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A new Algorithm of Proper Generalized Decomposition for parametric symmetric elliptic problems

We introduce in this paper a new algorithm of Proper Generalized Decomposition for parametric symmetric elliptic partial differential equations. For any given dimension, we prove the existence of an optimal subspace of at most that dimension which realizes the best approximation -in mean parametric norm associated to the elliptic operator-of the error between the exact solution and the Galerkin solution calculated on the subspace. This is analogous to the best approximation property of the Proper Orthogonal Decomposition (POD) subspaces, excepting that in our case the norm is parameter-depending.

We apply a deflation technique to build a series of approximating solutions on finite-dimensional optimal subspaces, directly in the on-line step, and we prove that the partial sums converge to the continuous solution in mean parametric elliptic norm.

We show that the standard PGD for the considered parametric problem is strongly related to the deflation algorithm introduced in this paper. This opens the possibility of computing the PGD expansion by directly solving the optimization problems that yield the optimal sub-spaces.

Introduction

The Karhunen-Loève's expansion (KLE) is a widely used tool, that provides a reliable procedure for a low dimensional representation of spatiotemporal signals (see [START_REF] Ghanem | Stochastic finite elements: A spectral approach[END_REF][START_REF] Loève | Probability Theory[END_REF]). It is referred to as the principal components analysis (PCA) in statistics (see [START_REF] Hotelling | Analysis of a complex of statistical variables into principal components[END_REF][START_REF] Jollife | Principal component analysis[END_REF][START_REF] Pearson | On lines and planes of closest fit system of points in space[END_REF]), or called singular value decomposition (SVD) in linear algebra (see [START_REF] Golub | Matrix Computations[END_REF]). It is named the proper orthogonal decomposition (POD) in mechanical computation, where it is also widely used (see [START_REF] Berkoz | The proper orthogonal decomposition in the analysis of turbulent flows[END_REF]). Its use allows large savings of computational costs, and make affordable the solution of problems that need a large amount of solutions of parameter-depending Partial Differential Equations (see [START_REF] Epureanu | Coherent structures and their influence on the dynamics of aeroelastic panels[END_REF][START_REF] Cordier | and 2003-04 on post-processing of experimental and numerical data[END_REF][START_REF] Holmes | Coherent structures, dynamical systems and symmetry[END_REF][START_REF] Lass | Adaptive POD basis computation for parametrized nonlinear systems using optimal snapshot location[END_REF][START_REF] Pearson | On lines and planes of closest fit system of points in space[END_REF][START_REF] Quarteroni | Reduced order methods for modeling and computational reduction[END_REF][START_REF] Schilders | Model order reduction: Theory, research aspects and applications[END_REF][START_REF] Volkwein | Proper orthogonal decomposition: Theory and reduced-order Modelling[END_REF]).

However the computation of the POD expansion requires to know the function to be expanded, or at least its values at the nodes of a fine enough net. This makes it rather expensive to solve parametric elliptic Partial Differential Equations (PDEs), as it requires the previous solution of the PDE for a large enough number of values of the parameter ("snapshots") (see [START_REF] Kahlbacher | Galerkin proper orthogonal decomposition methods for parameter depending elliptic systems[END_REF]), even if these can be located at optimal positions (see [START_REF] Kunisch | Optimal snapshot location for computing POD basis functions[END_REF]). Galerkin-POD strategies are well suited to solve parabolic problems, where the POD basis is obtained from the previous solution of the underlying elliptic operator (see [START_REF] Kunisch | Galerkin proper orthogonal decomposition methods for parabolic problems[END_REF][START_REF] Muller | On the POD method. An abstract investigation with applications to reduced-order modeling and suboptimal control[END_REF]).

