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Abstract The cerebellum aids the learning of fast, coordinated movements. According to

current consensus, erroneously active parallel fibre synapses are depressed by complex spikes

signalling movement errors. However, this theory cannot solve the credit assignment problem of

processing a global movement evaluation into multiple cell-specific error signals. We identify a

possible implementation of an algorithm solving this problem, whereby spontaneous complex

spikes perturb ongoing movements, create eligibility traces and signal error changes guiding

plasticity. Error changes are extracted by adaptively cancelling the average error. This framework,

stochastic gradient descent with estimated global errors (SGDEGE), predicts synaptic plasticity

rules that apparently contradict the current consensus but were supported by plasticity

experiments in slices from mice under conditions designed to be physiological, highlighting the

sensitivity of plasticity studies to experimental conditions. We analyse the algorithm’s convergence

and capacity. Finally, we suggest SGDEGE may also operate in the basal ganglia.

DOI: https://doi.org/10.7554/eLife.31599.001

Introduction
A central contribution of the cerebellum to motor control is thought to be the learning and auto-

matic execution of fast, coordinated movements. Anatomically, the cerebellum consists of a convo-

luted, lobular cortex surrounding the cerebellar nuclei (Figure 1A, Eccles et al., 1967; Ito, 1984).

The main input to the cerebellum is the heterogeneous mossy fibres, which convey multiple modali-

ties of sensory, contextual and motor information. They excite both the cerebellar nuclei and the cer-

ebellar cortex; in the cortex they synapse with the very abundant granule cells, whose axons, the

parallel fibres, excite Purkinje cells. Purkinje cells constitute the sole output of the cerebellar cortex

and project an inhibitory connection to the nuclei, which therefore combine a direct and a trans-

formed mossy fibre input with opposite signs. The largest cell type in the nuclei, the projection neu-

rone, sends excitatory axons to several motor effector systems, notably the motor cortex via the

thalamus. Another nuclear cell type, the nucleo-olivary neurone, inhibits the inferior olive. The cere-

bellum receives a second external input: climbing fibres from the inferior olive, which form an exten-

sive, ramified connection with the proximal dendrites of the Purkinje cell. Each Purkinje cell receives

a single climbing fibre. A more modular diagram of the olivo-cerebellar connectivity relevant to this

paper is shown in Figure 1B; numerous cell types and connections have been omitted for simplicity.

Purkinje cells discharge two distinct types of action potential (Figure 1C). They nearly continu-

ously emit simple spikes—standard, if brief, action potentials—at frequencies that average 50 Hz.

This frequency is modulated both positively and negatively by the intensity of inputs from the mossy
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fibre–granule cell pathway (which can also recruit interneurons that inhibit Purkinje cells;

Eccles et al., 1967). Such modulations of Purkinje cell firing are thought to underlie their contribu-

tions to motor control. In addition, when the climbing fibre is active, an event that occurs continu-

ously but in a somewhat irregular pattern with a mean frequency of around 1 Hz, the Purkinje cell

emits a completely characteristic complex spike under the influence of the intense excitation from

the climbing fibre (Figure 1C).

The history of research into cerebellar learning is dominated by the theory due to Marr (1969)

and Albus (1971). They suggested that the climbing fibre acts as a ‘teacher’ to guide plasticity of

parallel fibre–Purkinje cell synapses. It was several years, however, before experimental support for

this hypothesis was obtained (Ito et al., 1982; Ito and Kano, 1982), by which time the notion that

Figure 1. The cerebellar circuitry and properties of Purkinje cells. (A) Simplified circuit diagram. MF, mossy fibres;

CN, (deep) cerebellar nuclei; GC, granule cells; Cb Ctx, cerebellar cortex; PF, parallel fibres; PC, Purkinje cells; PN,

projection neurones; NO, nucleo-olivary neurones; IO, inferior olive; CF, Climbing fibres. (B) Modular diagram. The

� signs next to the synapses indicate whether they are excitatory or inhibitory. The granule cell and indirect

inhibitory inputs they recruit have been subsumed into a bidirectional mossy fibre–Purkinje cell input, M.

Potentially plastic inputs of interest here are denoted with an asterisk. i, input; o, output; EðoÞ, error (which is a

function of the output). (C) Typical Purkinje cell electrical activity from an intracellular patch-clamp recording.

Purkinje cells fire two types of action potential: simple spikes and, in response to climbing fibre input, complex

spikes. (D) According to the consensus plasticity rule, a complex spike will depress parallel fibre synapses active

about 100 ms earlier. The diagram depicts idealised excitatory postsynaptic currents (EPSCs) before and after

typical induction protocols inducing long-term potentiation (LTP) or depression (LTD). Grey, control EPSC; blue,

green, post-induction EPSCs.

DOI: https://doi.org/10.7554/eLife.31599.002
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the climbing fibre signalled errors had emerged (Ito, 1972; Ito, 1984). Error modalities thought to

be represented by climbing fibres include: pain, unexpected touch, imbalance, and retinal slip.

According to the modern understanding of this theory, by signalling such movement errors, climbing

fibres induce long-term depression (LTD) of parallel fibre synapses that were active at the same time

(Ito et al., 1982; Ito and Kano, 1982; Sakurai, 1987; Crepel and Jaillard, 1991) or, more precisely,

shortly before (Wang et al., 2000; Sarkisov and Wang, 2008; Safo and Regehr, 2008). A compen-

sating long-term potentiation (LTP) is necessary to prevent synaptic saturation (Lev-Ram et al.,

2002; Lev-Ram et al., 2003; Coesmans et al., 2004) and its induction is reported to follow high-fre-

quency parallel fibre activity in the absence of complex spikes (Jörntell and Ekerot, 2002;

Bouvier et al., 2016). Plasticity of parallel fibre synaptic currents according to these plasticity rules

is diagrammed in Figure 1D.

Cerebellar learning with the Marr-Albus-Ito theory has mostly been considered, both experimen-

tally and theoretically, at the level of single cells or of uniformly responding groups of cells learning

a single stereotyped adjustment. Such predictable and constrained movements, exemplified by eye

movements and simple reflexes, provide some of the best studied models of cerebellar learning: the

vestibulo-ocular reflex (Robinson, 1976; Ito et al., 1974; Blazquez et al., 2004), nictitating mem-

brane response/eye blink conditioning (McCormick et al., 1982; Yeo et al., 1984; Yeo and Hes-

slow, 1998), saccade adaptation (Optican and Robinson, 1980; Dash and Thier, 2014;

Soetedjo et al., 2008) and regulation of limb movements by withdrawal reflexes (Ekerot et al.,

1995; Garwicz et al., 2002). All of these motor behaviours have in common that there could con-

ceivably be a fixed mapping between an error and a suitable corrective action. Thus, adaptations

necessary to ensure gaze fixation are exactly determined by the retinal slip. Such fixed error-correc-

tion relations may have been exploited during evolution to create optimised correction circuitry.

The problems arise with the Marr-Albus-Ito theory if one tries to extend it to more complex situa-

tions, where neurones must respond heterogeneously (not uniformly) and/or where the flexibility to

learn arbitrary responses is required. Many motor control tasks, for instance coordinated movements

involving the hands, can be expected to fall into this class. To learn such complex/arbitrary move-

ments with the Marr-Albus-Ito theory requires error signals that are specific for each cell, each move-

ment and each time within each movement. The theory is thus incomplete, because it does not

describe how a global evaluation of movement error can be processed to provide such detailed

instructions for plasticity to large numbers of cells, a general difficulty which the brain has to face

that was termed the credit assignment problem by Minsky (1961).

A suitable algorithm for solving the general cerebellar learning problem would be stochastic gra-

dient descent, a classical optimisation method that Minsky (1961) suggested might operate in the

brain. We shall speak of ‘descent’ when minimising an error and ‘ascent’ when maximising a reward,

but the processes are mathematically equivalent. In stochastic gradient descent, the objective func-

tion is explored by random variations in the network that alter behaviour, with plasticity then retain-

ing those variations that improve the behaviour, as signalled by a decreased error or increased

reward. Several possible mechanisms of varying biological plausibility have been proposed. In partic-

ular, perturbations caused by synaptic release (Minsky, 1954; Seung, 2003) or external inputs

(Doya and Sejnowski, 1988) have been suggested, while various (abstract) mechanisms have been

proposed for extraction of changes in the objective function (Williams, 1992). To avoid confusion,

note that these forms of stochastic gradient descent differ from those conforming to the more

restrictive definition used in the machine learning community, in which the stochastic element is the

random sampling of examples from the training set (Robbins and Monro, 1951; Shalev-

Shwartz and Ben-David, 2014). This latter form has achieved broad popularity in online learning

from large data sets and in deep learning. Although the theoretical framework for (perturbative) sto-

chastic gradient descent is well established, the goal of identifying in the brain a network and cellular

implementation of such an algorithm has proved elusive.

The learning behaviour with the best established resemblance to stochastic gradient ascent is the

acquisition of song in male songbirds. The juvenile song is refined by a trial and error process to

approach a template memorised from a tutor during a critical period (Konishi, 1965;

Mooney, 2009). The analogy with stochastic gradient ascent was made by Doya and Sejnowski

(1988) and was then further developed experimentally (Olveczky et al., 2005) and theoretically

(Fiete et al., 2007). However, despite these very suggestive behavioural correlates, relatively little
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progress has been made in verifying model predictions for plasticity or identifying the structures

responsible for storing the template and evaluating its match with the song.

A gradient descent mechanism for the cerebellum has been proposed by the group of

Dean et al. (2002), who term their algorithm decorrelation. Simply stated (Dean and Porrill, 2014),

if both parallel fibre and climbing fibre inputs to a Purkinje cell are assumed to vary about their

respective mean values, their correlation or anticorrelation indicates the local gradient of the error

function and thus the sign of the required plasticity. At the optimum, which is a minimum of the error

function, there should be no correlation between variations of the climbing fibre rate and those of

the parallel fibre input. Hence the name: the algorithm aims to decorrelate parallel and climbing

fibre variations. An appropriate plasticity rule for implementing decorrelation is a modified covari-

ance rule (Sejnowski, 1977; who moreover suggested in abridged form a similar application to cere-

bellar learning). Although decorrelation provides a suitable framework, its proponents are still in the

process of developing a cellular implementation (Menzies et al., 2010). Moreover, we believe that

the detailed implementation suggested by Menzies et al., 2010 is unable to solve a temporal credit

assignment problem (that we identify below) arising in movements that can only be evaluated upon

completion.

Below, we analyse in more detail how the Marr-Albus-Ito theory fails to solve the credit assign-

ment problem and suggest how the cerebellum might implement stochastic gradient descent. We

shall provide support for unexpected predictions the proposed implementation makes regarding

cerebellar synaptic plasticity, which are different from those suggested for decorrelation. Finally, we

shall perform a theoretical analysis demonstrating that learning with the algorithm converges and

that it is able to attain maximal storage capacity.

Results

Requirements for cerebellar learning
We begin by examining the current consensus (Marr-Albus-Ito) theory of cerebellar learning and

illustrating some of its limitations when extended to the optimisation of complex, arbitrary move-

ments. The learning framework we consider is the following. The cerebellar circuitry must produce at

its output trains of action potentials of varying frequencies at given times (Thach, 1968). We con-

sider only firing rates rðtÞ, which are a function of time in the movement (Figure 2A). The cerebellar

output influences the movement and the resulting movement error, which can be sensed and fed

back to the Purkinje cells in the form of climbing fibre activity.

We constructed a simple network simulation to embody this framework (see Materials and meth-

ods). In it, mossy fibre drive to the cerebellum was considered to be movement- and time-depen-

dent but not to vary during learning. Granule cells and molecular layer interneurons were collapsed

into the mossy fibre inputs, which acted on Purkinje cells through unconstrained synapses (negative

weights could arise through plasticity of interneuron synapses; Jörntell and Ekerot, 2002;

Jörntell and Ekerot, 2003; Mittmann and Häusser, 2007) that were modified to optimise the firing

profiles of the projection neurones of the deep cerebellar nuclei. We implemented the Marr-Albus-

Ito algorithm via a plasticity rule in which synaptic weights were updated by the product of presyn-

aptic activity and the presence of the error signal. Thus, active mossy fibre (pathway) inputs would

undergo LTP (increasing Purkinje cell firing; Lev-Ram et al., 2003) after each movement unless the

climbing fibre was active, in which case they would undergo LTD (decreasing activity). The model

represented a microzone whose climbing fibres were activated uniformly by a global movement

error.

The behaviour of the Marr-Albus-Ito algorithm in this network depends critically on how the defi-

nition of the error is extended from the error for an individual cell. The most natural definition for

minimising all errors would be to sum the absolute differences between the actual firing profile of

each cerebellar nuclear projection neurone and its target, see Equation 7. However, this error defini-

tion is incompatible with the Marr-Albus-Ito algorithm (Unsigned in Figure 2B). Examination in

Figure 2C of the firing profile of one of the projection neurones shows that their rate simply satu-

rates. The algorithm is able to minimise the average signed error defined in Equation 14 (Signed in

Figure 2B). However, inspection of a specimen final firing profile illustrates the obvious limitation

Bouvier et al. eLife 2018;7:e31599. DOI: https://doi.org/10.7554/eLife.31599 4 of 45

Research article Neuroscience

https://doi.org/10.7554/eLife.31599


that neither the detail of the temporal profile nor even the mean firing rate for individual cells is opti-

mised when using this error (see Figure 2C).

This limitation illustrates the credit assignment problem. How to work back from a single evalua-

tion after the movement to optimise the firing rate of multiple cells at different time points, with all

of those firing profiles also differing between multiple movements which must all be learnt in paral-

lel? A model problem that the Marr-Albus-Ito algorithm cannot solve would be two neurones receiv-

ing the same inputs and error signal but needing to undergo opposite plasticity. In the general case

of learning complex, arbitrary movements, this requires impractical foreknowledge to be embodied

by the climbing fibre system, to know exactly which cell must be depressed to optimise each

Figure 2. Analysis of cerebellar learning. (A) The model of cerebellar learning we address is to adjust the temporal

firing profiles (miniature graphs of rate as a function of time, r tð Þ, magenta) of multiple cerebellar output neurones

(nuclear projection neurones) (black circles) to optimise a movement, exploiting the evaluated movement error,

which is fed back to the cerebellar circuit (Purkinje cells) (blue arrow). (B) The Marr-Albus-Ito theory was simulated

in a network simulation embodying different error definitions (Results, Materials and methods). The Marr-Albus-Ito

algorithm is able to minimise the average signed error (blue, Signed) of a group of projection neurones, but not

the unsigned error (red, Unsigned). (C) However, as expected, optimising the signed error does not optimise

individual cell firing profiles: comparison of the underlying firing profiles (initial, magenta; final, green) with their

target (grey) for a specimen projection neurone illustrates that neither the temporal profile nor even the mean

single-cell firing rate is optimised. If the unsigned error is used, there is no convergence and the firing rates simply

saturate (red) and the error increases. (D) A different learning algorithm will be explored below: stochastic gradient

descent, according to which temporally and spatially localised firing perturbations (dr, red, of a Purkinje cell) are

consolidated if the movement improves; this requires extraction of the change of error (D Error).

