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Canan G. Nebigil* and Laurent Désaubry

CNRS, Laboratory of Biomolecules, UMR 7203, Sorbonne University, Paris, France

Cardiotoxicity is one of the main adverse effects of chemotheraphy, affecting
the completion of cancer therapies and the short- and long-term quality of life.
Anthracyclines are currently used to treat many cancers, including the various forms
of leukemia, lymphoma, melanoma, uterine, breast, and gastric cancers. World Health
Organization registered anthracyclines in the list of essential medicines. However,
anthracyclines display a major cardiotoxicity that can ultimately culminate in congestive
heart failure. Taking into account the growing rate of cancer survivorship, the clinical
significance of anthracycline cardiotoxicity is an emerging medical issue. In this review,
we focus on the key progenitor cells and cardiac cells (cardiomyocytes, fibroblasts, and
vascular cells), focusing on the signaling pathways involved in cellular damage, and the
clinical biomarkers in anthracycline-mediated cardiotoxicity.
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INTRODUCTION

Either alone or in combination with targeted therapies and cytotoxic agents, anthracyclines are the
most commonly used antineoplastic drugs to treat a diversity of hematological and solid tumors
(Aleman et al., 2014). For example, doxorubicin (DOX) and its derivative epirubicin are widely
used anthracyclines to treat breast, endometrial and gastric cancers, childhood solid tumors, soft
tissue sarcomas, and aggressive lymphoblastic or myeloblastic leukemia (Ewer and Ewer, 2015).
Daunorubicin is effectively used for treatment of acute lymphoblastic or myeloblastic leukemias,
Hodgkin lymphoma and bone sarcoma. Sabarubicin is used for treatment of non-small-cell lung
cancer, thyroid and metastatic prostate cancer, and platinum- or taxane-resistant ovarian cancer
(Ewer and Ewer, 2015). However, the use of anthracyclines is associated with dose-dependent
cardiotoxicity (Table 1). The first year after completing anthracycline chemotherapy, 9% patients
had an impaired left ventricular (LV) ejection fraction (EF% < 50%) (Boyd et al., 2017). Delayed HF
development is exemplified by long-term childhood cancer survivors having an 12-fold increased
chance of developing congestive HF up to 30 years after treatment (Armstrong and Ross, 2014).
The occurrence of anthracycline-mediated cardiotoxicity has extended to 30% of adult survivors of
childhood cancer (Bhakta et al., 2017). Addition of tyrosine kinase inhibitors with anthracyclines
chronic regiments, often implemented for breast cancer treatment, is associated with a 5-year
cumulative incidence of heart failure (HF) or cardiomyopathy of 20% (Tsimberidou et al., 2011;
Maurea et al., 2016). The DOX cardiotoxicity is manifested as arrhythmias, ischemia, systolic
dysfunction and HF, due to cardiac cell death and necrosis (Mitry and Edwards, 2016). Two or
three days after administration of DOX, the toxicity among 11% of the patients is manifested
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TABLE 1 | Comparison of incidence of LV dysfunctions induced by clinically used
DOX-derivatives (adapted from Zamorano et al., 2017).

Anthracycline Incidence of LVSD/HF

DOX (Andriamycin) 7–26% at 550 mg/m2

Epirubicin 0.9–11.4% at 900 mg/m2

Idarubicin 5–18% at >90 mg/m2

MyocetT 2% at 900 mg/m2

as neutropenia, alopecia, nausea, and arrhythmias. A cumulative
dose of 550 mg/m2 of DOX significantly increases the incidence
of development of HF (Swain et al., 2003).

DEVELOPMENT OF NEW DOX
FORMULATIONS

In recent years, studies have focused on developing novel
formulations of DOX to reduce cardiotoxicity without altering its
cytotoxic efficacy in cancer cells. A liposomal-delivered DOX has
been introduced to prolong circulation levels and control release
of DOX (Luo et al., 2017). Pegylated liposomal DOX (PEG-
DOX) has found to have a very long circulation time, however,
it has high affinity for the skin and induces palmar-plantar
erythrodysesthesia in dose dependent manner (Rivankar, 2014).
Non-PEG liposomal DOX (MyocetT) has also been developed.
MyocetT has a similar cardiotoxicity profile as epirubicin
(Table 1), which is lower than the one of DOX (Toldo et al., 2013).
However, in the United States, use of liposomal-derived DOX
is restricted to ovarian cancer, AIDS-related Kaposi sarcoma,
and multiple myeloma (Henriksen, 2018). The other approach to
reduce DOX-mediated cardiotoxicity is to use a conjugated co-
drug that has cardioprotective effects (Figure 1). For example,
conjugating DOX with antioxidant such as caffeic and ferulic
acids reduces toxicity as compared to DOX (Chegaev et al., 2013).
DOX-conjugated H2S (H2SDOX) or NO donors (NitDOX) can
release thiols and NO, and reduce cardiotoxicity in vivo. In the
same time, H2SDOX and NitDOX reverse chemoresistance in
a mouse model of castration-resistant prostate cancer (Chegaev
et al., 2016; Bigagli et al., 2018). Another approach is to conjugate
DOX to carriers that change the pharmacological distribution
of the drug, resulting in reduced drug levels in the heart and
targeted delivery of DOX into tumor cells. A pH-responsive
nanomicelle composed of mPEG-Schiff base-DOX and 7-ethyl-
10-hydroxylcamptothecin (SN-38), an inhibitor of topoisomerase
I, not only eradicate breast cancer stem cells, but also enhanced
drug accumulation efficiency at the tumor site with lower side
effects, and no overt sign of toxicity in heart, liver, spleen,
lung, and kidney (Sun et al., 2018). Conjugating DOX with
mitochondria penetrating peptide (Chamberlain et al., 2013)
generated an adduct called as a mitochondrial-targeted DOX
(MtDOX) that can recover cardiomyocytes from mitochondrial
damage by activation of compensatory mitochondrial biogenesis
without nuclear damage associated with cardiotoxicity (Jean
et al., 2015). Although MtDOX is less cytotoxic in drug-sensitive
cells, it displays a strong cytotoxic effect in DOX-resistance cells