An alternative approach is the Proper Generalized Decomposition that iteratively computes a tensorized representation of the parameterized PDE, that separates the parameter and the independent variables, introduced in [START_REF] Ammar | A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids[END_REF]. It has been interpreted as a Power type Generalized Spectral Decomposition (see [START_REF] Nouy | A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations[END_REF][START_REF] Nouy | Generalized spectral decomposition method for stochastic non linear problems[END_REF]). It has experienced a fast development, being applied to the low-dimensional tensorized solution of many applied problems. The mathematical analysis of the PGD has experienced a relevant development in the last years. The convergence of a version of the PGD for symmetric elliptic PDEs via minimization of the associated energy has been proved in [START_REF] Bris | Results and questions on a nonlinear approximation approach for solving high-dimensional partial differential equations[END_REF]. Also, in [START_REF] Falcó | A proper generalized decomposition for the solution of elliptic problems in abstract form by using a functional Eckart Young approach[END_REF] the convergence of a recursive approximation of the solution of a linear elliptic PDE is proved, based on the existence of optimal subspaces of rank 1 that minimize the elliptic norm of the current residual.

The present paper is aimed at the direct determination of a variety of reduced dimension for the solution of parameterized symmetric elliptic PDEs. We intend to on-line determine an optimal subspace of given dimension that yields the best approximation in mean (with respect to the parameter) of the error (in the parametric norm associated to the elliptic operator) between the exact solution and the Galerkin solution calculated on the subspace. The optimal POD sub-spaced can no longer be characterized by means of a spectral problem for a compact self-adjoint operator (the standard POD operator) and thus the spectral theory for compact self-adjoint operators does no apply. We build recursive approximations on finite-dimensional optimal subspaces by minimizing the mean parametric error of the current residual, similar to the one introduced in [START_REF] Falcó | A proper generalized decomposition for the solution of elliptic problems in abstract form by using a functional Eckart Young approach[END_REF], that we prove to be strongly convergent in the "intrinsic"mean parametric elliptic norm. For this reason we call "intrinsic"PGD the method introduced.

In addition, we prove that the method introduced is a genuine extension of both POD and PGD methods, when applied to the solution of parametric elliptic equations. In particular it is strongly related to the PGD method in the sense that the standard formulation of the PGD method actually provides the optimality conditions of the minimization problem satisfied by the optimal 1D sub-spaces. As a consequence of the analysis developed in the paper, the PGD expansion is strongly convergent to the targeted solution in parametric elliptic norm, whenever it is implemented in such a way that all modes are optimal. Furthermore, the characterization of the modes by means of optimization problems opens the door to their computation by using optimization techniques, in addition to the usual Power Iteration algorithm.

The abstract framework considered includes several kind of problems of practical interest, to which the PGD has been and continues being applied. This is the case of the design analysis in computational mechanics. For instance in the design of energy efficient devices (HVACs) or buildings, it is mandatory to address the heat equation with several structural parameters, for instance the thermal diffusivity or transmittance, and the geometric shape of the device, among others. Also, the optimal design of heterogeneous materials with linear behavior law fits into the framework considered, as the parameters model the structural configuration of the various materials (cf. [START_REF] Chen | Optimization of Continuous HeterogeneousModels[END_REF][START_REF] Torquato | Optimal Design of Heterogeneous Materials[END_REF]). Moreover, in practice the structural configuration that optimizes a certain predefined criterion (e.g. construction costs, benefits, etc.) needs to take into account the unavoidable uncertainties in the structural performance. This leads to elliptic problems including modeling of the targeted uncertainty that, when the PDE model is linear, also fits into the abstract framework considered. In addition classical homogenization problems governed by linear symmetric elliptic PDEs formally also fit into this general framework, although the kind of approximation of the solution that is proposed in this work is different than the usual one, that looks for a limit averaged solution. Here we rather approximate the whole family of parameter-depending solutions by a function series. The method, however, does not apply, for instance, to non-symmetric elliptic forms, neither to non-linear problems.

The present paper focuses on theoretical aspects: We study the existence of the intrinsic POD, and give a convergence result for the deflation algorithm. We keep the quantitative analysis of the convergence as well as numerical investigations for future works.

The paper is structured as follows: In Section 2 we state the general problem of finding optimal subspaces of a given dimension. We prove in Section 3 that there exists a solution for 1D optimal subspaces, characterized as a maximization problem with a non-linear normalization restriction. We extend this existence result in Section 4 to general dimensions. In Section 5 we use the results in Sections 3 and 4 to build a deflation algorithm to approximate the solution of a parametric family of elliptic problems and we show the convergence. Section 6 explains why the method introduced is a genuine extension of both POD and PGD algorithms, and provides a theoretical analysis for the latter. Finally in Section 7 we present the main conclusions of the paper.

