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Abstract. A new methodology for particle identification and localization in the

context of particle tracking velocimetry (PTV) is presented. The aim is to overcome

the issue of inherent detection errors under high particle density conditions. The

approach is based on the particle position reconstruction through the inversion of a

linear model connecting the PTV signal with a particle-based representation of the 3D-

to-2D projection. The inversion procedure accounts for both the nonnegativity and the

sparsity of the sought solution. Simulation tests using synthetically generated images

are carried out to evaluate the sensitivity of the proposed method to characteristic

parameters such as, the particle image density, the particle image size, the model image

size, and/or background noise. Its ability to provide better detection performances with

high reliability than conventional techniques is demonstrated.

Keywords: PTV, detection, image reconstruction, sparsity, optimization
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1. Introduction

Spatio-temporally resolved velocity measurements techniques based on image analysis

are generally classified into two main categories: particle image velocimetry (PIV) and

particle tracking velocimetry (PTV). Both rely on seeding particles embedded in a

flow field that are made visible within a thin laser sheet and imaged in successive

frames separated by a small time interval. PIV essentially tracks features within

prescribed regions of the image (interrogation areas). Although it has progressed to

a very robust and accurate level, it still suffers from an inherent averaging effect over

the area of the interrogation window, which decreases the maximum velocity gradients

that can be measured (Scarano 2003, Nogueira et al. 2005). Therefore, characteristic

quantities of small-scales turbulent flows, such as the mean energy dissipation rate, are
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Particle Image Reconstruction for particle detection in PTV 2

still challenging to determine from the direct differentiation of the PIV data (Tanaka

& Eaton 1998, Saarenrinne & Piirto 2000, Krawczynski et al. 2010). Inhomogeneous

seeding in the vicinity of walls or interfaces also affects the PIV capability to resolve

the strong velocity gradients associated with these flow-regions (Kahler et al. 2012). As

for PTV, it tracks individual particles and mostly relies on the positional information

of, potentially, a large amount of imaged particles. The velocity field results from a

matching procedure between the identified particles in (generally a pair of) successive

images. Therefore the smallest resolved scales of the flow depend theoretically only on

the mean spacing between particles and the time interval, ∆t between frames.

Feng et al. (2011) identified two kinds of velocity errors in PTV. The first kind

arises from the particle acceleration, whether due to a change in its speed or its

direction, during the time interval between the measurement of its position. This error

is unavoidable as long as the motion is unknown, but its amplitude depends on the

algorithm used for calculating the displacement from the matched particles. The second

kind of error results from uncertainties in the determination of the particle positions. To

demonstrate the combined effect of both sources of errors, Feng et al. (2011) simulated

a single particle in a uniform circular motion over a duration of 1000 periods. A random

error chosen from a Gaussian distribution was added to the true position to model

a measurement error. Their analysis showed that the total velocity error is strongly

affected by the particle position uncertainty for small ∆t, whereas it is mainly due

to the particle acceleration at large ∆t only. Undoubtedly, actual flows with strong

local velocity gradients require very small time intervals to be fully characterized. As

a consequence, whereas the democratization of the high frame–rate scientific cameras

reduces the impact of the unknown motion on the velocity error, the uncertainty in the

particle position often becomes the main source of velocity error.

For low seeding-densities with homogeneous particle size distributions, the

determination of the particle position is trivial because diffraction limited imaging

theory indicates that each particle results in a single peak in the image and its intensity

distribution can be approximated by a two-dimensional (2D) Gaussian function (Raffel

et al. 2007). Therefore, the particle identification and localization are usually performed

after segmentation of the image into meaningful regions followed by a 1- or 2-D

Gaussian fit applied to the pixels in the vicinity of a local intensity maximum (Cowen &

Monismith 1997, Marxen et al. 2000, Ohmi & Li 2000, Mikheev & Zubtsov 2008, Brady

et al. 2009). The simplest and most commonly utilized method for particle identification

is the threshold binarization which consists in grouping adjacent pixels into blobs

provided their intensities is above a given threshold value. The dynamic threshold

binarization (DTB) method proposed by Ohmi & Li (2000) and modified by Mikheev

& Zubtsov (2008) locally adjusts the threshold value until either the mean gray level

(Ohmi & Li 2000) or the local maximum intensity (Mikheev & Zubtsov 2008) is less than

a preset contrast level. Likewise, the erosion/dilatation thresholding (EDT) method

(Cardwell et al. 2011) is based on morphological operations and was purposely designed

to protect local maxima. Although DTB and EDT are fast and easy to implement, they
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Particle Image Reconstruction for particle detection in PTV 3

are unable to deal with the identification of overlapped particles. Other approaches that

strive to find the particle location as the maximum of correlation between a model image

of the particle and the original image are to be mentioned (Takehara & Etoh 1999). The

cascade correlation method (CCM) proposed by Angarita-Jaimes et al. (2009) suggests

that instead of applying the cross-correlation once with the particle mask image, a

cascade of cross-correlation makes the correlation peak narrower, thus decreasing the

critical separation distance at which two overlapped particles are resolved. Lei et al.

(2012) further improved the accuracy of the CCM algorithm with the use of a Gaussian

surface fit instead of a 5-point 2-D Gaussian fit to find the sub-pixel peak location.

Whatever the adopted strategy is, when the particle density increases, the

individual-particle detection and localization efficiency is decreased due to a higher

probability of overlapping particles with possibly different sizes, shapes and brightness

levels.

In this paper, we present a 2D particle detection algorithm applicable to high-

density particle images. The general idea is to reconstruct particle positions in a discrete

approach, using an imaging model. This method is derived from the tomographic

reconstruction developed for 3D-PIV (Elsinga et al. 2006) and from the particular

approach developed by Champagnat et al. (2014). It is designed with the aim at:

1) minimizing the contribution of the particle localization uncertainty in the error of

the velocity field ; 2) maximizing the spatial resolution which is of major importance for

many applications in fluid mechanics ; 3) minimizing its sensitivity to the characteristic

noise inherent to experimental data. The reliability of this method is evaluated with

simulation tests performed on synthetic images with adjustable parameters (particle

density, overlap ratio, additive noise).

