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Abstract10

The scalar 2-D Helmholtz’ equation (i.e., “membrane waves”) can be used to model surface-11

wave propagation in a laterally smooth, lossless half space. Building on this known result,12

we develop an algorithm to localize earthquake sources based on surface-wave data, via nu-13

merical time-reversal on a membrane, where monochromatic waves propagate with the phase14

velocity of Rayleigh or Love waves at the same frequency. By conducting monochromatic15

membrane-wave time-reversal simulations at various frequencies and combining the results,16

broadband time-reversed surface waves can be modeled. Importantly, membrane-wave mod-17

eling is computationally much less expensive than three-dimensional surface-wave modeling.18

We first explain rigorously the relationship between surface waves and membrane waves. Our19

mathematical treatment is slightly different from those found in the literature, in that it does20

not invoke variational principles. We next implement our time-reversal algorithm via spectral21

elements as well as simple ray tracing. Both implementations account for the effects of lateral22

variations in phase velocity. We validate the two resulting tools by means of several numerical23

experiments. This includes synthetic tests, as well as the localization of a virtual source based24

on a data set of real ambient-noise cross correlations, and the localization of the epicenter of a25

real earthquake from real, raw data. In this study, applications are limited to Northern Italy26

and the Alpine arc, where we have access to recent, high resolution phase velocity maps,27

ambient-noise cross correlations and data from a recent, relatively large earthquake. The28

accuracy of epicenter location despite non-uniformity in station coverage encourages further29

applications of our method, in particular to the task of mapping large-earthquake rupture in30

space and time.31

1 Introduction32

Estimates of seismic slip as a function of position and time for a given earthquake are ob-33

tained today in different ways, depending on the magnitude and depth of the earthquake, and34
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on the instrumental coverage. Several different types of seismic and geodetic observations are35

employed. Dense networks of strong-motion accelerometers are currently deployed in seismic36

regions worldwide; they are designed to record the high-frequency oscillations generated by37

a nearby event, but they have little sensitivity to the lower frequencies, and cannot be used38

to constrain the properties of far earthquakes. At the opposite end of the frequency spec-39

trum, data from GPS networks and satellite geodesy are used as constraints of the final slip40

associated with an earthquake; they provide good resolution of the surface expression of the41

rupture, but have little or no sensitivity to fault geometry at depth [e.g. Mai et al., 2016, and42

references therein]. Wherever the coverage provided by nearby instruments is insufficient,43

local and/or global broadband seismic networks at teleseismic distances are used to image44

slip. As a general rule, fault geometry is particularly hard to constrain on the basis of seismic45

data alone, and is determined based on geodetic data or, wherever possible, field geology46

observations.47

Once a data set for a given event has been compiled, seismic oscillations and geodetic48

offsets are translated to slip on the fault via (1) least-squares inversions, (2) seismic time49

reversal, or (3) the back-projection method.50

(1) Least-squares inversions are based on the representation theorem [e.g. Aki and Richards,51

2002], i.e. the mathematical expression of the physical law relating the geometry of an ar-52

bitrary rupture to the resulting deformation at any point of a given medium. Because the53

spatiotemporal evolution of seismic ruptures is generally very complex, it is not surprising54

that their solutions tend to be very non-unique, as shown in detail by Mai et al. [2016].55

(2) The physics of acoustic or seismic time reversal can be heuristically summarized as56

follows: a signal is emitted by a source and recorded by multiple receivers; if receivers are57

then turned into sources, each emitting its own recorded signal (with the corresponding de-58

lay) flipped with respect to time, the resulting wave field will “focus” at the original source59

location [e.g. Fink , 1999]. This means that by recording real data from an unknown source60

and then conducting the time-reversal exercise numerically, the location of the source could61

be determined, provided, of course, that the error associated with modeling of propagation62

is small, that is to say, that the complexity of the medium of propagation is accounted for63

within a good approximation. From the standpoint of seismology, this amounts to a kine-64

matic, extended-source inversion, with the additional possibility of monitoring the backward65

propagation of time-reversed waves before focusing at the source. In seismology, applications66

of time reversal [e.g. Larmat et al., 2006, 2008] are hindered by the high computational costs67

of accurate wave-propagation modeling, unless only very long periods are considered.68

(3) The back-projection method as described, e.g., by Ishii et al. [2005] and currently69

employed by many authors in seismology, is usually thought of as a simplification of wavefield70

reverse-time migration, a tool for imaging structure in reflection seismology. This is in many71

ways similar to time reversal, but involves some further, fundamental simplifications. Namely,72

the term back-projection refers to studies where the effects of time-reversed wave propagation73

are not modeled, but approximately corrected for by stacking the signals recorded by an array74

of nearby receivers. One of the practical consequences of this is that the physical nature of75

the computed, time-reversed wave field that focuses at the source remains undefined. Its76

interpretation in terms of rupture mechanics is complicated by the fact, e.g., that it is not77

known whether it more closely approximates a slip or a rate of slip [Fukahata et al., 2014].78
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We provide in this study the building blocks of a new algorithm for constraining extended-79

source geometry and time evolution. The algorithm is based on the time-reversal concept, and80

thus overcomes the limitations of P -wave back-projection, but it is designed so as to reduce81

significantly the computational costs of full-waveform time reversal. One of the key aspects82

of our method is that surface waves, instead of P waves, are time-reversed and backward-83

propagated. This is preferable for several reasons: (i) Surface waves are dispersive, i.e. they84

“spread out” along the time axis as they travel across the surface of the earth: time reversal85

turns this process around, enhancing the focusing of backward-propagating waves onto the86

source. (ii) The problem of surface-wave propagation modeling, although inherently three-87

dimensional, can be reduced to two dimensions by separating the signal into narrow frequency88

bands [e.g. Tanimoto, 1990; Tromp and Dahlen, 1993; Peter et al., 2007, 2009], to be back-89

projected separately, and subsequently “stacked” together: this reduces the computational90

costs drastically. (iii) Our knowledge of the three-dimensional structure of the Earth’s deep91

interior, essential to backward-propagate numerically the time-reversed signal, is limited; but92

surface-wave propagation is confined to the upper mantle, which is relatively well known;93

recent, robust global phase-velocity maps of Rayleigh- and Love-wave velocities are available94

in the frequency band relevant to this project, at the global and, where possible, regional95

scales [e.g. Ekström, 2011; Kaestle et al., 2017]. In seismology/acoustics jargon, point (iii)96

is equivalent to saying that very accurate surface-wave “Green’s functions” are available and97

will be used to backward-propagate time-reversed surface-wave data. This further enhances98

focusing of the time-reversed wave field, and thus the robustness and resolution of mapped99

seismic slip.100

We expect our method to be effective over a broad range of epicentral distances. At101

distances of 30◦ or more from the epicenter, surface waves carry more energy than body102

waves, and they can be easily identified and isolated on seismograms. At shorter epicentral103

distances, where they are obscured by the body-wave coda, surface waves can still emerge in104

a time-reversal exercise as a result of focusing: this is confirmed by our results, discussed in105

sec. 6.3.106

Today, broadband “full-waveform” information is not routinely utilized by researchers107

interested in mapping the seismic source. Tentative implementations of fault imaging via108

seismic-waveform time reversal such as those by Larmat et al. [2006] and Larmat et al.109

[2008] were successful from a theoretical standpoint, but seem too computationally heavy110

for systematic practical application. Most seismologists only back-project seismogram peaks111

associated with the arrival of P waves [e.g. Ishii et al., 2005] so as to avoid costly simulations112

of broad-band seismic-wave propagation in a heterogeneous, three-dimensional medium (the113

Earth), whose heterogeneity is only approximately known. The only published experiment114

in surface-wave back-projection that we are aware of is that of Roten et al. [2012]. While115

the basic idea of Roten et al. [2012] is similar to some of the concepts presented here, their116

approach is essentially a form of back-projection, with the inherent approximations.117

We provide in sec. 2 a description of surface-wave propagation in terms of “potentials”118

[e.g. Ud́ıas, 1999; Aki and Richards, 2002]. Aki and Richards [2002] state (box 7.5) that119