Statement of the problem

Let H be a separable Hilbert space endowed with the scalar product (•, •). The related norm is denoted by • . We denote by B s (H) the space of bilinear, symmetric and continuous forms in H.

Assume given a measure space (Γ, B, µ), with standard notation, so that µ is σ-finite.

Let a ∈ L ∞ (Γ, B s (H); dµ) be such that there exists α > 0 satisfying α u 2 ≤ a(u, u; γ), ∀u ∈ H, dµ-a.e. γ ∈ Γ.

(

) 1 
For µ-a.e γ ∈ Γ, the bilinear form a(•, •; γ) determines a norm uniformly equivalent to the norm

• . Moreover, a ∈ B s (L 2 (Γ, H; dµ)) defined by a(v, w) = Γ a(v(γ), w(γ); γ) dµ(γ), ∀v, w ∈ L 2 (Γ, H; dµ) (2) 
defines an inner product in L 2 (Γ, H; dµ) which generates a norm equivalent to the standard one in L 2 (Γ, H; dµ).

Let be given a data function f ∈ L 2 (Γ, H ; dµ). We are interested in the variational problem:

Find u(γ) ∈ H such that a(u(γ), v; γ) = f (γ), v , ∀v ∈ H, dµ-a.e. γ ∈ Γ, (3) 
where •, • denotes the duality pairing between H and H. By Riesz representation theorem, problem (3) admits a unique solution for dµ-a.e. γ ∈ Γ. On the other hand, we claim that ũ solution of

ũ ∈ L 2 (Γ, H; dµ), ā(ũ, v) = Γ f (γ), v(γ) dµ(γ), ∀ v ∈ L 2 (Γ, H; dµ), (4) 
also satisfies (3): Indeed taking v = vχ B , with v ∈ H fixed and B ∈ B arbitrary, implies that there exists a subset

N v ∈ B with µ(N v ) = 0 such that a(ũ(γ), v; γ) = f (γ), v , ∀ γ ∈ Γ \ N v .
The separability of H implies that N v can be chosen independent of v, which proves the claim. By the uniqueness of the solution of (3) this shows that ũ = u dµ-a.e. γ ∈ Γ.

(

) 5 
This proves that u defined by (3) belongs to L 2 (Γ, H; dµ) and provides an equivalent definition of u,namely, that u is the solution of (4). Given a closed subspace Z of H, let us denote by u Z (γ) the solution of the Galerkin approximation of problem (3) on Z, which is defined as

u Z (γ) ∈ Z, a(u Z (γ), z; γ) = f (γ), z , ∀z ∈ Z, dµ-a.e. γ ∈ Γ, (6) 
or equivalently as

u Z ∈ L 2 (Γ, Z; dµ), ā(u Z , z) = Γ f (γ), z(γ) dµ(γ), ∀ z ∈ L 2 (Γ, Z; dµ). (7) 
For every k ∈ IN, we intend to find the best subspace W of H of dimension smaller than or equal to k that minimizes the mean error (in the norm defined by ā) between u and u W . That is, W solves min

Z∈G ≤k ā(u -u Z , u -u Z ), (8) 
where G ≤k is the family of subspaces of H of dimension smaller than or equal to k. Note that G ≤k is a connected component of the Grassmaniann variety G ≤k of H, defined as

G ≤k = k≥0 G k ,
where G k is the set formed by all sub-spaces of H of dimension k. The set G k is a Hilbert manifold modeled in a particular Hilbert space (see [START_REF] Abraham | Manifolds, Tensor Analysis and Applications[END_REF][START_REF] Margalef-Roig | Differential Topology[END_REF]). Problem (8) will be proved to have a solution in Sections 3 and 4. We will then use this result in Section 5 to approximate the solution u of problem (3) by a deflation algorithm.