DOI: https://doi.org/10.7554/eLife.31599.003
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movement, and this still would not solve the problem of inducing plasticity differentially at different

time points during a firing profile, given that often only a single, post-movement evaluation will be

available. An example would be a saccade, where the proximity to the target can only be assessed

once the movement of the eye has ceased.

The complex spike as trial and error
The apparent difficulty of solving the credit assignment problem within the Marr-Albus-Ito algorithm

led us to consider whether the cerebellum might implement a form of stochastic gradient descent.

By combining a known perturbation of one or a small group of neurones with information about the

change of the global error (Figure 2D), it becomes possible to consolidate, specifically in perturbed

neurones, those motor command modifications that reduce the error, thus leading to a progressive

optimisation. We set out to identify a biologically plausible implementation in the cerebellum. In par-

ticular, that implementation should be able to optimise multiple movements in parallel, employing

only feasible cellular computations—excitation, inhibition and thresholding.

A cerebellar implementation of stochastic gradient descent must include a source of perturba-

tions of the Purkinje cell firing rate dr. The fact that Purkinje cells can contribute to different move-

ments with arbitrary and unknown sequencing imposes an implementation constraint preventing

simple-minded approaches like comparing movements performed twice in succession. We recall that

we assume that no explicit information categorising or identifying movements is available to the Pur-

kinje cell. It is therefore necessary that knowledge of both the presence and sign of dr be available

within the context of a single movement execution.

In practice, a number of different perturbation mechanisms can still satisfy these requirements.

For instance, any binary signal would be suitable, since the sign of the perturbation with respect to

its mean would be determined by the simple presence or absence of the signal. Several plausible

mechanisms along these lines have been proposed, including external modulatory inputs (Doya and

Sejnowski, 1988; Fiete et al., 2007), failures and successes of synaptic transmission (Seung, 2003)

or the absence and presence of action potentials (Xie and Seung, 2004). However, none of these

mechanisms has yet attracted experimental support at the cellular level.

In the cerebellar context, parallel fibre synaptic inputs are so numerous that the correlation

between individual input variations and motor errors is likely to be extremely weak, whereas we seek

a perturbation that is sufficiently salient to influence ongoing movement. Purkinje cell action poten-

tials are also a poor candidate, because they are not back-propagated to parallel fibre synapses

(Stuart and Häusser, 1994) and therefore probably cannot guide their plasticity, but the ability to

establish a synaptic eligibility trace is required. Bistable firing behaviour of Purkinje cells

(Loewenstein et al., 2005; Yartsev et al., 2009), with the down-state (or long pauses) representing

a clear perturbation towards lower (zero) firing rates, is a perturbation candidate. However, explor-

atory plasticity experiments did not support this hypothesis and the existence of bistability in vivo is

disputed (Schonewille et al., 2006a).

We thus propose, in accordance with a suggestion due to Harris (1998), another possible pertur-

bation of Purkinje cell firing: the complex spike triggered by the climbing fibre. We note that there

are probably two types of inferior olivary activity. Olivary neurones mediate classical error signalling

triggered by external synaptic input, but they also exhibit continuous and irregular spontaneous

activity in the absence of overt errors. We suggest the spontaneous climbing fibre activations cause

synchronised perturbation complex spikes (pCSs) in small groups of Purkinje cells via the ~ 1:10 infe-

rior olivary–Purkinje cell divergence (Schild, 1970; Mlonyeni, 1973; Caddy and Biscoe, 1976),

dynamic synchronisation of olivary neurones through electrical coupling (Llinás and Yarom, 1986;

Bazzigaluppi et al., 2012a) and common synaptic drive. The excitatory perturbation—a brief

increase of firing rate (Ito and Simpson, 1971; Campbell and Hesslow, 1986; Khaliq and Raman,

2005; Monsivais et al., 2005)—feeds through the cerebellar nuclei (changing sign;

Bengtsson et al., 2011) to the ongoing motor command and causes a perturbation of the move-

ment, which in turn may modify the error of the movement.

The perturbations are proposed to guide learning in the following manner. If a perturbation com-

plex spike results in an increase of the error, the raised activity of the perturbed Purkinje cells was a

mistake and reduced activity would be preferable; parallel fibre synapses active at the time of the

perturbing complex spikes should therefore be depressed. Conversely, if the perturbation leads to a
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reduction of error (or does not increase it), the increased firing rate should be consolidated by

potentiation of the simultaneously active parallel fibres.

How could an increase of the error following a perturbation be signalled to the Purkinje cell? We

suggest that the climbing fibre also performs this function. Specifically, if the perturbation complex

spike increases the movement error, a secondary error complex spike (eCS) is emitted shortly after-

wards, on a time scale of the order of 100 ms (50–300 ms). This time scale is assumed because it cor-

responds to the classical error signalling function of the climbing fibre, because it allows sufficient

time for feedback via the error modalities known to elicit complex spikes (touch, pain, balance,

vision) and because such intervals are known to be effective in plasticity protocols (Wang et al.,

2000; Sarkisov and Wang, 2008; Safo and Regehr, 2008). The interval could also be influenced by

the oscillatory properties of olivary neurones (Llinás and Yarom, 1986; Bazzigaluppi et al., 2012b).

The predicted plasticity rule is therefore as diagrammed in Figure 3. Only granule cell synapses

active simultaneously with the perturbation complex spike undergo plasticity, with the sign of the

plasticity being determined by the presence or absence of a subsequent error complex spike. Gran-

ule cell synapses active in the absence of a synchronous perturbation complex spike should not

undergo plasticity, even if succeeded by an error complex spike. We refer to these different proto-

cols with the abbreviations (and give our predicted outcome in parenthesis): G_ _ (no change), GP_

(LTP), G_E (no change), GPE (LTD), where G indicates granule cell activity, P the presence of a per-

turbation complex spike and E the presence of an error complex spike. Note that both granule cells

and climbing fibres are likely to be active in high-frequency bursts rather than the single activations

idealised in Figure 3.

Several of the predictions of this rule appear to be incompatible with the current consensus.

Thus, parallel fibre synapses whose activity is simultaneous with (GP_) or followed by a complex

spike (G_E) have been reported to be depressed (Sakurai, 1987; Crepel and Jaillard, 1991; Lev-

Ram et al., 1995; Coesmans et al., 2004; Safo and Regehr, 2008; Gutierrez-Castellanos et al.,

Figure 3. Predicted plasticity rules. Synchronous activation of granule cell synapses and a perturbation complex

spike (pCS) leads to LTP (GP_, increased synaptic weight w; top left, red), while the addition of a succeeding error

complex spike (eCS) leads to LTD (GPE, top right, magenta). The bottom row illustrates the corresponding

‘control’ cases from which the perturbation complex spike is absent; no plasticity should result (G_ _ blue and

G_E green).

DOI: https://doi.org/10.7554/eLife.31599.004
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2017), while we predict potentiation and no change, respectively. Furthermore, parallel fibre activity

alone (G_ _) leads to potentiation (Lev-Ram et al., 2002; Jörntell and Ekerot, 2002; Lev-

Ram et al., 2003; Coesmans et al., 2004; Gutierrez-Castellanos et al., 2017), while we predict no

change.

Synaptic plasticity under physiological conditions
As described above, the plasticity rules we predict for parallel fibre–Purkinje cell synapses are, super-

ficially at least, close to the opposite of the consensus in the literature. Current understanding of the

conditions for inducing plasticity gives a key role to the intracellular calcium concentration (com-

bined with nitric oxide signalling; Coesmans et al., 2004; Bouvier et al., 2016), whereby high intra-

cellular calcium concentrations are required for LTD and moderate concentrations lead to LTP.

Standard experimental conditions for studying plasticity in vitro, notably the extracellular concentra-

tion of calcium, are likely to result in more elevated intracellular calcium concentrations during induc-

tion than pertain physiologically. Recognising that this could alter plasticity outcomes, we set out to

test whether our predicted plasticity rules might be verified under more physiological conditions.

We made several changes to standard protocols (see Materials and methods); one was cerebel-

lum-specific, but the others also apply to in vitro plasticity studies in other brain regions. We did not

block GABAergic inhibition. We lowered the extracellular calcium concentration from the standard 2

mM (or higher) used in slice work to 1.5 mM (Pugh and Raman, 2008), which is near the maximum

values measured in vivo in rodents (Nicholson et al., 1978; Jones and Keep, 1988; Silver and Ere-

cińska, 1990). To avoid the compact bundles of active parallel fibres produced by the usual stimula-

tion in the molecular layer, we instead used weak granule cell layer stimuli, which results in sparse

and spatially dispersed parallel fibre activity. Interestingly, it has been reported that standard proto-

cols using granule cell stimulation are unable to induce LTD (Marcaggi and Attwell, 2007). We used

a pipette solution designed to prolong energy supply in extended cells like the Purkinje cell (see

Materials and methods). Experiments were carried out in adult mouse sagittal cerebellar slices using

otherwise standard patch-clamp techniques.

Pairs of granule cell test stimuli with an interval of 50 ms were applied at 0.1 Hz before and after

induction; EPSCs were recorded in voltage clamp at �70 mV. Pairs of climbing fibre stimuli with a

2.5 ms interval were applied at 0.5 Hz throughout the test periods, mimicking tonic climbing fibre

activity, albeit at a slightly lower rate. The interleaved test granule cell stimulations were sequenced

0.5 s before the climbing fibre stimulations. The analysis inclusion criteria and amplitude measure-

ment for the EPSCs are detailed in the Materials and methods. The average amplitude of the gran-

ule cell EPSCs retained for analysis was �62 � 46 pA (mean � s.d., n = 58). The rise and decay time

constants (of the global averages) were 0.74 � 0.36 ms and 7.2 � 2.7 ms (mean � sd), respectively.

During induction, performed in current clamp without any injected current, the granule cell input

consisted of a burst of five stimuli at 200 Hz, reproducing the propensity of granule cells to burst at

high frequencies (Chadderton et al., 2004; Jörntell and Ekerot, 2006). The climbing fibre input

reflected the fact that these can occur in very high-frequency bursts (Eccles et al., 1966;

Maruta et al., 2007). We used two stimuli at 400 Hz to represent the perturbation complex spike

and four for the subsequent error complex spike if it was included in the protocol. Depending on

the protocol, the climbing fibre stimuli had different timings relative to the granule cell stimuli: a pair

of climbing fibre stimuli at 400 Hz, 11–15 ms or ~ 500 ms after the start of the granule cell burst

and/or four climbing fibre stimuli at 400 Hz, 100–115 ms after the beginning of the granule cell burst

(timing diagrams will be shown in the Results). In a fraction of cells, the climbing fibre stimuli after

the first were not reliable; our grounds for including these cells are detailed in the Materials and

methods. The interval between the two bursts of climbing fibre stimuli when the error complex spike

was present was about 100 ms. We increased the interval between induction episodes from the stan-

dard one second to two, to reduce any accumulating signal during induction. 300 such induction

sequences were applied (Lev-Ram et al., 2002).

We first show the protocols relating to LTP (Figure 4). A granule cell burst was followed by a dis-

tant perturbation climbing fibre stimulus or the two inputs were activated simultaneously. In the

examples shown, the protocol with simultaneous activation (GP_, Figure 4C,D) caused a potentia-

tion of about 40%, while the temporally separate inputs caused a smaller change of 15% in the

opposite direction (G_ _, Figure 4A,B). We note that individual outcomes were quite variable; group

data and statistics will be shown below. The mean paired-pulse ratio in our recordings was A2/
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A1 = 1.75 � 0.32 (mean � sd, n = 58). As here, no significant differences of paired-pulse ratio were

observed with any of the plasticity protocols: plasticity � baseline difference for GP_, mean �0.08,

95% confidence interval (�0.34, 0.20), n = 15; GPE, mean 0.12, 95 % c.i. (�0.07, 0.33), n = 10; G_ _,

mean �0.01, 95 % c.i. (�0.24, 0.24), n = 18; G_E, mean �0.09, 95 % c.i. (�0.23, 0.29), n = 15.

Figure 5 illustrates tests of our predictions regarding the induction of LTD. As before, a granule

cell burst was paired with the perturbation climbing fibre, but now a longer burst of climbing fibre

stimuli was appended 100 ms later, representing an error complex spike (GPE, Figure 5C,D). A clear

LTD of about 40% developed following the induction. In contrast, if the perturbation complex spike

was omitted, leaving the error complex spike (G_E, Figure 5A,B), no clear change of synaptic weight

occurred (an increase of about 10%). During induction, cells would generally begin in a tonic firing

mode, but nearly all ceased firing by the end of the protocol. The specimen sweeps in Figure 5 are

taken towards the end of the induction period and illustrate the Purkinje cell responses when spiking

had ceased.

The time courses of the changes of EPSC amplitude are shown in normalised form in Figure 6

(see Materials and methods). The individual data points of the relative EPSC amplitudes for the dif-

ferent protocols are also shown. A numerical summary of the group data and statistical comparisons

is given in Table 1.

In a complementary series of experiments, we explored the plasticity outcome when six climbing

fibre stimuli were grouped in a burst and applied simultaneously with the granule cell burst. This

Figure 4. Simultaneous granule cell and climbing fibre activity induces LTP. (A) Membrane potential (blue) of a

Purkinje cell during an induction protocol (G_ _) where a burst of 5 granule cell stimuli at 200 Hz was followed after

0.5 s by a pair of climbing fibre stimuli at 400 Hz. (B) Average EPSCs recorded up to 10 min before (black) and 20–

30 min after the end of the protocol of A (blue). Paired test stimuli (triangles) were separated by 50 ms and

revealed the facilitation typical of the granule cell input to Purkinje cells. In this case, the induction protocol

resulted in a small reduction (blue vs. black) of the amplitude of responses to both pulses. (C) Purkinje cell

membrane potential (red) during a protocol (GP_) where the granule cells and climbing fibres were activated

simultaneously, with timing otherwise identical to A. (D) EPSCs recorded before (black) and after (red) the protocol

in C. A clear potentiation was observed in both of the paired-pulse responses.

DOI: https://doi.org/10.7554/eLife.31599.005
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allowed comparison with the GPE protocol, which also contained 4 + 2 = 6 climbing fibre stimuli.

The results in Figure 6—figure supplement 1 shows that a modest LTP was observed on average:

after/before ratio 1.12 � 0.12 (mean � SEM); 95% c.i. 0.89–1.35. This result is clearly different from

the LTD observed under GPE (p=0.0034; two-tailed Wilcoxon rank sum test, after Bonferroni correc-

tion for four possible comparisons).

These results therefore provide experimental support for all four plasticity rules predicted by our

proposed mechanism of stochastic gradient descent. We argue in the Discussion that the apparent

contradiction of these results with the literature is not unexpected if the likely effects of our altered

conditions are considered in the light of known mechanisms of potentiation and depression.

