utility17,22. Since our task included only two non-
zero outcomes, we implemented the UTILITY model by scaling
the big magnitude outcomes (|1€|) with a multiplicative factor
(0.1 < υ <1.0).

Finally, the fifth model, referred to as the POLICY model,
normalizes (range adaptation and reference point correction)
values at the decision step (i.e., in the softmax), where the
probability of choosing ‘a’ over ‘b’ is defined by

Pt s; að Þ ¼ 1

1þ e
Qt s;bð Þ�Qt s;að Þ
Qt s;bð ÞþQt s;að Þ�1β

� � ð3Þ

Model comparison favors the HYBRID model. For each model,
we estimated the optimal free parameters by likelihood max-
imization. The Bayesian Information Criterion (BIC) was then
used to compare the goodness-of-fit and parsimony of the dif-
ferent models. We ran three different optimization and com-
parison procedures, for the different phases of the experiments:
learning sessions only, transfer test only, and both tests. Thus we
obtained a specific fit for each parameter and each model in the
learning sessions, transfer test, and both.

Overall (i.e., across both experiments and experimental
phases), we found that the HYBRID model significantly better
accounted for the data compared to the RELATIVE, the
ABSOLUTE, the POLICY, and the UTILITY models (HYB vs.
ABS T(59)= 6.35, P < 0.0001; HYB vs. REL T(59)= 6.07, P <
0.0001; HYB vs. POL T(59)= 6.79, P < 0.0001; HYB vs. UTY T
(59)= 2.72, P < 0.01). This result was robust across experiments
and across experimental sessions (learning sessions vs. transfer
test) (Table 3). In the main text we focus on discussing the
ABSOLUTE and the RELATIVE models, which are nested within
the HYBRID and therefore represent extreme cases (absent or
complete) of value normalization. We refer to the Supplementary
Methods for a detailed analysis of the properties of the POLICY
and the UTILITY models (Supplementary Figure 1), and
additional model comparison (Supplementary Table 1).

Model simulations falsify the ABSOLUTE and RELATIVE
models. Although model comparison unambiguously favored the
HYBRID model, we next aimed to falsify the alternative models,
using simulations31. To do so, we compared the correct choice
rate in the learning sessions to the model predictions of the
three main models (ABSOLUTE, RELATIVE, and HYBRID).
We generated for each model and for each trial t the probability
of choosing the most favorable option, given the subjects’ history
of choices and outcomes, using the individual best-fitting sets of

Table 2 Symbol choice rate of the transfer test as a function of task factors and option correctness in Experiments 1, 2 and both
experiments

Experiment 1 (N= 20) Experiment 2 (N= 40) Both experiments (N= 60)

F-val P-val F-val P-val F-val P-val

Valence 33.42 1.43e−05*** 43.78 7.23e−08*** 76 3.38e−12***
Favorableness 57.66 3.6e−07*** 149.5 6.46e−15*** 203.5 <2e−16***
Magnitude 2.929 0.103 4.225 0.0466* 0.525 0.472
Val × Fav 4.039 0.0589 6.584 0.0142* 10.8 0.00171**
Val ×Mag 11.68 0.00289** 3.565 0.0665 11.55 0.00122**
Fav ×Mag 10.8 0.00388** 0.441 0.51 4.131 0.0466*
Val × Fav ×Mag 8.241 0.00979** 1.529 0.224 7.159 0.00964**

***P < 0.001; *P < 0.05; **P < 0.01; t-test
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parameters. Concerning the learning sessions, we particularly
focused on the magnitude effect (i.e., the difference in perfor-
mance between big and small magnitude contexts). As expected,
the ABSOLUTE model exacerbates the observed magnitude effect
(simulations vs. data, T(59)= 5.8, P < 0.001). On the other side,
the RELATIVE model underestimates the actual effect (simula-
tions vs. data, T(59)= 3.0, P < 0.004). Finally (and unsurpris-
ingly), the HYBRID model manages to accurately account for the
observed magnitude effect (T(59)= 0.93, P > 0.35) (Fig. 2a, b).
We subsequently compared the choice rate in the transfer test to
the three models’ predictions. Both the ABSOLUTE and the
RELATIVE models failed to correctly predict choice preference in
the transfer test (Fig. 2c). Crucially, both models failed to predict
the choice rate of intermediate value options. The ABSOLUTE
model predicted a quite linear option preference, predicting that
the transfer test choice rate should be highly determined by the
expected utility of the options. On the other side, the RELATIVE
model’s predictions of the transfer test option preferences were
uniquely driven by the option context-dependent favorableness.
Finally, choices predicted by the HYBRID model accurately
captured the observed option preferences by predicting both an
overall correlation between preferences and expected utility and
the violation of the monotony of this relation concerning inter-
mediate value options (Figs. 2d, 3). To summarize, and similarly
to what was observed in previous studies18,19,29, choices in both
the learning and transfer test could not be explained by assuming
that option values are encoded in an absolute manner, nor by
assuming that they are encoded in a fully context-dependent
manner, but are consistent with a partial context dependence. In
the subsequent sections we analyze the factors that affect value
contextualization both within and between subjects.