(Battogtokh et al., 2018). Unfortunately, the in vivo anticancer
activity of these agents has not been reported yet. Isolated
mitochondria (Li et al., 2018) or nanomicelles (Zhang et al., 2017)
are new nanocarriers that may improve the anticancer efficacy of
DOX, but their cardiotoxicity in vivo have not been evaluated yet.

The incidence of cardiovascular injuries induced by
anthracyclines varies mostly depending on risk factors, genetic
predisposition and existence of the cardiovascular disorders,
the duration of the therapy and the combinatory cancer
therapy. Thus, understanding the mechanism of anthracycline-
induced cardiotoxicity, and investigating prognostic value of
cardiovascular damage biomarkers in cancer patients could help
to avoid and manage it effectively.

CELLULAR AND MOLECULAR TARGETS
OF DOX

Anthracyclines therapies can have a cellular “signature” on the
heart that stays latent and asymptomatic at the early stages,
ending with a devastating sequel. DOX-mediated structural
cardiac damage is associated with changes in several cardiac cell
types, leading to cardiac dysfunction and HF (Figure 2). The
mechanism of DOX-mediated cardiotoxicity is fairly understood.
Mechanisms that have been extensively studied over 5 decades
of research, include (1) oxidative stress and generation of
reactive oxygen species; (2) topoisomerase II inhibition and
double stranded break leading to transcriptional alteration of
the genes and apoptosis; and (3) impairments of mitochondrial
functions, thereby activating apoptotic pathways. Furthermore
the cardiotoxicity is also associated with changes in the high-
energy phosphate pool, disturbance of adrenergic signaling and
endothelin-1 levels. Here, we will discuss the principle molecular
mechanism of DOX-mediated cardiotoxicity in each cardiac cell
type.

Cardiomyocytes
Myofibrillar disarray and mitochondrial deterioration in
cardiomyocytes are commonly seen structural defects in DOX-
mediated cardiotoxicity. The molecular mechanisms of the
death of cardiomyocytes have been extensively studied and are
underlined below (Figure 3).

The Role of Reactive Oxidation Species
Oxidative stress is the most widely studied mechanism for
DOX-mediated iatrogenic cardiotoxicity. It results from an
imbalance between production of reactive oxygen species (ROS)
and reactive nitrogen species (RNS) and intrinsic antioxidant
mechanisms that exist at relatively low levels in the heart as
compare to other organs. We discuss below how ROS is generated
by DOX.

Mitochondrial ROS formation and metabolic changes
Mitochondria play a key role as a junction for apoptosis, necrosis,
and autophagy processes, and represents one the principal targets
of DOX-induced cardiotoxicity. DOX promotes high level of
oxidative stress (Angsutararux et al., 2015). When the intra-
mitochondrial concentration of DOX surpasses 50–100 µM, the
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FIGURE 1 | Structure of DOX conjugates displaying a reduced cardiotoxicity.

FIGURE 2 | Anthracyclines such as doxorubicin family induce ROS production, DNA damage, apoptosis, and senescence leading to phenotypical and functional
changes in the key cardiac and progenitor cells. Indeed, somatic cell derived iPSCs can differentiate into cardiomyocytes. These iPSC-CMs can be used to study
new mechanisms of anthracycline-mediated cardiotoxicity and to detect genetic variance to cardiotoxicity in the cancer patients.

level of ROS production increases. Indeed, a cationic drug DOX
attracts cardiolipin, an anionic-charged phospholipid located in
the inner mitochondrial membrane. Cardiolipin is implicated
in oxidative phosphorylation process and has an important

role on the mitochondrial dependent apoptosis. DOX forms an
irreversible complex with cardiolipin that is also susceptible to
peroxydative attack by ROS (Govender et al., 2014). Cardiolipin
peroxidation leads to (i) detachment of cytochrome c from
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FIGURE 3 | Molecular mechanism of anthracycline-induced cardiotoxicity such as ROS production, mitochondrial and Fas receptor mediated apoptosis, mitophagy,
and DNA damage, alteration of bioenergetics, and calcium homeostasis in sarcoplasmic reticulum, activation of UPS system inhibition of NGR-1-mediated survival
pathway and role of survival pathway Akt.

mitochondrial membrane, leading to caspase-depending
apoptosis, (ii) uncouples respiratory chain complexes I, III,
and IV in the mitochondria, (ii) forms a mitochondrial
permeability transition pore (mPTP). Association with Bcl2
family proteins, mPTP leads to reduction of used ATP, thereby
inducing necrotic cell death, associated with mitochondrial
and cytoplasm swelling, and sarcomere lesions. The necrosis
occurs during acute doxorubicin-induced cardiotoxicity.
DOX-mediated ROS activates the heat shock factor (HSF)-
1, which increases the expression of heat shock protein
(Hsp25) and transactivates a tumor-suppressor protein p53,
thereby altering levels of beta-cell lymphoma 2–(Bcl2) and
pro-apoptotic Bax. Increased Bcl2/Bax ratio triggers the
mitochondrial apoptotic pathway in the myocardium (Vedam
et al., 2010).