“potentials are of no direct interest, and are awkward to use. . .”. We maintain that, as shown120

e.g. by Tanimoto [1990] or Peter et al. [2007], there is interest in using potentials, particularly121

for surface waves. For instance, if only the phase, and not the amplitude of the data is122
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studied, many useful applications (e.g., imaging, backward-propagation) become possible by123

using the potentials and the associated simple, two-dimensional (2-D) equations, without124

having to solve the more cumbersome radial equations, or the general three-dimensional125

equations. This is strictly true within a high-frequency approximation, but applications to126

real data have often shown that, in practice, this approximation works remarkably well. Our127

theoretical formulation in sec. 2 is different from that of Aki and Richards [2002] in that we128

use potentials, and from those of Tanimoto [1990] and Tromp and Dahlen [1993] in that we129

do not invoke variational principles.130

The main implication of sec. 2 is that the scalar 2-D Helmholtz’ equation can be used to131

model surface-wave propagation in a laterally smooth, lossless half space, confirming earlier132

results by Tanimoto [1990] and Tromp and Dahlen [1993]. In secs. 3 and 4 we accordingly133

derive the theory of time reversal in a 2-D “acoustic” medium (i.e., a medium whose defor-134

mations are described by the 2-D Helmholtz’ equation). Finally (sec. 6), theoretical results135

are validated by direct application to synthetic and real surface-wave data. The applications136

presented here are limited to two-dimensions; in future work, we shall explore the resolving137

power of our method in the vertical direction, combining the results of multiple, Love- and138

Rayleigh-wave 2-D time-reversal simulations conducted at different frequencies.139

2 Surface waves and the two-dimensional Helmholtz equation140

The scalar 2-D Helmholtz’ equation can be used to model surface-wave propagation in a141

laterally smooth, lossless half space. We shall give a simplified proof of this fundamental142

result by briefly summarizing some parts of earlier studies by Tanimoto [1990] and Tromp143

and Dahlen [1993]. Let us start by writing the displacement equation for an elastic, isotropic144

medium in the frequency (ω) domain [Ud́ıas, 1999, eq. (2.60)],145

∂

∂xj

[
λδij

∂uk
∂xk

+ µ

(
∂ui
∂xj

+
∂uj
∂xi

)]
= −ρω2uj , (1)

where x1, x2, x3 are Cartesian coordinates, with the x3-axis perpendicular to Earth’s surface146

(which we assume to be flat) and oriented downward; δij is Kronecker’s delta, ρ denotes147

density and λ, µ Lamé’s parameters. Repeated indices are implicitly summed over. Following148

Tanimoto [1990], we assume the Earth to be smooth laterally (horizontal derivatives of ρ,149

λ, µ, etc. are negligible) but not vertically (x3-derivatives of the same parameters are not150

negligible); eq. (1) then takes a slightly different form for i=3 with respect to i=1,2; namely151

(λ+ µ)
∂

∂x1,2

(
∂uk
∂xk

)
+ µ∇2u1,2 +

∂µ

∂x3

(
∂u1,2
∂x3

+
∂u3
∂x1,2

)
= −ρω2u1,2, (2)

and152

(λ+ µ)
∂

∂x3

(
∂uk
∂xk

)
+ µ∇2u3 + 2

∂µ

∂x3

∂u3
∂x3

+
∂λ

∂x3

∂uk
∂xk

= −ρω2u3. (3)

The displacement equations (1) or (2) and (3) are accompanied by the requirement that153

no tractions exist on the outer surface of the Earth (“free surface” boundary conditions); for154
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an isotropic elastic medium, the stress tensor155

σij = λ
∂uk
∂xk

δij + 2µ

(
∂ui
∂xj

+
∂uj
∂xi

)
, (4)

and the zero-traction requirement at the outer (horizontal) surface is equivalent to requiring156

that σ13=σ23=σ33=0 when x3=0. Displacements and stresses are also usually required to be157

continuous across all discontinuities.158

We next introduce a Rayleigh-wave displacement Ansatz in the frequency domain,159

uR = U(x3, ω)x3φR(x1, x2, ω) + V (x3, ω)∇1φR(x1, x2, ω), (5)

where the unit-vectors x1, x2, x3 are parallel to the Cartesian axes, and ∇1 = x1
∂
∂x1

+x2
∂
∂x2

.160

The functions U(x3, ω) and V (x3, ω) control the dependence of surface-wave amplitude on161

depth; they do not need to be known explicitly at this stage. The function φR can be thought162

of as a “Rayleigh-wave potential”. For Love waves,163

uL = W (x3, ω)(−x3 ×∇1)φL(x1, x2, ω), (6)

with φL the “Love-wave potential”, and W (x3, ω) playing the same role as U and V above.164

It can be seen by inspection of expressions (5) and (6) that they indeed describe Rayleigh-165

and Love-wave motion, respectively. The functions U , V , W need not be specified at this166

point, but, if only surface-wave solutions are of interest, it must be required that167

lim
x3−→∞

U(x3, ω) = 0 ; lim
x3−→∞

V (x3, ω) = 0 ; lim
x3−→∞

W (x3, ω) = 0. (7)

We next use our surface-wave Ansätze (5) and (6), together with the mentioned boundary168

conditions, to simplify and solve the displacement equations (2) and (3).169

2.1 Love waves170

We first substitute u in eqs. (2), (3) with the expression (6) for uL. It is useful to notice that171

the x3-component of uL is 0, and that uL is divergence-free; as a result, eq. (3) is always172

verifed by uL as given by (6), whatever the functions W (x3) and φL(x1, x2). After some173

algebra, the remaining equations are reduced to174 (
µ
∂2W

∂x23
+

∂µ

∂x3

∂W

∂x3
+ ρω2W

)
∂φL
∂x2

+ µW

(
∂3φL
∂x21∂x2

+
∂3φL
∂x32

)
= 0, (8)

175 (
µ
∂2W

∂x23
+

∂µ

∂x3

∂W

∂x3
+ ρω2W

)
∂φL
∂x1

+ µW

(
∂3φL
∂x22∂x1

+
∂3φL
∂x31

)
= 0. (9)

Remember that φL is only a function of x1, x2, while µ = µ(x3), ρ = ρ(x3) and W = W (x3).176

If we divide eq. (8) by µW ∂φL
∂x2

we find177

µ∂
2W
∂x23

+ ∂µ
∂x3

∂W
∂x3

+ ρω2W

µW
= −

∂3φL
∂x21∂x2

+ ∂3φL
∂x32

∂φL
∂x2

, (10)
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which can be solved by separation of variables [e.g. Tromp and Dahlen, 1993, sec. 3] since178

the right-hand side depends only on x1, x2, and the left-hand side only on x3. This means179

that we can introduce a constant kL such that180

µ
∂2W

∂x23
+

∂µ

∂x3

∂W

∂x3
+ ρω2W = µk2LW (11)

and181

∂3φL
∂x21∂x2

+
∂3φL
∂x32

= −k2L
∂φL
∂x2

. (12)

It might be noticed that the “radial” eq. (11) is equivalent to equation (46) of Takeuchi182

and Saito [1972], or eq. (7.24) of Aki and Richards [2002], even though those treatments are183

limited to plane waves (which affects φL but not W ).184

Applying the same procedure to eq. (9) additionally gives185

∂3φL
∂x1∂x22

+
∂3φL
∂x31

= −k2L
∂φL
∂x1

, (13)

and a sufficient condition for φL to solve both (12) and (13) is the Helmholtz’ equation186

∂2φL
∂x21

+
∂2φL
∂x22

= −k2LφL. (14)

The boundary conditions can also be simplified when applied to our Love-wave Ansatz:187

it follows from (4) and (6) that, for Love waves, σ33=0, and σ13 = −σ23 = µ∂W∂x3
∂φL
∂x1

. The188

zero-traction boundary condition at the outer surface thus reduces to189

∂W

∂x3
= 0 at x3 = 0. (15)

2.1.1 Love-wave radial equation190

Several different approaches to the (semi-analytical or numerical) solution of the “radial”191

equation (11) are reviewed in sections 7.1 and 7.2 of Aki and Richards [2002], starting with192

a simple one-layer-over-half-space model and then generalizing to the cases of an arbitrary193

number of layers, and of continuous velocity and density profiles. We need not repeat here194

the detailed treatment of Aki and Richards [2002], but it is useful to point out some of its195

essential implications.196

Equation (11) is a second-order ordinary differential equation, whose general solution thus197

contains two arbitrary constants. Two boundary conditions must be taken into account: eqs.198

(7) and (15). These two equations allow in principle to determine both arbitrary constants.199

If the Earth is modeled as a set of one or more uniform, horizontal layers overlying a half200

space, then within each layer i we have ∂µ
∂x3

= 0, and eq. (11) is simplified to the Helmholtz’201

equation202

∂2W

∂x23
+ (ρiω

2 − µik2L)W = 0, (16)

where ρi and µi denote the (constant) values of density and rigidity within layer i, respectively.203