Relative value encoding emerges during learning. Overall we
found that a weighted mixture of absolute and relative value
encoding (the HYBRID model) better explained the data com-
pared to the “extreme” ABSOLUTE or RELATIVE models.
However, this model comparison integrates over all the trials,
leaving open the possibility that, while on average subjects dis-
played no neat preference for either of the two extreme models,
this result may arise from averaging over different phases in
which one of the models could still be preferred. To test this
hypothesis, we analyzed the trial-by-trial likelihood difference
between the RELATIVE and the ABSOLUTE model. This
quantity basically measures which model better predicts the data
in a given trial: if positive, the RELATIVE model better explains
the data, if negative, the ABSOLUTE model does. We submitted
the trial-by-trial likelihood difference during a learning session to

a repeated measure ANOVA with ‘trial’ (1:80) as within-subject
factor. This analysis showed a significant effect of trial indicating
that the evidence for the RELATIVE and the ABSOLUTE model
evolves over time (F(79)= 6.2, P < 2e−16). Post-hoc tests
revealed two big clusters of trials with non-zero likelihood dif-
ference: a very early cluster (10 trials from the 4th to the 14th)
and a very late one (17 trials from the 62nd to the 78th). To
confirm this results, we averaged across likelihood difference in
the first half (1:40 trials) and in the second half (41:80 trials). In
the first half we found this differential to be significantly negative,
indicating that the ABSOLUTE model better predicted subjects’
behavior (T(59)= 2.1, P= 0.036). In contrast, in the second half
we found this differential to be significantly positive, indicating
that the RELATIVE model better predicted subjects’ behavior (T
(59)= 2.1, P= 0.039). Furthermore, a direct comparison between
the two phases also revealed a significant difference (T(59)= 3.9,
P= 0.00005) (Fig. 4a, b). Finally, consistent with a progressively
increasing likelihood of the RELATIVE compared the ABSO-
LUTE model during the learning sessions, we found that the
weight parameter (ω) of the HYBRID model obtained from the
transfer test (0.50 ± 0.05) was numerically higher compared to
that of the learning sessions (0.44 ± 0.05) (Table 4).

Counterfactual information favors relative value learning. The
two experiments differed in that in the second one (Experiment
2) half of the trials were complete feedback trials. In complete
feedback trials, subjects were presented with the outcomes of both
the chosen and the forgone options. In line with the observation
that information concerning the forgone outcome promotes
state-dependent valuation both at the behavioral and neural
levels18,32, we tested whether or not the presence of such
“counterfactual” feedbacks affects the balance between absolute
and relative value learning. To do so, we compared the negative
log-likelihood difference between the RELATIVE and
the ABSOLUTE model separately for the two experiments. Note
that since the two models have the same number of free
parameters, they can be directly compared using the log-
likelihood. In Experiment 2 (where 50% of the trials were
“complete feedback” trials) we found this differential to be sig-
nificantly positive, indicating that the RELATIVE model better
fits the data (T(39)= 2.5, P= 0.015). In contrast, in Experiment 1
(where 0% of the trials were “complete feedback” trials), we found
this differential to be significantly negative, indicating that the
ABSOLUTE model better fits the data (T(19)= 2.9, P= 0.001).
Furthermore, a direct comparison between the two experiments
also revealed a significant difference (T(58)= 3.9, P= 0.0002)
(Fig. 4c). Accordingly, we also found the weight parameter (ω) of

Table 3 BICs as a function of the dataset used for parameter optimization (Learning sessions, Transfer test or Both) and the
computational model

Experiment 1
(N= 20)

Experiment 2
(N= 40)

Both experiments
(N= 60)

Learning sessions
(nt= 160)

Transfer test
(nt= 112)

Both
(nt= 272)

Learning sessions
(nt= 160)

Transfer test
(nt= 112)

Both
(nt= 272)

Learning sessions
(nt= 160)

Transfer test
(nt= 112)

Both
(nt= 272)

ABSOLUTE
(df= 2/3)

179.8 ± 5.9 113.6 ± 5.7 295.1 ± 9.9 190.9 ± 5.9 126.9 ± 4.1 325.4 ± 6.5 187.2 ± 3.8 122.4 ± 3.4 315.3 ± 5.6

RELATIVE
(df= 2/3)

193.3 ± 4.5 135.8 ± 5.1 329.6 ± 8.0 185.1 ± 5.6 121.1 ± 4.0 306.0 ± 7.3 187.9 ± 4.0 126.0 ± 3.3 313.9 ± 5.7

HYBRID
(df= 3/4)

178.3 ± 6.0 109.3 ± 5.0 284.6 ± 9.1 181.5 ± 5.8 105.8 ± 4.1 290.5 ± 8.0 180.5 ± 4.3 106.9 ± 3.2 288.5 ± 6.1