Reactive oxygen species levels are mainly produced by a
redox cycling of catalyzed anthracycline in numbers of cellular
oxidoreductases (McGowan et al., 2017). This reduction of
O−2 generation is predominantly achieved via nicotinamide
adenine dinucleotide (NADH) dehydrogenase (complex I) of the
mitochondrial electron transport chain and endothelial-specific
nitric oxide synthase (eNOS) reductase that is the most important
player in doxorubicin-induced cardiomyopathy among three
NOS isoforms (Octavia et al., 2012). DOX depending on the
concentration can directly bind to eNOS reductase domain,
resulting in O−2 generation and transforming eNOS from
NO to a superoxide producer (Vasquez-Vivar et al., 1997).
eNOS-dependent ROS formation contributes to DOX-induced
cardiac dysfunction. Interestingly, iNOS also damages DNA by
generating peroxynitrites during NO reaction with O−2 , which
activates Poly-ADP-ribose polymerase (PARP), leading to an

energetic imbalance and cell death, while cardioprotective effect
of iNOS is due to generation of NO (Mukhopadhyay et al., 2009).

Doxorubicin-activated PARP unifies the ROS metabolism
and DNA repair in cardiomyocytes (Damiani et al., 2016).
Although PARP inhibition increases the antioxidant defense and
decreases the ROS formation in the H9c2 cells treated with
DOX, it is not sufficient to prevent cell death, demonstrating
that other molecular signaling contributes to the DOX-mediated
cardiotoxicity (Damiani et al., 2018). Use of antioxidants such
as vitamin E, vitamin C, carotenoids, flavonoids, polyphenols,
etc. together with chemotherapy can be beneficial to minimize
the burden of free reactive radicals in cells (Lopes et al., 2017).
However, role of antioxidants in cancer therapy are controversial
(Yasueda et al., 2016). A preventive low dose of antioxidants has
been shown to protect both normal cells and tumor cells, while
the therapeutic high dose of antioxidants inhibits the growth
of cancer cells, but not normal cells. The optimal doses of
antioxidants, and how antioxidant therapy protects normal cells
against cardiac damage from cancer therapies, while not affecting
their cytotoxic effects in cancer cells need to be determined (Lei
et al., 2016).

Doxorubicin also affects mitochondrial metabolism. DOX
decreases long-chain-fatty acid oxidation and increases glucose
metabolism in mitochondria. DOX controls a switch between
an aerobic to anaerobic metabolic state (Carvalho et al., 2010).
On the other hand, DOX suppresses cardiac mitochondrial
metabolism and biogenesis, and alters metabolic gene
expressions. Suppression of mitochondrial metabolism and
biogenesis by DOX could be reversed by upregulation of
heme oxygenase (HO-1) that is required for mitochondrial
biosynthesis system by inhalation of low level of peroxidative
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carbon monoxide (CO) (Suliman et al., 2007). DOX perturbs
the expression of calcium-handling genes, changes the Ca2+

homeostasis (Cardoso et al., 2008) and affects fatty acid oxidation
(FAO) and metabolism, causing mitochondrial dysfunction and
apoptosis in the myocardium.

Doxorubicin-mediated impaired calcium homeostasis can
be the result of ROS generation. DOX and its metabolite
doxorubicinol induce the calcium/calmodulin-dependent
protein kinase-II (CaMKII)-dependent calcium leakage from
the sarcoplasmic reticulum, causing calcium overload that
leads to sarcomeric disarray, thereby induces necrosis and
caspase-12-mediated apoptosis (Sag et al., 2011). DOX down-
regulates some of the genes that are involved in the function of
cardiomyocytes, including Ca2+ ATPase, ryanodine receptor 2
(RyR), mitochondrial iron–sulfur proteins, phospholamban, and
calsequestrin (Takemura and Fujiwara, 2007). DOX also activates
calpains, calcium-dependent proteases, and induces myofibril
deterioration and necrosis (Lim et al., 2004).

Iron-dependent reactive oxygen species (ROS) formation
Although oxidative stress has been considered as the central
mechanism of DOX-cardiotoxicity, it seems now that iron–
DOX complex-induced oxidative stress has a minor role in
ROS production (Simunek et al., 2009). DOX undergoes several
oxidoreduction processes to form semiquinone metabolites or
doxorubicinol, and back to DOX in the presence of iron, leading
to O−2 · and H2O2 formation and apoptosis (Xu et al., 2005).

It seems that DOX-mediated iron accumulation in the
cardiomyocytes is more deleterious than the iron-DOX complex-
induced ROS production (Ghigo et al., 2016). DOX down-
regulates the ATP binding cassette (ABC) B8 protein, a
mitochondrial iron export protein, resulting in the diminution
of the export of iron from the mitochondria. Cellular iron
homeostasis is balanced by the functions of the iron-responsive
elements (IREs) and iron regulatory proteins (IRPs). IRPs
bind to IREs located in the untranslated regions of mRNAs
encoding protein involved in iron uptake, storage, utilization,
and export. However, high cellular level of iron promotes the
assembly of a [4Fe-4S] cluster that induces the aconitase (ACO)
activity of IRPs and abolishes their binding to IRE. DOX or
its metabolite DOXol removes Fe2 ( + from [4Fe-4S] cluster
of ACO1/IRP-1, thereby enhancing stability of mRNA of the
iron uptake protein, transferrin, and preventing translation
of iron-sequestration protein, ferritin (Canzoneri and Oyelere,
2008)[45]. DOX permanently inactivates both IRP1 and IRP2
(Ichikawa et al., 2014)[46]. Thus, DOX increases the iron
integration into the cells and reduces the release of iron from
sub-cellular organelles by altering the protein trafficking that
promotes iron accumulation inside of the cells.