Each layer adds one second-order equation, and therefore two arbitrary constants to the204

problem, but also one interface with the associated two continuity conditions (on W and205
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∂W
∂x3

): again, all arbitrary constants can be determined.206

The parameters ω and kL, however, have not been specified, and, as a consequence,207

one cannot simply identify a unique solution for W to be substituted into the Ansatz (6).208

According to Aki and Richards [2002], this problem is solved in general as follows: (i) a209

numerical value ω0 is assigned to ω; (ii) a numerical, “trial” value is likewise assigned to kL;210

(iii) the selected numerical values ω0 and kL are substituted into eq. (11) which can then be211

integrated numerically, or via the “propagator matrix” method [e.g. Aki and Richards, 2002,212

sec. 7.2.2], starting with W=0 at large depth x3; (iv) it is verified whether condition (15) is213

met at x3=0; (v) if this condition is not met, eq. (11) is integrated again, with the same ω0214

but a different trial value for kL; (vi) if, instead, the condition (15) is met, the whole process215

is repeated for a new value ω0, until the frequency range of interest is entirely covered.216

It is found that a discrete set of one or more (depending on ω0) values of kL for which the217

free-surface boundary condition is met can be determined [e.g. Aki and Richards, 2002, figures218

7.2, 7.3]. These values are dubbed “eigenvalues” in analogy with free-oscillation theory, and219

each corresponds to a different solution, or “mode,” for W . If more than one eigenvalue exist220

at a given frequency, the mode corresponding to the largest kL eigenvalue is referred to as221

“fundamental mode,” followed by “higher modes” (“overtones”).222

2.1.2 Helmholtz’ equation for the Love-wave potential φL223

The parameters kL and ω in eq. (14) must be substituted with one of the eigenvalues of224

kL, and with the corresponding value ω0, respectively, before this equation is solved for φL.225

Substitution of φL(x1, x2, ω0) and of the corresponding W (x3, ω0) into expression (6) yields226

a monochromatic Love-wave solution. The process can be iterated at each frequency ω0227

for which the eigenvalues kL and eigenfunctions W have been determined as described in228

sec. 2.1.1.229

Notice that, for a monochromatic wave of frequency ω0, eq. (14) coincides with the 2-D230

wave equation with wavespeed ω0
kL

. The curve kL = kL(ω0) is thus the “dispersion curve”231

describing how surface-wave phase velocity depends on frequency.232

It is easy to show that a monochromatic plane wave φL would solve eq. (14), and in fact233

most seismology textbooks replace φL (and φR) with plane-wave formulae in the surface-234

wave Ansätze [e.g. Aki and Richards, 2002]. In view of the applications to be discussed here,235

however, circular (cylindrical) surface waves are more relevant. This case can be described, in236

our formulation, starting with the known solution G2D to the Green’s problem associated with237

equation (14), obtained, e.g., in Appendix E of Boschi and Weemstra [2015]; G2D(x1, x2, ω)238

is clearly not a monochromatic wave, but the response of the medium to a monochromatic239

point source can be obtained, according to eq. (E34) of Boschi and Weemstra [2015], by time-240

domain convolution or frequency-domain multiplication of G2D(x1, x2, ω) with a sinusoidal241

signal δ(ω − ω0).242
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2.2 Rayleigh waves243

In analogy with section 2.1, we next substitute u in eqs. (2), (3) with the expression (5) for244

uR. This results, after some algebra, in the system of equations245 [
µ
∂2V

∂x23
+

∂µ

∂x3

(
U +

∂V

∂x3

)
+ (λ+ µ)

∂U

∂x3
+ ρω2V

]
∂φR
∂x1

+(λ+2µ)V

(
∂3φR
∂x31

+
∂3φR
∂x22∂x1

)
= 0,

(17)246 [
µ
∂2V

∂x23
+

∂µ

∂x3

(
U +

∂V

∂x3

)
+ (λ+ µ)

∂U

∂x3
+ ρω2V

]
∂φR
∂x2

+(λ+2µ)V

(
∂3φR
∂x32

+
∂3φR
∂x21∂x2

)
= 0,

(18)247 [
(λ+ 2µ)

∂2U

∂x23
+ 2

∂µ

∂x3

∂U

∂x3
+

∂λ

∂x3

∂U

∂x3
+ ρω2U

]
φR+

[
(λ+ µ)

∂V

∂x3
+

∂λ

∂x3
V + µU

](
∂2φR
∂x21

+
∂2φR
∂x22

)
= 0,

(19)

which, again, can be solved by the method of separation of variables. After dividing it by248

(λ+ µ) ∂V∂x3 + ∂λ
∂x3

V + µU , eq. (19) can be separated into249

(λ+ 2µ)
∂2U

∂x23
+ 2

∂µ

∂x3

∂U

∂x3
+

∂λ

∂x3

∂U

∂x3
+ ρω2U = k2R

[
(λ+ µ)

∂V

∂x3
+

∂λ

∂x3
V + µU

]
(20)

and the Helmholtz’ equation250

∂2φR
∂x21

+
∂2φR
∂x22

= −k2RφR, (21)

where kR is, at this point, an arbitrary constant. If one then substitues eq. (21) into (17) and251

(18), it becomes apparent that a sufficient condition for both of them to be solved is given252

by253

(λ+ µ)
∂U

∂x3
+ µ

∂2V

∂x23
+

∂µ

∂x3

(
U +

∂V

∂x3

)
+ ρω2V − k2R(λ+ 2µ)V = 0. (22)

The “radial” eqs. (20) and (22) form a linear system of second-order ordinary differential254

equations that can be solved to determine U and V . Since two equations and two unknown255

functions are now involved, the solution is more cumbersome, but qualitatively similar to the256

Love-wave case of sec. 2.1.1. Again, as shown by Takeuchi and Saito [1972] and Aki and257

Richards [2002] for the plane-wave case, a set of Rayleigh-wave “modes” can be found by258

numerical integration: each mode is defined by a frequency ω0 and a value of kR for which259

(20) and (22) are solved, and the boundary conditions met. The definitions of fundamental260

mode and overtone given in sec. 2.1.1 naturally holds also for Rayleigh waves.261

The discussion of sec. 2.1.2 on the Love-wave potential φL also applies to the Rayleigh-262

wave potential φR, which is controlled by the Helmholtz’ equation (21); in analogy with263

sec. 2.1.2, kR can be interpreted as the ratio between the frequency and phase velocity of the264

corresponding Rayleigh-wave mode.265

3 Reciprocity theorem in two dimensions266

Consider the non-homogeneous 2-D Helmholtz’ equation267

∇2
1p(x1, x2, ω) +

ω2

c2
p(x1, x2, ω) = −iωq(x1, x2, ω), (23)
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where p could represent the displacement of a stretched membrane (whose density and tension268

determine the parameter c), and the forcing term −iωq a pressure exerted on the membrane269

per unit of surface density [e.g., Kinsler et al., 1999, secs. 4.2 and 4.8]. Here and in the270

following we denote by f(ω) the Fourier transform of a generic function f(t), and by i the271

imaginary unit. The following mathematical treatment makes it convenient to denote forcing272

as −iωq(x1, x2, ω).273

Let us define a vector v = − 1
iω∇1p, such that274

∇1p+ iωv = 0. (24)

Substituting eq. (24) into (23), we then find275

∇1 · v +
iω

c2
p− q = 0. (25)

The following treatment follows closely that of Boschi and Weemstra [2015], who sum-276

marized earlier results by, e.g., Wapenaar and Fokkema [2006] and Snieder [2007], limited to277

three-dimensional space. Let us consider a surface S bounded by the closed curve ∂S. (∂S278

is just an arbitrary closed curve within a 2-D medium, and generally does not represent a279

physical boundary.) Let qA(x1, x2, ω), pA(x1, x2, ω) and vA(x1, x2, ω) denote a possible com-280

bination of the fields q, p and v co-existing at (x1, x2) in S and ∂S. A different forcing qB281

would give rise, through eqs. (24) and (25), to a different “state” B, defined by pB(x1, x2, ω)282

and vB(x1, x2, ω).283

A useful relationship between the states A and B, known as “reciprocity theorem”, is284

obtained by combining eqs. (24) and (25) as follows,285 ∫
S

d2x [(24)A · v∗B + (24)∗B · vA + (25)A p
∗
B + (25)∗B pA] = 0, (26)

where x=(x1, x2), d2x = dx1dx2, and ∗ denotes complex conjugation. (24)A is short for the286

expression one obtains after substituting p = pA(x, ω) and v = vA(x, ω) into the left-hand287

side of eq. (24), etc. Namely,288

(24)A · v∗B = ∇1pA · v∗B + iωvA · v∗B (27)