Extraction of the change of error
Above we have provided experimental evidence in support of the counterintuitive synaptic plasticity

rules predicted by our proposed learning mechanism. In that mechanism, following a perturbation

complex spike, the sign of plasticity is determined by the absence or presence of a follow-up error

complex spike that signals whether the movement error increased (spike present) or decreased

(spike absent). We now return to the outstanding problem of finding a mechanism able to extract

this change of error, dE.
Several roughly equivalent schemes have been proposed (Williams, 1992), including subtraction

of the average error (Barto et al., 1983) and decorrelation (Dean and Porrill, 2014), a specialisation

of the covariance rule (Sejnowski, 1977). However, in general, these suggestions have not extended

Figure 5. LTD requires simultaneous granule cell and climbing fibre activity closely followed by an additional

complex spike. (A) Membrane potential of a Purkinje cell (green) during a protocol where a burst of five granule

cell stimuli at 200 Hz was followed after 100 ms by four climbing fibre stimuli at 400 Hz (G_E). (B) Average EPSCs

recorded up to 10 min before (black) and 20–30 min after the end of the protocol of A (green). The interval

between the paired test stimuli (triangles) was 50 ms. The induction protocol resulted in little change (green vs.

black) of the amplitude of either pulse. (C) Purkinje cell membrane potential (magenta) during the same protocol

as in A with the addition of a pair of climbing fibre stimuli simultaneous with the granule cell stimuli (GPE). (D)

EPSCs recorded before (black) and after (magenta) the protocol in C. A clear depression was observed.

DOI: https://doi.org/10.7554/eLife.31599.006
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to detailed cellular implementations. In order to restrict our implementation to biologically plausible

mechanisms we selected a method that involves subtracting the average error from the trial-to-trial

error (Barto et al., 1983; Doya and Sejnowski, 1988). The residual of the subtraction is then simply

the variation of the error dE as desired.

Figure 6. Time course and amplitude of plasticity. (A) number, (B) box-and-whisker plots of individual plasticity

ratios (coloured lines represent the means, open symbols represent cells with failures of climbing fibre stimulation;

see Materials and methods) and (C) time course of the mean EPSC amplitude for GP_ (red) and G_ _ (blue)

protocols of Figure 4, normalised to the pre-induction amplitude. Averages every 2 min, mean � sem. Non-

integer n arise because the numbers of responses averaged were normalised by those expected in two minutes,

but some responses were excluded (see Materials and methods) and some recordings did not extend to the

extremities of the bins. Induction lasted for 10 min starting at time 0. (D, E) and (F) similar plots for the GPE

(magenta) and G_E (green) protocols of Figure 5.

DOI: https://doi.org/10.7554/eLife.31599.007

The following figure supplement is available for figure 6:

Figure supplement 1. In complementary experiments, we examined the outcome of applying a burst of six

climbing fibre stimuli simultaneously with the granule cell burst.

DOI: https://doi.org/10.7554/eLife.31599.008
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As mechanism for this subtraction, we propose that the excitatory synaptic drive to the inferior

olive is on average balanced by input from the GABAergic nucleo-olivary neurones. A diagram is

shown in Figure 7 to illustrate how this might work in the context of repetitions of a single

Table 1. Group data and statistical tests for plasticity outcomes.

In the upper half of the table, the ratios of EPSC amplitudes after/before induction are described and

compared with a null hypothesis of no change (ratio = 1). The GP_ and GPE protocols both induced

changes, while the control protocols (G_ _, G_E) did not. The bottom half of the table analyses differ-

ences of those ratios between protocols. The 95% confidence intervals (c.i.) were calculated using

bootstrap methods, while the p-values were calculated using a two-tailed Wilcoxon rank sum test.

The p-values marked with an asterisk have been corrected for a two-stage analysis by a factor of 2

(Materials and methods).

Comparison Mean 95 % c.i. p n

GP_ 1.40 1.26, 1.72 0.0001 15

GPE 0.53 0.45, 0.63 0.002 10

G_ _ 0.97 0.78, 1.16 0.77 18

G_E 0.98 0.79, 1.24 0.60 15

GP_ vs G_ _ 0.43 0.19, 0.74 0.021*

GPE vs G_E �0.44 �0.72, �0.24 0.0018*

GP_ vs G_E 0.42 0.14, 0.73 0.01*

GPE vs G_ _ �0.43 �0.65, �0.22 0.008*

G_ _ vs G_E 0.01 �0.26, 0.32 0.93

DOI: https://doi.org/10.7554/eLife.31599.009

Figure 7. Adaptive tracking to cancel the mean error input to the inferior olive. (A) The olive is assumed to receive

an excitatory signal representing movement error E and an inhibitory input I from the nucleo-olivary neurones of

the cerebellar nuclei. (B) The inputs to the inferior olive are represented in discrete time (t)—each bar can be

taken to represent a discrete movement realisation. The error (blue) varies about its average (dashed blue line)

because perturbation complex spikes influence the movement and associated error randomly. The strength of the

inhibition is shown by the green trace. When the excitatory error input exceeds the inhibition, an error complex

spike is emitted (bottom black trace) and the inhibition is strengthened by plasticity, either directly or indirectly. In

the converse situation and in the consequent absence of an error complex spike, the inhibition is weakened. In this

way, the inhibition tracks the average error and the emission of an error complex spike signals an error exceeding

the estimated average. Note that spontaneous perturbation complex spikes are omitted from this diagram.

DOI: https://doi.org/10.7554/eLife.31599.010
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movement (we extend the mechanism to multiple interleaved movements below). Briefly, a feedback

plasticity reinforces the inhibition whenever it is too weak to prevent an error complex spike from

being emitted. When the inhibition is strong enough to prevent an error complex spike, the inhibi-

tion is weakened. If the variations of the strength of the inhibition are sufficiently small and the error

does not change rapidly, the level of inhibition will attain a good approximation of the average error.

Indeed, this mechanism can be viewed as maintaining an estimate of the movement error. However,

the error still varies about its mean on a trial-to-trial basis because of the random perturbations that

influence the movement and therefore the error. In consequence, error complex spikes are emitted

when the error exceeds the (estimated) average; this occurs when the perturbation increases the

error. This mechanism enables extraction of the sign of dE in the context of a single movement reali-

sation. In support of such a mechanism, there is evidence that inhibition in the olive builds up during

learning and reduces the probability of complex spikes (Kim et al., 1998).

More than one plasticity mechanism could produce the desired cancellation of excitatory drive to

the inferior olive. We outline two possibilities here, but it will be necessary in the implementation

below to make a concrete if somewhat arbitrary choice; we shall make it on the basis of the avail-

able, circumstantial evidence.

The first possible mechanism would involve plasticity of the inhibitory synapses made by nucleo-

olivary neurones in the inferior olive (Figure 1A,B). Perturbation and error complex spikes would be

distinguished in an appropriate plasticity rule by the presence of excitatory synaptic input to the

olive. This would offer a simple implementation, since plastic and cancelled inputs would be at

neighbouring synapses (De Zeeuw et al., 1998); information about olivary spikes would also be

directly available. However, the lack of published evidence and our own unsuccessful exploratory

experiments led us to consider an alternative plasticity locus.

A second possible implementation for cancelling the average error signal would make the mossy

fibre to nucleo-olivary neurone synapses plastic. The presence of an error complex spike would need

to potentiate these inputs, thereby increasing inhibitory drive to the olive and tending to reduce the

likelihood of future error complex spikes being emitted. Inversely, the absence of the error complex

spike should depress the same synapses. Movement specificity could be conferred by applying the

plasticity only to active mossy fibres, the patterns of which would differ between movements. This

would enable movement-specific cancellation as long as the overlap between mossy fibre patterns

was not too great.

How would information about the presence or absence of the error complex spike be supplied to

the nucleo-olivary neurones? A direct connection between climbing fibre collaterals and nucleo-oli-

vary neurones exists (De Zeeuw et al., 1997), but recordings of cerebellar neurones following stimu-

lation of the olive suggest that this input is not strong, probably eliciting no more than a single spike

per activation (Bengtsson et al., 2011). The function of this apparently weak input is unknown.

An alternative route to the cerebellar nuclear neurones for information about the error complex

spike is via the Purkinje cells. Climbing fibres excite Purkinje cells which in turn inhibit cerebellar

nuclear neurones, in which a strong inhibition can cause a distinctive rebound of firing (Llinás and

Mühlethaler, 1988). It has been reported that peripheral stimulation of the climbing fibre receptive

field, which might be expected to trigger the emission of error complex spikes, causes large IPSPs

and an excitatory rebound in cerebellar nuclear neurones (Bengtsson et al., 2011). These synapti-

cally induced climbing fibre–related inputs were stronger than spontaneously occurring IPSPs. In our

conceptual framework, this could be interpreted as indicating that error complex spikes are stronger

and/or arise in a greater number of olivary neurones than perturbation complex spikes. The two

types of complex spike would therefore be distinguishable, at least in the cerebellar nuclei.

Plasticity of active mossy fibre inputs to cerebellar nuclear neurones has been reported which fol-

lows a rule similar to that our implementation requires. Thus, mossy fibres that burst before a hyper-

polarisation (possibly the result of an error complex spike) that triggers a rebound have their inputs

potentiated (Pugh and Raman, 2008), while mossy fibres that burst without a succeeding hyperpo-

larisation and rebound are depressed (Zhang and Linden, 2006). It should be noted, however, that

this plasticity was studied at the input to projection neurones and not at that to the nucleo-olivary

neurones. Nevertheless, the existence of highly suitable plasticity rules in a cell type closely related

to the nucleo-olivary neurones encouraged us to choose the cerebellar nuclei as the site of the plas-

ticity that leads to cancellation of the excitatory input to the olive.
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We now consider how synaptic integration in the olive leads to emission or not of error complex

spikes. The nucleo-olivary synapses (in most olivary nuclei) display a remarkable degree of delayed

and long-lasting release (Best and Regehr, 2009), suggesting that inhibition would build up during

a command and thus be able to oppose the excitatory inputs signalling movement errors that

appear some time after the command is transmitted. The error complex spike would therefore be

produced (or not) after the command. On this basis, we shall make the simplifying assumption that

the cerebellum generates a relatively brief motor control output or ‘command’, of the order of 100

ms or less and a single error calculation is performed after the end of that command. As for the sac-

cade example previously mentioned, many movements can only be evaluated after completion. In

effect, this corresponds to an offline learning rule.

Simulations
Above we outlined a mechanism for extracting the error change dE; it is based on adapting the

inhibitory input to the inferior olive to cancel the average excitatory error input in a movement-spe-

cific manner. To verify that this mechanism could operate successfully in conjunction with the scheme

for cortical plasticity already described, we turned to simulation.

A reduced model of a cerebellar microzone was developed and is described in detail in the Mate-

rials and methods. In overview, mossy fibre input patterns drove Purkinje and cerebellar nuclear neu-

rones during commands composed of 10 discrete time bins. Purkinje cell activity was perturbed by

randomly occurring complex spikes, which each increased the firing in a single time bin. The learning

task was to adjust the output patterns of the nuclear projection neurones to randomly chosen tar-

gets. Cancellation of the average error was implemented by plasticity at the mossy fibre to nucleo-

olivary neurone synapse while modifications of the mossy fibre pathway input to Purkinje cells

reflected the rules for stochastic gradient descent described earlier. Synaptic weights were updated

offline after each command. The global error was the sum of absolute differences between the pro-

jection neurone outputs and their target values. Error complex spikes were broadcast to all Purkinje

cells when the error exceeded the integral of inhibitory input to the olive during the movement.

There were thus 400 (40 projection neurones � 10 time bins) variables to optimise using a

single error value.

The progress of the simulation is illustrated in Figure 8, in which two different movements were

successfully optimised in parallel; only one is shown. The error can be seen to decrease throughout

the simulation, indicating the progressive improvement of the learnt command. The effect of learn-

ing on the difference between the output and the target values can be seen in Figure 8C and D.

The initial match is very poor because of random initial weight assignments, but it has become

almost exact by the end of the simulation.

The optimisation only proceeds once the inhibitory input to the olive has accurately subtracted

the average error. Thus, in Figure 8B it can be seen that the initial values of the inhibitory and excit-

atory (error) inputs to the olive differed. The inhibition tends towards the error. Until the two match,

the overall error shows no systematic improvement. This confirms the need for accurate subtraction

of the mean error to enable extraction of the error changes necessary to descend the error gradient.

This simulation supports the feasibility of our proposed cerebellar implementation of stochastic gra-

dient descent.

Algorithm convergence and capacity
The simulations above provide a proof of concept for the proposed mechanism of cerebellar learn-

ing. Nonetheless, even for the relatively simple network model in the simulations, it is by no means

obvious to determine the regions of parameter space in which the model converges to the desired

outputs. It is also difficult to analyse the algorithm’s performance compared to other more classical

ones. To address these issues, we abstract the core mechanism of stochastic gradient descent with

estimated global errors in order to understand better the algorithm dynamics and to highlight the

role of four key parameters. Analysis of this mechanism shows that this algorithm, even in this very

reduced form, exhibits a variety of dynamical regimes, which we characterise. We then show how

the key parameters and the different dynamical learning regimes directly appear in an analog per-

ceptron description of the type considered in the previous section. We find that the algorithm’s stor-

age capacity is similar to the optimal capacity of an analog perceptron.
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Reduced model
In order to explore more exhaustively the convergence of the learning algorithm, we considered a

reduced version with a single principal cell that nevertheless captures its essence (Figure 9A). A

detailed analysis of this circuit is presented in the Appendix 1, which we summarise and illustrate

here.

We focus on the rate P of a single P-cell (principal cell, in essence a combination of a Purkinje cell

and a nuclear projection neurone), without considering how the firing is driven by synaptic inputs.

The other variable of the model is the strength J of the plastic excitatory input from mossy fibres to

nucleo-olivary neurones Figure 9. The learning task is to bring the firing rate P of the P-cell to a

desired target rate R, guided by an estimation of the current error relying on J , which is refined con-

currently with P from trial to trial.

The error E is determined by the difference between P and R; we choose the absolute difference

E ¼ P � Rj j. In the presence of a perturbation A, occurring with probability �, the rate becomes Pþ
A and so E ¼ jPþ A� Rj. The current estimate of the error is measured by the strength I of the inhi-

bition on the olivary neurone associated with the P-cell. It assumes the value I ¼ J � qP½ �þ (the

brackets X½ �þ denoting the rectified value of X, X½ �þ¼ X if X � 0 and 0 otherwise); q represents the

strength of P-cell (in reality Purkinje cell) synapses on nucleo-olivary neurones. The inhibition of the

inferior olive (IO) arises from the discharge of the nucleo-olivary neurones (NO) induced by the

mossy fibre inputs, the J component of I . The NOs are themselves inhibited by the P-cell which is

accounted for by the �qP component of I (Figure 9A). Note that in the presence of a perturbation

Figure 8. Simulated cerebellar learning by stochastic gradient descent with estimated global errors. The total

error (E, blue) at the cerebellar nuclear output and the cancelling inhibition (I , green) reaching the inferior olive

are plotted as a function of trial number (t) in (A and B) for one of two interleaved patterns learnt in parallel. An

approximately 10-fold reduction of error was obtained. It can be seen in A that the cancelling inhibition follows the

error very closely over most of the learning time course. However, the zoom in B shows that there is no systematic

reduction in error until the inhibition accurately cancels the mean error. (C) Initial firing profile of a typical

cerebellar nuclear projection neurone (PN, magenta); the simulation represented 10 time bins with initially random

frequency values per neurone, with a mean of 30 Hz. The target firing profile for the same neurone (R, grey) is also

plotted. (D) At the end of the simulation, the firing profile closely matched the target.