The hypothesis that mitochondrial oxidative damage caused
by iron-induced ROS production has been challenged by the
findings that several iron chelator failed to protect from DOX-
mediated cardiotoxicity (Simunek et al., 2009; Rao et al., 2011).
However, iron chelators such as Dexrazoxane have been used as
a preventive therapy. Dexrazoxane has been shown to form an
intricate complex with the ATPase domain of human Top2α and
Top2β, thereby prevents anthracyclines from binding to Top2,

thereby it protects anthracycline-mediated cardiotoxicity (Lyu
et al., 2007). An important downside of dexrazoxane is that it has
carcinogenic potential with an increased risk for development of
acute myeloid leukemia and myelodysplastic syndrome (Shaikh
et al., 2016). Therefore, in Europe its use is contraindicated in
children, and the European Medicines Agency (EMA) and FDA
restrict its use to adult patients with advanced or metastatic
breast cancer at high HF risk due to previous receipt of a high
cumulative anthracycline dose.

The Role of Topoisomerase
Doxorubicin -induced cardiotoxicity does not solely result
from the redox cycling of DOX, but also the inhibition of
DNA polymerase and nucleic acid synthesis by intercalating
with DNA. Indeed, DOX inhibits topoisomerase 2 (Top2)
by forming a covalent Top2-DOX-DNA ternary complex (a
cleavable complex), leading to double-stranded DNA breaks
(Lyu et al., 2007). Top2 is composed of isoenzymes Top2α

and Top2β. Top2α is highly expressed during G2/M phases
in proliferating (malignant and non-malignant) cells. It is
essential for chromosomal segregation (Azarova et al., 2007).
Top2α-DOX-DNA complex inhibits DNA replication and
chromosome condensation/decondensation, and arrests the cell
cycle in G1/G2, thereby inducing apoptosis in proliferating
cancer cells. DOX chemotherapy displays a high efficacy, because
of the extremely raised expression of Top2α in cancer cells.
However, in adult quiescent cardiomyocytes Top2β is particularly
abundant, and is constantly expressed (Tewey et al., 1984).
DOX exerts cardiotoxicity by intercalating DNA via Top2β in
cardiomyocytes. On the other hand, DOX cannot binds to
DNA in cardiomyocytes in the absence of Top2β (McGowan
et al., 2017). Top2β knockout (KO) mice display a partial-
resistance to DOX-induced cardiotoxicity, because of reduced
DOX-mediated DNA damage and expression of peroxisome
proliferator-activated receptor (PPAR), with a concomitant
diminution in p53 induction (Zhang et al., 2012). Importantly,
suppression of the PPAR in Top2β-KO mice impairs calcium
homeostasis, oxidative metabolism and mitochondrial function,
leading to apoptosis. Thus, preventing Top2β degradation can be
considered a clinical strategy to protect heart from anthracycline-
mediated cardiotoxicity as previously reported (Vejpongsa and
Yeh, 2014).

The Role of Mitophagy and Autophagy
Mitochondria play an important role for the myocardial
contractile function and cell survival, providing sufficient
ATP production via oxidative phosphorylation. Defective
mitochondria are eliminated by autophagy (mitophagy)
that is a fundamental process to sustain mitochondrial network
homeostasis, by regulating mitochondrial number and protecting
cardiomyocytes from the deleterious effects of ‘mitotoxicity’
(Hamacher-Brady and Brady, 2016). Mitophagy occurs in
cardiomyocytes via two pathways: (i) the PTEN-induced
kinase 1 (PINK1)/Parkin (E3 ubiquitin ligase) pathway and
(ii) BH3-only protein Bcl-2-like 19 kDa-interacting protein
3 (Bnip3)/BNIP3-like protein Nix an effector of apoptosis
pathway (Saito and Sadoshima, 2015). Depolarization of outer
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mitochondrial membrane induces stabilization of PINK1 that
binds to Parkin and consequently initiates ubiquitinations
and degradation of mitochondrial protein Mitofusin 1 and 2,
voltage dependent anion channel-1 (VDAC-1) and GTPase
enzyme facilitating mitochondrial transporter, MIRO, thereby
preventing mitochondrial re-fusion and promoting mitophagy
(Moyzis et al., 2015). Acute DOX exposure promotes Parkin
depletion, while post-DOX promotes Parkin upregulation.
Indeed, mitophagy inhibitor peptide mdivi-1 prevents the DOX-
induced cardiotoxicity, indicating that excessive mitophagy
contributes the DOX-cardiotoxicity (Gharanei et al., 2013).
Bnip3 or Bnip3L/Nix acts as mitophagy receptor as it has LC3-II
recognition motive LIR, thereby allowing autophagosomal
engulfment of mitochondria. DOX promotes up-regulation
and translocation of Bnip3 and formation of mitochondrial
membrane pores, leading to severe necrosis in cardiomyocytes
(Dhingra et al., 2014).