POLICY
(df= 2/3)

185.4 ± 6.9 123.7 ± 6.3 311.0 ± 12.2 190.1 ± 4.9 139.4 ± 3.9 334.6 ± 6.5 188.5 ± 3.9 134.2 ± 3.4 326.7 ± 6.0

UTILITY
(df= 3/4)

173.9 ± 6.5 107.5 ± 6.3 282.2 ± 10.8 183.4 ± 5.6 123.1 ± 4.5 310.1 ± 7.1 180.2 ± 4.3 117.9 ± 3.8 300.8 ± 6.2

Nt, number of trials; df, degree of freedom
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the HYBRID model to be significantly higher in Experiment 2
compared to Experiment 1 (T(58)= 2.8, P= 0.007) (Fig. 4d).
Finally, consistently with reduced relative value learning, we
found that the correct choice difference between the 1€ and the
0.1€ contexts in Experiment 1 (mean: +0.10; range: −0.24/+0.51)
was 189.5% of that observed in Experiment 2 (mean: +0.05;
range: −0.32/+0.40).

Explicit grasp of task structure links to relative valuation. In
our learning protocol the fact that options were presented in fixed
pairs (i.e., contexts) has to be discovered by subjects, because the
information was not explicitly given in the instructions and
the contexts were not visually cued. In between the learning and
the transfer phases subjects were asked whether or not they
believed that options were presented in fixed pairs and how many
pairs there were (in the second session). Concerning the first
question (“fixed pairs”), 71.7% of subjects responded correctly.
Concerning the second question (“pairs number”), 50.0% of
subjects responded correctly and the average number of pairs was
3.60 ± 0.13, which significantly underestimated the true value
(four: T(59)= 3.0, P= 0.0035). To test whether or not the explicit

knowledge of the subdivision of the learning task in discrete
choice contexts was correlated with the propensity to learn
relative values, we calculated the correlation between the number
of correct responses in the debriefing (0, 1, or 2) and the weight
parameter (ω) of the HYBRID model. We found a positive and
significant correlation (R2= 0.11, P= 0.009) (direct comparison
of the weight parameter (ω) between subjects with 0 vs. 2 correct
responses in the debriefing: T(37)= 2.8, P= 0.0087) (Fig. 4e). To
confirm this result, we ran the reciprocal analysis, by splitting
subjects into two groups according to their weight parameter and
we found that subjects with ω>0.5 had a significantly higher
number of correct responses in the debriefing compared to sub-
jects with ω<0.5 (T(58)= 3.0, P= 0.0035) (Fig. 4f).

Rational and irrational consequences of relative valuation.
Previous behavioral analyses, as well as model comparison results,
showed that a mixture of relative and absolute value learning (the
HYBRID model) explained subjects’ behavior. In particular,
during the learning sessions, subjects displayed a correct choice
difference between the 1€ and the 0.1€ contexts smaller than that
predicted by the ABSOLUTE model. During the transfer test, the
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response pattern indicated, consistent with the RELATIVE
model, “correct” options with lower expected utility were often
preferred to “incorrect” options with higher expected utility. To
formally test the hypothesis that relative value learning is posi-
tively associated with correct choice in the learning phase (i.e.,
rational) and negatively associated with correct choice (i.e., choice
of the option with the highest absolute value) in the transfer
phase (i.e., irrational), we tested the correlation between correct
choice rates in these two phases and the weight parameter (ω),
which quantifies the balance between the ABSOLUTE (ω= 0.0)
and RELATIVE models (ω= 1.0). Consistent with this idea we
found a positive and significant correlation between the weight
parameter and the correct choice rate in the 0.1€ contexts (R2=
0.19, P= 0.0005) and a negative and significant correlation
between the same parameter and the correct choice rate in the
transfer test (R2= 0.42, P= 0.00000003) (Fig. 4g, h). This means
that, the better a subject was at picking the correct option during
the learning phase (rational behavior), the least often she would
pick the option with the highest absolute value during the test
phase (irrational behavior).

Discussion
In the present paper, we investigated state-dependent valuation in
human reinforcement learning. In particular, we adapted a task
designed to address the reference-dependence19 to include an
additional manipulation of the magnitude of outcomes, in order
to investigate range-adaptation26. In the learning sessions, ana-
lyses of behavioral data showed that the manipulation of outcome
magnitude had a significant effect on learning performance, with
high-magnitude outcomes inducing better learning compared to
low-magnitude outcomes. On the contrary, and in line with what
we reported previously19, the manipulation of outcome valence
had no such effect. In the transfer test, participants exhibited
seemingly irrational preferences, sometimes preferring options
that had objectively lower expected values than other options.
Crucially, these irrational preferences are compatible with state-
dependent valuation.