289

(24)∗B · vA = ∇1p
∗
B · vA − iωv∗B · vA (28)

290

(25)A p
∗
B = ∇1 · vA p∗B +

iω

c2
pAp

∗
B − qAp∗B (29)

291

(25)∗B pA = ∇1 · v∗B pA −
iω

c2
p∗BpA − q∗BpA. (30)

After substituting expressions (27) through (30) into eq. (26), the latter simplifies to292 ∫
S

d2x (∇1pA · v∗B +∇1p
∗
B · vA +∇1 · vA p∗B +∇1 · v∗B pA) =

∫
S

d2x (qAp
∗
B + q∗BpA) . (31)

The integrand at the left-hand side of (31) can be further simplified via the relationship293

∇1 · (pAv∗B) = ∇1pA · v∗B +∇1 · v∗BpA (which naturally holds also if A and B are swapped).294

We next apply the 2-D version of the divergence theorem to the resulting expression, and eq.295
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(31) collapses to296 ∫
∂S

dx (pAv
∗
B + p∗BvA) · n =

∫
S

d2x (qAp
∗
B + q∗BpA) , (32)

where n is a unit vector everywhere perpendicular to ∂S. For instance, “Green’s identity”297

(4.22) of Baker and Copson [1950], or the “reciprocity theorem of the correlation type”, eq.298

(5) of Wapenaar and Fokkema [2006], are three-dimensional versions of eq. (32).299

3.1 Application of the reciprocity theorem to impulsive point sources: ex-300

act equations301

Let us next consider the states A and B resulting from the impulsive forcing terms qA =302

δ(x − xA) and qB = δ(x − xB), respectively, with xA, xB two arbitrary locations on S. It303

follows that pA = G2D(x,xA, ω) and pB = G2D(x,xB, ω), with G2D the Green’s function304

corresponding to a 2-D membrane excited by a nonzero right-hand side in eq. (23), and eq.305

(24) then implies that vA,B = − 1
iω∇1G2D(x,xA,B, ω).306

G2D is the solution of the non-homogeneous eq. (23) with q = δ(x− xA,B). Based on eq.307

(E34) of Boschi and Weemstra [2015],308

G2D(x,xA,B, ω) =

∫
R2

d2x′ G2D(x,x′, ω)(−iω)δ(x′ − xA,B)

= −iωG2D(x,xA,B, ω),

(33)

where G2D(x,x′, ω) is the Green’s function associated with a nonzero initial velocity at x′,309

derived explicitly e.g. by Boschi and Weemstra [2015]. To translate the time-domain formula310

of Boschi and Weemstra [2015] into frequency domain, it is useful to notice that eq. (E34)311

of Boschi and Weemstra [2015] involves the time-domain convolution of G2D with the non-312

homogeneous term (forcing term) of the wave equation, and to remember that a convolution313

in the time-domain maps to a product in the frequency domain.314

Replacing pA,B and vA,B in eq. (32) with their expressions in terms of G2D, and qA,B315

with a Dirac delta,316

G∗2D(xA,xB, ω)−G2D(xB,xA, ω)

=

∫
∂S

dx′
[
G∗2D(x′,xB, ω)∇1G2D(x′,xA, ω)−G2D(x′,xA, ω)∇1G

∗
2D(x′,xB, ω)

]
· n.

(34)

Eq. (34) can be thought of as the 2-D version of eq. (19) in Wapenaar and Fokkema [2006]317

or eq. (96) in Boschi and Weemstra [2015].318

The above treatment holds if xA and xB are not within S; in that case, qA,B are zero319

within S. The integral at the right-hand side of eq. (32) is therefore zero, and so is, as a320

result, the left-hand side of (34). It follows that the integral at the right-hand side of (34) is321

zero if xA and xB are not within S [Baker and Copson, 1950, sec. 6.2].322
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3.2 Application of the reciprocity theorem to impulsive point sources: far-323

field/high-frequency approximation324

Equation (34) can be simplified by the “far-field” approximation, which requires that the325

locations xA and xB be separated from one another and from δS by at least a few wavelengths.326

We additionally require that x−xA ≈ x−xB for any point x on ∂S (i.e., xA and xB are both327

very far from ∂S). The Green’s function G2D can be replaced by its far-field approximation,328

which reads329

G2D(x,y, ω) ≈ 1

4iπc3/2
e
−i

(
ω|x−y|

c
−π

4

)
√
ω|x− y|

(35)

[e.g., Boschi and Weemstra, 2015, eq. (E17)]. We next take advantage of this approximation330

to find a simple expression for ∇1G2D. Let us consider for example ∇1G2D(x,xA, ω) and call331

r = |x− xA|. Then,332

∇1G2D(x,xA, ω) ≈ 1

4iπc3/2

(
x1

∂

∂x1
+ x2

∂

∂x2

)[
e−i(ωrc −

π
4 )

√
ωr

]

=
1

4iπc3/2

(
x1

∂r

∂x1
+ x2

∂r

∂x2

)
∂

∂r

[
e−i(ωrc −

π
4 )

√
ωr

]

=
1

4iπc3/2

[
iω

c
+

1

2r

]
e−i(ωrc −

π
4 )

√
ωr

∇1r

= G2D(x,xA, ω)

[
iω

c
+

1

2r

]
∇1r.

(36)

In the far-field approximation, r is large and r−1 is much larger than r−2: the second term333

inside square brackets in eq. (36) can be neglected. If one takes the origin, e.g., at xA, the334

condition x− xA ≈ x− xB implies that both x− xA and x− xB can be replaced by x, and335

∇1r ≈ x
|x| . We are left with336

∇1G2D(x,xA, ω) ≈ iω

c
G2D(x,xA, ω)

x

|x|
, (37)

which we can finally substitute into eq. (34), to find337

G∗2D(xA,xB, ω)−G2D(xB,xA, ω)

≈ iω

c

∫
∂S

dx′
[
G2D(x′,xA, ω)G∗2D(x′,xB, ω) +G∗2D(x′,xB, ω)G2D(x′,xA, ω)

] x′

|x′|
· n.

(38)

Remember that the closed curve ∂S does not correspond to a physical boundary. We choose338

it to be circular (we shall see in the following that this assumption does not affect the relevant339

physical interpretations of our results), so that x
|x| = n on ∂S. Eq. (38) collapses to340

G∗2D(xA,xB, ω)−G2D(xB,xA, ω) ≈ 2iω

c

∫
∂S

dx′ G2D(x′,xA, ω)G∗2D(x′,xB, ω), (39)

which is the 2-D counterpart of eq. (102) in Boschi and Weemstra [2015]. (It is also consistent341

with eq. (65) of the same study, valid for a 2-D medium, derived via the stationary-phase342

approximation and setting source density to 1.)343
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4 Implications for surface waves: diffuse-field interferometry,344

time reversal345

We know from sec. 2 that the Rayleigh- and Love-wave potentials φR, φL, just like the346

“membrane-wave” field p, obey the Helmholtz’ equation (23). It follows that eqs. (34) and347

(39) continue to be valid if p is replaced by potentials φR or φL, and if c is the Rayleigh-348

or Love-wave phase velocity at that frequency. We also know that the vertical displacement349

associated with a Rayleigh wave is proportional to φR and thus obeys (23) exactly at the fre-350

quency ω [e.g. Boschi and Weemstra, 2015]; slightly more complicated relations exist between351

Love-wave displacement (and the horizontal component of Rayleigh-wave displacement) and352

the Love-wave (Rayleigh-wave) potential, which are given e.g. by Kaestle et al. [2016]. In353

summary, the results of sec. 3 can be applied to the propagation of seismic surface waves,354

which will be the focus of the remainder of this study.355

Eqs. (34) and its approximate version (39) describe the physics underlying both ambient-356

noise interferometry and acoustic/seismic time reversal. Analogies between these two tech-357

niques were first discussed by Derode et al. [2003].358

4.1 Analogy with diffuse-field interferometry359

In the context of diffuse-field interferometry, the far-field eq. (39) is invoked more often than360

its exact counterpart (34). The points xA, xB in eq. (39) are taken to represent the locations361

of two receivers, while the points on δS are thought of as point sources. The right-hand side362

of (39) is the cross-correlation of the signal recorded at receiver xA with that recorded at363

receiver xB, averaged (integrated, “stacked”...) over all sources. It is usually assumed that364

sources are approximately distributed along a closed curve surrounding the receivers in the far365

field. (If that is the case, it has also been shown that the cross-correlation of signals generated366

by different sources that act simultaneously will tend to cancel out; see Boschi and Weemstra367