The paper is organized as follows. First the particle identification-based algorithm

is described in section 2. Details about the generation of the synthetic database are given

in section 3.1 and the statistical tools used to evaluate the detection and localization

performances are presented in section 3.2. The results of the simulations are thoroughly

covered in sections 4 and 5.

2. The particle image reconstruction (PIR) problem

Recently, the development of the so-called tomographic PIV shifted the velocity

measurements towards a 3D framework. The 3D motion of the flow is deduced from the

volumetric reconstruction of the particles intensity distribution immersed in the flow of

interest (Elsinga et al. 2006). The essential of the mathematical abstraction behind this

technique is the projection model between the 3D space of the seeding particles and the

2D space of their related recorded signal in the multiview images. This projection model

is based on a calibration procedure and the physical knowledge of the process. Every

model in the literature takes the form of a linear connection between the 3D distribution

of the particles and the set of multiview images:

Ax = b, (1)
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Particle Image Reconstruction for particle detection in PTV 4

where b gathers the pixels from the multiview images, x collects the intensities of the

particles within the illuminated volume and the matrix A depends on the nature of the

projection model. Therefore, the volume reconstruction of the particles distribution

results from the inversion problem of a linear system. Two different conceptual

representations of the projection model have been adopted to build the matrix A.

On historical basis, the tomographic model introduced in the seminal paper (Elsinga

et al. 2006) has been used with success in many contributions of the 3D-PIV community.

It assumes that the pixel intensity is the result of an integration process along the light

of sight of the particles intensity, spatially distributed in the volume. On the other hand,

a physics-driven representation based on the intrinsic properties of the optical system

(essentially its aperture diffraction) has been derived to model the image formation

(Champagnat et al. 2014). Interestingly, whereas both models have been designed with

the aim at representing the same physical problem, they exhibit some major differences.

While the tomographic model approach obtains a smooth blob-reconstruction from the

point spread function footprint (PSF) on the 2D images, the particle approach builds a

sparse vector indicating the position of a particle within a few voxels and their associated

intensities. We propose in this paper to take advantage of this particular feature and set

forth a particle image reconstruction approach written in the form of (1). The inversion

of the latter seeks the 2D density signal in a sparse space, with the aim of recovering

the localizations of particles with, potentially, large overlapping ratios.

We expose below details about the image model based on the concept of point

spread function in section 2.1. Specificities about the inversion procedure of the linear

problem are discussed in section 2.2. In the last part of this section, further information

is given about the implementation of this method and the final localization process

(section 2.3).

2.1. The PSF model

Assuming P particles seen as point sources of intensity Ep and located at X in the

region of interest, Champagnat et al. (2014) proposed to model the image intensity I

at a point x ∈ R2 of the image as:

I(x) =
P∑

p=1

EphXp(x− F (Xp)), (2)

where F : R3 → R2 is the projection operator of a 3D point in the volume onto the

image plane and the function h : R2 → R+ is the so-called point spread function (PSF)

modeling the formation of the Airy-spots on the image. Therein, the PSF is written as

a 2D integrated Gaussian intensity distribution characterized by its standard deviation

σpsf . This approximation is close to the Airy function given by the Fraunhofer diffraction

theory of a monochromatic spot through a circular lens. It is accurate as long as the

dimension of the particle in the test section is small compared to the impulse response

of the optical system as it is generally the case (Lecordier et al. 2004). We note however
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Particle Image Reconstruction for particle detection in PTV 5

that the PSF is not restricted to Airy-like functions as it can also take into account, if

duly calibrated, defocalisation, astigmatism and other optical effects.

Whereas the tomographic PIV aims at constructing the 3D density signal in a sparse

3D space, the present 2D-PTV approach seeks to determine the particles coordinates in

the 2D image with the finest possible accuracy. In practice, the image intensity I(x) is

discretized by the camera sensors onto an array of N pixels, each denoted k = (k1, k2).

The idea is to provide a discretized representation of the unknown space which encodes

the particles image positions. To this end, a discretized version of (2) can be derived by

imposing to x and Xp to take on values in some discrete sets (Champagnat et al. 2014):

I(k) ≈
∑
n

h(k − n∆Ẽ)Ẽ(n), (3)

where I is the array of image pixels indexed by k and Ẽ is the array which encodes

the discrete representation of the unknown space. It is composed of M sub-pixels each

denoted n of width ∆Ẽ. Equation (3) is then equivalently written in the form of (1):

I = WẼ (4)

where W = h(k − n∆Ẽ) is the so-called weight matrix indexed by (k,n).

This approach therefore seeks for local maxima of the reconstructed intensity field

Ẽ in the refined subspace as point-like representations of the particles. It is to be noticed

that the accuracy of this method undoubtedly depends on the size of the sub-pixel ∆Ẽ.

A perfect inversion process is expected to provide a single illuminated sub-pixel which

identifies the position of the center of the particle. The maximum theoretical error in

the case of 1 : 1 sub-pixel aspect ratio is then
√
2
2

∆Ẽ.