DOI: https://doi.org/10.7554/eLife.31599.011
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Figure 9. Single-cell convergence dynamics in a reduced version of the algorithm. (A) Simplified circuitry

implementing stochastic gradient descent with estimated global errors. Combined Purkinje cells/projection

neurones (P) provide the output o. These cells receive an excitatory plastic input from mossy fibres (M). Mossy

fibres also convey a plastic excitatory input J to the nucleo-olivary neurones (NO), which receive inhibitory inputs

from the Purkinje cells and supply the inhibitory input I ¼ J � qP½ �þ to the inferior olive (IO). The inferior olive

receives an excitatory error input E. The olivary neurones emit spikes that are transmitted to the P-cells via the

climbing fibre c. (B) Effects of plasticity on the simplified system in the plane defined by the P-cell rate P (with

optimum R, perturbation A) and excitatory drive to the nucleo-olivary neurones J . Plastic updates of type

DPDJ (blue arrows) and DJ (green arrows) are shown. The updates change sign on the line C (dashed blue) and D

(solid green), respectively. Lines C� and D� delimit the ‘convergence corridors’. The diagram is drawn for the case

q<1, in which A, the perturbation of P is larger than the perturbation qA of I . (C) Parameters b and � determine

along which lines the system converges to R. The red dot in the Dþ=D� region shows the parameter values used

in panels E and F and also corresponds to the effective parameters of the perceptron simulation of Figure 10. The

other red dots show the parameters used in the learning examples displayed in Appendix 1—figure 1. (D) When

q>1, Cþ and D� do not cross and learning does not converge to the desired rate. After going down the Cþ=Dþ
corridor, the point P;Jð Þ continues along the C�=D� corridor without stopping close to the desired target rate R.

Figure 9 continued on next page
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of the P-cell, the estimate of the error is itself modified to J � qP� qA½ �þ to account for the

decrease (for q>0) of the NO discharge arising from the P-cell firing rate increase.

The system learning dynamics can be analysed in the P-J plane (Figure 9B). After each ‘move-

ment’ realisation, the two system variables, P and J are displaced within the P-J plane by plasticity

according to the algorithm. In the presence of a perturbation, P is decreased (a leftwards displace-

ment) if E> J � qP� qA½ �þ and otherwise increased. However, P remains unchanged if there is no

perturbation. Conversely, J is always updated irrespective of the presence or absence of a perturba-

tion. If E> J � qP� qA½ �þ in the presence of a perturbation or E>J � qP in its absence, J is increased

(upwards displacement) and it is decreased otherwise.

Updates can therefore be described as DPDJ or DJ . The resultant directions vary between the

different regions of the P;Jð Þ-plane (Figure 9B) delimited by the two borders C and D, defined as

J � qP� qA ¼ jP� Rþ Aj and J � qP ¼ jP� Rj, respectively. The two half-lines bordering each sec-

tor are denoted by a plus or minus index according to their slopes.

Stochastic gradient descent is conveniently analysed with a phase-plane description, by following

the values P;Jð Þ from one update to the next. The dynamics randomly alternate between updates

of type DPDJ and DJ which leads P;Jð Þ to follow a biased random walk in the P;Jð Þ plane. Mathe-

matical analysis (see Appendix 1) shows that the dynamics proceed in three successive phases, as

observed in the simulations of Figure 8. First, the pair of values P;Jð Þ drifts from the initial condition

towards one of the two ‘corridors’ between the lines Cþ and Dþ or between C� and D� (see

Figure 9B). This first phase leads the estimated error I to approximate closely the error E, as seen

in the full network simulation (Figure 8).

When a corridor is reached, in a second phase, P;Jð Þ follows a stochastic walk in the corridor

with, under suitable conditions, a mean linear decrease of the error in time with bounded fluctua-

tions. The precise line followed and the mean rate of error decrease depends on the initial condi-

tions and two parameters: � the probability of a perturbation occurring and b ¼ DJ =DP, as indicated

in Figure 9C. Typical trajectories and time courses for specific values of � and b and different initial

conditions are shown in Figure 9D,E,F as well as in Appendix 1—figure 1.

Error decrease in this second phase requires certain restrictions upon the four key parameters—�,

b, DP, DJ . These restrictions are that 0<�<1, which ensures that updates are not restricted to a line,

and DJ< 1� qð ÞA as well as DPþ DJ = 1þ qð Þ<A, which are sufficient to ensure that a trajectory will

eventually enter a convergence corridor (large updates might always jump over the corridor).

In a final phase, P;Jð Þ fluctuates around the intersection of Cþ and D�, when it exists.

Cþ and D� do not cross for q>1, when the perturbation qA of the estimated error I is larger than

A the perturbation of the P-cell discharge. In this case, P does not stop close to its target value, as

illustrated in Figure 9D. For q<1, Cþ and D� intersect at R� A qþ 1ð Þ=2; qRþ 1� q2ð ÞA=2ð Þ. The final

error in the discharge rate fluctuates around A qþ 1ð Þ=2. Namely, the mean final error grows from

A=2 when q ¼ 0 (vanishing inhibition of the nucleo-olivary discharge by the P-cell) to A when q ¼ 1

(maximal admissible inhibition of the nucleo-olivary discharge by the P-cell). The failed convergence

for q � 1 could be expected, since in this scenario the perturbation corrupts the error estimate more

than it influences the global error due to the perturbed P-cell firing rate.

Analog perceptron
In order to extend the above analysis to include multiple synaptic inputs and to explore the algo-

rithm’s capacity to learn multiple movements, we considered an analog perceptron using the algo-

rithm of stochastic gradient descent with estimated global errors. This allowed us to investigate the

Figure 9 continued

Open circle, start point; filled circle, end point. (E) Dynamics in the P;Jð Þ plane for � ¼ 0:2 and b ¼ 2

(A ¼ 10;DP ¼ 1;DJ ¼ 2; q ¼ 0:5). Trajectories (coloured lines) start from different initial conditions (open circles).

Open circles, start points; filled circles, end points. (F) Time courses of P as a function of trial t for the trajectories

in C (same colours). Dashed lines: predicted rate of convergence (Appendix 1). All trajectories end up fluctuating

around P ¼ R� A qþ 1ð Þ=2, which is R� 7:5 with the chosen parameters. Open circles, start points; filled circles,

end points.
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Figure 10. Convergence and capacity for an analog perceptron. (A) Convergence for a single learned pattern for

stochastic gradient descent with estimated global errors (SGDEGE). Different lines (thin grey lines) correspond to

distinct simulations. The linear decrease of the error (P� R) predicted from the simplified model without zero-

weight synapses is also shown (dashed lines). When learning increases the rate towards its target, the predicted

convergence agrees well with the simulation. When learning decreases the rate towards its target, the predicted

convergence is larger than observed because a fraction of synapses have zero weight. (B) Mean error vs. number

of trials (always per pattern) for different numbers of patterns for SGDEGE with q ¼ 0:5. Colours from black to red:

50, 100, 200, 300, 350, 380, 385, 390, 395, 400, 410, 420, 450. (C) Mean error vs. number of trials when learning

using the delta rule. The final error is zero when the number of patterns is below capacity (predicted to be 391 for

these parameters), up to finite size effects. Colours from black to blue: same numbers of patterns as listed for B.

(D) Mean error after 1� 10
5 trials for the delta rule (blue) and for the SGDEGE with q ¼ 0 (cyan), 0.25 (green), 0.5

(red), 0.75 (magenta), as a function of the number of patterns p. The mean error diverges from its minimal value

close to the theoretical capacity (dashed line) for both learning algorithms. (E) Dynamics of pattern learning in the

P� J or more precisely P� Rð Þ � J � qPð Þ plane below maximal capacity (p ¼ 300). The error (P� R)

corresponding to each pattern (grey) is reduced as it moves down its convergence corridor. The trajectory for a

single specimen pattern is highlighted in red, while the endpoints of all trajectories are indicated by salmon filled

Figure 10 continued on next page
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storage capacity attainable with the algorithm and to compare it to the theoretical maximal capacity

for an analog perceptron (Clopath and Brunel, 2013).

The architecture was again that of Figure 9A; the details of the methods can be found in Appen-

dix 1 and we summarise the conclusions here, with reference to Figure 10. The simulation included

1000 inputs (mossy fibres) to a P-cell; note that much larger numbers of inputs pertain in vivo

(Napper and Harvey, 1988).

As found in the reduced model above, convergence of the algorithm requires the perturbation of

the error estimate to be smaller than the effect of the P-cell perturbation on the true error, namely

q<1. When this condition holds, the rate of learning a single pattern and the final error can be

related to that predicted from the simplified analysis above (Figure 10A and in Appendix 1).

Learning using perturbations is slower than when using the full error information (i.e., the ‘delta

rule’ (Dayan and Abbott, 2001); compare Figure 10B and C), for all numbers of patterns. The dif-

ference can be attributed to the different knowledge requirement of the two algorithms. When the

error magnitude is known, which requires knowledge of the desired endpoint, large updates can be

made for large errors, as done in the delta rule. In contrast, the proposed SGDEGE algorithm does

not require knowledge of the error absolute magnitude or sign and thus proceeds with constant

updating steps. Extensions of the SGDEGE algorithm that incorporate adaptive weight updates and

could accelerate learning are mentioned in the Discussion.

The precision of learning is limited by the on-going perturbations to A 1þ qð Þ=2 (e.g. A=2 for q ¼ 0

or, 1:5A for q ¼ 0:5 as used in Figure 10B), but the final average error increases beyond this floor

only very close to the theoretical capacity computed for the input-output association statistics

(Figure 10D). The contribution of interfering patterns to the slowed learning is similar for the two

algorithms. The behaviour of individual learning trajectories below maximal capacity is shown in

Figure 10E and F.

These analyses establish the convergence mechanisms of stochastic gradient descent with esti-

mated global errors and show that it can attain the maximum theoretical storage capacity up to a

non-zero final error resulting from the perturbation. Learning is slower than when the full error infor-

mation is used in the delta rule, but we argue that the availability of that information would not be

biologically plausible for most complex movements.

Discussion

A cellular implementation of stochastic gradient descent
Analysis of the requirements and constraints for a general cerebellar learning algorithm highlighted

the fact that the current consensus Marr-Albus-Ito model is only capable of learning simple reflex

movements. Optimisation of complex, arbitrary movements, of which organisms are certainly capa-

ble and to which the cerebellum is widely believed to contribute, would require a different algo-

rithm. We therefore sought to identify within the cerebellar system an implementation of stochastic

gradient descent. This should comprise several elements: a source of perturbations, a mechanism for

extracting the change of error, and a plasticity rule incorporating this information. We identified a

strong constraint on any implementation, requiring each calculation to be made in the context of a

single movement realisation. This arises from the potentially arbitrary sequencing of movements with

different optima. We also sought a mechanism that only makes use of plausible cellular calculations:

summation of excitation and inhibition in the presence of a threshold.

We suggest that the perturbation is provided by the complex spike, which has suitable proper-

ties: spontaneous irregular activity, an unambiguous sign during the action potential burst, salience

Figure 10 continued

circles but are all obscured at (0,0) by the red filled circle of the specimen trajectory. (F) Same as in E for a number

of patterns above maximal capacity (p ¼ 420). After learning several patterns, rates remain far from their targets

(salmon filled circles). The SGDEGE algorithm parameters used to generate this figure are

A ¼ 2;DJ ¼ 0:4;DP ¼ 0:2; � ¼ 0:2. The parameter q ¼ 0:5 except in panel D where it is explicitly varied. The analog

perceptron parameters are Pmax ¼ 100; f ¼ 0:2;Nm ¼ 1000 and the threshold � ¼ 12:85 with g ¼ 1).
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at a cellular and network level, and the ability to influence synaptic plasticity. This choice of perturba-

tion largely determines the predicted cerebellar cortical plasticity rules: only granule cell inputs

active at the same time as a perturbation complex spike undergo plasticity, whose sign is deter-

mined by the absence (LTP) or presence (LTD) of a succeeding error complex spike. We have pro-

vided evidence that the synaptic plasticity rules do operate as predicted, in vitro under conditions

designed to be more physiological than is customary.

An additional plasticity mechanism seems to be required to read off the change of error. The

general mechanism we propose involves subtraction of the average error to expose the random var-

iations caused by the perturbations of the movement. The subtraction results from adaptive tracking

of the excitatory input to the olivary neurones by the inhibitory input from the nucleo-olivary neuro-

nes of the cerebellar nuclei. We chose to place the plasticity at the mossy fibre–nucleo-olivary neu-

rone synapse, mostly because of the existence of suitable plasticity rules at the mossy fibre synapse

onto the neighbouring projection neurones. However, plasticity in the olive at the nucleo-olivary

input would probably be functionally equivalent and we do not intend to rule out this or alternative

sites of the error-cancelling plasticity.

By simulating a simplified cerebellar network implementing this mechanism, we established the

ability of our proposed mechanism to learn multiple arbitrary outputs, optimising 400 variables per

movement with a single error value. More formal analysis of a simplified version of stochastic gradi-

ent descent with estimated global errors established convergence of the algorithm and allowed us

to estimate its storage capacity.

Implications for studies of synaptic plasticity
The plasticity rules for parallel fibre–Purkinje cell synapses predicted by our algorithm appeared to

be incompatible with the well-established consensus. However, we show that under different, argu-

ably more physiological, conditions, we were able to provide support for the four predicted

outcomes.

We made several changes to the experimental conditions, only one of which is specific to the cer-

ebellum. Thus, keeping synaptic inhibition intact has long been recognised as being of potential

importance, with debates regarding its role in hippocampal LTP dating back decades

(Wigström and Gustafsson, 1983a; Wigström and Gustafsson, 1983b; Arima-Yoshida et al.,

2011). Very recent work also highlights the importance of inhibition in the induction of cerebellar

plasticity (Rowan et al., 2018; Suvrathan and Raymond, 2018).

We also made use of a lower extracellular calcium concentration than those almost universally

employed in studies of plasticity in vitro. In vivo measurements of the extracellular calcium concen-

tration suggest that it does not exceed 1.5 mM in rodents, yet most studies use at least 2 mM. A

25% alteration of calcium concentration could plausibly change plasticity outcomes, given the

numerous nonlinear calcium-dependent processes involved in synaptic transmission and plasticity

(Nevian and Sakmann, 2006; Graupner and Brunel, 2007).

A major change of conditions we effected was cerebellum-specific. Nearly all studies of granule

cell–Purkinje cell plasticity have employed stimulation of parallel fibres in the molecular layer. Such

concentrated, synchronised input activity is unlikely to arise physiologically. Instead of this, we stimu-

lated in the granule cell layer, a procedure expected to generate a more spatially dispersed input on

the Purkinje cell, presumably leading to minimised dendritic depolarisations. Changing the stimula-

tion method has been reported to prevent induction of LTD using standard protocols

(Marcaggi and Attwell, 2007).