State-dependent (or context-dependent) valuation has been
ascribed to a large number of different behavioral, neural and
computational manifestations16. Under this rather general
umbrella, reference-dependence and range-adaptation constitute
two specific, and in principle dissociable, mechanisms: on the one
hand, reference-dependence is the mechanism through which, in
a context where monetary losses are frequent, loss avoidance (an
affective neural event) is experienced as a positive outcome. On
the other hand, range-adaptation is the mechanism through
which, in contexts with different outcome magnitudes (i.e.,

different affective saliency), high-magnitude and low-magnitude
outcomes are experienced similarly.

In order to formally and quantitatively test for the presence of
these two components of state-dependent valuation in our
experimental data, we used computational modeling. Our model
space included two ‘extreme’ models: the ABSOLUTE and the
RELATIVE models. The ABSOLUTE model learns the context-
independent—absolute—value of available options. In contrast,
the RELATIVE model implements both reference-dependence
and range-adaptation (‘full’ adaptation29). These two ‘extreme’
models predict radically different choice patterns in both the
learning sessions and the transfer test. While the ABSOLUTE
model predicts a big effect of outcome magnitude in the learning
sessions and rational preferences in the transfer test, the RELA-
TIVE model predicts no magnitude effect and highly irrational
preferences in the transfer test. Specifically, according to the
RELATIVE model, the choices in the transfer test are not affected
by the outcome valence or by the outcome magnitude, but
dominated by options’ context-dependent favorableness factor.
Comparison between model simulations and experimental data
falsified both models31, since in both the learning sessions and in
the transfer test, subjects performance lied in between the pre-
dictions of the ABSOLUTE and RELATIVE models. To account
for this pattern we designed a HYBRID model. The HYBRID
model implements a trade-off between the absolute and relative
learning modules, which is governed by an additional free para-
meter (‘partial adaptation’29). Owing to this partial adaptation,
the HYBRID model accurately accounts for the performance in
the learning sessions and for the preferences expressed in the
transfer test, including the preference inversion patterns.

Using model comparison, we attempted to provide a specific
description of the process at stake in our task, and ruled out
alternative accounts of normalization. Crucially, normalization
can be implemented as an adaptation over time of the valuation
mechanism to account for the distribution of option values
encountered in successive choices, or as a time-independent
decision mechanism limited to the values of options considered
in one choice event24,33. In the present case, model comparison
favored the HYBRID model, which implements a time-adapting
value normalization against the POLICY model, which imple-
ments a time-independent decision normalization. This result
derives from the fact that during the learning sessions, the
POLICY model uses a divisive normalization at the moment of
choice to level the learning performance in different contexts
(e.g. big and small magnitudes), while still relying on learning
absolute values25. Therefore, these absolute values cannot pro-
duce the seemingly irrational preferences observed in the transfer
test.

Table 4 Model parameters of the HYBRID model as a function of the dataset used for parameter optimization (learning sessions,
transfer test or Both) and the computational model

Experiment 1
(N= 20)

Experiment 2
(N= 40)

Both experiments
(N= 60)

Learning
sessions

Transfer
test

Both Learning
sessions

Transfer
test

Both Learning
sessions

Transfer
test

Both

β 0.15 ± 0.04 0.12 ± 0.03 0.09 ±
0.02

0.30 ± 0.11 0.13 ±
0.04

0.17 ±
0.04

0.25 ± 0.08 0.13 ± 0.03 0.15 ±
0.03

αF 0.25 ± 0.06 0.30 ± 0.08 0.14 ±
0.04

0.23 ± 0.04 0.34 ±
0.07

0.20 ±
0.04

0.24 ± 0.04 0.33 ± 0.05 0.18 ±
0.03

αC — — — 0.16 ± 0.04 0.25 ±
0.05

0.16 ±
0.03

— — —

ω 0.29 ± 0.07 0.34 ± 0.06 0.34 ±
0.06

0.52 ± 0.06 0.58 ±
0.06

0.58 ±
0.05

0.44 ± 0.05 0.50 ± 0.05 0.50 ±
0.04
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The idea that the magnitude of available outcomes is somewhat
rescaled by decision-makers is the cornerstone of the concept of
utility22. In economics, this magnitude normalization is con-
sidered a stable property of individuals, and typically modeled
with a marginally decreasing utility function whose parameters
reflect individual core preferences34,35 This approach was
implemented in the UTILITY model, present in our model space.
However, this model did not provide a satisfactory account of the
behavioral data, and hence was not favored by the model-
comparison approach. Similarly to the case of the POLICY
model, this result derives from the fact that the UTILITY model
cannot account for the emergence of reference-dependence,
which is necessary to produce preference reversals between the
symbols of opposite valence in the transfer test. Crucially, correct
choice rate during the learning sessions were equally well pre-
dicted by the UTILITY and the HYBRID models, thus high-
lighting the importance of using a transfer test, where options are
extrapolated from original contexts, to challenge computational
models of value learning and encoding19,36,37.