Autophagy plays a key role in recycling the cardiomyocyte
constituents and is enhanced during cardiomyopathy and HF.
However, autophagy can have dual role in cardiomyocytes under
stress. DOX treatment causes excessive autophagy, resulting in
the degradation of autophagolysosomes in cardiomyocytes via
a mechanism that involves iron and ROS to provoke cell death
(Nordgren and Wallace, 2014). Strategies aimed at enhancing
autophagy before DOX-treatments and preventing post-DOX
autophagy initiation have been shown to be cardioprotective
(Sishi et al., 2013). For example a basic leucine zipper protein
nuclear factor erythroid 2-related factor 2 (Nrf2) prevents
oxidative stress by inducing autophagy and protects against
DOX-induced cardiomyopathy (Li et al., 2014). Indeed, the
silencing of autophagy-related gene (Atg)-5 or the Beclin-1 (Bcl-
1) (Xu et al., 2012) or a class III PI3K inhibitor, 3-methyl adenine
protect cardiac cells from DOX cardiotoxicity, by inhibiting post-
DOX autophagy (Pizarro et al., 2016). More studies will be
required to explicate the role of autophagy and mitophagy in
DOX-induced cardiotoxicity.

Immune Response and the Activation of Death
Receptors
Doxorubicin-induced cardiotoxicity can also result from the
activation of innate and adaptive immunity. DOX stimulates
the release of cytokines and inflammatory markers, such as
interleukins (IL) (IL-1β, IL-6) (Sauter et al., 2011), tumor
necrosis factor (TNF-α) (Guo R. M.et al., 2013), and mitogen-
activated protein kinase (p38 MAPK) and nuclear factor-κB
(NFκB) (Guo R. et al., 2013), which are implicated in cardiac
pathogenesis and apoptosis. DOX enhances the activity of natural
killer cell and cytotoxic T-lymphocytes, and differentiation
of the macrophages. DOX also up-regulates the expression
of cell surface membrane death receptors (DR), such as Fas
cell surface death receptors, DR4, and DR5, TNF receptor 1
(TNFR1) in cardiomyocytes (Zhao and Zhang, 2017). In addition,
DOX induces the expression of toll-like receptors (TLR) that
play an important role in cardiac damage via activating pro-
inflammatory NFκB (Pop-Moldovan et al., 2017). All these DOX-
induced immune responses contribute to the activation of a
caspase cascade.

Neuregulin-1 (NRG-1) (or Erythroblastic Leukemia
Viral Oncogene Homolog, ERB)
All four types of NGRs belong to a family of epidermal
growth factor proteins. These peptide hormones bind to their
tyrosine kinase receptors (ErbBs), and induce dimerization of
ERbBs to exert their biological activity. For example NRG1
is a ligand for both ERbB3 and ERbB4, but not for ERbB2.
NRG1 binds to ERbB4 and causes its heterodimerization with
ERbB2. This ERbB4/ERbB2 signaling activates survival pathway,
and induces compensatory hypertrophy in the cardiomyocytes
(Lemmens et al., 2007). Chronic exposure of DOX disrupts
the expression of NRG1 and ERbB4 in the heart. In accord
with this finding, DOX-induced cardiotoxicity was exacerbated
in NRG1 knockout mice (Liu et al., 2005). However, acute
DOX exposure increases ERbB2 expression, confirming the
dose and time dependent anthracycline-mediated cardiotoxicity
(Gabrielson et al., 2007). Clinically used ERbB2 antibodies (e.g.,
Herceptin trastuzumab) for treatment of breast cancer patients
directly induce cardiotoxicity, and combination therapy with
anthracycline enhances their cardiotoxicity (Nicolazzi et al.,
2018). Importantly, engineered bivalent NRGs have been shown
to protect mice hearts against DOX-induced cardiotoxicity with
reduced neoplastic potential (Jay et al., 2013).

Activation of the Ubiquitin Protease System (UPS)
Activation of the UPS system plays a key role in proteolytic
degradation and post-translational modification of proteins,
and is involved in DOX-mediated cardiomyopathies (Ranek
and Wang, 2009). Ubiquitin attachment to the proteins
(ubiquitination) requires the ubiquitin-activating enzyme (E1),
the ubiquitin conjugating enzyme (E2) and the ubiquitin ligase
(E3). DOX up-regulates the expression of E3 ligase and other
proteases to promote UPS-mediated degradation of structural
proteins (myofibrillar proteins), survival factors (anti-apoptotic
Bcl2 protein), transcriptional cofactor p300, nuclear factors of
activated T-cells, NFAT-5 and its target gene taurine transporter
(TauT) (Lim et al., 2004). The enhanced E3 ligase activity induced
by DOX directly promotes myofibrillar loss and apoptosis, and
impairs the cardioprotective signaling and the antioxidant amino
acid absorption, leading to cardiac dysfunction (Shi et al., 2011).