Although we cannot predict in detail the mechanistic alterations resulting from these changes of

conditions, it is nevertheless likely that intracellular calcium concentrations during induction will be

reduced, and most of the changes we observed can be interpreted in this light. It has long been sug-

gested that high calcium concentrations during induction lead to LTD, while lower calcium concen-

trations generate LTP (Coesmans et al., 2004); we have recently modelled the induction of this

plasticity, incorporating both calcium and nitric oxide signalling (Bouvier et al., 2016). Consistently

with this viewpoint, a protocol that under standard conditions produce LTD—simultaneous activation

of granule cells and climbing fibres—could plausibly produce LTP in the present conditions as a

result of reduced intracellular calcium. Analogously, granule cell stimulation that alone produces LTP

under standard conditions might elicit no change if calcium signalling were attenuated under our

conditions.
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Interestingly, LTP resulting from conjunctive granule cell and climbing fibre stimulation has been

previously reported, in vitro (Mathy et al., 2009; Suvrathan et al., 2016) and in vivo

(Wetmore et al., 2014). In contrast, our results do not fit well with several other studies of plasticity

in vivo (Ito et al., 1982; Jörntell and Ekerot, 2002; Jörntell and Ekerot, 2003; Jörntell and

Ekerot, 2011). However, in these studies quite intense stimulation of parallel and/or climbing fibre

inputs was used, which may result in greater depolarisations and calcium entry than usually encoun-

tered. This difference could therefore account for the apparent discrepancy with the results we pre-

dict and have found in vitro.

It is unlikely that the interval between perturbation and error complex spikes would be fixed from

trial to trial and it is certainly expected to vary with sensory modality (vision being slow). Our theo-

retical framework would therefore predict that a relatively wide range of intervals should be effective

in inducing LTD through the GPE protocol. However, this prediction is untested and it remains possi-

ble that different intervals (potentially in different cerebellar regions) may lead to different plasticity

outcomes, as suggested by the recent work of Suvrathan et al. (2016); this might also contribute to

some of the variability of individual plasticity outcomes we observe.

Another open question is whether different relative timings of parallel and climbing fibre activity

would result in different plasticity outcomes. In particular, one might hypothesise that parallel fibres

active during a pause following a perturbation complex spike might display plasticity of the opposite

sign to that reported here for synchrony with the complex spike itself.

In summary, while in vitro studies of plasticity are likely to reveal molecular mechanisms leading

to potentiation and depression, the outcomes from given stimulation protocols may be very sensitive

to the precise conditions, making it difficult to extrapolate to the in vivo setting, as we have shown

here for the cerebellum. Similar arguments could apply to in vitro plasticity studies in other brain

regions.

Current evidence regarding stochastic gradient descent
As mentioned in the introductory sections, the general cerebellar learning algorithm we propose

here is not necessarily required in situations where movements are simple or constrained, admitting

a fixed mapping between errors and corrective action. Furthermore, such movements constitute the

near totality of well-studied models of cerebellar learning. Thus, the vestibulo-ocular reflex and sac-

cade adaptation involve eye movements, which are naturally constrained, while the eyeblink is a ste-

reotyped protective reflex. There is therefore a possibility that our mechanism does not operate in

the cerebellar regions involved in oculomotor behaviour, even if it does operate elsewhere.

In addition, these ocular behaviours apparently display error functions that are incompatible with

our assumptions. In particular, disturbance of a well optimised movement would be expected to

increase error. However, it has been reported multiple times that climbing fibre activity can provide

directional error information, including reductions of climbing fibre activity below baseline (e.g.

Soetedjo et al., 2008). This argument is not totally conclusive, however. Firstly, we recall that the

error is represented by the input to the inferior olive, not its output. It is thus possible that inputs

from the nucleo-olivary neurones (or external inhibitory inputs) to the olive also have their activity

modified by the disturbance of the movement, causing the reduction of climbing fibre activity. Sec-

ondly, what matters for our algorithm is the temporal sequence of perturbation and error complex

spikes, but investigation of these second-order statistics of complex spike activity in relation to plas-

ticity has, to our knowledge, not been reported. Similarly, it has been reported that learning and

plasticity (LTD) occur in the absence of modulation of climbing fibre activity (Ke et al., 2009).

Although this is difficult to reconcile with either the standard theory or our algorithm, it does not

entirely rule out the existence of perturbation-error complex spike pairs that we predict lead to LTD.

Trial-to-trial plasticity correlated with the recent history of complex spikes has been demonstrated

in oculomotor adaptation (Medina and Lisberger, 2008; Yang and Lisberger, 2014). This suggests

that one way of testing whether our algorithm operates would be to examine whether the history of

complex spike activity can predict future changes in the simple spike firing rate, according to the

plasticity rules described above. For instance, two complex spikes occurring at a short interval

should cause at the time of the first an increase of simple spike firing in subsequent trials. However,

the most complete datasets reported to date involve oculomotor control (Yang and Lisberger,

2014; Catz et al., 2005; Soetedjo et al., 2008; Ke et al., 2009), where, as mentioned above, our

algorithm may not be necessary.
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Beyond the predictions for the plasticity rules at parallel fibre–Purkinje cell synapses tested

above, there are a number of aspects of our theory that do fit well with existing observations. The

simple existence of spontaneous climbing fibre activity is one. Additional suggestive features con-

cern the evolution of climbing fibre activity during eyeblink conditioning (Ohmae and Medina,

2015). Once conditioning has commenced, the probability of complex spikes in response to the

unconditioned stimulus decreases, which would be consistent with the build-up of the inhibition can-

celling the average error signal in the olive. Furthermore, omission of the unconditioned stimulus

then causes a reduction in the probability of complex spikes below the baseline rate, strongly sug-

gesting a specifically timed inhibitory signal has indeed developed at the time of the unconditioned

stimulus (Kim et al., 1998).

We suggest that the cancellation of average error involves plasticity at mossy fibre–nucleo-olivary

neurone synapses. To date no study has reported such plasticity, but the nucleo-olivary neurones

have only rarely been studied. Plasticity at the mossy fibre synapses on projection neurones has

been studied both in vitro (Pugh and Raman, 2006; Pugh and Raman, 2008; Zhang and Linden,

2006) and in vivo (Ohyama et al., 2006), but is not used in our proposed algorithm. Axonal remod-

elling and synaptogenesis of mossy fibres in the cerebellar nuclei may underlie this plasticity

(Kleim et al., 2002; Boele et al., 2013; Lee et al., 2015) and could also contribute to the putative

plasticity at mossy fibre synapses on nucleo-olivary neurones.

Finally, our theory of course predicts that perturbation complex spikes perturb ongoing move-

ments. It is well established that climbing fibre activation can elicit movements (Barmack and Hess,

1980; Kimpo et al., 2014; Zucca et al., 2016), but it remains to be determined whether the move-

ments triggered by spontaneous climbing fibre activity are perceptible. Stone and Lisberger (1986)

reported the absence of complex-spike-triggered eye movements in the context of the vestibulo-

ocular reflex. However, it is known that the visual system is very sensitive to retinal slip (Mura-

kami, 2004), so it may be necessary to carry out high-resolution measurements and careful averag-

ing to confirm or exclude the existence of perceptible movement perturbations.

Climbing fibre receptive fields and the bicycle problem
If the cerebellum is to contribute to the optimisation of complex movements, its output controlling

any given muscle must be adjustable by learning involving multiple error signals. Thus, it may be use-

ful to adjust an arm movement using vestibular error information as part of a balancing movement,

but using touch information in catching a ball. However, it is currently unclear to what extent individ-

ual Purkinje cells can access different error signals.

There is an extensive literature characterising the modalities and receptive fields of climbing

fibres. The great majority of reports are consistent with climbing fibres having fixed, specific modali-

ties or very restricted receptive fields, with neighbouring fibres having similar properties

(Garwicz et al., 1998; Jörntell et al., 1996). Examples would be a climbing fibre driven by retinal

slip in a specific direction (Graf et al., 1988) or responding only to a small patch of skin

(Garwicz et al., 2002). These receptive fields are quite stereotyped and have proven to be reliable

landmarks in the functional regionalisation of the cerebellum; they are moreover tightly associated

with the genetically specified zebrin patterning of the cerebellum (Schonewille et al., 2006b;

Mostofi et al., 2010; Apps and Hawkes, 2009).

The apparently extreme specialisation of climbing fibres would limit the ability of the cerebellar

circuitry to optimise complex movements. We can illustrate this with a human behaviour: riding a

bicycle, which is often taken as an example of a typical cerebellar behaviour. This is an acquired skill

for which there is little evolutionary precedent. It is likely to involve learning somewhat arbitrary arm

movements in response to vestibular input (it is possible to ride a bike with one’s eyes closed). The

error signals guiding learning could be vestibular, visual or possibly cutaneous/nociceptive (as a

result of a fall), but not necessarily those related to the arm whose movement is learnt. How can

such disparate or uncommon but sometimes essential error signals contribute to cerebellar control

of the arm? We call this the ‘bicycle problem’.

At least two, non-exclusive solutions to this problem can be envisaged (see Figure 11). The first

we term ‘output convergence’; it involves the convergence of multiple cerebellar regions receiving

climbing fibres of different modalities onto each specific motor element (for instance a muscle) being

controlled. Striking, if partial, evidence for this is found in a study by (Ruigrok et al., 2008), who

injected the retrograde, trans-synaptic tracer rabies virus into individual muscles. Multiple cerebellar
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zones were labelled, showing that they all contribute to the control of those muscles, as posited.

What is currently less clear is whether such separate zones receive climbing fibre inputs with differ-

ent modalities. We note that the output convergence solution to the bicycle problem implies that

the synaptic changes in those regions receiving the appropriate error information must outweigh

any drift in synaptic weights from those regions deprived of meaningful error information. Adapta-

tion of the learning rate, an algorithmic extension we suggest below, could contribute to ensuring

that useful synaptic changes dominate.

We term the second solution to the bicycle problem the ‘error broadcast’ solution. According to

this, error inputs to the olive are broadcast to olivary neurones (and Purkinje cells) outside the tradi-

tional receptive field. Although the weight of literature appears to be against this, there are both

possible mechanisms and a small amount of supporting data for this suggestion. In terms of mecha-

nism, the well-known electrical coupling of olivary neurones (Devor and Yarom, 2002) could recruit

cells that do not directly receive suprathreshold synaptic input. This may occur much more frequently

in vivo than in the quiescent/anesthetised conditions employed for most studies of climbing fibre

receptive fields. Evidence for ‘broadcast’ of what we would term error complex spikes in vivo has

been reported for visual and auditory stimuli (Mortimer, 1975; Ozden et al., 2012); these stimuli

may be correlated with startle responses. Eye blink conditioning using a visual unconditioned stimu-

lus has also been reported (Rogers et al., 1999).

The existence of broadcast error complex spikes would provide a mechanism explaining the giant

IPSPs in the cerebellar nuclei elicited by peripheral stimulation (Bengtsson et al., 2011) and could

Figure 11. Diagram illustrating two possible solutions to the ‘bicycle problem’: how to use vestibular error

information to guide learning of arm movements to ride a bicycle. In the ‘output convergence’ solution, the

outputs from cerebellar regions receiving different climbing fibre modalities converge onto a motor unit

(represented by a muscle in the diagram). In the ‘error broadcast’ solution, error complex spikes are transmitted

beyond their traditional receptive fields, either by divergent synaptic inputs and/or via the strong electrical

coupling between inferior olivary neurones.
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also account for the correlation between visual smooth pursuit behaviour and the nature of individual

complex spikes (Yang and Lisberger, 2014): behaviour could only correlate with a single cell if

others were receiving the same input.

Possible extensions to the algorithm
Our implementation of cerebellar stochastic gradient descent and its simulation were purposefully

kept as simple as possible, to provide a proof-of-concept with a minimum of assumptions and to

simplify parallel analyses. It is likely that parts of the implementation will need to be altered and/or

extended as further information becomes available.

Probably the most uncertain element of the implementation is the adaptive site in the cancella-

tion of the average error. We chose to make the mossy fibre–nucleo-olivary neurone synapse plastic,

but the plasticity could certainly operate in the olive instead of or in addition to the cerebellar

nuclear site. Further studies of synaptic transmission and plasticity in both structures are clearly war-

ranted in this context.

A simplification in our implementation is that it represents brief, discrete commands in what

amounts to an offline learning rule. Error complex spikes are only emitted after the command and

indeed were not simulated explicitly. This has the great advantage of avoiding the question of

whether Purkinje cells that have not received a perturbation complex spike would interpret a broad-

cast error complex spike as a perturbation. A first remark is to stress the fact that the movement

evaluation will often only occur after the movement is complete. Even if an eCS caused a small

movement or some additional plasticity, that might be less of an issue outside of a movement con-

text. Additionally, it is possible that cellular mechanisms could exist that would enable the Purkinje

cell to distinguish the two types of input and therefore avoid spurious plasticity. The most obvious

mechanism would be that, as already hinted at in the literature, error complex spikes are likely to be

stronger. An extended synaptic plasticity rule could therefore include a case in which an error com-

plex spike received in the absence of a recent perturbation spike has a neutral plasticity effect. There

is currently little data on which to base a detailed implementation, although we note that in our

experiments, bursts of 6 climbing fibre stimuli—a strong complex spike—resulted in only a modest

LTP compared to the GP_ protocol.

A potentially unsatisfactory aspect of our simulations was the time taken to learn. Of the order of

50,000 iterations were required to optimise the 400 independent variables of the cerebellar output.

Stochastic gradient descent is inherently slow, since just one or a few of those variables can be per-

turbed in one movement realisation, and the weight changes are furthermore individually small.

Before considering possible acceleration methods, we note that some motor behaviours are

repeated huge numbers of times. An obvious example is locomotion. Thus, public health campaigns

in vogue in the USA at the time of writing aim for people to take 10,000 steps per day. So, clearly, a

target of a few hundred thousand steps could be achieved in a matter of days or weeks.

Part of the slowness of learning results from the conflicting pressures on the plastic weight

changes. Large changes allow rapid learning, but could prevent accurate optimisation. An obvious

extension of our implementation that would resolve this conflict would be to allow large plastic

changes far from the optimum but to reduce them as the optimum is approached. The information

required to do this is available as the net drive (error excitation � cancellation inhibition) to the oli-

vary neurones at the time of emission of an error complex spike. If the drive is strong, one can imag-

ine a long burst of action potentials being emitted. There is in vitro (Mathy et al., 2009) and in vivo

(Yang and Lisberger, 2014; Rasmussen et al., 2013) evidence that climbing fibre burst length can

influence plasticity in Purkinje cells. It seems possible that the same could be true in the cerebellar

nuclei (or alternative plastic site in the subtraction of the average error). However, the above mecha-

nism for adapting learning rates would only work directly in the LTD direction, since olivary cells can-

not signal the strength of a net inhibition when no error complex spike is emitted.

A mechanism that could regulate the speed of learning in both LTP and LTD directions would be

to target perturbations to the time points where they would be most useful—those with the greatest

errors. This might be achieved by increasing the probability (and possibly the strength) of the pertur-

bation complex spikes shortly before strongly unbalanced (excitatory or inhibitory) inputs to the

olive. This process offers a possible interpretation for various observations of complex spikes occur-

ring before error evaluation: related to movements (Bauswein et al., 1983; Kitazawa et al., 1998)

or triggered by conditioned stimuli (Rasmussen et al., 2014; Ohmae and Medina, 2015).
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Movement-specific adaptations of the learning rates could provide an explanation for the phe-

nomenon of ‘savings’, according to which relearning a task after extinction occurs at a faster rate

than the initial learning. The adaptations could plausibly be maintained during extinction and there-

fore persist until the relearning phase. These adaptations could appear to represent memories of

previous errors (Herzfeld et al., 2014).