Overall, our model comparison (based on both goodness-of-fit
criteria and simulation-based falsification) favored the HYBRID
model, which indicates that the pattern of choices exhibited by
our subjects in the learning sessions and in the transfer test is
most probably the result of a trade-off between absolute and
relative values. In the HYBRID model, this trade-off was imple-
mented by a subject-specific weight parameter (ω), which quan-
tified the relative influence of the normalized vs. absolute value-
learning modules. A series of subsequent analyses revealed that
several relevant factors affect this trade-off. First, we showed
using an original trial-by-trial model comparison that the trade-
off between absolute value-learning and normalized value learn-
ing implemented by the HYBRID model is progressive and gra-
dual. This is an important novelty compared to previous work
which only suggested such progressivity by showing that value
rescaling was dependent of progressively acquired feedback
information19. Note that learning normalized value ultimately
converges to learning which option of a context is best, regardless
of its valence or relative value compared to the alternative option.
Second, and in line with the idea that information concerning the
forgone outcome promotes state-dependent valuation18,32, we
also found that the relative weight of the normalized-value
learning module (ω) increased when more information was
available (counterfactual feedback). Finally, individuals whose
pattern of choices was indicative of a strong influence of the
normalized value learning module (i.e., with higher ω) appeared
to have a better understanding of the task, assessed in the
debriefing. Future research, using larger sample sizes and more
diversified cohorts, will indicate whether or not the weight
parameter (and therefore the value contextualization process) is
useful to predict real life outcomes in terms of socio-economics
achievements and psychiatric illness.

Overall, these findings suggest that value normalization is the
results of a ‘high-level’—or ‘model-based’—process through
which outcome information is not only used to update action
values, but also to build an explicit representation of the
embedding context where outcomes are experienced. Consistent
with this interpretation, value normalization has recently been
shown to be degraded by manipulations imposing a penalty for
high-level costly cognitive functions, such as high memory load
conditions in economic decision-making tasks38. One can also
speculate that value contextualization should be impaired under
high cognitive load39 and when outcome information is made
unconscious40. Future research using multi-tasking and visual
masking could address these hypotheses41. An additional feature
of the design suggests that this value normalization is an active
process. In our paradigm the different choice contexts were

presented in an interleaved manner, meaning that a subject could
not be presented with the same context more than a few times in
a row. Therefore, contextual effects could not be ascribed to slow
and passive habituation (or sensitization) processes.

Although the present results, together with converging evi-
dence in economics and psychology, concordantly point that
state-dependent valuation is needed to provide a satisfactory
account of human behavior, there is still an open debate con-
cerning the exact implementation of such contextual influences.
In paradigms where subjects are systematically presented with full
feedback information, it would seem that subjects simply encode
the difference between obtained and forgone outcome, thus
parsimoniously achieving full context-dependence without
explicitly representing and encoding state value18,32. However,
such models cannot be easily and effectively adapted to tasks
where only partial feedback information is available. In these
tasks, context-dependence has been more efficiently implemented
by assuming separate representational structures for action and
state values which are then used to center action-specific pre-
diction errors19,20. In the present paper, we implemented this
computational architecture in the HYBRID model, which builds
on a partial adaptation scheme between an ABSOLUTE and a
RELATIVE model. Although descriptive by nature, such hybrid
models are commonly used in multi-step decision-making para-
digms, e.g., to implement trade-offs between model-based and
model free learning42–44, because they allow to readily quantify
the contributions of different learning strategies, and to
straightforwardly map to popular dual-process accounts of
decision-making45,46. In this respect, future studies adapting the
present paradigm for functional imaging will be crucial to assess
whether absolute and relative (i.e., reference-point centered and
range adapted) outcome values are encoded in different regions
(dual valuation), or whether contextual information is readily
integrated with outcome values in a single brain region (partial
adaptation). However, it should be noted that previous studies
using similar paradigms, consistently provided support for the
second hypothesis, by showing that contextual information is
integrated in a brain valuation system encompassing both the
ventral striatum and the ventral prefrontal cortex, which therefore
represent ‘partially adapted’ values19,20,29. This is corroborated by
similar observations from electrophysiological recordings of sin-
gle neurons in monkeys26,27,47,48.

As in our previous study19,28, we also manipulated outcome
valence in order to create ‘gain’ and ‘loss’ decision frames. While
focusing on the results related to the manipulation of outcome
magnitude, which represented the novelty of the present design,
we nonetheless replicated previous findings indicating that sub-
jects perform equally well in both decision frames and that this
effect is parsimoniously explained assuming relative value
encoding. This robust result contradicts both standard reinfor-
cement principles and behavioral economic results. In the context
of animal learning literature, while Thorndike’s famous law of
effect parsimoniously predicts reward maximization in a ‘gain’
decision frame, it fails to explain punishment minimization in the
‘loss’ frame. Mower elegantly formalized this issue49 (‘how can a
shock that is not experienced, i.e., which is avoided, be said to
provide […] a source of […] satisfaction?’) and proposed the two-
factor theory that can be seen as an antecedent of our relative
value-learning model. In addition, the gain/loss behavioral sym-
metry is surprising with respects to behavioral economic theory
because it contradicts the loss aversion principle17. In fact, if
‘losses loom larger than gains’, one would predict a higher correct
response rate in the ‘loss’ compared to the ‘gain’ domain in our
task. Yet, such deviations to standard behavioral economic theory
are not infrequent when decisions are based on experience rather
than description50, an observation referred to as the “experience/
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description gap”51,52. While studies of the “experience/descrip-
tion gap” typically focus on deviations regarding attitude risky
and rare outcomes, our and other groups’ results indicate that a-
less documented but nonetheless—robust instance of the
experience/description gap is precisely the absence of loss
aversion3,53.