Vascular Cells
Recently, DOX-induced toxicity in vascular cells, particularly
endothelial injury has received some attention. Blood vessels
and coronary endothelial cells are an additional target of
anthracyclines (Soultati et al., 2012). DOX alters the nitric
oxide/superoxide balance, resulting in the disruption of the
endothelial elasticity (Kalivendi et al., 2001). Moreover, DOX
lowers NO release and impairs the tube formation and migratory
capacity of endothelial cells (Yin et al., 2016). DOX also causes
DNA fragmentation-associated apoptosis in endothelial cells
(Kaushal et al., 2004). Importantly, vascular endothelial growth
factor (VEGF)-B gene therapy reduces DOX-induced apoptosis
in endothelial cells and recovers capillary rarefaction, thereby
ameliorating the cardiac function in mouse hearts (Rasanen et al.,
2016). In accord with this data, VEGF receptor-1 (VEGFR1)
has been predominantly found in the cardiac endothelial cells
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(Kalivendi et al., 2001). Thus, VEGF-B may protect both the
endothelial cells and cardiomyocytes (Chen et al., 2010) against
anthracycline-induced damage.

Doxorubicin treatment of smooth muscle cells induces
pre-mature senescence and severe cellular damage, which is
accompanied with ROS production (Bielak-Zmijewska et al.,
2014). In addition, DOX-treated vessels display a decrease in
alpha-adrenergic receptor levels and exhibit a diminished vessel
relaxation, partially because of elevated oxidative stress (Murata
et al., 2001). Accordingly, an alpha-adrenergic agonist has a
cardioprotective effect in a mouse model of cardiotoxicity that is
induced by DOX (Montgomery et al., 2017).

Cardiac Fibroblasts
Doxorubicin treatment promotes cellular senescence and induces
the differentiation of cardiac fibroblasts to a pro-fibrotic
phenotype, myofibroblasts (Cappetta et al., 2016). Recently,
ataxia telangiectasia mutated (ATM) kinase in cardiac fibroblasts,
but not in cardiomyocytes, has been shown to be essential
for DOX-induced cardiotoxicity. This finding suggests that
fibroblasts might be the principal effector cells of DOX (Zhan
et al., 2016). During DOX cardiomyopathy, interstitial fibrosis
and perivascular fibrosis have been observed (Carvalho et al.,
2014). DOX-mediated cardiac fibrosis occurs as a consequence
of necrotic and apoptotic cell damage, and in a pathological
response to the excessive ROS production (Zhan et al., 2016).
In DOX-induced HF, transforming growth factor-beta (TGFβ)
and its downstream-signaling molecules, such as SMAD3, play
an important role in stimulating fibrosis (Kuwahara et al., 2002).
The contribution of cross talk between cardiac fibroblast and
cardiomyocytes in the set of anthracycline cardiotoxicity needs
to be further studied.

Cardiac Progenitor Cells
Doxorubicin-induced long-lasting damage could result from the
damage of the quiescent cardiac progenitor cells (CPCs), also
called myocardium-resident multi-potent cells (Urbanek et al.,
2015). Indeed, DOX has been shown to reduce the viability of
c-kit positive CPC in vivo that was confirmed by a decrease
numbers of CPC in DOX-treated hearts (De Angelis et al., 2010).
Interestingly, a cumulative dose of DOX injection shortly after
the birth does not induce acute cardiotoxicity in the juvenile
mice. However, these mice developed impaired vascular network,
fewer CPCs, and had a lower survival rate after myocardial
infarction in an adult stage, suggesting that DOX treatment at an
early age promotes a higher risk for ischemic injury in the adult
heart (Huang et al., 2010). Juvenile DOX exposure also reduces
the number of CPCs in heart, indicating that DOX is harmful
to these cells (De Angelis et al., 2010). Indeed, DOX changes
the telomerase activity in the CPCs by up regulating cell cycle
inhibitor p16INK4a. Therefore, juvenile exposure, even to a low
dose of DOX, induces senescence and permanently reduces the
number of resident CPCs (Piegari et al., 2013). Moreover, DOX
treatment of human CPCs induces the activation of senescent
and pro-apoptotic pathways, indicating that CPC dysfunction
leads to a higher susceptibility to myocardial injury. Another
recent study has showed that human amniotic fluid stem cell

secretoms mitigates DOX-mediated senescence and damage in
CPCs (Lazzarini et al., 2016).

In addition to cell death and senescence, DOX alters the
function of CPCs by diminishing the growth factor levels,
thereby inducing an inadequate response of cardiac repair
signaling in the heart. In CPCs, DOX also interferes with the
effect of growth factors and hormones, such as the hepatocyte
growth factor (Esaki et al., 2008) and testosterone (Ikeda et al.,
2010). Moreover, DOX reduces IGF-1R expression in cardiac
cells, impairing the cell-protective system and lowering its
migratory capacity (Fabbi et al., 2015). DOX-treated CPCs have
impaired function in the diseased subject’s myocardium. For
example, when DOX-treated human CPCs were administrated
to the damaged hearts in mice treated with anthracycline, the
hearts did not exhibit any structural and functional recovery,
showing the ineffectiveness of DOX-exposed CPCs in the
diseased myocardium (De Angelis et al., 2015). Therefore,
cell death and senescence, interfered growth factor systems,
and the impaired reparative functional properties of CPCs all
partially account for DOX-mediated cardiotoxicity (Cappetta
et al., 2017).

Bone Marrow Cells
Bone marrow cells (BMCs) that can differentiate into
mesenchymal stem cells (MSCs) are other target cells of
DOX (Tomita et al., 2004). Anthracycline induces DNA damage,
mitosis, and enzyme inhibition or free radical generation
that contribute to the damage of these MSCs. DOX reduces
proliferation and differentiation capacity of MSCs in response
to cardiomyogenic stimuli (Oliveira et al., 2014) by increasing
progressive telomere shortening (Buttiglieri et al., 2011)
in vitro. Interestingly, anti-cancer drug treatments stimulate
apoptosis in MCSs and reduce adipogenic differentiation
potential without affecting their chondrogenic differentiation.
DOX-mediated ROS production promotes adipogenesis in
MCs, but reduces osteogenesis (Atashi et al., 2015). Because
MSCs repair DNA breaks to some extent, ROS production
by DOX in MSCs could be the main mechanism of cell
death.