Finally, the output convergence solution we proposed above for the bicycle problem could also

reflect a parallelisation strategy enabling the computations involved in stochastic gradient descent

to be scaled from the small circuit we have simulated to the whole cerebellum. As mentioned above,

this might involve one of the above schemes for adjusting learning rates in a way that would help

plasticity in regions with ‘useful’ error information to dominate changes in those without.

Insight into learning in other brain regions
We believe that our proposed implementation of stochastic gradient descent offers possible insight

into learning processes in other brain regions.

To date, the most compelling evidence for a stochastic gradient descent mechanism has been

provided in the context of the acquisition of birdsong. A specific nucleus, the ‘LMAN’ has been

shown to be responsible for song variability during learning and also to be required for learning

(Doya and Sejnowski, 1988; Olveczky et al., 2005). Its established role is therefore analogous to

our perturbation complex spike. Our suggestion that the same input signals both perturbation and

error change may also apply in the birdsong context, where it would imply that LMAN also assumes

the role of determining the sign of plasticity at the connections it perturbed. However, such an idea

has for now not been examined and there is as yet a poor understanding of how the trial song is

evaluated and of the mechanism for transmitting that information to the adaptive site; indeed the

adaptive site itself has not been identified unequivocally.

We see a stronger potential analogy with our mechanism of stochastic gradient descent in the

learning of reward-maximising action sequences by the basal ganglia. Under the stimulus of cortical

inputs, ensembles of striatal medial spiny neurones become active, with the resulting activity parti-

tion determining the actions selected by disinhibition of central pattern generators through inhibi-

tion of the globus pallidus (Grillner et al., 2005). It is thought that the system learns to favour the

actions that maximise the (discounted) reward, which is signalled by activity bursts in dopaminergic

midbrain neurones and phasic release of dopamine, notably in the striatum itself (Schultz, 1986).

This has been argued (Schultz et al., 1997) to reflect reinforcement learning or more specifically

temporal difference learning (Sutton and Barto, 1998).

We note that temporal difference learning can be decomposed into two problems: linking actions

to potential future rewards and a gradient ascent to maximise reward. In respect of the gradient

ascent, we note that dopamine has a second, very well-known action in the striatum: it is necessary

for the initiation of voluntary movements, since reduction of dopaminergic input to the striatum is

the cause of Parkinson’s disease, in which volitional movement is severely impaired. The key point is

to combine the two roles of the dopaminergic system in the initiation of movement and in signalling

reward. The initiation of movement by dopamine, which could contribute to probabilistic action

selection, would be considered analogous to our perturbation complex spike and could create an

eligibility trace. A subsequent reward signal would result in plasticity of eligible synapses reinforcing

the selection of that action, with possible sites of plasticity including the cortico-striatal synapses

that were successful in exciting an ensemble of striatal neurones (Rui Costa made a similar sugges-

tion at the 5th Colloquium of the Institut du Fer à Moulin, Paris, 2014). This would constitute a mech-

anism of gradient ascent analogous to that we have proposed for gradient descent in the cerebellar

system.

Of particular interest is whether correct optimisation also involves a mechanism for subtracting

the average error in order to extract gradient information. Such subtraction would be entirely consis-

tent with the reports of midbrain dopaminergic neurones responding more weakly to expected

rewards and responding with sub-baseline firing to omission of a predicted reward. These phenom-

ena moreover appear to involve an adaptive inhibitory mechanism (Eshel et al., 2015). These obser-

vations could be interpreted as a subtraction of the average reward by a process analogous to that

we propose for the extraction of the change of error dE.
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Conclusion
We have proposed a complete and plausible mechanism of stochastic gradient descent in the cere-

bellar system, in which the climbing fibre perturbs movements, creates an eligibility trace, signals

error changes and guides plasticity at the sites of perturbation. We verify predicted plasticity rules

that contradict the current consensus and highlight the importance of studying plasticity under phys-

iological conditions. The gradient descent requires extraction of the change of error and we propose

an adaptive inhibitory mechanism for doing this via cancellation of the average error. Our implemen-

tation of stochastic gradient descent suggests the operation of an analogous mechanism (of gradient

ascent) in the basal ganglia initiated and rewarded by dopaminergic signalling.

Materials and methods

Electrophysiology
Animal experimentation methods were authorised by the ‘Charles Darwin N˚5’ ethics committee

(authorisation no. 4445). Adult female C57Bl/6 mice (2–5 months old) were anesthetised with isoflur-

ane (Nicholas Piramal Ltd, India) and killed by decapitation. The cerebellum was rapidly dissected

into cold solution containing (in mM): 230 sucrose, 26 NaHCO3, 3 KCl, 0.8 CaCl2, 8 MgCl2, 1.25

NaH2PO4, 25 D-glucose supplemented with 50�M D-APV to protect the tissue during slicing. 300�m

sagittal slices were cut in this solution using a Campden Instruments 7000 smz and stored at 32�C in

a standard extracellular saline solution containing (in mM): 125 NaCl, 2.5 KCl, 1.5 CaCl2, 1.8 MgCl2,

1.25 NaH2PO4, 26 NaHCO3 and 25 D-glucose, bubbled with 95 % O2 and 5 % CO2 (pH 7.4). Slices

were visualised using an upright microscope with a 40 X, 0.8 NA water-immersion objective and

infrared optics (illumination filter 750 � 50 nm). The recording chamber was continuously perfused

at a rate of 4–6 ml min�1 with a solution containing (mM): 125 NaCl, 2.5 KCl, 1.5 CaCl2, 1.8 MgCl2,

1.25 NaH2PO4, 26 NaHCO3, 25 D-glucose and 10 tricine, a Zn2þ buffer (Paoletti et al., 1997), bub-

bled with 95 % O2 and 5 % CO2 (pH 7.4). Patch pipettes had resistances in the range 2–4 M
 with

the internal solutions given below. Unless otherwise stated, cells were voltage clamped at �70 mV

in the whole-cell configuration. Voltages are reported without correction for the junction potential,

which was about 10 mV (so true membrane potentials were more negative than we report). Series

resistances were 4–10 M
 and compensated with settings of ~90 % in a Multiclamp 700B amplifier

(Molecular Devices). Whole-cell recordings were filtered at 2 kHz and digitised at 10 kHz. Experi-

ments were performed at 32–34˚C. The internal solution contained (in mM): 128 K-gluconate, 10

HEPES, 4 KCl, 2.5 K2HPO4, 3.5 Mg-ATP, 0.4 Na2-GTP, 0.5 L-(–)-malic acid, 0.008 oxaloacetic acid,

0.18 a-ketoglutaric acid, 0.2 pyridoxal 5’-phosphate, 5 L-alanine, 0.15 pyruvic acid, 15 L-glutamine, 4

L-asparagine, 1 reduced L-glutathione, 0.5 NAD+, 5 phosphocreatine, 1.9 CaCl2, 1.5 MgCl2, 0.1

K3.8EGTA. Free [Ca2+] was calculated with Maxchelator (C. Patton, Stanford) to be 120 nM. Chemi-

cals were purchased from Sigma-Aldrich, D-APV from Tocris.

Recordings were made in the vermis of lobules three to eight of the cerebellar cortex. Granule

cell EPSCs were elicited with stimulation in the granule cell layer with a glass pipette of tip diameter

8–12 �m filled with HEPES-buffered saline. Climbing fibre electrodes had ~ 2�m diameter and were

also positioned in the granule cell layer. Images were taken every 5 min; experiments showing signif-

icant slice movement (>20 �m) were discarded. Stimulation intensity was fixed at the beginning of

the experiment (1–15 V; 50–200 �s) and maintained unchanged during the experiment.

Analysis
No formal power calculation to determine the sample sizes was performed for the plasticity experi-

ments. Recordings were analysed from 75 cells in 55 animals. Slices were systematically changed

after each recording. Animals supplied 1–3 cells to the analysis, usually with rotating induction proto-

cols, but there was no formal randomisation or blocking and there was no blinding. An initial analysis

focusing on between-protocol comparisons was performed when n ¼ 33 cells were retained for anal-

ysis (criteria detailed below). Because the p-value for the GPE vs. G_E difference was close to a

p<0:001 threshold (Colquhoun, 2014) and the confidence interval for the GPE plasticity ratio was

narrower than for the others, acquisition for that protocol was reduced and additional experiments

prioritised the G_ _, GP_ and G_E protocols. Experiments were ultimately halted for external rea-

sons, when n ¼ 58 cells were retained. The two-stage analysis is a form of multiple comparison; in
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consequence, the output of the statistical test on the final data has been corrected by doubling the

indicated p-values in Table 1.

Inspection of acquired climbing fibre responses revealed some failures of stimuli after the first in

a fraction of cells, presumably because the second and subsequent stimuli at short intervals fell

within the relative refractory period. As a complex spike was always produced these cells have been

included in our analysis, but where individual data are displayed, we identify those cells in which fail-

ures of secondary climbing fibre stimuli were observed before the end of the induction period.

Analysis made use of a modular Python framework developed in house. Analysis of EPSC ampli-

tudes for each cell began by averaging all of the EPSCs acquired to give a smooth time course. The

time of the peak of this ‘global’ average response was determined. Subsequent measurement of

amplitudes of other averages or of individual responses was performed by averaging the current

over 0.5 ms centred on the time of the peak of the global average. The baseline calculated over 5

ms shortly before the stimulus artefact was subtracted to obtain the EPSC amplitude. Similar analy-

ses were performed for both EPSCs of the paired-pulse stimulation.

Individual EPSCs were excluded from further analysis if the baseline current in the sweep

exceeded �1 nA at �70 mV. Similarly, the analysis automatically excluded EPSCs in sweeps in which

the granule cell stimuli elicited an action potential in the Purkinje cell (possibly through antidromic

stimulation of its axon or through capacitive coupling to the electrode). However, during induction,

in current clamp, such spikes were accepted. For displaying time series, granule cell responses were

averaged in bins of 2 min.

The effects of series resistance changes in the Purkinje cell were estimated by monitoring the

transient current flowing in response to a voltage step. The amplitude of the current 2 ms after the

beginning of the capacity transient was measured. We shall call this the ‘dendritic access’. Modelling

of voltage-clamp EPSC recordings in a two-compartment model of a Purkinje cell (Llano et al.,

1991) suggests that this measure is approximately proportional to EPSC amplitude as the series

resistance changes over a reasonable range (not shown). It therefore offers a better estimate of the

effect on the EPSC amplitude of series resistance changes than would the value of the series resis-

tance (or conductance), which is far from proportional to EPSC amplitude. Intuitively, this can be

seen to arise because the EPSC is filtered by the dendritic compartment and the measure relates to

the dendritic component of the capacitive transient, whereas the series resistance relates to the

somatic compartment. We therefore calculated Rres, the ratio of the dendritic access after induction

(when plasticity was assessed) to the value before induction, in order to predict the changes the

EPSC amplitude arising from changes of series resistance.

Because we elicited EPSCs using constant-voltage stimulation, variations of the resistance of the

tip of the stimulating electrode (for instance if cells are drawn into it) could alter the stimulating cur-

rent flow in the tissue. We monitored this by measuring the amplitude of the stimulus artefact. Spe-

cifically, we calculated Rstim, the after/before ratio of the stimulation artefact amplitude.

We then used a robust linear model to examine the extent to which changes of series resistance

or apparent stimulation strength could confound our measurements of plasticity, which we repre-

sented as the after/before ratio of EPSC amplitudes REPSC; the model (in R syntax) was:

REPSC ~protocolþRres þRstim

This showed that series resistance changes, represented by Rres, had a significant influence (t-

value 2.30, 69 degrees of freedom) with a slope close to the predicted unity (1.14). In contrast,

changes of the stimulus artefact had no predictive value (slope �0.003, t-value �0.01).

Extending our modelling using a mixed-effect model (call ’lmer’ in the lme4 R package) to include

animals as a random effect did not indicate that it was necessary to take into account any between-

animal variance, as this was reported to be zero. On this basis, we consider each cell recorded to be

the biological replicate.

We did not wish to rely on the parametric significance tests of the linear model for comparing the

plasticity protocols (although all of comparisons we report below as significant were also significant

in the model). Instead, we equalised the dendritic filtering and stimulation changes between groups

by eliminating those cells in which Rres or Rstim differed by more than 20% from the mean values for

all cells (0.94 � 0.10 and 1.01 � 0.19, respectively; mean � sd, n ¼ 75). After this operation, which

eliminated 17 cells out of 75 leaving 58 (from 47 animals), the mean ratios varied by only a few
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percent between groups (ranges 5 % and 2 % for Rres and Rstim, respectively) and would be expected

to have only a minimal residual influence. Normalising the REPSCs of the trimmed groups by Rres did

not alter the conclusions presented below. Note that after this trimming, the remaining changes of

Rres imply that all EPSC amplitudes after induction were underestimated by about 6 % relative to

those at the beginning of the recording. The differences of REPSC between induction protocols were

evaluated statistically using two-tailed nonparametric tests implemented by the ’wilcox.

test’ command in R (R Core Team, 2013).

95 % confidence limits were calculated using R bootstrap functions (‘BCa’ method). For confi-

dence limits of differences between means, stratified resampling was used.

A small additional series of experiments of 16 cells from 16 animals of which 12 were retained by

similar criteria to those explained above (except that series resistance changes had to be evaluated

using the current amplitude 1 ms into the response to the voltage step) were analysed separately

and underlie the plasticity data in Figure 6—figure supplement 1.

Simulation methods
Network simulations were designed as follows (see also diagram in Figure 12). A total of S� L Pur-

kinje cells were placed on a rectangular grid of extent S in the sagittal plane and width L in the lat-

eral direction. The activity of each Purkinje cell during a ‘movement’ was characterised by its firing

rate in T time bins t ¼ 1; � � � ; Tf g.

PCs;l tð Þ; s¼ 1; � � � ; S; l¼ 1; � � � ; L
� 	

(1)

Purkinje cells contacted projection neurones (PN) and nucleo-olivary neurones (NO) in the cerebellar

nuclei that contained L cells of each type. The activities of both types of nuclear cell were also char-

acterised by their firing rates in the different time bins, PNl tð Þ; l¼ 1; � � � ; Lf g and NOl tð Þ; l¼ 1; � � � ; Lf g.
Mossy fibres, granule cells (parallel fibres) and molecular layer interneurons were subsumed into a

single cell type M (for mossy fibre) with N cells restricted to each row of L Purkinje cells, with a total

of N� S mossy fibres. Mossy fibre activity was represented in a binary manner, Mi;s tð Þ ¼ 0 or 1, with

i¼ 1; � � � ;Nf g and s¼ 1; � � � ;Sf g.
The connectivity was chosen such that all Purkinje cells in the sagittal ‘column’ l projected to the

l-th nuclear projection neurone with identical inhibitory (negative) weights, as well as to the l-th

nucleo-olivary neurone with potentially different, but also identical inhibitory weights. Mossy fibres

were chosen to project to Purkinje cells with groups of N fibres at a given sagittal position s, contact-

ing cells on the row of L Purkinje cells at the sagittal position with probability 1/2. The activity of Pur-

kinje and cerebellar nuclear cells in the absence of climbing fibre activity was thus

PCs;lðtÞ ¼F

X

i¼1;N

wl
i;ss

l
i;sMi;sðtÞ

 !