[2015] for a more detailed discussion.) Eq. (39) then implies that the receiver-receiver cross-368

correlation at its right-hand side coincides approximately with the imaginary part of the369

frequency-domain Green’s function G2D at the left-hand side. Since G2D is real in the time-370

domain, and nonzero only at positive times, G2D(xA,xB, t) is determined without ambiguity371

by the imaginary part of its Fourier transform G2D(xA,xB, ω) [Boschi and Weemstra, 2015].372

It follows that the surface-wave Green’s function between two locations can be reconstructed373

from the cross-correlation of a diffuse surface-wave field recorded at those locations.374

Recall now that, at the beginning of sec. 3.1, the assumption has been made that sources375

be impulsive. In practice, this amounts to selecting q(x, ω) = δ(x − xA,B), i.e., in the time376

domain, q(x, t) = δ(x − xA,B)δ(t). Let us next consider the case of arbitrary, unspecified377

time-dependence h(t) of the source signal, i.e. q(x, t) = δ(x − xA,B)h(t). Eq. (33) here was378

obtained from eq. (E34) of Boschi and Weemstra [2015], replacing the generic source signal379

there with the right-hand side of the non-homogeneous Helmholtz’ eq. (23). The solution p380

corresponding to an arbitrary source signal h(t) is therefore obtained by updating the right-381

hand side of eq. (23), which in the frequency domain now reads −iωδ(x− xA,B)h(ω). After382

substituting this into eq. (E34) of Boschi and Weemstra [2015], we find383

p(x,xA,B, ω) = −iωG2D(x,xA,B, ω)h(ω), (40)
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which replaces our eq. (33).384

Substituting (40) and q(x, ω) = δ(x − xA,B)h(ω) into eqs. (24) and (32), we find that385

introducing the time-dependence h(t) of the source boils down to multiplying both sides of386

eq. (34), and therefore (39), by the squared Fourier spectrum |h(ω)|2.387

In ambient-noise interferometry, this means that if all noise sources had the same spec-388

trum then the cross-correlation of recorded ambient signal would also exhibit that spectrum389

(squared): consequently, we would not be reconstructing the Green’s function but rather its390

time-domain convolution with the source-related term |h(ω)|2. Indeed, it is well known that391

the spectrum of seismic ambient-noise cross correlation is dominated by peaks that corre-392

spond to the spectrum of oceanic microseisms [Longuet-Higgins, 1950; Stehly et al., 2006]. In393

many derivations of ambient-noise theory, the signals emitted by different noise sources are394

simply assumed to be random and uncorrelated, which results in the |h(ω)|2 factor canceling395

out [e.g. Campillo and Roux , 2014].396

4.2 Surface-wave time reversal397

If eq. (34) is to be used as an illustration of time-reversal acoustics [e.g., Fink , 1999], xB398

should be thought of as the location of a source; G2D(x′,xB, ω) is the Fourier-transform of399

the signal generated at xB and recorded by a far-away receiver at x′; its complex-conjugate400

G∗2D(x′,xB, ω) is the Fourier transform of the same signal, reversed in time. Imagine that401

the time-reversed signal be then emitted from x′ and recorded at another point xA: this402

amounts to convolving (in the frequency domain, multiplying) the time-reversed signal with403

the Green’s function G2D(xA,x
′, ω). Eq. (39) then shows that by repeating time reversal404

and propagation (“backward in time”) for all points x′ on ∂S and summing all the resulting405

traces at xB, the imaginary part of the Green’s function between xB and xA is obtained.406

If ∂S is in the near field of xA, xB, the approximate eq. (39) should be replaced by407

(34), which is the 2-D version of eq. (3) in Fink [2006]. In practice, this means that to408

reconstruct the Green’s function between xA and xB one needs to (i) time-reverse (in the409

frequency domain, take the complex-conjugate of) the signal G2D(x′,xB, ω) emitted by xB410

and recorded at x′; (ii) take the spatial derivative of the time-reversed signal in the n direction411

at x′, i.e. n · ∇1G
∗
2D(x′,xB, ω); (iii) convolve the time-reversed signal G∗2D(x′,xB, ω) with412

the dipole response (see appendix) n · ∇1G2D(xA,x
′, ω) between xA and x′; (iv) convolve its413

spatial-derivative with the impulse response between the same two points; (v) sum the two414

signals obtained at (iii) and (iv). In other words, rather than simply backward-propagating415

the signal recorded at receivers on ∂S, as in the far-field case, we must backward-propagate416

the sum of a dipole and a monopole source, to which the initial signal itself and its spatial417

derivative are “fed”, respectively.418

The backward-propagated signal so obtained coincides, approximately (if eq. (39) is419

implemented) or exactly (eq. (34)), with the difference420

G∗2D(xA,xB, ω)−G2D(xB,xA, ω) = −2i= [G2D(xA,xB, ω)] . (41)

To understand the physical meaning of this expression, let us take its inverse Fourier transform421

(F−1). It follows from eqs. (B6) and (B9) of Boschi and Weemstra [2015] that422

F−1 {−2i= [G2D(xA,xB, ω)]} = G2D(xA,xB, t)−G2D(xA,xB,−t), (42)
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similar, e.g., to eq. (6) of Fink [2006]. Consider an arbitrary observation point xA within423

∂S, and recall that G2D is nonzero only at positive time. As t grows from -∞ to 0, only424

the second term at the right-hand side of (42) is nonzero, which means that xA records a425

time-reversed Green’s function. In space, a time-reversed impulsive circular wave converging426

towards the original source location xB is observed. As t−→0, the value of xA for which the427

field is maximum approaches xB, where the backward-propagating circular wave eventually428

“focuses.” As t grows from 0 to∞, only the first term at the right-hand side of (42) is nonzero,429

and xA records a regular Green’s function with inverted sign. That is to say, another circular430

wave is emitted from xB after focusing.431

In the words of Fink [2006], “if we were able to create a film of the propagation of the432

acoustic field during” propagation of the signal from the original source at xB to receivers433

on ∂S, “the final result could be interpreted as a projection of this film in the reverse order,434

immediately followed by a reprojection in the initial order.” Fink [2006] notes that acoustic435

time reversal, as described here, does not involve the “time reversal of the source,” and in436

“an ideal time-reversed experiment, the initial active source (that injects some energy into437

the system) must be replaced by a sink (the time reversal of a source),” i.e., “a device that438

absorbs all arriving energy without reflecting it.”439

Result (41) is limited to impulsive signals. If the signal emitted at xB is an arbitrary440

function of time, h(t), the signal recorded at each receiver location x′ is the convolution441

G2D(x′,xB, ω)h(ω). Accordingly, let us replace G∗2D(x′,xB, ω) at the right-hand side of eq.442

(34) with the convolution G∗2D(x′,xB, ω)h∗(ω). Since the function h does not depend on any443

other variable but t (or ω in the frequency domain), it can be pulled out of the x′-integral; it444

then follows from eq. (34) itself that445

h∗(ω) [G∗2D(xA,xB, ω)−G2D(xB,xA, ω)]

=

∫
∂S

dx′
{[
h(ω)G2D(x′,xB, ω)

]∗∇1G2D(x′,xA, ω)−G2D(x′,xA, ω)∇1

[
h(ω)G2D(x′,xB, ω)

]∗} · n.
(43)

If one denotes s(x′,xB, ω) = h(ω)G2D(x′,xB, ω), eq. (43) takes the more compact form446

h∗(ω) [G∗2D(xA,xB, ω)−G2D(xB,xA, ω)]

=

∫
∂S

dx′
[
s∗(x′,xB, ω)∇1G2D(x′,xA, ω)−G2D(x′,xA, ω)∇1s

∗(x′,xB, ω)
]
· n.