To conclude, state-dependent valuation, defined as the com-
bination of reference-point dependence and range-adaptation, is
a double-edged sword of value-based learning and decision-
making. Reference-point dependence provides obvious beneficial
behavioral consequences in punishment avoidance contexts and
range-adaptation allows to perform optimally when decreasing
outcome magnitudes. The combination of these two mechanisms
(implemented in the HYBRID model) is therefore accompanied
with satisfactory learning performance in all proposed contexts.
However, these beneficial effects on learning performance are
traded-off against possible suboptimal preferences and decisions,
when options are extrapolated from their original context. Cru-
cially, our results show that state-dependent valuation remains
only partial. As a consequence, subjects under-performed in the
learning sessions relative to full context-dependent strategies
(RELATIVE model), as well as in the transfer test relative to
absolute value strategies (ABSOLUTE model). These findings
support the idea that bounded rationality may not only arise from
intrinsic limitations of the brain computing capacity, but also
from the fact that different situations require different valuation
strategies to achieve optimal performance. Given the fact that
humans and animals often interact with changing and probabil-
istic environments, apparent bounded rationality may simply be
the result of the effort for being able to achieve a good level of
performance in a variety of different contexts. These results shed
new light on the computational constraints shaping everyday
reinforcement learning abilities in humans, most-likely set by
evolutionary forces to optimally behave in ecological settings
featuring both changes and regularities36.

Methods
Experimental subjects. We tested 60 subjects (39 females; aged 22.3 ± 3.3 years).
Subjects were recruited via Internet advertising in a local mailing-list dedicated to
cognitive science-related activities. We experienced no technical problems, so we
were able to include all 60 subjects. Experiment 1 included 20 subjects. The sample
size was chosen based on previous studies. Experiment 2 included 40 subjects: we
doubled the sample size because Experiment 2 involved a more complex design
with an additional factor (see below). The research was carried out following the
principles and guidelines for experiments including human participants provided
in the declaration of Helsinki (1964, revised in 2013). The local Ethical Committee
approved the study and subjects provided written informed consent prior to their
inclusion. To sustain motivation throughout the experiment, subjects were given a
bonus dependent on the actual money won in the experiment (average money won:
3.73 ± 0.27, against chance T(59)= 13.9, P < 0.0001).

Behavioral protocol. Subjects performed a probabilistic instrumental learning task
adapted from previous imaging and patient studies19. Subjects were first provided
with written instructions, which were reformulated orally if necessary. They were
explained that the aim of the task was to maximize their payoff and that seeking
monetary rewards and avoiding monetary losses were equally important. For each
experiment, subjects performed two learning sessions. Cues were abstract stimuli
taken from the Agathodaimon alphabet. Each session contained four novel pairs of
cues. The pairs of cues were fixed, so that a given cue was always presented with the
same other cue. Thus, within sessions, pairs of cues represented stable choice
contexts. Within sessions, each pair of cues was presented 20 times for a total of 80
trials. The four cue pairs corresponded to the four contexts (reward/big magnitude,
reward/small magnitude, loss/big magnitude, and loss/small magnitude). Within
each pair, the two cues were associated to a zero and a non-zero outcome with
reciprocal probabilities (0.75/0.25 and 0.25/0.75). On each trial, one pair was
randomly presented on the left and the right side of a central fixation cross. Pairs or
cues were presented in a pseudo-randomized and unpredictable manner to the
subject (intermixed design). The side in which a given cue was presented was also
pseudo-randomized, such that a given cue was presented an equal number of times
in the left and the right of the central cue. Subjects were required to select between
the two cues by pressing one of the corresponding two buttons, with their left or
right thumb, to select the leftmost or the rightmost cue, respectively, within a

