B. E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications, 1999.

J. R. Miller and P. Simon, Electrochemical capacitors for energy management, Science, vol.321, pp.651-652, 2008.

T. Brousse and M. Morcrette, Accumulateurs et supercondensateur. Actualité Chimique, pp.58-64, 2015.

J. Chmiola, Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1

. Nanometer, Science, vol.313, pp.1760-1763, 2006.

P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater, vol.7, pp.845-854, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02020693

M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P. Taberna et al.,

P. Simon, Efficient storage mechanisms for building better supercapacitors, Nature Energy, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01480941

, Modéliser et simuler la chimie : le défi de la chimie théorique, Numéro spécial Actualité Chimique, pp.382-383, 2014.

C. Merlet, C. Péan, M. Salanne, and B. Rotenberg, Stockage de charge dans les carbones nanoporeux : l'origine moléculaire de la supercapacité, Actualité Chimique, pp.43-45, 2016.

M. Thommes, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution, Pure Appl. Chem, vol.87, pp.1051-1069, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01416682

N. Setoyama, T. Suzuki, and K. Kaneko, Simulation study on the relationship between a high resolution ? s-plot and the pore size distribution for activated carbon, Carbon, vol.36, pp.1459-1467, 1998.

A. V. Neimark, Y. Lin, P. I. Ravikovitch, and M. Thommes, Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons, Carbon, vol.47, pp.1617-1628, 2009.

C. Bousige, Realistic molecular model of kerogen's nanostructure, Nature Mater, vol.15, pp.576-582, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01611970

J. C. Palmer, Modeling the structural evolution of carbide-derived carbons using quenched molecular dynamics, Carbon, vol.48, pp.1116-1123, 2010.

M. Deschamps, Exploring electrolyte organization in supercapacitor electrodes with solid-state NMR, Nature Mater, vol.12, pp.351-358, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00794669

J. M. Griffin, In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors, Nature Materials, vol.14, pp.812-819, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01447659

S. Kondrat and A. Kornyshev, Pressing a spring: what does it take to maximize the energy storage in nanoporous supercapacitors? Nanoscale Horiz, vol.1, pp.45-52, 2016.

M. D. Levi, G. Salitra, N. Levy, D. Aurbach, and J. Maier, Application of a quartz-crystal microbalance to measure ionic fluxes in microporous carbons for energy storage, Nature Mater, vol.8, pp.872-875, 2009.

C. Merlet, Highly confined ions store charge more efficiently in supercapacitors, Nat. Commun, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01157828

M. V. Fedorov and A. K. Kornyshev, Ionic Liquids at Electrified Interfaces, Chem. Rev, 2014.
DOI : 10.1021/cr400374x

URL : https://strathprints.strath.ac.uk/47256/3/Fedorov_Kornyshev_CR_2014_Ionic_liquids_at_electrified_interfaces.pdf

S. Kondrat and A. A. Kornyshev, Superionic state in double-layer capacitors with nanoporous electrodes, J. Phys.: Condens. Matter, 2011.
DOI : 10.1088/0953-8984/23/2/022201

URL : http://arxiv.org/pdf/1010.0921

C. Merlet, On the molecular origin of supercapacitance in nanoporous carbon electrodes, Nat. Mater, p.306, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01153072

F. W. Richey, B. Dyatkin, Y. Gogotsi, and Y. A. Elabd, Ion dynamics in porous carbon electrodes in supercapacitors using in situ infrared spectroelectrochemistry, J. Am. Chem. Soc, vol.135, pp.12818-12826, 2013.

C. Prehal, Tracking the structural arrangement of ions in carbon supercapacitor nanopores using in-situ small angle X-ray scattering, Energy Environ. Sci, vol.8, pp.1725-1735, 2015.

C. Péan, Confinement, Desolvation, And Electrosorption Effects on the Diffusion of Ions in Nanoporous Carbon Electrodes, vol.137, pp.12627-12632, 2015.

C. Péan, On the Dynamics of Charging in Nanoporous Carbon-Based Supercapacitors, ACS Nano, 1576.

D. L. Limmer, Charge Fluctuations in Nanoscale Capacitors, Phys. Rev. Lett, 2013.
DOI : 10.1103/physrevlett.111.106102

URL : https://hal.archives-ouvertes.fr/hal-00839655

C. Merlet, The Electric Double Layer Has a Life of Its Own, J. Phys. Chem. C, vol.118, p.12891, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00968897

B. Rotenberg and M. Salanne, Structural Transitions at Ionic Liquid Interfaces, J. Phys. Chem. Lett, vol.6, pp.4978-4985, 2015.
DOI : 10.1021/acs.jpclett.5b01889

URL : https://hal.archives-ouvertes.fr/hal-01287384

D. Brogioli, Extracting renewable energy from a salinity difference using a capacitor, Phys. Rev. Lett, p.58501, 2009.
DOI : 10.1103/physrevlett.103.058501

A. Siria, Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube, Nature, vol.494, pp.455-458, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00959984