(44)

Alternatively, the far-field approximation (37) can be applied to (43), which, in analogy with447

sec. 3.1, collapses to448

h∗(ω) [G∗2D(xA,xB, ω)−G2D(xB,xA, ω)] ≈ 2iω

c

∫
∂S

dx′
[
s∗(x′,xB, ω)G2D(x′,xA, ω)

]
. (45)

Eqs. (44) and (45) stipulate that the same results obtained above for impulsive signals449

also apply to arbitrary signals h(t), except that in this case the backward-propagating Green’s450

function is convoluted with the time-reversed signal, h∗(ω) or h(−t), itself. Importantly, the451

backward-propagating wave field focuses, again, on the source location xB.452
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5 Implementation453

The so-called membrane-wave approach is based on the horizontal/radial decoupling of the454

equation of motion illustrated in sec. 2, where it is shown that the membrane eq. (23) holds455

for both the Love- and Rayleigh-wave potentials φL and φR. In sec. 3, some properties of the456

solution of (23), that naturally apply to both φR and φL, are derived. Their most important457

implication in the context of our study is explained in sec. 4: the theory of acoustic time458

reversal as developed by, e.g., Fink [2006] holds on a flat membrane, and, as a result, the time-459

reversed potentials φL, φR can be otbained from eqs. (44) or (45), i.e., by time-reversing and460

backward propagating the potentials associated with the recorded waveforms. Surface-wave461

time reversal then consists of (i) extracting φL and φR from the data, for a broad and dense462

set of surface-wave fundamental and higher modes; (ii) determining radial eigenfunctions (U463

and V , or W ) for each mode; (iii) backward propagating φL and φR for each mode; (iv)464

combining potentials with radial eigenfunctions at all available frequencies, via eqs. (5) and465

(6), to find the time-reversed displacements uR and uL.466

An important limitation of this procedure, as discussed in some detail in sec. 4.2, is467

that the time-reversed wave field necessarily includes an impulse propagating away from the468

reconstructed source location after focusing. This is not a problem for point sources (or of469

less-than-wavelength spatial extent, as in this study), but the time-reversed wave field at each470

point of a finite-extent source will include a non-physical contribution that cannot easily be471

subtracted from it, and that pollutes images of seismic slip. It should be noted that back-472

projection methods suffer from the same problem, although this is rarely (if ever) discussed.473

This issue will have to be addressed in future work. One possible strategy would be to474

subdivide the source-imaging process into two steps. First, time reversal could be interrupted475

before focusing occurs: this way, the surface-wave field in the immediate vicinity of the source476

could be reconstructed. In a second step, the reconstructed near-field displacement could be477

treated as data in a classic linear inverse problem, based on the representation theorem [e.g.478

Ide, 2007]: the unknown being slip on the fault. The accuracy of near-field displacement as479

reconstructed by time reversal would significantly reduce nonuniqueness.480

Only monochromatic, fundamental-mode Rayleigh-wave propagation is implemented here.481

At each frequency of interest ω, propagation of the corresponding sinusoidal Rayleigh wave482

is modeled in the time domain. It is apparent from eq. (5) that, at frequency ω, φR is483

directly proportional to the vertical component of displacement, narrow-band-pass-filtered484

around ω; i.e., before time reversal, φR(ω) can be obtained by the vertical component of485

the displacement by simply multiplying it by 1/U(ω). The implementation of time reversal486

is exactly the same for Love waves (except that membrane-wave propagation of the Love-487

wave potential must naturally be modeled in a Love-wave phase velocity map); the Love-488

wave potential φL, however, needs to be extracted from the transverse component of cross489

correlations, which will require some more subtle data processing to be addressed in future490

work.491

Accordingly, we do not yet reconstruct time-reversed displacements from time-reversed492

potentials. This requires that the eigenfunctions U , V and W be computed for a selected493

reference model. Because the crust/lithosphere depth range (i.e., the depth range of interest494

to surface-wave propagation) is characterized by large lateral heterogeneity, it is likely that a495

3-D reference model will need to be employed, through the implementation of “local” radial496
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eigenfunctions [e.g. Boschi and Ekström, 2002]. Studying the focusing of the Rayleigh-wave497

vertical component at various frequencies is, however, sufficient to verify the feasibility of498

our approach, which is the main goal of the present study. In the following, we model the499

propagation of time-reversed surface-wave potentials via two different approaches: ray theory500

and the spectral-element method.501

In the ray-theory case, the value of G2D for any given source and receiver position is502

determined approximately by tracing the ray between source and receiver, computing the503

propagation time along such ray path, and shifting by such time the signal prescribed at a504

source. Rays are traced by means of the algorithm described by Fang et al. [2015]. Geo-505

metrical spreading is accounted for approximately by simply multiplying the signal by the506

inverse squared root of the source-receiver distance, according, e.g., to eq. (E17) of Boschi507

and Weemstra [2015].508

In the spectral-element case, following Tape et al. [2007], SPECFEM2D [Komatitsch and509

Tromp, 1999] is used to simulate the propagation, on a stretched, flat membrane, of a dis-510

placement perpendicular to the unperturbed membrane surface. Displacement is generated511

by prescribing a point force/acoustic pressure (rather than an initial displacement as in512

the ray-theory case), which implies, importantly, that our comparison between ray-theory513

and SPECFEM2D results is only qualitative. Additionally, to model wave propagation via514

SPECFEM2D, we need to project our spherical-Earth phase-velocity map onto a flat sur-515

face. This is done via a transverse Mercator projection centered at 12◦E, 46◦N. Errors are516

introduced near the corners of the region of interest, that will (slightly) alter modeled wave-517

forms and might reduce the quality of focusing: the flat-membrane approach is adequate to518

the feasibility study presented here, but curved membranes will have to be implemented for519

future applications.520

6 Validation521

We test both ray-theory and spectral-element methods on synthetic membrane-wave data,522

on ambient-noise vertical-component cross correlations (which are theoretically equivalent523

to recordings of Rayleigh-wave impulse responses) and on vertical-component recordings of a524

5.6-magnitude earthquake. To make sure that we can rely on robust, high-resolution Rayleigh-525

wave phase-velocity maps and a dense station coverage, we select Northern Italy, including526

most of the Alpine mountain range, as our study region. This area is characterized by complex527

tectonics, and at this scale surface waves are difficult to identify as they are hidden in the528

body-wave coda: if we can validate our theory in such an unfavorable situation, we can then529

expect that it will hold also at teleseismic scales. Furthermore, by limiting the experiments530

presented here to a relatively small region, we reduce the associated computational costs.531

Earthquake data were downloaded from EIDA (http://www.orfeus-eu.org/data/eida/)532

and from all permanent broadband stations that recorded the earthquake within the region533

of interest; this includes INGV [INGV Seismological Data Centre, 1997], SED [Swiss Seis-534

mological Service (SED) at ETH Zurich, 1983], OGS [Istituto Nazionale di Oceanografia e di535

Geofisica Sperimentale, 2002], MedNet [MedNet project partner institutions, 1988] and the536

University of Genova data archive. Continuous ambient data for the year 2010 were down-537

loaded from all available permanent broadband stations that were active during that time,538
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Figure 1: Rayleigh-wave phase-velocity maps of Kaestle et al. [2017], at periods of (a) 6 s,
(b) 16 s and (c) 25 s.
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via the INGV data center. Time-domain cross correlations were computed as described by539

Molinari et al. [2018].540

As a general rule, computational costs are much reduced with respect to typical 3-D wave-541

propagation modeling applications in seismology. A time-reversal simulation, such as the ones542

shown in the following, involves one single run of SPECFEM2D with multiple sources (one543

per station), which requires about two hours on a single CPU. Ray-theory based simulations544

are much cheaper: a time-reversal simulation can be completed in less than two minutes on545

similar hardware.546

6.1 Synthetic tests547

Theoretical traces associated with a selected point-source location and a realistic station548

distribution in the region of interest are obtained via ray theory and SPECFEM2D. The549

source signal h(t) is a Ricker wavelet as implemented in SPECFEM2D, Butterworth-filtered550

between 6 and 26 s. Membrane waves are propagated through the 16s Rayleigh-wave phase-551

velocity map of Kaestle et al. [2017], shown here in Fig. 1b. While only one particular552

surface-wave mode is implemented for this synthetic test, it is understood that the exact same553

procedure can be applied in the calculation of other Rayleigh- and Love-wave fundamental554

modes and overtones. No random noise is added to the synthetic signal.555

Because the station distribution is nonuniform, the curve ∂S and, as a consequence, the556

vector n in eq. (34) are not uniquely defined. We avoid this difficulty by replacing eq.557

(34) with its far-field approximation (39), which can be implemented without specifying n.558