Granulocyte colony stimulating factor (G-CSF) as a
chemokines enhances the migration of BMCs into the heart,
and inducing differentiation of BMCs into myocyte-like cells,
thereby attenuating cardiotoxicity and improving survival
in a mouse model of DOX cardiotoxicity (Tomita et al.,
2004). We can assume that DOX damages BMCs-derived
stem/progenitor cells in other organs as well (Caplan and
Dennis, 2006). The beneficial role of cytokine/chemokine
therapy in cardiac regeneration and repair needs to be
validated in additional studied in the context of DOX-
mediated cardiotoxicity. The long-term effects of anthracyclines
on MSCs and bone marrow in vivo also need to be
investigated.

Endothelial Progenitor Cells
Physiological or stress-induced stimuli can activate endothelial
progenitor cells (EPCs) to regulate angiogenesis and vascular
repair (Urbich and Dimmeler, 2004). In an animal model

Frontiers in Pharmacology | www.frontiersin.org 7 November 2018 | Volume 9 | Article 1262

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-01262 November 8, 2018 Time: 16:37 # 8

Nebigil and Désaubry Cardiotoxicity

of DOX-induced cardiomyopathy, erythropoietin has been
shown to improve myocardial performance by restoring
EPC functional properties (Hamed et al., 2006). In EPCs,
DOX activates oxidative stress and senescence pathways
by regulating p38 and JNK (Spallarossa et al., 2010)
or NADPH oxidase (De Falco et al., 2016). Therefore,
the induction of senescence and ROS accumulation
contributes in the detrimental effects of DOX in EPCs,
affecting their function and regenerative capacity. Whether
DOX affects the differentiation of EPCs remains to be
determined.

Induced Pluripotent Stem Cells
(iPSCs)-Derived Cardiomyocytes (CMs)
A powerful and challenging approach to study genetic
predisposition to DOX-mediated cardiotoxicity in human
relies on the use of patient-specific iPSC-CMs. Recently,
transcriptome analyses in iPSC-CMs revealed that DOX
interferes splicing of specific genes that may cause personalized
genetic sensitivity to DOX (Knowles et al., 2018). A differential
response to DOX has been found between the hiPSC–CMs
derived from DOX-treated breast cancer patients without
clinical cardiotoxicity (DOX), and DOX-treated breast cancer
patients with cardiotoxicity (DOXTOX). More specifically,
decrease in viability, perturbations of cellular metabolism and
mitochondrial functions, and increases in DNA damage and
oxidative stress are higher in the hiPSC-CMs of DOXTOX
group than in the hiPSC–CMs of DOX group (Burridge
et al., 2016). Using iPSC-CMs, recently, a novel mechanism
of DOX-cardiotoxicity has also been described, involving
in the alteration (Quaking) of the RNA-binding proteins
(RBPs) (Gupta et al., 2018). Briefly, separation of ‘junk’ parts
of the RNA from the parts that are used as a template for
proteins is disrupted by DOX. Although using iPSC-CM
recapitulates in vivo inter and intra individual variability in DOX
sensitivity, more studies need to be performed on the larger
scale.

DIAGNOSIS/PROGNOSIS OF
CARDIOTOXICITY BY CLINICAL
BIOMARKERS

To assess and monitor the anticancer drug-induced
cardiotoxicity cardiac biomarkers has been used for decades.
The principal cardiac biomarkers are natriuretic peptides (NPs)
and troponins (Tns). Tns are the marker of cardiac injury, while
NPs are marker of increased volume expansion and ventricular
wall stress. Here, we mainly focus on clinically used biomarkers,
and briefly describe recently identified potential biomarkers
(Figure 4).

Troponins
Troponins (Tns) are composed of three subunits: troponin C
(cTnC), troponin T (cTnT), and troponin I (cTnI). Troponins
make a complex with actinomyosin, and this complex is involved

FIGURE 4 | Clinically used biomarkers, and recently identified potential
biomarkers.

in cardiac contraction and relaxation. In myocardial cells,
majority of troponins are located in the sarcomeres and to a lesser
extent in the cytoplasm.

Doxorubicin-induced acute cardiotoxicity affects the cell
membrane that promotes a rapid depletion of the Tns from the
cytoplasmic pool. Chronic exposure to DOX releases detectable
Tns into peripheral blood due to the necrosis and rapture of
the contractile apparatus (Thygesen et al., 2018). Thus, Tns are
considered as cardiac damage markers to evaluate chemotherapy-
induced cardiac injury (Cardinale et al., 2017).

A relationship between troponin levels and the degree of late
cardiac dysfunction has also been observed in animal treated
with the cumulative doses of anthracycline (Wang et al., 2017).
In this study the cTnI levels have been found more accurate as
compared to cTnT to predict the low-dose anthracycline-induced
cardiotoxicity. Persistent increase in cTnT is also positively
correlated with anthracycline dose in children treated with
anthracycline for lymphoblastic leukemia (Lipshultz et al., 2012).
Noteworthy, an increase in troponin cannot be considered a
reason to hold or withdraw cancer therapy. However, it can
be a tool for identifying patients who have an elevated risk of
cardiac dysfunction and need a prophylactic therapy (Cardinale
et al., 2017). Recently, high-sensitive (HS) and precise troponin
assays have also been applied (Cardinale et al., 2017). However,
more comparative research in the larger populations is needed to
validate HS-Tn as a prognosis/diagnosis marker of cardiotoxicity.