3000 ms time window. After the choice window, a red pointer appeared below the
selected cue for 500 ms. At the end of the trial, the cues disappeared and the
selected one was replaced by the outcome (“+1.0€”, “+0.1€”, “0.0€”, “−0.1€” or
“−1.0€”) for 3000 ms. In Experiment 2, in the complete information contexts (50%
of the trials), the outcome corresponding to the unchosen option (counterfactual)
was displayed. A novel trial started after a fixation screen (1000 ms, jittered
between 500 and 1500 ms). After the two learning sessions, subjects performed a
transfer test. This transfer test involved only the eight cues (2*4 pairs) of the last
session, which were presented in all possible binary combinations (28, not
including pairs formed by the same cue) (see also ref. 18). Each pair of cues was
presented four times, leading to a total of 112 trials. Instructions for the transfer
test were provided orally after the end of the last learning session. Subjects were
explained that they would be presented with pairs of cues taken from the last
session, and that all pairs would not have been necessarily displayed together
before. On each trial, they had to indicate which of the cues was the one with the
highest value by pressing on the buttons as in the learning task. Subjects were also
explained that there was no money at stake, but encouraged to respond as they
would have if it were the case. In order to prevent explicit memorizing strategies,
subjects were not informed that they would have to perform a transfer test until the
end of the second (last) learning sessions. Timing of the transfer test differed from
that of the learning sessions in that the choice was self-paced and in the absence of
outcome phase. During the transfer test, the outcome was not provided in order
not to modify the option values learned during the learning sessions. Between the
leaning sessions and the transfer test subjects were interviewed in order to probe
the extent of their explicit knowledge of the task’s structure. More precisely the
structured interview assessed: (1) whether or not the subjects were aware about the
cues being presented in fixed pairs (choice contexts); (2) how many choice contexts
they believed were simultaneously present in a learning session. The experimenter
recorded the responses, but provided no feedback about their correctness in order
to not affect subjects’ performance in the transfer test.

Model-free analyses. For the two experiments, we were interested in three dif-
ferent variables reflecting subjects’ learning: (1) correct choice rate (i.e., choices
directed toward highest expected reward or the lowest expected loss) during the
learning task of the experiment. Statistical effects were assessed using multiple-way
repeated measures ANOVAs with feedback valence, feedback magnitude, and
feedback information (in Experiment 2 only) as within-subject factors; (2) correct
choice rate during the transfer test, i.e., choosing the option with the highest
absolute expected value (each symbol has a positive or negative absolute expected
value, calculated as Probability(outcome) ×Magnitude(outcome)); and (3) choice
rate of the transfer test (i.e., the number of times an option is chosen, divided by
the number of times the option is presented). The variable represents the value
attributed to one option, i.e., the preference of the subjects for each of the symbols.
Transfer test choice rates were submitted to multiple-way repeated measures
ANOVAs, to assess the effects of option favorableness (being the most advanta-
geous option of the pair), feedback valence and feedback magnitude as within-
subject factors. In principle, probabilistic designs like ours the theoretical values
(i.e., imposed by design) of the contexts and options may not correspond to the
outcomes experienced by subjects. To verify that our design-based categories used
in the ANOVAs analyses were legitimated, we checked the correlation between the
theoretical and the empirical values of the outcomes. The results indicate that there
was no systematic bias (R > 0.99; and 0.9 < slope < 1.2). Post-hoc tests were per-
formed using one-sample t-tests. To assess overall performance, additional one-
sample t-tests were performed against chance level (0.5). Correct choice rates from
the learning test meet a normal distribution assumption (Kolmogorov–Smirnov
test: K(60)= 0.087, P > 0.72; Lilliefors test: K(60)= 0.087, P > 0.30), as well as
correct choice rates from the transfer test (Kolmogorov–Smirnov test: K(60)=
0.092, P > 0.65; Lilliefors test: K(60)= 0.092, P > 0.22). All statistical analyses were
performed using Matlab (www.mathworks.com) and R (www.r-project.org).

Model space. We analyzed our data with extensions of the Q-learning
algorithm4,54. The goal of all models was to find in each choice context (or state)
the option that maximizes the expected reward R.

At trial t, option values of the current context s are updated with the
Rescorla–Wagner rule5:

Qtþ1 s; cð Þ ¼ Qt s; cð Þ þ αcδc;t
Qtþ1 s; uð Þ ¼ Qt s; uð Þ þ αuδu;t

ð4Þ

where αc is the learning rate for the chosen (c) option and αu the learning rate for
the unchosen (u) option, i.e., the counterfactual learning rate. δc and δu are
prediction error terms calculated as follows:

δc;t ¼ Rc;t � Qtðs; cÞ
δu;t ¼ Ru;t � Qtðs; uÞ

ð5Þ

δc is updated in both partial and complete feedback contexts and δu is updated
in the complete feedback context only (Experiment 2, only).
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We modeled subjects’ choice behavior using a softmax decision rule
representing the probability for a subject to choose one option a over the other
option b:

Pt s; að Þ ¼ 1

1þ e
Qt s;bð Þ�Qt ðs;aÞ

β

� � ð6Þ

where β is the temperature parameter. High temperatures cause the action to be all
(nearly) equi-probable. Low temperatures cause a greater difference in selection
probability for actions that differ in their value estimates4.

We compared four alternative computational models: the ABSOLUTE model,
which encodes outcomes in an absolute scale independently of the choice context
in which they are presented; the RELATIVE model which encodes outcomes on a
binary (correct/incorrect) scale, relative to the choice context in which they are
presented55; the HYBRID model, which encodes outcomes as a weighted sum of
the absolute and relative value; the POLICY model, which encodes outcome in an
absolute scale, but implements divisive normalization in the policy.

