B. E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications, 1999.

T. Brousse and M. Morcrette, Accumulateurs et supercondensateur. Actualité Chimique, pp.58-64, 2015.

J. Chmiola, Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1

. Nanometer, Science, vol.313, pp.1760-1763, 2006.

M. V. Fedorov and A. K. Kornyshev, Ionic Liquids at Electrified Interfaces, Chem. Rev, 2014.

, Modéliser et simuler la chimie : le défi de la chimie théorique, Numéro spécial Actualité Chimique, pp.382-383, 2014.

C. Merlet, On the molecular origin of supercapacitance in nanoporous carbon electrodes, Nat. Mater, p.306, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00853251

J. M. Griffin, In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors, Nature Materials, vol.14, pp.812-819, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01447659

C. Merlet, Highly confined ions store charge more efficiently in supercapacitors, Nat. Commun, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01157828

C. Péan, Confinement, Desolvation, And Electrosorption Effects on the Diffusion of Ions in Nanoporous Carbon Electrodes, vol.137, pp.12627-12632, 2015.

B. Rotenberg and M. Salanne, Structural Transitions at Ionic Liquid Interfaces, J. Phys. Chem. Lett, vol.6, pp.4978-4985, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01287384