(2)

PNlðtÞ ¼F

X

i¼1;N;s¼1;S

uli;sMi;sðtÞþ uðPC!PNÞ
X

s¼1;S

PCs;lðtÞ
 !

(3)

NOl tð Þ ¼F

X

i¼1;N;s¼1;S

vli;sMi;sðtÞþ uðPC!NOÞ
X

s¼1;S

PCs;lðtÞ
 !

; (4)

where sl
i;s enforces the 1/2 probability of connection between a Purkinje cell and a parallel fibre that

traverses its dendritic tree: sl
i;s is equal to 1 or 0 with probability 1/2, independently drawn for each

triple i; s; lð Þ. The f-I curve F was taken to be a saturating threshold linear function,

fFðxÞ ¼ 0 for x<0; FðxÞ ¼ x for 0<x<rmax and FðxÞ ¼ rmax for x>rmaxg. The weights uli;s were non-plas-

tic and chosen such that a given mossy fibre i; sð Þ contacted a single projection neurone and a single

nucleo-olivary neurone among the L possible ones of each type. In other words, for each mossy fibre

index i; sð Þ, a number l i;sð Þ was chosen at random with uniform probability among the L numbers

1; � � � ;Lf g and the weights uli;s; l¼ 1; � � � ; l
n o

were determined as

Bouvier et al. eLife 2018;7:e31599. DOI: https://doi.org/10.7554/eLife.31599 28 of 45

Research article Neuroscience

https://doi.org/10.7554/eLife.31599


uli;s ¼ dl;l i;sð Þu M!PNð Þ; (5)

where u M!PNð Þ was a constant. The weights vli;s and wl
i;s were plastic and followed the learning

dynamics described below (see Equations 11 and 13).

The learning task itself consisted of producing, in response to � ¼ 1; � � � ; p spatiotemporal pat-

terns of mossy fibre inputs M
�
i;s tð Þ, the corresponding output target rates of the projection neurones

R
�
l tð Þ l ¼ 1; � � � ; L; t ¼ 1; :::; T

� 	

. For each pattern �, the inputs were obtained by choosing at random

with uniform probability NS=2 active fibres. For each active fibre i; sð Þ, a time bin t
�
i;sð Þ was chosen at

random with uniform probability and the activity of the fibre was set to one in this time bin,

M
�
i;sð Þ tð Þ ¼ dt;t�

i;sð Þ
. The activity was set to zero in all time bins for the NS=2 inactive fibres. The target

rates where independently chosen with uniform probability between 0 and 2�rD for each projection

neurone in each pattern �, where �rD is the desired average firing rate for both projection and

nucleo-olivary neurones in the cerebellar nuclei.

The olivary neurones were not explicitly represented. It was assumed that the L� S Purkinje cells

were contacted by L climbing fibres with one climbing fibre contacting the S Purkinje cells at a given

lateral position.

The learning algorithm then proceeded as follows. Patterns M
�
i;s tð Þ

n o

were presented sequen-

tially. After pattern � was chosen, perturbations of Purkinje cell firing by complex spikes were

Figure 12. Diagram of the simulated network model. The details are explained in the text.
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generated as follows. The probability that each climbing fibre emitted a perturbation complex spike

was taken to be � per pattern presentation; when a climbing fibre was active, it was considered to

perturb the firing of its Purkinje cells in a single time bin chosen at random. Denoting by hl tð Þ ¼ 1

that climbing fibre l had emitted a spike in time bin t (and hl tð Þ ¼ 0 when there was no spike), the S

firing rates of the Purkinje cell at position l (see Equation 3) were taken to be

PCs;l tð Þ ¼F

X

i¼1;N

wl
i;ss

l
i;sMi;s tð Þþhl tð ÞA

 !

; s¼ 1; � � � ;S; (6)

where A defines the amplitude of the complex-spike perturbation of Purkinje cell firing.

Given the pattern � and the firing of Purkinje cells (Equation 6), the activities of cerebellar nuclear

neurones were given by Equations 3 and 4. The current ‘error’ for pattern/movement � was quanti-

fied by the average distance of the projection neurones’ activity from their target rates

E� ¼ 1

LT

X

l¼1;L;t¼1;T

jPN�
l tð Þ�R

�
l tð Þj: (7)

The learning step after the presentation of pattern � was determined by the comparison (not explic-

itly implemented) in the olivary neurones between the excitation E� and the inhibition I� coming

from the discharges ofnucleo-olivary neurones with

I� ¼ 1

LT l¼1;L;t¼1;T

X

NO
�
l tð Þ: (8)

An error complex spike was propagated to all Purkinje cells after a ‘movement’ when the olivary

activity IO¼E��I� was positive. Accordingly, modifications of the weights of mossy fibre synapses

on perturbed Purkinje cells (w) and on nucleo-olivary neurones (v) were determined after presenta-

tion of pattern � by the sign c of IO, c¼ sign IOð Þ, as,

wl
i;s !wl

i;s�awc
t¼1;T

X

hl tð ÞM�
i;s tð Þ (9)

vli;s ! vli;sþavc
X

t¼1;T

M
�
i;sðtÞ

" #

þ

(10)

where the brackets served to enforce a positivity constraint on the weights vli;s ( x½ �þ¼ x;x>0 and

x½ �þ¼ 0;x<0).

In the reported simulations, the non-plastic weights in Equations 3–5 were identical and constant

for all synapses of a given type:

u M!PNð Þ ¼ 4TL�rD=NS (11)

u PC!PNð Þ ¼��rD= �rPCSð Þ (12)

u PC!NOð Þ ¼ qu PC!PNð Þ ¼�q�rD= �rPCSð Þ ; (13)

where q describes the strength of the PC!NO connection relative to the PC! PN connection. The

initial weights of the plastic synapses were drawn from uniform distributions such that initial firing

rates were on average given by PC0 ¼ �rPC and NO0 ¼ 15 Hz for Purkinje cells and nucleo-olivary neu-

rones, respectively. The latter value was chosen such that the expected initial mismatch between

inhibition I and excitation E for random pairings of initial PN firing rates and target rates R was of

the order of 1 Hz. Consequently, for M! PC synapses wl
i;s was drawn from 0;8T�rPC=N½ � and for M!

NO synapses, weights vli;s were drawn from 0; NO0 þ q�rD
� �

4TL= NSð Þ
� �

. These weights furthermore

ensured initial average firing rates close to �rD in the nuclear projection neurones. Target rates R are

uniformly distributed between 0 Hz and 2�rD.

The parameters used in the reported simulation (full and simplified) are provided in Table 2.
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In the following we describe the simplified version of the model without perturbations used to

highlight shortcomings of the current Marr-Albus-Ito theory. M, PC, and PN cell types are defined as

above with identical synaptic connections and identical initial weights. The learning rules are differ-

ent as no comparison between an estimated error (inhibition) and the global error (excitation) is

made. We therefore do not consider the population of NO cells in this version. Two methods of cal-

culating the error were tested. In the first, the error conveyed by the climbing fibres contains infor-

mation about the sign of the movement error and is given by

E� ¼ 1

LT l¼1;L;t¼1;T

X

R
�
l tð Þ�PN

�
l tð Þ

� �

: (14)

In the second, the absolute values according to Equation 7 were used.

The synaptic weight changes are as follows. Whenever the error is positive, the synaptic weights

of active M ! PC connections are decreased by an amount aw, while otherwise there is a slow posi-

tive drift of M ! PC synaptic weights with increments bw:

wl
i;s !

wl
i;s�aw

P

t¼1;TM
�
i;s tð Þ ifE�>0

wl
i;sþbw else:

(

(15)

In order to show relaxation of the average of PN firing rates to the average of the target rates R, we

chose different initial distributions of uniformly distributed target rates with averages between 10 Hz

and 50 Hz.

We show in the main text that the four key parameters governing convergence of our learning

algorithm are the learning rates of mossy fibre–Purkinje cell synapses aw and mossy fibre–nucleo-oli-

vary neurone synapses av, as well as the probability of a perturbation complex spike occurring in a

given movement in a given cell �; and the resulting amplitude of the perturbation of Purkinje cell fir-

ing A. Varying each of these � 10 % individually altered the final error (1.4 Hz, averaged over trials

55,000–60,000) by at most 7%, indicating that this final output was not ill-conditioned or finely tuned

with respect to these parameters.

The simulation was coded in Python.

Table 2. Parameters used in the simulation shown in Figure 12.

Parameter Symbol Value

Sagittal extent S 10

Lateral extent L 40

Time bins per movement T 10

Mossy fibres per sagittal position N 2000

Maximum firing rate (all neurones) rmax 300 Hz

pCS probability per cell per movement � 0.03

Amplitude of Purkinje cell firing perturbation A 2 Hz

Learning rate of M ! PC synapses aw 0.02

Learning rate of M ! NO synapses av 0.0002

Mean Purkinje cell firing rate �rPC 50 Hz

Mean firing rate for nuclear neurones �rD 30 Hz

M ! PN synaptic weight u M!PNð Þ 2.4

PC ! PN synaptic weight u PC!PNð Þ �0.06

PC ! NO relative synaptic weight q 0.5

Weight increment of M ! PC drift (simple model) bw 0.002
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cerebellar purkinje cells modulated by sensory stimulation. Nature Neuroscience 8:202–211. DOI: https://doi.
org/10.1038/nn1393, PMID: 15665875

Marcaggi P, Attwell D. 2007. Short- and long-term depression of rat cerebellar parallel fibre synaptic
transmission mediated by synaptic crosstalk. The Journal of Physiology 578:545–550. DOI: https://doi.org/10.
1113/jphysiol.2006.115014, PMID: 17110417

Marr D. 1969. A theory of cerebellar cortex. The Journal of Physiology 202:437–470. DOI: https://doi.org/10.
1113/jphysiol.1969.sp008820, PMID: 5784296

Maruta J, Hensbroek RA, Simpson JI. 2007. Intraburst and interburst signaling by climbing fibers. Journal of
Neuroscience 27:11263–11270. DOI: https://doi.org/10.1523/JNEUROSCI.2559-07.2007, PMID: 17942720
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Silver IA, Erecińska M. 1990. Intracellular and extracellular changes of [Ca2+] in hypoxia and ischemia in rat brain
in vivo. The Journal of General Physiology 95:837–866. DOI: https://doi.org/10.1085/jgp.95.5.837,
PMID: 2163431

Soetedjo R, Kojima Y, Fuchs A. 2008. Complex spike activity signals the direction and size of dysmetric saccade
errors. Progress in brain research 171:153–159. DOI: https://doi.org/10.1016/S0079-6123(08)00620-1, PMID: 1
8718294

Stone LS, Lisberger SG. 1986. Detection of tracking errors by visual climbing fiber inputs to monkey cerebellar
flocculus during pursuit eye movements. Neuroscience Letters 72:163–168. DOI: https://doi.org/10.1016/0304-
3940(86)90073-X, PMID: 3101005
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Mathematical appendix

Reduced model
The model focuses on the rate P tð Þ of one P-cell. Learning a pattern (movement) requires

adjustment of the P tð Þ rate to the target value R. The movement error is defined as

EðtÞ ¼ jP tð Þ�Rj (16)

Note that here t represents trial/learning step number rather than temporal variations

within a single movement realisation. In this simplified model, the P-cell activity during a

movement is characterised by a single value rather than a sequence of values in time.

The other variable of the model besides P tð Þ is J tð Þ. It is used to quantify the strength

I tð Þ ¼ J tð Þ� qP tð Þ½ �þ (17)

of the NO ! IOð Þ inhibitory input which provides the current value of the estimated global

error. The two terms in the expression of the current are meant to represent the excitatory

action of the MF inputs on the discharge of the NO ðJ ðtÞÞ and the inhibitory effects of the

Purkinje cell discharge (�qP tð Þ). Learning steps consist of updates of the values P tð Þ and J tð Þ.
They are of two kinds depending on whether the P-cell rate is perturbed or not.

Updates of type DPDJ proceed as follows. The firing rate of the P-cell is increased by A>0

and becomes P tð Þ þ A. The value of the global error corresponding to this perturbed firing

rate is thus

Ep ¼ jP tð ÞþA�Rj (18)

P tð Þ and J tð Þ are updated depending on whether Ep is smaller or greater than the current

value of the estimated global error J tð Þ � qP tð Þ � qA½ �þ. The parameter q>0 quantifies how

much the NO output is affected by the P-cell discharge, with the brackets indicating

rectification (which imposes the constraint that the NO output remains non-negative).

. If Ep> J tð Þ � qP tð Þ � qA½ �þ the perturbation is judged to have increased the error and there-

fore to have the wrong sign: the perturbed firing rate needs to be decreased. Concurrently,

J needs to be increased since I is judged too low compared to the real value of the error.

Thus P tð Þ and J tð Þ are changed to

P tþ 1ð Þ ¼ P tð Þ�DP½ �þ (19)

J tþ 1ð Þ ¼ J tð ÞþDJ (20)

As above the brackets indicate rectification, which imposes the constraint that firing rates

are non-negative.

. If Ep< J tð Þ � qP tð Þ � qA½ �þ, the converse reasoning leads to changes of P tð Þ and J tð Þ in the

opposite directions

P tþ 1ð Þ ¼ P tð ÞþDP (21)

J tþ 1ð Þ ¼ J tð Þ�DJ½ �þ (22)
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Updates of type DJ are performed as described above but without any perturbation

(A ¼ 0) and without any update of P (only the estimated error I tð Þ is updated in updates of

type DJ ). Namely,

. If E> J tð Þ � qP tð Þ½ �þ the estimated error is judged too low compared to the real value of the

error and J needs to be increased. Thus P tð Þ is kept unchanged and J tð Þ is modified

P tþ 1ð Þ ¼ P tð Þ (23)

J tþ 1ð Þ ¼ J tð ÞþDJ (24)

. If E< J tð Þ � qP tð Þ½ �þ, the converse reasoning leads to changes J tð Þ in the opposite directions

P tþ 1ð Þ ¼ P tð Þ (25)

J tþ 1ð Þ ¼ J tð Þ�DJ½ �þ (26)

The proposed core operation of the algorithm for one movement can thus be described as

follows. At each time step, a perturbation occurs with probability �. The occurrence of a

perturbation gives rise to an update of type DPDJ , performed as described by Equations 19-

22. For the complementary 1� �ð Þ fraction of time steps, no perturbation occurs ðA ¼ 0Þ and
updates of type DJ are performed, as described by Equations 23-26.

This abstract model depends on five parameters: A, the amplitude of the rate perturbation,

DP and DJ , the update amplitudes of the rate and error estimate, respectively, q the strength

of inhibition of the NO by the P-cell, and �, which describes the probability of an update of

type DPDJ (and the complementary probability 1� � of DJ updates). The ratio of the update

amplitudes play an important role and is denoted by b, b ¼ DJ =DP. The target firing rates are

chosen in the range 0;Rmax½ �, which simply fixes the firing rate scale. We would like to

determine the conditions on the five parameters A;DP;DJ ; q and � for the algorithm to

‘converge’. For simplicity, we here consider only constant perturbation and learning steps.

Therefore, at best the rate and the error fluctuates around the target rates and zero error, in a

bounded domain of size determined by the magnitude of the constant perturbation and

learning steps. We say that the algorithm converges when this situation is reached. We would

also like to understand how they determine the rate of convergence and the residual error.