2.2. Inversion algorithm

The problem to be solved, i.e. the retrieval of the reconstructed intensity Ẽ out of

the available information in I is therefore an inversion problem with respect to a fully

discrete model. The choice of the inversion strategy to solve equation (4) must be driven

by the following considerations. First, the data collected by the camera is characterized

by a limited amount of usefull information: the projected signal of the particles on

the camera plane occupies only a limited fraction of the full size sensor. Moreover,

the collected signal is likely to be corrupted by different types of noises. Hence, the

sought particles positions n and the collected observations I(k) may actually not match

perfectly the linear model (1). Second, the construction of the weight matrix W on

a refined sub-space leads us to deal with an under-determined problem of a very high

dimensionality: W is a short and fat matrix which has much more columns than rows

(M � N). As a consequence, the problem to be solved has theoretically an infinite

number of solutions. One must therefore resort to some known information on the

physical perspective in order to single out a proper solution as, for example, the fact

that the underlying parameters represent quantities that can only take on non-negative

values since the reconstructed field encodes the intensities Ẽ in equation (4). Ideally,
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Particle Image Reconstruction for particle detection in PTV 6

the sought solution is also expected to be very sparse. We then want to capitalize on

these requirements and use an inversion algorithm which is well adapted to recover a

sparse non-negative solution. Among the popular methods to produce an estimate for

Ẽ, we single out the very popular nonnegative least square (NNLS). We thus consider

the following optimization problem:

minimize
1

2
‖WẼ − I‖2,W ∈ RN×M , I ∈ RN subject to Ẽ ≥ 0, (5)

where N is the number of pixels in the original image and M is the number of sub-

pixels in the reconstruction field. The algorithm of this minimization problem is directly

implemented in Matlab as the function lsqnonnneg. It executes the active-set algorithm

of Lawson et al. (1974). Although it is a greedy algorithm in terms of computing time and

resources when confronted to large scale problems, we will show with various simulation

tests that its implementation within our methodology is well suited to sparse recovery.

Moreover, the sequentialization of its implementation is proposed in section 5. It is

shown to performed with significant computing time savings when large scale problems

are considered.

We also acknowledge many others methods proposed in the literature to solve

equation (4), in particular in the context of the volumetric reconstruction of the

particles distribution. Among the family of the ‘row-action methods’, the ‘algebraic

reconstruction technique’ (ART) (Petra et al. 2007), ‘the multiplicative algebraic

reconstruction technique’ (MART) (Elsinga et al. 2006), and the ‘simultaneous

multiplicative algebraic reconstruction technique’ (SMART) (Atkinson & Soria 2009)

were advocated to build a tomographic PIV solution.

2.3. Implementation

Most of the approaches dedicated to particle detection and localization in PTV first

proceed with a segmentation of the particle image. This step is crucial as it acts as

a problem size reduction and it provides the algorithm with an initial solution. The

aim is to select the minimum amount of pixels and to separate the useful signal, i.e.

the discretization of the particle image, from the noise corruption. The simplest and

most usual method for grouping adjacent pixels into particles-containing blobs is the

threshold binarization. However, such a procedure is expected to crucially impact the

following steps of the proposed method herein. Since our reconstruction problem (4) is

ill-posed, the solution is very sensitive to the initial solution and more specifically on the

set of unknowns. We rather choose to proceed without any pixel selection, except those

of non-null intensities. Consequently, the built weight matrix W is of Ñ × M̃ extend,

with potentially Ñ < N and M̃ < M . The particular case Ñ = N and M̃ = M is likely

to be obtained when noisy images with large particle densities are considered.

The reader is warned here of the notation convention in this paper. Although

the PSF model is used in both the particle images generation and the weight matrix

construction, the size parameter used in the former case is termed as σpsf whereas it is

referred as σrecon in the latter case. Unless otherwise specified, σrecon = σpsf .
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Particle Image Reconstruction for particle detection in PTV 7

Once the reconstructed intensity field Ẽ in the refined subspace is obtained from the

inversion of the linear system, point-like representations of the particles are determined

as local maxima of the sub-image. This is performed using a morphological operation

(dilatation) with a square structuring element of width Lsq. The determination of the

optimal size of the structuring element is specifically discussed in sections 4.2 and 4.4.

The code of our detection algorithm, denoted PIRNNLS in the rest of the paper, is

implemented in Matlab and makes use of its high vectorization level and its optimized

built-in functions. An other version of the algorithm, hereafter called PIRSMART uses

SMART for the inversion procedure. Results obtained by both versions are compared

in sections 4.1 and 4.2.

3. Synthetic images and performance metrics

Series of simulation tests are designed to evaluate the performance and robustness of the

proposed method against a variety of characteristic parameters. Although we keep in

mind that simulations can not fully mimic realistic experimental conditions, the interest

of using synthetic images is manifest: 1) the full control of all the parameters involved

in the generation of the particle images ; 2) the knowledge of the exact position of the

particles enables the characterization of the influence of every single parameter onto the

overall algorithm performance ; 3) a comparison of the results given by the proposed

algorithm with those by other referenced methods in a well defined framework.

3.1. Synthetic set-up

We consider a volume of uniform illumination seeded with monodisperse particles of

diameter dp = 1 µm placed at random positions. The camera, with a focal length of

200 mm, is positioned at 1 m along the orthogonal direction of the laser sheet plane.

The magnification is thus equal to 0.2. The pixel-size is set to 20 µm. A pin-hole model

is assumed (without Scheimpflug adapter for simplicity). The images of particles are

synthesized according to equation (2) with the PSF function h defined by:

h(x, y) =
1

4

(
erf

(
x+ 0.5√

2σpsf

)
− erf

(
x− 0.5√

2σpsf

))
(6)

×
(

erf

(
y + 0.5√

2σpsf

)
− erf

(
y − 0.5√

2σpsf

))
,

where the width of the 2D Gaussian intensity distribution is defined by its standard

deviation σpsf averaged on the pixel surface, assuming a 100% fill factor. The images

generated are single exposure snapshots of 32×32 pixel at 8-bit grayscale. The maximum

intensity I0 of the scattered light is assumed to be a function of the depth position z of

the particle in the laser sheet only:

I0 = 255 exp

(
− z2

σ2
laser

)
(7)
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Particle Image Reconstruction for particle detection in PTV 8

where 2σlaser is the laser sheet thickness, set to 1 mm herein. Model (6) hence considers

the particles as independent scattering sites and the intensity level of every pixel on the

camera sensor results from the summation of all the associated particles contributions.