Natriuretic Peptides
In response to pressure overload, natriuretic peptides (NPs),
including atrial natriuretic peptide (ANP), brain natriuretic
peptide (BNP), and BNP’s amino-terminal fragment (NT-pro-
BNP), are produced in the atria and ventricles, and released
into circulation (Volpe et al., 2016). NPs are implicated in
the regulation of vasodilation by inhibiting the sympathetic
tone and also in natriuresis and kaliuresis by inhibiting the
renin-angiotensin-aldosterone system. Because anthracyclines
can induce myocardial ischemia and increase pressure load, a
meta-analysis on Asian and Caucasian populations indicated
a correlation between elevated BNP levels and cardiotoxicity
of anthracyclines (Wang et al., 2016). Although increased NP
levels was observed in both pediatric and adult cancer patients
who had significant cardiac volume changes by chemotherapy
(Christenson et al., 2015), a correlation between an increase in NP
levels and the development of cardiac dysfunction has not been
confirmed in the large adult population.
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Other Biomarkers
Biomarkers involved in inflammation (high-sensitivity
C-reactive protein, interleukin-6), endothelial dysfunction
(plasminogen activator inhibitor, soluble intercellular adhesion
molecule), myocardial ischemia (fatty acid binding protein,
glycogen phosphorylase BB) and NRG-1 have been also
considered as diagnostic markers of cardiotoxicity (Curigliano
et al., 2016).

Some of the “cardiac enriched” miRNAs (e.g., miR-208, miR-1,
and miR-133) or circulating miRNAs have also been implicated
in DOX-cardiotoxicity, but these data need to be validated
(Ruggeri et al., 2018). Increased levels of markers of myocardial
ischemia/necrosis such as serum cardiac enzymes [aspartate
aminotransferase (AST), creatinine kinase (CK-MB), lactate
dehydrogenase (LDH), and alanine transaminase (ALT)], have
also been reported after anthracycline chemotherapy (Cardinale
et al., 2017). The correlation between the plasma/serum levels of
these biomarkers and clinically defined cardiotoxicity by DOX
should be further confirmed and the predictive value of these
cardiotoxicity markers should be demonstrated.

CONCLUDING REMARKS

Improvements in cancer therapy and early detection of cancer
have increased the survival rate among the cancer patients.
However, many anti-cancer treatments, including DOX have
cardiac adverse effect, affecting quantity and quality of life. In the
future, the development of new DOX formulations targeting only
cancer, along with the development of efficient cardioprotectant
agents will be of paramount importance in cardio-oncology.

The mechanisms of DOX-mediated cardiotoxicity are multi-
factorial and occur because of cell death, such as necrosis,
apoptosis, fibrosis, autophagy and mitophagy, and functional
changes in cardiac cells independent of injury. Identification
of the signaling pathways of anthracycline cardiotoxicity in
cardiac cells, dissecting role of cardiac cell communications
in the pathophysiology of cardiotoxicity, and interactions with
the gender and cardiovascular risk factors such as diabetes
and obesity represent an important step toward reducing the
risk of morbidity and mortality due to the cardiotoxicity of
chemotherapeutics. More importantly a number of genetic
variants have been found to predispose patients to the
cardiotoxicity of DOX. In future, more studies should be
focused on the predictions of a patient’s response to a
particular chemotherapy to personalize the cancer treatments,
utilizing patient specific hiPSC-CMs. Chemotherapy-induced

adverse effect on myocardial contractility through structural and
electrophysiological changes can also be studied on hiPSC-CMs
(Yang and Papoian, 2018).

Despite, dexrazoxane, angiotensin converting enzyme (ACE)
inhibitors, and β-blockade have been proposed as potential
preventive strategies, currently there are no clinically proven
treatments established for DOX-cardiotoxicity. Recently, Meta
analyses have been performed on eight studies (1048 patients),
examining the effect of beta-blockers or ACE inhibitors on
clinical and sub-clinical cardiotoxicity in patients receiving
anthracycline chemotherapy with or without trastuzumab
(Gujral et al., 2018). This study has shown that prophylactic
ACE inhibitor has no effect on attenuating left ventricular
dysfunction or development of HF in these patients. Beta-blocker
has a small improvement on left ventricular ejection fraction in
patients receiving both therapies, but not in patients receiving
anthracycline alone.

Currently, new and advanced cardioprotective drugs are of
great interest to protect and cure cardiotoxicity. Several potential
cardioprotective drugs that target GPCRs have been identified
in the preclinical models of anthracycline cardiotoxicity. For
example the antagonists for melatonin (Liu et al., 2002) and
cannabinoid CB1 receptor (Mukhopadhyay et al., 2007) protect
heart against doxorubicin-induced cardiotoxicity. Some of the
tyrosine kinase ligands such as thrombopoietin (Li K. et al., 2006)
and erythropoietin (Li L. et al., 2006) also have a cardioprotective
role against anthracycline-mediated cardiotoxicity. Moreover,
more sensitive biomarkers for prognostic and diagnostic
purposes should also be explored to assess whether these markers
can be used a diagnostic marker of chemotherapy-induced
cardiac damages.
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