Convergence in the one-cell case
Stochastic gradient descent is conveniently analysed with a phase-plane description, by

following the values P;Jð Þ from one update to the next in the P;Jð Þ plane. The dynamics

randomly alternate between updates of type DPDJ and DJ , depending on whether the P-cell

rate is perturbed by the CF or not. We consider these two types of update in turn.

For updates of type DPDJ , the update depends on whether the perturbed error Ep ¼
jP� Rþ Aj is larger or smaller than the estimated error J � qP½ �þ. Namely, it depends on the

location of the current P;Jð Þ with respect to the two lines in the P-J plane, C�,

q� 1ð ÞPþ q� 1ð ÞA� R ¼ Jf g, of slopes q� 1 (see Figure 9B). The dynamics of Equations 19-

22 are such that each update moves the point P;Jð Þ by adding to it the vectorial increment

� DP;�DJð Þ with the þ sign holding in the quadrant above the lines C� and the minus sign

elsewhere. These updates move the point P;Jð Þ towards the lines C�. In the triangular domain

below the line C�, the update does not directly move the P;Jð Þ trajectory towards the C�
line, when b< 1� qð Þ and the update has an angle greater than the inclination of the C�.

However, it reduces P. When P ¼ 0 below C�, the updates are strictly upward and towards C�.

Updates of type DJ depend on the location of the point P;Jð Þ with respect to the lines

D�, q� 1ð ÞP� R ¼ Jf g, since the cell firing rate is not perturbed in these updates. In the

quadrant above the lines D�, an update moves the point P;Jð Þ downwards by DJ ,
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in other words, adds the vectorial increment 0;�DJð Þ. In the complementary domain of the

P;Jð Þ plane, an update moves the point P;Jð Þ upwards by DJ , in other words, adds the

opposite vectorial increment 0;DJð Þ. Both updates move P;Jð Þ towards the lines D�.

Learning proceeds by performing updates of type DPDJ and DJ with respective

probabilities � and 1� �ð Þ. Starting from an initial coordinate P;Jð Þ, three phases can be

distinguished as described in the main text.

Above the lines Cþ and D�, the mixed updates lead the point P;Jð Þ to perform a random

walk with a systematic mean rightward-downward drift per update equal to

� DP;�DJð Þþ 1� �ð Þ 0;�DJð Þ ¼ �DP;�DJð Þ; (27)

for P;Jð Þ above Cþ and D�. Below the lines C� and Dþ, the updates are opposite and the

mean drift per update is leftward-upward, equal to

��DP;DJð Þ; (28)

for P;Jð Þ below C� and Dþ. Depending on its initial condition and the exact set of updates

drawn, this leads P;Jð Þ to reach either one of the two ‘convergence corridors’, between the

lines Cþ and Dþ, or between the lines C� and D� (see Figure 9B). In the triangular domain

below the line C�, the mean leftward-upward drift has an angle greater than the inclination of

the C� line for �DP 1� qð Þ>DJ (i.e. b< 1� qð Þ�). In this case, the mean drift does not ensure

that the P;Jð Þ trajectory crosses the C� line. However, if P becomes zero before crossing C�,

the positivity constraint on the rate, imposes that subsequent updates are strictly upward, until

P;Jð Þ reaches C�. Examples of such trajectories can be seen in Appendix 1—figure 1C and D

(red lines).
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Appendix 1—figure 1. Reduced model: different cases of stochastic gradient learning are illus-

trated, for the parameters marked by solid red circles in Figure 9C, except for the case already

shown in Figure 9E and F. (A) Dynamics in the P;Jð Þ plane for � ¼ 0:5 and b ¼ 2

(A ¼ 10;DP ¼ 1;DJ ¼ 2). Trajectories (solid lines) from different initial conditions (open circles)

are represented in the P;Jð Þ plane. The trajectories converge by oscillating around Cþ in the

Cþ=Dþ ‘corridor’ and around D� in the C�=D� ‘corridor’. Trajectory endings are marked by

filled circles. (B) Time courses of P tð Þ with corresponding colours. The slope of convergence

(dotted lines) predicted by Equation 32 and 33 agrees well with the observed convergence

rate for Cþ while it is less accurate for D� when the assumption that the ‘corridor’ width is

much greater than DP and DJ does not hold. (C, D) Same graphs for � ¼ 0:75. The trajectories

converge by oscillating around Cþ in the Cþ=Dþ and around C� in the C�=D� ‘corridor’. (E, F)

Same graphs for � ¼ 0:75 and b ¼ 0:25 (i.e. A ¼ 2;DP ¼ 1;DJ ¼ 0:25). The trajectories

converge by oscillating around Cþ, which is the only attractive line.

DOI: https://doi.org/10.7554/eLife.31599.019

When a corridor is reached, in a second phase, P;Jð Þ follows a stochastic walk in the

corridor.

A sufficient condition for convergence is that a single update cannot cross the two

boundary lines of a corridor at once. For the Cþ;Dþð Þ corridor, the crossing by a single DPDJ
update provides the most stringent requirement,.

A>DJ = qþ 1ð ÞþDP¼ DJ 1= qþ 1ð Þþ 1=b½ �: (29)

The crossing of the C�;D�ð Þ corridor by a single DJ provides the other requirement
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A 1� qð Þ>DJ (30)

When these conditions are met, alternation between the two types of updates produces a

mean downward drift of the error. This downward drift controls the convergence rate and

depends on the relative size of the perturbation and the discrete DP and DJ modifications (in

other words, the number of modifications that are needed to cross the convergence corridor).

For simplicity, we consider the case where the perturbation A is large compared to DP and

DJ , so that oscillations basically take place around one line of the corridor, as illustrated in

Figure 9E and Appendix 1—figure 1. This amounts to being able to neglect the probability

of crossing the other line of the corridor. The convergence rate then depends on the corridor

line around which it takes place and can be obtained by noting that around a given corridor

line, one of the two types of updates always has the same sign.

In the Cþ;Dþð Þ corridor, performing type DPDJ updates for fraction � of the steps and type

DJ updates for the complementary fraction 1� �ð Þ leads to the average displacement per

step,

� �DP;DJð Þþ 1� �ð Þ 0;�DJð Þ ¼ ��DP; 2�� 1ð ÞDJð Þ (31)

Thus, as summarised in Figure 9C

. For �<b= qþ 1ð Þ þ 2b½ � the average displacement leads to Dþ (Figure 9E). The average down-

ward drift in the corridor can be obtained by noting that for a large A, the P;Jð Þ trajectory
has a negligibly small probability of crossing the Cþ line. Therefore, all the type DPDJ
updates are of the same sign, of the form �DP;DJð Þ, and chosen with probability �. Since

updates of type DJ do not change the value of P, P approaches its target rate with a mean

speed per step Vc,

Dþ: Vc ¼��DP (32)

A comparison between this computed drift and simulated trajectories is shown in

Figure 9F.

. For �>b= qþ 1ð Þ þ 2b½ �, the average displacement leads to Cþ (Appendix 1—figure 1A,C,E).

In this case, all type DJ updates are of the same sign, of the form 0;�DJð Þ. In contrast, a

fraction f of type DPDJ updates are of the form �DP;DJð Þ, while a fraction 1� fð Þ is of the

opposite form DP;�DJð Þ with f to be determined. The average drift is thus

1� �ð Þ 0;�DJð Þ þ � f �DP;DJð Þ þ 1� fð Þ DP;�DJð Þ½ � ¼ � 1� 2fð ÞDP; �� 1ð Þ þ � 2f � 1ð Þ½ �DJð Þ.
Requiring that this drift has slope ð1þ qÞ, like Cþ, gives 2f � 1 ¼ b 1� �ð Þ= 1þ qþ bð Þ�½ � and
f ¼ bþ � 1þ qð Þ½ �= 2� 1þ qþ bð Þ½ � (which indeed obeys 0<f<1 in the parameter domain consid-

ered). Thus, P approaches its target rate with a mean speed per step Vc,

Cþ: Vc ¼� 1� �

1þ qþb
DJ (33)

A comparison between this computed drift and simulated trajectories is shown in

Appendix 1—figure 1B,D,F.

In the C�;D�ð Þ corridor, the average drift per step is opposite to the drift in the Cþ;Dþð Þ
corridor (Equation 31). Thus,

. For b> 1� qð Þ and �>b= 2bþ q� 1ð Þ the average displacement leads to C� (Appendix 1—fig-

ure 1A). Updates of type DJ are always of the form 0;DJð Þ, while a fraction f of type DPDJ
updates are of the form DP;�DJð Þ and a fraction 1� fð Þ are of the opposite form �DP;DJð Þ.
Again, since the average drift is along C� of slope q� 1, one obtains 2f � 1 ¼
b 1� �ð Þ= bþ q� 1ð Þ�½ � or f ¼ bþ � q� 1ð Þ½ �= 2� bþ q� 1ð Þ½ � (which obeys 0<f<1 in the parame-

ter domain considered). The convergence speed Vc is thus,
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C�: Vc ¼
1� �

bþ q� 1
DJ (34)

A comparison between this computed drift and simulated trajectories is shown in

Appendix 1—figure 1B.

. For b<1� q, or b>1; �<b 2b� 1ð Þf g, the complementary parameter domain, the drift in the

corridor leads to D� (Appendix 1—figure 1A,C). The domain b< 1� qð Þ� can be excluded,

since when the point P;Jð Þ crosses D�, the drift in the upper quadrant Cþ;D�ð Þ (Equa-

tion 27) tends to bring it to the other corridor Cþ;Dþð Þ (Appendix 1—figure 1E). Near the

line D�, type DPDJ updates are always of the form DP;�DJð Þ. The convergence speed Vc is

thus

D�: Vc ¼ �DP (35)

A comparison between this computed drift and simulated trajectories is shown in Figure 9F

and Appendix 1—figure 1B.

Perceptron model and simulations
The architecture of the perceptron model is again the simplified circuit of Figure 9A, with

NM ¼ 1000 mossy fibres projecting onto a single P-cell, with weights wi, i ¼ 1; . . . ;NM (which

are all positive or zero). NP patterns are generated randomly. Activities of mossy fibres in

different patterns are i.i.d. binary random variables M�
i with coding level f (i.e. Mi ¼ 1 with

probability f and 0 with probability 1� f ; in the present simulations f ¼ 0:2). The P-cell desired

rates for the NP patterns are i.i.d. uniform variables R� from 0 to Pmax (=100 Hz).

In the case of the stochastic gradient descent with estimated global errors algorithm, at

each trial a pattern � is randomly drawn without replacement among the total NP and there is

a probability � of a perturbation of amplitude A. The output of the P-cell is

P� ¼ 1
ffiffiffiffiffiffiffi

NM

p
i

X

wiM
�
i � �NM

� �� �

þ
þhA (36)

where h ¼ 1 with probability � and h ¼ 0 otherwise, which thus introduces a random

perturbation of amplitude A into the P-cell firing. The error is defined as E ¼ jP� � R�j.
Comparison with previously obtained results for the capacity of this analog perceptron

(Clopath and Brunel, 2013) motivates our choice of weights normalisation and the

parameterisation of the threshold as � ¼ 1

2
Pmax

ffiffiffiffiffiffiffiffiffiffiffiffi

f

3 1�fð Þg

q

� 1
ffiffiffiffiffi

NM

p
� �

, where g is a composite

parameter reflecting the statistics of input and output firing, but here is equal to one.

An inferior olivary neurone receives the excitatory error signal but it also receives inhibitory

inputs from the nucleo-olivary neurones driven by the mossy fibre inputs (which we have

denoted M above), with weights vi. These are also plastic and sign-constrained. They

represent the current estimated error. The net drive of the inferior olivary neurone is

IO¼ E�I ; with I ¼ 1
ffiffiffiffiffiffiffi

NM

p
X

i

viM
�
i � �NM

 !

� qP�

" #

þ
: (37)

Here, the term qP� represents the specific inhibition of nucleo-olivary neurones by Purkinje

cells and the term proportional to � represents non-specific inhibition. In other words,
1
ffiffiffiffiffi

NM

p
P

i viM
�
i � �NM

� �

corresponds to J in Equation 17. For simplicity we assume the non-

specific inhibition to be constant and the value of � equal to that used in Equation 36.

The climbing fibre signal controlling plasticity is

c¼ sign IOð Þ
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Weights are changed according to the following rule. Weights of M ! P synapses active

simultaneously with a perturbation are increased if c is negative and decreased if it is positive.

Weights of M ! NO synapses are increased if c is positive and decreased if not. Thus

wi ¼ wi�awchM
�
i½ �þ (38)

vi ¼ viþavcM
�
i½ �þ (39)

with the brackets indicating rectification (to impose the excitatory constraint).

The parameters of the simplified model of the previous subsection can be written as a

function of those controlling the learning process in the present analog perceptron. The

probability � of the two types of updates (with and without perturbation) and the amplitude of

perturbation A are clearly identical in both models. In order to relate the previous DP and DJ
to the present amplitude change of the weights aw at mossy fibre–P-cell inputs and av for the

indirect drive to the inferior olive from mossy fibres, we neglect the rectification constraints in

Equations 38 and 39 which is valid as long as synaptic weights are not very small (i.e.

comparable to aw or av; see below for further discussion). Therefore, the weight modifications

result in the changes DP, of the perceptron firing rate, and DJ , of the inhibitory input I to the

olive,

DP¼ 1
ffiffiffiffiffiffiffi

NM

p
i

X

awM
�
i ¼ awf

ffiffiffiffiffiffiffi

NM

p
(40)

DJ ¼ 1
ffiffiffiffiffiffiffi

NM

p
i

X

avM
�
i ¼ avf

ffiffiffiffiffiffiffi

NM

p
(41)

The convergence rate estimates of the previous section are compared with direct stochastic

gradient descent learning simulations of the analog perceptrons in Figure 10. As shown in

Figure 10A, for many single patterns, the convergence rate agrees well with the

estimate Equation 33. However, for a fraction of the trajectories, the rate of convergence is

about half of the prediction. This arises because these simulations constrained synaptic

weights to be non-negative, which creates a significant fraction of synapses with negligible

weights (Brunel et al., 2004) and produces a smaller effective step DP than estimated without

taking this positivity constraint into account. For a larger number of patterns below the

maximal learning capacity, the convergence rate per pattern is slower by a factor of » 1:5� 5

for NP between 100� 350 (Figure 10B).

The SGDEGE algorithm is compared to the usual delta rule in Figure 10. For the delta rule,

the patterns are presented sequentially. When the pattern � is presented, the weights are

changed according to the signed error Es as,

wi ¼ wi �awM
�
i Es½ �þ (42)

The error is defined by the distance (positive or negative) of the P-cell firing rate to the

target rate, Es ¼ P� � R�, and P� is given as before by Equation 36 (with A ¼ 0).

The convergence of the SGDEGE algorithm is considerably slower than that obtained for

the delta rule (Figure 10C), while the relative slowing due to interference of multiple patterns

is comparable for the delta rule and the proposed algorithm (compare panels B,C in

Figure 10). The slower convergence rate of the SGDEGE algorithm arises from the use of

update steps of fixed amplitude while the update is proportional to the error magnitude for

the delta rule. A modified delta rule with constant amplitude updates would give a

convergence rate comparable to the SGDEGE one.
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