A cautionary remark to be addressed here concerns the speckle limit which is never

reached in this study. The speckle phenomena is likely to occur when the source density

defined as the average number of imaged particles multiplied by the squared equivalent

diameter of the particle image exceeds one (Adrian 1984). For the specific test reported

in section 4.4, the largest generated Nppp of about 0.11 multiplied by the average area

of the equivalent 2.4 pixel diameter (the factor π/4 is actually omitted in the definition

of Adrian (1984)) results in a ratio of 45% of the particles image overlap. This upper

bound remains below the speckle limit.

Otherwise, a Gaussian distribution representing camera noise can be added to the

particle images (see section 4.5 for further details).

3.2. Performance metrics

The performance of our detection method is quantified in this paper by two metrics

suggested by Ruhnau et al. (2005): the Yield and the Reliability, both defined hereafter.

A detection is called a True Positive (TP) if it satisfies two conditions: 1) it is in the

neighborhood of a particle and, 2) it is the nearest detection to this particle. While

the former condition requires to arbitrary define a neighborhood radius of tolerance, the

latter one ensures that a TP is associated with only one particle. In every simulation test

discussed in this paper, the tolerance radius is set to 0.5 pixel. A detection is considered

as a False Positive (FP), if it is not in the neighborhood of any particle or, if inside

the neighborhood of a particle it is not the nearest detection to the particle. Finally, a

particle is termed as False Negative (FN) if there is no detection in its neighborhood.

These criteria enable to define the two metrics as:

Y ield =
#TP

#TP + #FN
, Reliability =

#TP

#TP + #FP
. (8)

where #TP , #FP and #FN are the number of True Positive, False Positive and False

Negative respectively. Therefore, the Yield is the fraction of true detections relative to

the amount of generated particles, and the Reliability is the fraction of true detections

among all detections.

The accuracy of the detections considered as TP is further quantified with the

computation of the mean localization error:

Error =
1

#TP

NTP∑
i=1

||xTPi
− xPi

|| (9)

where TPi is the True Positive associated with the ith particle Pi, and x is their position

in the image. This metric represents the actual distance between the TP position and

the exact localization of its associated particle.
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Particle Image Reconstruction for particle detection in PTV 9

4. Numerical tests: Particle detections

Let us now attempt to assess the robustness of our method to detect particles within

representative experimental conditions. To this end, numerical tests are performed

on synthetic images and most of the forward analysis relies on the evaluation of the

performance metrics described in section 3.2.

Remember that the accuracy of the detection method discussed throughout this

paper is expected to specifically depend on the projection model, its underlying size

parameter σpsf , and on the grid resolution. The first simulation test (see section 4.1)

involves the reconstruction of a single simulated particle. It is designed with the aim of

setting the optimal grid size, ∆Ẽ. It is also expected to give insights on the sparsity of

the reconstructed field. To this end, the solutions obtained by PIRNNLS and PIRSMART

are compared. Section 4.2 then surveys the ability to detect two identical particles when

their separation distance is small enough to be considered as critical for most classical

detection methods. In section 4.3, simulation tests that involve again the reconstruction

of a single simulated particle are carried out to investigate the sensitivity of the detection

to a non-perfect knowledge of the PSF size, i.e. when the PSF calibration is either

impossible or inaccurate. Finally, more realistic experimental conditions are obtained

with sets of synthetic images of varying particle density and additive noise contribution.

The robustness of PIRNNLS with respect to these parameters is evaluated in sections 4.4

and 4.5 respectively.

4.1. Selection of the sub-pixel size ∆Ẽ

The accuracy of the solution is expected to strongly depend on ∆Ẽ (see section 2.1):

theoretically the smaller it is, the more accurate the approximation is. However, it is

to be kept in mind that the weight matrix, W to be inversed grows proportionnally to(
1/∆Ẽ

)2
, as does probably the computational expense. A test is then designed with the

aim of selecting a subgrid size, ∆Ẽ as an optimum between the finest accuracy of the

reconstruction and an affordable computational time.

Simulations involving the reconstruction of a single particle are performed. A

particle is randomly placed in a 32× 32 pixel image. We impose the particle to be fully

discretized within the image area, i.e. any truncation effect is not studied here. The

reliability of the reconstruction is evaluated against PSF standard deviations ranging

from σpsf = 0.2 to 1.2. Let us suppose that these values are known a priori (from a

calibration procedure for example) and the weight matrix is build with σrecon = σpsf .

For each set, 200 images are generated to ensure good convergence of the performance

metrics discussed below.

Figure 1 shows the relationship between the localization error of the detected

particle and the subgrid size, ∆Ẽ of the reconstruction space, as obtained by PIRNNLS

and PIRSMART for σpsf = 0.4 (figure 1a) and σpsf = 0.8 (figure 1c). The two inversion

algorithms implemented in our method present comparable evolutions over the tested

grid sizes. It is observed that the localization error is always below the theoretical
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Particle Image Reconstruction for particle detection in PTV 10

maximum error,
√
2
2

∆Ẽ.

In order to further discriminate between both inversion algorithms, we choose to

represent the evolution of the sparsity of the reconstruction field, Ẽ as a function of ∆Ẽ

for the same tested conditions, see figure 1b and figure 1d. The sparsity is classically

defined as the ratio of the amount of null-elements of Ẽ to its total number of elements.

In an ideal case, only one sub-pixel of the reconstruction field would be non-zero. Clearly,

the reconstruction field obtained by PIRNNLS presents a higher level of sparsity than

PIRSMART, whatever the subgrid size. Note that the largest sparsity value obtained

with PIRNNLS is actually 0.9998 for ∆Ẽ = 1/50. This means that 8 sub-pixels of the

reconstruction field belong to the solution sub-set.