Preliminary experiments show that, despite the small size of the study region, the location of559

the backward propagating wave field’s focus is not visibly affected by this approximation. We560

plan to find ways to implement (34) exactly in future work, but we believe that the simplified561

approach employed here is adequate to the scope of this article. We accordingly time-reverse562

the traces, and propagate them backward in time, essentially implementing the right-hand563

side of eq. (45). Again, waves are propagated through the map of Fig. 1b.564

We obtain a pair of animations, one based on ray theory and the other on SPECFEM2D.565

Samples of both are shown in Fig. 2. Fig. 3 shows the prescribed and reconstructed signal566

at the known source location, again for both methods. While the backward propagating567

wave fields differ because of the mentioned physical differences in the implementation (exci-568

tation by initial displacement vs. point force, curved membrane vs. Mercator projection),569

it appears from Fig. 2c,d that the maximum amplitude with respect to time and position570

in both simulations corresponds to the known, initial source location. This confirms the571

validity of surface-wave time reversal as a tool to localize/image a seismic source, despite572

the severe nonuniformity in receiver distribution. The maximum is less pronounced in the573

spectral-element simulation, resulting in normalized amplitudes throughout the simulation574

to be larger than ray-theory-based amplitudes. After focusing, in the absence of an “acous-575

tic sink” (sec. 4.2), a non-physical wave field propagates away from the source. There are576

no major differences in the quality of focusing achieved by ray-theory vs. SPECFEM2D577

backward-propagation.578
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Figure 2: Snapshots of the ray-theory (left) and SPECFEM2D (right) synthetic-data time-
reversal simulations (sec. 6.1). Station locations are denoted by red triangles, the source
location by a yellow circle. We define t=0 as the time when the source experiences the
maximum displacement according to the Ricker wavelet in the forward simulations; backward
propagation starts at the time corresponding to the last data sample employed in our exercise,
and time increments in time-reversal simulations are considered to be negative. For each of
the two time-reversal simulations, amplitudes are normalized to the maximum value obtained
in the simulation, corresponding to source location at t=0. Snapshots a and b are taken at
time t=65 s; c and d at t=0 s, e and f at t=-35 s. As explained in sec. 6, ray-theory and
SPECFEM2D wave fields can be compared only qualitatively. Snapshots c and d show that
the time-reversed wave field focuses at the “epicenter” location.
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Figure 3: Synthetic test of sec. 6.1: Normalized time-reversed and backward-propagated
displacement (dashed red curves) computed at the known location of the source, via (a)
SPECFEM2D and (b) ray theory. In both cases, the known source time function is shown
(blue curve) for comparison. In panel a, the difference between forcing term and reconstructed
signal is explained by the fact that, in SPECFEM2D, displacement is initiated by prescribing
a point force, rather than a displacement as in the ray-theory case.

6.2 Ambient-noise cross correlations579

Cross-correlations of ambient signal form a perfectly suited data set to validate a source-580

localization method: each cross-correlation is an approximation for the corresponding receiver-581

receiver Green’s function, and the location of both receivers is naturally well known. We select582

station LSD.GU (Fig. 5) as our virtual “test” source, and time-reverse and backward propa-583

gate ambient-noise based Green’s functions associated with it. (Noise cross correlations will584

be described in a separate study [Molinari et al., 2018].) This amounts to implementing585

the right-hand side of eq. (39) via our two algorithms. We first Butterworth-filter vertical-586

component cross correlations around 16 s (low and high corner frequencies corresponding587

to periods of 26 and 6 s, respectively), and, as in sec. 6.1, propagate time-reversed signal588

through the Rayleigh-wave phase-velocity map of Fig. 1b. The results of this exercise are589

shown in Fig. 4 and Fig. 5. Again, despite the poor azimuthal station coverage in this ex-590

ample, the time-reversed wave field focuses quite precisely on the virtual source, in both591

the ray-theory and SPECFEM2D implementations. In both cases, the maxima of the time-592

reversed wave field at the known source location is correctly achieved at t=0. Similar to593

sec. 6.1, non-physical signal naturally emerges after focusing.594

If station coverage were uniform and the noise-based Green’s functions perfectly recon-595

structed, the time-reversed signal at LSD.GU (Fig. 5) should closely approximate an impulse,596

which is not the case. We have seen, however, from the results of sec. 6.1 and in particular597

Fig. 3, that the source time function can be reconstructed well even when the station cov-598

erage is poor. We infer that artifacts in the trace of Fig. 5 result from inaccuracies in the599

reconstructed Green’s function. This is not surprising because, while the phase of Green’s600

functions is reconstructed well by ambient-noise cross correlation, their amplitude probably601

is not [e.g. Ekström et al., 2009].602

We next iterate the ray-theory procedure for the 4-to-10 s and 20-to-30 s period bands,603

and show the results in Figs. 6 and 7. Membrane-wave propagation is modeled using phase-604

velocity maps at 6 and 25 s periods (Fig. 1a, c), respectively, again from Kaestle et al. [2017].605

The quality of focusing is comparable to the intermediate-period case (Fig. 4), and can be606

considered high, in view of the nonuniformity of station distribution. This result confirms607

that our algorithm can be applied to a variety of surface-wave modes, and, as far as reliable608

phase-velocity and Green’s function estimates are available, is fairly independent of period,609
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Figure 4: Snapshots of the ray-theory (left) and SPECFEM2D (right) time-reversal simula-
tions of real noise cross-correlations described in sec. 6.2, in the 6-to-26 s period band. This
is similar to Fig. 2, but synthetic traces are replaced by cross-correlations of ambient data
recorded at station LSD.GU (yellow circle) and all other stations whose locations are denoted
by red triangles. Ambient-noise cross-correlations approximate the Green’s function for each
station pair, and, in this exercise, station LSD.GU can accordingly be thought of as a “virtual
source.” Snapshots a and b are taken at time t=82 s; c and d at t=0 s, e and f at t=-38.
Snapshots c and d show that the time-reversed wave field indeed focuses at the location of
station LSD.GU.
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Figure 5: Time-reversed and backward-propagated empirical, ambient-noise based Green’s
functions (sec. 6.2), computed at the location of the virtual source, i.e. station LSD.GU, via
SPECFEM2D (blue curve) and ray theory (red).

and of the width of the passband.610

6.3 Recordings of the Emilia earthquake of May 29, 2012611

We apply our ray-theory- and SPECFEM2D-based algorithms to vertical-component record-612

ings of the magnitude Mw=5.6 (MI=5.8) Emilia earthquake of May 29, 2012, 7:00:03 AM.613

These data, discussed in detail by Molinari et al. [2015], are shown here in Fig. 8. Traces are614

filtered around 16 s, the same way as in sec. 6.2, before time-reversal and backward prop-615

agation; propagation is modeled according to the 16s Rayleigh-wave phase velocity map of616

Fig. 1b. Results are summarized in Figs. 9 and 10. Early time-steps (e.g., Fig. 9a,b) are617

characterized by the emergence of time-reversed late arrivals, that we believe to be associ-618

ated with reverberations, e.g. at the sharp boundaries between Po plain and surrounding619

mountain ranges. This signal does not focus sharply anywhere on our membrane, and can620

accordingly be neglected in this context. Direct-arrival surface waves, on the other hand, do621

focus at the known epicenter location in both our implementations (Fig. 9c,d). Similar to622

secs. 6.1 and 6.2, non-physical signal again emerges after focusing (Fig. 9e,f).623

Fig. 10 shows that the maximum amplitude of the reconstructed vertical displacement624

at the epicenter occurs at t=22s according to spectral-element time reversal; this delay with625

respect to the reported earthquake origin time is comparable with the considered surface-wave626

period, and, in order of magnitude, with typical discrepancies between body- and surface-627

wave-based estimates of rupture times. The ray-theory simulation results in multiple maxima628

between 0 and 50 s. All this presumably reflects the complexity of surface-wave generation629

at the source, as well as errors introduced by the mentioned, non-physical propagation of the630

time-reversed wave field after focusing.631

We repeat ray-theory time reversal in the 4-to-10 s and 20-to-30 s passbands, and show632

the results in Figs. 11 and 12. Focusing of the time-reversed wave field is less sharp both633

in space and time (although, interestingly, in late snapshots of the time-reversal simulation634

(Fig. 11e,f), wavefronts are nicely centered on the earthquake epicenter). We ascribe the loss635

in source localization accuracy to the significant reduction in the width of the passbands,636

with respect to the previously discussed, 6-to-26 s simulation: we had anticipated in sec. 1637

that focusing of the time-reversed wave field is enhanced by combining as many time-reversed638

surface-wave modes as possible. In our future work, we plan to more rigorously take advantage639

of this effect, multiplication surface-wave potential and their horizontal gradients by the radial640
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Figure 6: Snapshots of time-reversal simulations of real noise cross-correlations, in the 4-to-10
s (left) and 20-to-30 s (right) period bands. As in Fig. 4, cross-correlated data were recorded
at station LSD.GU (yellow circle) and all other stations whose locations are denoted by red
triangles. Snapshots were selected at the same times as in Fig. 4. Snapshots c and d show
that, also in these period bands, the time-reversed wave field focuses at the location of station
LSD.GU.
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Figure 7: Same as Fig. 5, but traces obtained (via ray theory only) in the period bands
4-to-10 s (blue curve), 6-to-26 s (red) and 10-to-20 s (green) are shown.