Note that when looking at the formulation of the minimization problem (8), it seems that solving it requires the knowledge of the solution u of (3). Such is not the case, since Proposition 2.6 below provides an equivalent formulation of (8) which does not depend on the knowledge of u but only on the data f . Let us provide some equivalent formulations of problem [START_REF] Bris | Results and questions on a nonlinear approximation approach for solving high-dimensional partial differential equations[END_REF]. First we observe that Proposition 2.1 For every closed subspace Z ⊂ H, the function u Z defined by ( 7) is also the unique solution of min

z∈L 2 (Γ,Z;dµ) ā(u -z, u -z). (9) 
Moreover, for dµ-a.e. γ ∈ Γ, the vector u Z (γ) is the solution of

min z∈Z a(u(γ) -z, u(γ) -z; γ). (10) 
Proof: It is a classical property of the Galerkin approximation of the variational formulation of linear elliptic problems that u Z satisfies [START_REF] Cancès | Convergence of a greedy algorithm for high-dimensional convex nonlinear problems[END_REF]. Indeed, the symmetry of ā gives

ā(u -z, u -z) = ā(u -u Z , u -u Z ) + 2ā(u -u Z , u Z -z) + ā(u Z -z, u Z -z),
for every z ∈ L 2 (Γ, H; dµ), where by ( 4), ( 5) and ( 7) the second term on the right-hand side vanishes, while the third one is nonnegative. This proves [START_REF] Cancès | Convergence of a greedy algorithm for high-dimensional convex nonlinear problems[END_REF]. The proof of ( 10) is the same by taking into account ( 3) and ( 6) instead of ( 4) and [START_REF] Azaïez | Error Bounds for POD expansions of parametrized transient temperatures[END_REF].

As a consequence of Proposition 2.1 and definition (2) of ā, we have

Corollary 2.2 A space W ∈ G ≤k is a solution of (8) if and only if it is a solution of min Z∈G ≤k min z∈L 2 (Γ,Z;dµ) ā(u -z, u -z). (11) 
Moreover min

Z∈G ≤k min z∈L 2 (Γ,Z;dµ) ā(u -z, u -z) = min Z∈G ≤k Γ min z∈Z a(u(γ) -z, u(γ) -z; γ)dµ(γ). (12) 
Remark 2.3 Optimization problem (11) is reminiscent of the Kolmogorov k-width related to the best approximation of the manifold (u(γ)) γ∈Γ by subspaces in H with dimension k as presented in [START_REF] Maday | Reduced basis method for the rapid and reliable solution of partial differential equations[END_REF]. In the present minimization problem, we use the norm of L 2 (Γ, H; dµ) instead of the norm of L ∞ (Γ, H; dµ) as used there. The minimization problem in [START_REF] Maday | Reduced basis method for the rapid and reliable solution of partial differential equations[END_REF] can indeed be written as

min Z∈G ≤k ess sup γ∈Γ min z∈Z a(u(γ) -z, u(γ) -z; γ), (13) 
if one uses a(•, •; γ) as the inner product in H.

The analysis performed in the present paper is strongly based on the Hilbertian framework associated to the minimization in L 2 (Γ, H; dµ). To the best of our knowledge few is known about problem [START_REF] Ghanem | Stochastic finite elements: A spectral approach[END_REF], in particular there is no proof of existence of solutions. The extension to this problem of the techniques used in the present paper is far from being straightforward, and we intend to discuss this in a future paper. Indeed the L ∞ (Γ, H; dµ) framework is specially interesting whenever uniform error estimates with respect to the parameter are needed. This happens, for instance, when upper bounds for energy consumption (either mechanical, thermal, etc.) should be respected.

For a function v ∈ L 2 (Γ, H; dµ), we denote by R(v) the closure of the vectorial space spanned by v(γ) when γ belongs to Γ; more exactly, taking into account that v is only defined up to sets of zero measure, the correct definition of R(v) is given by

R(v) = µ(N )=0 Span v(γ) : γ ∈ Γ \ N . (14) 
The following result proves that in ( 14) the intersection can be replaced a single closed spanned space corresponding to a single set M ∈ B. This proves in particular that it does not reduce to {0} if R(v) is not zero dµ-a.e. γ ∈ Γ:

Proposition 2.4 For every v ∈ L 2 (Γ, H; dµ) there exists M ∈ B, with µ(M ) = 0 such that R(v) = Span v(γ) : γ ∈ Γ \ M .
Proof: For every N ∈ B, we define P N as the orthogonal projection of H into

R N := Span v(γ) : γ ∈ Γ \ N .
We also define P as the orthogonal projection of H into R(v).