As a preliminary conclusion, this test validates not only the linear model as depicted

in equation (4) but also the ability of the reconstruction procedure to recover the particle

position with a high level of accuracy. Meanwhile, we set for the rest of this paper

the ∆Ẽ value to 1/20. Refining further down the sub-image grid-size would require a

tremendous increase in memory with a negligible gain in the precision of the localization

(see figure 1a and figure 1c). Moreover, the sparsity of the reconstruction field being

promising, the reconstruction of two closely separated particles is now considered in the

following section.

4.2. Overlap test

In order to understand the benefits of our method in distinguishing between two particles

in overlapping conditions, simulation tests are performed on images of two identical

particles with different separation distance, L. The detection accuracy is expected to

be a function of both L and the particle image size, as characterized by its diameter,

D with D ≈ 4× σpsf . To evaluate the interconnected influence of both D and L on the

results, the following non-dimensional overlap ratio roverlap (Lei et al. 2012) is used:

roverlap =
D − L
D

. (10)

For every separation distance L, 200 images are generated to ensure good statistical

convergence of the performance metrics discussed below. The particles are generated

following the method described in section 3.1 and randomly distributed in the image.

The particle diameter varies from D = 0.8 pixels to D = 4.8 pixels.

Figure 2a shows the detection performance metric TP as well as the localization

error obtained by PIRNNLS and PIRSMART, as a function of the overlap ratio. It is

to be mentioned that the localization error is only computed when 2 detections are

qualified as True Positive and, when at least 50 particle couples are detected. We

choose to highlight the results for σpsf = 0.6 but similar trends are observed, whatever

the values of the tested σpsf are. The influence of the size of the structuring element

(parametrized as Lsq, see section 2.3) on the detection performance is also investigated.

However, similar trends are obtained for the three tested sizes, Lsq = 3, 7 and 11 pixels.

Hence, the optimized size of structuring element can not be determined at this stage.
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Figure 1: Robustness of PIRNNLS (×) and PIRSMART (�) to the reconstruction of a

single particle. (a) and (c): Localization error of the detected particle as a function of

the sub-pixel size, ∆Ẽ. Dashed line corresponds to the theoretical maximum error. (b)

and (d): Sparsity of the reconstructed field, Ẽ as a function of the sub-pixel size, ∆Ẽ.

(a) and (b): σpsf = 0.4 ; (c) and (d): σpsf = 0.8.

Nevertheless, Lsq is set to 7 in the forecoming tests. Justifications for this choice are

given in section 4.4.

The observations to formulate here are illustrative of the encountered difficulties

that any detection method has to face when large particle densities are considered: the

overlapping issue becomes predominant and the ability to recover with a high level of

confidence the localization of two overlapped particles drops down as their separation

distance approaches zero, respectively when roverlap approaches 1.

Meanwhile, we can further discriminate between the two inversion algorithms

implemented in our method. As a consequence of the large sparsity of its reconstructed

fields as advocated in section 4.1, PIRNNLS recovers the particle couples with a 100%

success rate up to larger overlap ratios than PIRSMART with, additionally, systematic

smaller localization errors. For example, two identical particles of diameter D = 2.4
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Particle Image Reconstruction for particle detection in PTV 12

pixel are detected with a 100% success rate, an overlap ratio of 0.6 and a localization

error within 0.03 pixels by PIRNNLS whereas the same performance is obtained by

PIRSMART for overlap ratios inferior to 0.4 at the cost of larger localization errors.

Overall, the averaged errors of PIRNNLS remain within 0.1 pixels for overlap ratios up

to 0.8. Therefore, these simulation tests clearly show that PIRNNLS is better prone to

detect two overlapping particles than PIRSMART. Consequently, PIRNNLS is retained as

the inversion algorithm of our method in the rest of this study.
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Figure 2: (a): #TP (dashed line, left y-axis) and localization error (dotted line, right

y-axis) obtained by PIRNNLS (black) and PIRSMART (red) for σpsf = 0.6 as a function

of the particle overlap ratio and for three different sizes of square structuring element:

(5): Lsq = 3 pixels ; (◦): Lsq = 7 pixels ; (4): Lsq = 11 pixels. (b): TP obtained by

PIRNNLS for different σpsf as a function of the particle overlap ratio.

To further illustrate the robustness of PIRNNLS to recover two overlapping particles,

the detection metric #TP is depicted in figure 2b as a function of the overlap ratio and

for σpsf ranging from σpsf = 0.2 to σpsf = 1.2, i.e. for imaged particle diameter ranging

from about D = 0.8 pixels to D = 4.8 pixels. The limitations of this (as well as

any other) method are emphasized for small σpsf values, typically when σpsf < 0.4.

For these conditions, PIRNNLS fails to recover the two particles, even at small overlap

ratios. This is intrinsically related to the discretization of the simulated particle on

the synthetized image. As an illustration, couples of simulated particles with different

sizes (σpsf = 0.2, σpsf = 0.6 and σpsf = 1.4), are presented in figure 3 with the same

overlap ratio, roverlap = 0.5. For σpsf = 0.2, the complete discretization of the PSF of the

overlapping particles is performed on almost one single pixel. This prevents any method

from the ability to recover their localizations. On the other hand, at large σpsf values,

the two overlapping particles are clearly discernable. Therefore, the overlap ratio can

not be used alone as the objective criterion to discriminate between different detection

methods, especially when the simulations are performed on database of significantly

Page 12 of 24AUTHOR SUBMITTED MANUSCRIPT - MST-107699.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Particle Image Reconstruction for particle detection in PTV 13

different particle image sizes.

-5 0 5

-6

-4

-2

0

2

4

6

(a)

-5 0 5

-6

-4

-2

0

2

4

6

(b)

-5 0 5

-6

-4

-2

0

2

4

6

(c)

Figure 3: Typical synthetic images of 2 overlapping particles with roverlap = 0.5. (a):

σpsf = 0.2 ; (b): σpsf = 0.6 ; (c): σpsf = 1.4.