Figure 8: Normalized vertical-component recordings of the Mw=5.6 (MI=5.8) Emilia earth-
quake of May 29, 2012 [e.g. Molinari et al., 2015], that we time-reverse and backward-
propagate as discussed in sec. 6.3. The vertical axis corresponds to epicentral distance, and
each trace is plotted about its associated epicentral distance. All traces are Butterworth-
filtered around 16 s as described in sec. 6.3.
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Figure 9: Snapshots of the ray-theory (left) and SPECFEM2D (right) time-reversal simula-
tions of real earthquake data described in sec. 6.3. Again, the locations of stations utilized
in the time-reversal simulation are denoted by red triangles, while the earthquake epicenter
is marked by a yellow circle. We define t=0 as the earthquake origin time as reported by the
Centro Nazionale Terremoti at INGV. Snapshots a and b are taken at time t=76 s; c and d
at t=22 s, e and f at t=-50. Snapshots c and d show that the time-reversed wave field focuses
at the epicenter of the earthquake.
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Figure 10: Time-reversed signal at the epicenter of the Emilia earthquake as reconstructed
by SPECFEM2D (blue curve) and ray theory (red) time reversal. Again, we define t=0 as
the earthquake origin time; t should be intepreted as in Fig. 9, i.e. negative t corresponds to
time after focusing in a time-reversal simulation.

eigenfunctions U(ω), V (ω), W (ω) according to eqs. (5) and (6), before integrating over the641

entire surface-wave frequency range.642

Importantly, our analysis of time-reversed earthquake data shows that even at relatively643

short epicentral distances, where they are obscured by the body-wave coda, surface waves644

can still emerge in a time-reversal exercise. Focusing of the backward-propagated signal at645

the source can be thought of as a form of constructive interference. For time-reversed waves646

emitted at various station locations to interfere constructively, their backward propagation647

has to be modeled correctly. In our approach, time-reversed seismograms are filtered around648

one surface-wave frequency, and backward-propagated via the known Green’s function (i.e.649

phase-velocity map) for that frequency. In other words, only the propagation of time-reversed650

signal associated with surface waves at that frequency is modeled correctly, and it is only651

this signal that will contribute to “constructive interference” and to focusing of the time-652

reversed wave field. Accordingly, circular wave fronts that can be associated with body-wave653

signal, and that do not focus at the epicenter (or elsewhere) are visible in Fig. 9a, b. We654

infer that surface-wave time reversal can indeed function as a source-imaging method also655

at relatively small epicentral distances, independently of how clearly surface waves can be656

identified visually on seismograms.657

7 Conclusions658

By taking advantage of the theory of surface-wave “potentials,” we have reduced the problem659

of surface-wave propagation to two dimensions (“membrane waves”). We have shown that 3-D660

wave fields can then be reconstructed from monochromatic 2-D ones, once radial surface-wave661

eigenfunctions (sec. 2) are known; in this study, however, we only studied the propagation of662

surface-wave potentials in 2-D. We implemented a surface-wave time-reversal algorithm that663

can rely on either spectral-element or ray-theory models of wave propagation. In both cases,664

the theory is validated by application to real seismometer arrays in Central Europe. First, a665

synthetic test is implemented by computing approximately monochromatic membrane-wave666

seismograms at all receiver positions, from an arbitrary selected source location in Northern667

Italy. In a second experiment, synthetic traces are replaced by approximate Green’s functions,668

obtained by cross-correlating the real ambient signal recorded at one station of the array with669
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Figure 11: Snapshots of ray-theory time-reversal simulations of real earthquake data, in the
4-to-8 s (left) and 20-to-30 s (right) period bands. Snapshots were selected at the same times
as in Fig. 9. All symbols are defined as in Fig. 9.
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Figure 12: The ray-tracing based trace of Fig. 10 (red curve, 6-to-26s period band) is com-
pared to analogous traces obtained for the 4-to-8s (blue) and 20-to-30s (green) bands. Each
trace is normalized to its maximum.

that recorded at all other stations. Finally, waveforms from a magnitude-5.6 event in the Po670

plain are used. In all three cases, time-reversal and backward propagation of the data result in671

focusing of the signal at the location and time of the source, despite the severe nonuniformity672

of data coverage, inaccuracies in ambient-noise-based Green’s function reconstruction, and673

difficulties in disentangling surface-wave signal from the body-wave coda. Importantly, our674

experiment described in sec. 6.3 suggests that time reversal and backward propagation using675

the surface-wave Green’s function result in focusing of surface waves at the epicenter even at676

distances less than teleseismic, where surface waves carry less energy than body waves and677

their coda. These results encourage further applications of our method, in particular to the678

task of mapping, in space and time, rupture processes associated with large earthquakes.679
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Appendix: dipole sources791

The term “dipole source” refers here to the superposition of two impulsive point sources792

of opposite sign, located at two different points separated by a very small distance d. In793

this study, the concept of dipole emerges from the physical interpretation (sec. 4.2) of equa-794

tion (34), relating the time-reversed, backward propagating wave field to the signals initally795

recorded by a receiver array. In the general context of wave physics, dipole sources are used,796

e.g., to formulate a modern, “corrected” version of Huygens’ principle [Baker and Copson,797

1950; Miller , 1991].798

The mathematical expression for a dipole source can be obtained by first writing the799

forcing term q defined in sec. 3 as the sum of two equal source distributions f(x, ω) shifted800

in space by the vector d (of magnitude d) and switched in sign one with respect to the other,801

i.e.802

q(x, ω) = f (x + d)− f(x). (46)
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A first-order Taylor expansion around the point xS then gives803

f (x + d) ≈ f(x) + d · ∇1f(x,xS). (47)

Substituting expression (47) into (46), we find804

q(x, ω) ≈ d · ∇1f(x,xS). (48)

Finally, the sought expression is found by replacing f with a Dirac δ(x−xS); since q accord-805

ingly becomes infinitely large at xS and zero elsewhere, the magnitude of d ceases to have806

meaning and d can be replaced by the corresponding unit vector d̂, so that807

q(x, ω) = d̂ · ∇1δ(x− xS) (49)

[e.g., Wapenaar and Berkhout , 1989, sec. I.3.1].808

Let us next find a simple expression for the response of a medium to dipole forcing. Recall809

that we have introduced the Green’s function G2D(x,xS , ω) in sec. 3 as the solution of eq.810

(23) with q(x, ω) =δ(x− xS), i.e.811

∇2
1G2D(x,xS , ω) +

ω2

c2
G2D(x,xS , ω) = −iωδ(x− xS). (50)

Applying the operator d̂ · ∇1 to both sides of eq. (50) yields812

∇2
1

[
d̂ · ∇1G2D(x,xS , ω)

]
+
ω2

c2
d̂ · ∇1G2D(x,xS , ω) = −iω d̂ · ∇1δ(x− xS). (51)

We infer from eq. (51) that the solution of (23) with q(x, ω)=d̂ · ∇1δ(x − xS) is simply813

d̂ · ∇1G2D(x,xS , ω).814

Alternatively, Boschi and Weemstra [2015] (eqs. (E1)-(E3)) define the Green’s function815

G2D in the time domain as the solution of816

∇2G2D −
1

c2
∂2G2D

∂t2
= 0 (52)

with initial conditions817

G2D(x,xS , 0) = 0, (53)
818

∂G2D

∂t
(x,xS , 0) = δ(x− xS). (54)

Applying, again, d̂ · ∇1 to both sides of eqs. (52)-(54), we find that d̂ · ∇1G2D(x,xS , t) is819

the field resulting from a dipole initial velocity at xS . This, or rather its Fourier transform820

d̂ · ∇1G2D(x,xS , ω), is what we call “dipole response” throughout this study.821
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