ABSOLUTE model. The outcomes are encoded as the subjects see them as feed-
back. A positive outcome is encoded as its “real” positive value (in euros) and a
negative outcome is encoded as its “real” negative value (in euros):
RABS;t 2 �1:0€;�0:1€; 0:0€; 0:1€; 1:0€f g:

RELATIVE model. The outcomes (both chosen and unchosen) are encoded on a
context-dependent correct/incorrect relative scale. The model assumes the effective
outcome value to be adapted to the range of the outcomes present in a given
context. The option values are no longer calculated in an absolute scale, but
relatively to their choice context value: in the delta-rule, the correct option is
updated with a reward of 1 and the incorrect option is updated with a reward of 0.
To determine the context of choice, the model uses a state value V(s) stable over
trials, initialized to 0, which takes the value of the first non-zero (chosen or
unchosen) outcome in each context s.

RREL;t ¼
RABS;t

VtðsÞj j þmax 0;
�VtðsÞ
VtðsÞj j

� �
ð7Þ

Thus, the outcomes (chosen and unchosen) are now normalized to a context-
dependent correct/incorrect encoding: RREL;t 2 0; 1f g. The chosen and unchosen
option values and prediction errors are updated with the same rules as in the
ABSOLUTE model.

HYBRID model. At trial t the prediction errors of the chosen and unchosen
options are updated as a weighted sum of the absolute and relative outcomes:

RHYB;t ¼ ω � RREL;t þ ð1� ωÞ � RABS;t ð8Þ

where ω is the individual weight. At each trial t, the model independently encodes
both outcomes as previously described and updates the final HYBRID outcome:

RHYB;t ¼
RABS;t if ω ¼ 0

RREL;t if ω ¼ 1

(

The chosen and unchosen option values and prediction errors are updated with
the same rules as in the ABSOLUTE model. If the RELATIVE model is
conceptually similar to a policy-gradient algorithm, because it does not encode
cardinal option values but only context-dependent ordinal preferences, the
HYBRID model is reminiscent of a recently proposed model that features an
interaction between a Q-learning and an actor-critic56,57.

UTILITY model. We also considered a fourth UTILITY model, which implements
the economic notion of marginally decreasing subjective utility at the outcome
encoding step17,22. The big magnitude outcomes (|R|= 1) are re-scaled with a
multiplicative factor 0.1 < υ < 1.0:

RUTY;t ¼ υ � RABS;t if Rj j ¼ 1 ð9Þ

POLICY model. Finally, we considered a fith POLICY model that encodes option
values as the ABSOLUTE model and normalizes them in the softmax rule, i.e., at
the decision step only25,26,47:

Pt s; að Þ ¼ 1

1þ e
Qt s;bð Þ�Qt ðs;aÞ
Qt s;bð ÞþQt ðs;aÞ�

1
β

� � ð10Þ

Additional computational hypotheses are addressed (and rejected) in the
Supplementary Methods.

Model fitting, comparison, and simulation. Specifically for the learning sessions,
transfer test, and both, we optimized model parameters, the temperature β, the
factual learning rate αF, the counterfactual learning rate αC (in Experiment 2 only)
and the weight ω (in the HYBRID model only), by minimizing the negative log
likelihood LLmax using Matlab’s fmincon function, initialized at starting points of 1
for the temperature and 0.5 for the learning rates and the weight. As a quality check
we replicated this analysis using multiple starting points and this did not change
the results (Supplementary Table 2). We computed at the individual level the BIC
using, for each model, its number of free parameters df (note that the Experiment 2
has an additional parameter αC) and the number of trials ntrials (note that this
number of trials varies with the optimization procedure: learning sessions only,
160, transfer test only, 112, or both, 272):

BIC ¼ 2 � LLmax þ log ntrialsð Þ � df ð11Þ

Model estimates of choice probability were generated trial-by-trial using the
optimal individual parameters. We made comparisons between predicted and
actual choices with a one-sample t-test and tested models’ performances out of the
sample by assessing their ability to account for the transfer test choices. On the
basis of model-estimate choice probability, we calculated the log-likelihood of
learning sessions and transfer test choices that we compared between
computational models. Finally, we submitted the model-estimate transfer-test
choice probability to the same statistical analyses as the actual choices (ANOVA
and post-hoc t-test; within-simulated data comparison) and we compared modeled
choices to the actual data. In particular, we analyzed actual and simulated correct
choice rates (i.e., the proportions of choices directed toward the most advantageous
stimulus) and compared transfer-test choices for each symbol with a sampled t-test
between the behavioral choices and the simulated choices.

Code availability. All custom scripts have been made available from Github
repository https://github.com/sophiebavard/Magnitude. Additional modified
scripts can be accessed upon request.

Data availability
Data that support the findings of this study are available from Github repository https://
github.com/sophiebavard/Magnitude.
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