4.3. Effect of inaccurate knowledge of σpsf

Our inversion method requires an imaging model, designed in our case as an integrated

Gaussian function (see section 3.1) of which σpsf is the only input parameter to be a

priori determined. An adapted calibration procedure using a particle least-square fitting

of a Gaussian PSF template is recommanded to obtain an evaluation of this unknown

parameter (Schanz et al. 2013). Other kinds of calibration exist, such as the slanted-edge

method of Reichenbach et al. (1991) or more recently, a technique using a collimated

light source on a convex spherical mirror (Jemec et al. 2017). Whatever is the adopted

calibration methodology, residual errors undoubtedly arise. The main source of errors

comes from the approximation of the PSF imaging model itself which fails to accurately

represent the actual light distribution on the camera CCD of every single particle, with

potentially varying sizes or positions in the depth of the laser sheet volume. The purpose

of this section is to test the robustness of our method to a non-perfect knowledge of the

PSF size. To this end, sets of 200 synthetic 32×32 pixel images of a single particle with

different σpsf values are generated.

As a first step, we consider the following test case: the PSF used for the particle

image generation is set to σpsf = 0.6, while the robustness of the detection algorithm

is tested against variations of σrecon in the range 0.4 ≤ σrecon ≤ 1. Both the Yield and

the Reliability metrics are depicted on figure 4. Clearly, for large σrecon values with

respect to σpsf , the ability of our method to recover the particles localizations drops

down. However, it is to be emphasized that satisfactory results are obtained with errors

on the estimated σrecon of about 30%.

As a second step, we consider the reversed problem: particle images are generated

with σpsf values ranging from σpsf = 0.4 to σpsf = 1 while the PSF width of the

reconstruction model is kept constant, with σrecon = 0.6. Similar observations can
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Figure 4: Yield (left) and Reliability (right) factors as obtained by PIRNNLS. (×): σpsf
values are ranging from 0.4 and 1, σrecon value is set to 0.6 ; (◦): σrecon values are ranging

from 0.4 and 1, σpsf value is set to 0.6.

be made: when the σrecon value is under-estimated with regards to the σpsf value

of the particles, the ability of our method to recover the particles localization is at

fault. This particular observation is illustrated with typical reconstruction images of

one single particle with different σpsf , see figure 5. For small σpsf , i.e. σpsf < σrecon the

reconstruction field is very sparse: no more than 3 sub-pixels are non-null which makes

the final localization process of the particle easy. For σpsf = 0.8, i.e. for slightly under-

estimated values of σrecon, the sparsity of the reconstruction is decreased and because

the value of the square structuring element, Lsq is to be kept as small as possible, many

False Positive detections are obtained from this reconstruction image. However, the

central sub-pixel corresponding to the localization of the simulated particles is still non-

null and a True Positive detection is also obtained from this image. For σpsf = 1, i.e. for

particle area of about 4× 4 pixel whereas the estimated particle area as set by σrecon is

about 2.4× 2.4 pixel, many non-null sub-pixels, dispersed on a large area, are obtained

from the inversion procedure. Moreover, the central sub-pixel is no longer part of the

solution sub-set.

This trend towards a large dispersion of the solution sub-set is an intrinsic

characteristic of the optimization (5) when σrecon � σpsf , i.e. when the calibration

procedure under-estimates the size of the particle images to reconstruct. This can be

understood by the fact that the inversion procedure attempts to reconstruct a particle

image of large area using particle(s) of small image area(s). Because the imaging model

makes use of a summation of particles images, the algorithm artificially creates particles

of which the summation of their signal intensities correspond (in the least square sense)

to the signal intensity distribution of the large particle.
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Figure 5: Typical intensity distribution in log10 of the reconstruction field obtained by

PIRNNLS for one single particle with σrecon = 0.6. a): σpsf = 0.4 ; b): σpsf = 0.6 ; c):

σpsf = 0.8 ; d): σpsf = 1.

4.4. Effect of particle density Nppp

Particle image density (Nppp) is a major limiting factor for PTV reliability since large

density inhibits an optimized particle identification and localization. In the simulations

of this test, the particle image density is varied from Nppp ≈ 0.02 to Nppp ≈ 0.11.

The mean size of the particles is set constant, with σpsf = 0.6. To ensure statistical

convergence of the results discussed bellow, sets of 30 synthetic 32×32 pixel images are

generated for every Nppp.

Prior to the analysis of the results of this simulation test, we want to definitely

state about the optimal (if any) size of the square structuring element, Lsq. Remember

that a small value of Lsq is likely to favor a fine spatial resolution of the detections field.
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Particle Image Reconstruction for particle detection in PTV 16

It is also likely to favor a possibly large amount of False Positives, as evidenced on the

reconstruction maps of figure 5c: smaller values than Lsq ≈ 10 would not suppress the

illuminated pixels located around the true central position from the solution sub-set.

Three different sizes are tested: Lsq = 3, 7 and 11 (sub-)pixels (to be compared with

the size of the discretized pixel which is set to 1/∆Ẽ = 20 as suggested in section 4.1).

The mean performance metrics as reported in table 1 exhibit quasi-similar behavior

although Lsq = 7 leads to some slightly better results than those computed with Lsq = 3

in term of Reliability and those computed with Lsq = 11 in term of Yield. Consequently,

for the rest of the paper, the final detection step on the reconstruction maps is performed

with Lsq = 7.

Table 1: Mean performance Metrics (Reliability and Yield) computed with PIRNNLS

using three different sizes for the square structuring element.

Nppp 0.021 0.033 0.042 0.053 0.066 0.073 0.087 0.094 0.105

Yield - Lsq = 3 0.993 0.990 0.986 0.979 0.976 0.973 0.961 0.957 0.955

Yield - Lsq = 7 0.991 0.989 0.984 0.975 0.971 0.970 0.956 0.952 0.951

Yield - Lsq = 11 0.992 0.987 0.983 0.973 0.960 0.966 0.955 0.946 0.942

Reliability - Lsq = 3 0.939 0.917 0.913 0.899 0.910 0.894 0.876 0.879 0.883

Reliability - Lsq = 7 0.983 0.987 0.975 0.973 0.975 0.970 0.956 0.967 0.964

Reliability - Lsq = 11 0.988 0.992 0.983 0.979 0.976 0.968 0.964 0.962 0.963

We now turn our analysis towards the sensitivity of the PIRNNLS method to the

particle density, Nppp. For this specific test, the performances of PIRNNLS are compared

to the consolidated and widely used dynamic threshold binarization (Ohmi & Li 2000)

and to the modified cascade correlation method (Lei et al. 2012) hereafter referred as

DTB and CCM respectively.

A qualitative illustration of the detected localizations as obtained with the three

methods is represented in figure 6 (top row). The same synthetic 32 × 32 pixel image

is considered with 104 generated particles, i.e. Nppp = 0.102. For this particular case,

the performance metrics of the three methods are: TPDTB = 53, TPCCM = 45 and

TPPIRNNLS
= 103; FPDTB = 12, FPCCM = 6 and FPPIRNNLS

= 2. The clear superiority

of PIRNNLS to recover the particles is emphasized with these figures, especially when

high particle densities are observable (see for instance the area delimited with a white

dotted line).

Then, the mean performance metrics are presented in figure 7 as a function of the

particle density, Nppp for the three detection methods. Averaging is performed over

every Nppp. The number of valid detections TP as recovered by PIRNNLS remains at a

very high level (actually very close to the exact amount of simulated particles), even

at large particle density. This statement is emphasized by the Yield values which are

quasi constant and very close to 1 for all the investigated Nppp. The capability of our
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Particle Image Reconstruction for particle detection in PTV 17

Figure 6: Synthetic 32 × 32 pixel images on which are superimposed the localizations

of the particles (red ×) and those of the detections (blue ◦). From left to right: CCM,

DTB and PIRNNLS methods. Top row: without noise ; Bottom row: with added noise.

method to recover a large amount of valid particles is further illustrated by the reliability

coefficient which also remains very close to 1, for all the investigated particle densities.

This result shows that, not only PIRNNLS is efficient as it “finds” a quasi-maximal

amount of particles, but also accurate as it is not prone to produce large amount of

False Positives. Therefore, the improvement of the particles detection with our method

is evidenced when compared to referenced algorithms in the same conditions. Indeed,

DTB and CCM fail at recovering a large amount of particles when Nppp is increased as

illustrated by the clear drop of their Yield ratio.

The high efficiency of PIRNNLS is further emphasized with an insight on the mean

localization errors, see figure 8a. The PIRNNLS error is always within 0.07 pixels,

whatever the particle density Nppp is. For comparison, at Nppp ≈ 0.09, the mean errors

computed with PIRNNLS, CCM and DTB are 0.067, 0.172 and 0.290 pixels respectively.

As a conclusion, not only PIRNNLS provides the best performance metrics, but it is also

more accurate than the referenced methods tested in the conditions discussed in this

paper.
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Figure 7: Comparison between the conventional DTB (blue 4), CCM (red ◦) and the

proposed PIRNNLS (black ×) in terms of detections efficiency as a function of the particle

density, Nppp. Without any camera noise. Left: Yield ; Right: Reliability.
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Figure 8: Comparison between the mean localization errors as obained by PIRNNLS

(black ×), DTB (blue 4) and CCM (red ◦) as a function of the particle density, Nppp.

(a): Images without any noise. (b): images with an added 5% Gaussian noise.

4.5. Effect of background noise

The background noise is likely to represent a large contribution to the lost of reliability

of the detection algorithm. It is generally associated with non-uniform variations of grey

levels in the image not related to the particle. Hence it alters the ability of any detection

method to accurately identify and localize the particles embedded in the image.

To study its impact on the performances of PIRNNLS, a set of synthetic particle

images is generated, with the same generation parameters as in section 4.4, except for a

Gaussian noise with a zero mean value and a standard deviation σnoise set to 5% of the

8-bit grayscale dynamic range which is added to each image. The assumed Gaussian

distibution of the noise is widely used to model the thermal noise of the camera sensor.
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This source of noise is generally the major contribution in the PIV/PTV applications.

A representative illustration of the particle localizations as obtained with DTB,

CCM and PIRNNLS in the context of noisy data is presented in figure 6 (bottom

row). For this particular case with 98 generated particles, the performance metrics

are: TPDTB = 48, TPCCM = 43 and TPPIRNNLS
= 90; FPDTB = 20, FPCCM = 12 and

FPPIRNNLS
= 24. This qualitative observation, again, illustrates the ability of PIRNNLS

to efficiently detect in unfavorable conditions.

The comparison of the performance metrics as obtained by the proposed PIRNNLS

with the conventional DTB and CCM are shown in figure 9 as a function of the particle

density, Nppp. Overall, for the highest tested Nppp, the number of TP recovered by

PIRNNLS is approximately twice the one obtained with both other methods and a very

small number of missed particles returned with PIRNNLS leads to a Yield value of 0.83.

With both other detection methods, the Yield values drop to approximately 0.4 for the

highest particle density.

On the other hand, the Reliability coefficient exhibits similar values for each

method, whatever the particle density is. This performance points out the fact that

PIRNNLS is likely to generate a larger amount of False Positive detections than the

conventional CCM and DTB in noisy conditions. This behavior is due to the increasing

mathematical difficulty to invert the present ill-posed problem (4) in the context of noisy

data. This aspect requires further attention and solutions will be prospected in the

future, especially for the application of this method to data collected from experiments.

One of the solutions consists in performing a first treatment to the grayscale images by

removal of the background noise (Mendez et al. 2017).

The mean localization errors computed for this simulation test are shown in

figure 8b. The camera noise, as expected, increases the localization error of the PIRNNLS

method when compared to the no-noise case. However, the accuracy of PIRNNLS remains

comparable to the modified CCM, altough the mean localization error is computed on

a tremendous larger amount of TP in the case of PIRNNLS than in the case of CCM.

5. Implementation in large scale problems

The results presented in section 4 have demonstrated the PIRNNLS algorithm ability to

detect particles over a wide range of realistic parameters. So far, the simulation tests

were carried out on 32 × 32 pixel images. Meanwhile, we recall that the model matrix

W to be inverted is of size (N,M), with N the amount of selected pixels in the original

image and M the amount of sub-pixels in the reconstructed sub-image, see equation (4).

Hence when being confronted to larger and more realistic images, the computing time

of the PIRNNLS algorithm is questionable.

The implementation of this detection method in large scale problems demands

a size reduction strategy to be developped. This prior step is already embedded in

the tomographic PIV framework, as for example the MLOS technique of Atkinson &

Soria (2009). It consists in determining a first guess of the solution through a data
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Figure 9: Quality of the detection as given by PIRNNLS (×), DTB (4) and CCM (◦) as

a function of the particle density, Nppp. With a 5% Gaussian noise. Left: Yield ; Right:

Reliability.

selection. Restricting the possible locations of the particles thus reduces the number

of columns and the overall problem size. However, the MLOS technique cannot be

used in our 2D case, since we do not have several projections to confront the lines-

of-sight. We propose instead to proceed with a segmentation of the original image

through a local threshold procedure analogous to the conventional Otsu’s method

(Otsu 1979). From the segmentation procedure of the full image, blobs of contiguous

pixels are obtained. Each blob contains an unknown amount of overlapping particules

to be reconstructed. Therefore, the inversion procedure (sub-space definition, matrix

generation, matrix inversion, local maxima detection) is performed sequentially to each

blob. This modification of the method is referred as the sequential PIRNNLS algorithm.

It is to be kept in mind that the segmentation of the original image is mathematically a

different problem and then, the ensemble of solutions computed over the whole domain

is expected to be different as well.

5.1. Validation of the sequential PIRNNLS algorithm

The purpose of this section is to validate the sequential version of the PIRNNLS algorithm.

To this end, the same database of synthetic 32×32 pixel images as in section 4.5 is

considered. Statistics presented below are computed from sets of 30 images. The

performance metrics (Yield and Reliability) computed from both the sequential and

the direct versions of the PIRNNLS algorithm are depicted in figure 10. Clearly, the

reliability of our method to detect particles in realistic images is not affected by the

sequentialization, whatever the tested particle density is. The robustness preservation

of PIRNNLS is moreover obtained with a significant gain in computing time machine:

for Nppp ≈ 0.05 the sequential version of PIRNNLS is on average 5.4 times faster than

its direct version, whereas for Nppp ≈ 0.1 the benefit of the sequential version remains

of about a factor of 2.3, for computational run on the same machine. As a conclusion
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Figure 10: Comparison of the detection performances between the direct (black ×) and

the sequential (orange 5) versions of PIRNNLS as a function of the particle density, Nppp

(both obtained on 32×32 pixel images). (Blue ◦): Evaluation of the sequential PIRNNLS

on large 1024× 1024 images. Left: Yield ; Right: Reliability.

of this test, the sequential PIRNNLS allows a drastical reduction of computational cost

without any significative reliability deterioration.

5.2. Application to large 1024×1024 pixels image

The sequential PIRNNLS algorithm is now applied to large 1024×1024 pixel images with

a 5% Gaussian noise. Figure 11a displays one noisy 1024 × 1024 pixel image with a

particle images density of Nppp = 0.057. To better appreciate the particle identification

and localization performance, a magnified area of 70 × 70 pixel extend (delimited by

the white dashed-line) is represented in figure 11b on which the particles and detections

positions are superimposed.

The performances obtained by the sequential PIRNNLS on this particular set of large

images are shown in figure 10 for comparison with those obtained with the 32×32 pixel

images. Although a slight decrease is observed in terms of recovered particules, the

reliability of PIRNNLS is unchanged, whatever the investigated Nppp is.

6. Conclusion

A novel algorithm for the identification and localization of particle images in PTV

was proposed. The approach presented is based on the particle position reconstruction

problem through the inversion of a linear model connecting the PTV signal with a

particle-based representation of the 3D-to-2D projection. The size of the point spread

function (PSF), defined as a 2D Gaussian intensity distribution in this work, is the only

input parameter to be a priori estimated.

As a preliminary study, performance tests were conducted with synthetically

generated particle images and against a large exploration of the generating conditions
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(a) (b)

Figure 11: (a): Synthetic 1024 × 1024 pixel images with added 5% Gaussian noise,

Nppp = 0.057. (b): Magnified 70× 70 pixel area. The localizations of both the particles

(red ×) and detections (blue ◦) as processed by PIRNNLS are superimposed.

(particle density, PSF size, background noise). The obtained results showed that the

inversion procedure promotes not only the non-negativity but also the sparsity of the

sought solution. This intrinsic characteristic of our method ensures good performances

when identifying and localizing particles in severly overlapped particle image fields. A

slight decrease in reliability was observed when increasing the standard deviation of the

background noise. This aspect requires further attention and work is in progress along

these lines.

Overall, the proposed technique is robust yet in noisy conditions, and the

comparison with other conventional detection techniques demonstrated its ability to

reliably localize more particles out of a dense particle image field.

The attractive properties of PIRNNLS, a priori specifically designed for 2D-

PTV, are likely to bring further insight in a variety 3D-flow measurements. While

hybrid tomographic-PTV methods, for example, are becoming more popular (Schanz

et al. 2016) with their relevant 2D particle identification issue (Wieneke 2013, Ben Salah

et al. 2018), we believe that PIRNNLS is likely to increase the reachable particle density

of such techniques.
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