Let us first prove

∀ z ∈ H, ∃M z ∈ B with µ(M z ) = 0 such that P z = P Mz z. (15) 
In order to prove this result, we consider N n ∈ B, with µ(N n ) = 0, such that

P Nn z → inf µ(N )=0 P N z .
Taking M z = ∪ n N n , we have that µ(M z ) = 0. Moreover, using that

N n ⊂ M z implies R Mz ⊂ R Nn , we get inf µ(N )=0 P N z ≤ P Mz z ≤ P Nn z , ∀ n ≥ 1. Therefore P Mz z = inf µ(N )=0 P N z .
Now, we use that for every N ∈ B with M z ⊂ N , µ(N ) = 0, we have

R N ⊂ R Mz , P Mz z ≤ P N z
and then

P N z = P Mz z, ∀ N ⊃ M z with µ(N ) = 0. ( 16 
)
We take now an arbitrary 16), we get

N ∈ B with µ(N ) = 0. Using M z ⊂ N ∪ M z , µ(N ∪ M z ) = 0 and ( 
P Mz z = P N ∪Mz z ∈ R N ∪Mz ⊂ R N , ∀N ∈ B, with µ(N ) = 0,
and so, P Mz z belongs to R(v). On the other hand, observe that R(v) ⊂ R Mz and the definition of

P Mz imply z -P Mz z ≤ z -η , ∀ η ∈ R(v)
and thus, P Mz z = P z. This proves [START_REF] Hotelling | Analysis of a complex of statistical variables into principal components[END_REF].

Let us now use [START_REF] Hotelling | Analysis of a complex of statistical variables into principal components[END_REF] to prove the statement of Proposition 2.4. We consider an orthonormal basis {z k } of R(v) ⊥ . By [START_REF] Hotelling | Analysis of a complex of statistical variables into principal components[END_REF], we know that for every k ≥ 1, there exists

M z k ∈ B with µ(M z k ) = 0 such that P M k z k = 0. Then, we define M = k≥1 M z k ,
let us prove that M satisfies the thesis of the Proposition. Clearly µ(M ) = 0, moreover, [START_REF] Holmes | Coherent structures, dynamical systems and symmetry[END_REF] and M z k ⊂ M for every k ≥ 1, imply

P M e k = 0, ∀ k ≥ 1.

This shows P

M z = 0 for every z ∈ R(v) ⊥ and then R(v) ⊥ ⊂ R ⊥ M or equivalently R M ⊂ R(v).
Since the other contention is immediate, we have then proved R M = R(v), which finishes the proof.

Taking into account [START_REF] Falcó | A proper generalized decomposition for the solution of elliptic problems in abstract form by using a functional Eckart Young approach[END_REF], a new formulation of ( 8) is given by

Proposition 2.5 If W is a solution of (8), then u W is a solution of min v∈L 2 (Γ,H;dµ) dim R(v)≤k ā(u -v, u -v). (17) 
Reciprocally, if û is a solution of (17), then R(û) is a solution of ( 8) and û = u R(û) .

As announced above, the next Proposition provides an equivalent formulation for (8) which does not depend on the knowledge of the solution u of (3), but only on the data f . Proposition 2. [START_REF] Brézis | Functional analysis, Sobolev spaces, and partial differential equations[END_REF] The subspace W ∈ G ≤k solves problem [START_REF] Bris | Results and questions on a nonlinear approximation approach for solving high-dimensional partial differential equations[END_REF] if and only if it is a solution of the problem max

Z∈G ≤k Γ f (γ), u Z (γ) dµ(γ), (18) 
where u Z is defined by [START_REF] Azaïez | Error Bounds for POD expansions of parametrized transient temperatures[END_REF].

Proof: As in the proof of the first part of Proposition 2.1, one deduces from (4), ( 5) and ( 7) that ā(u -u Z , z) = 0, ∀z ∈ L 2 (Γ, Z; dµ).

Using the symmetry of ā, we then have

ā(u -u Z , u -u Z ) = ā(u, u) -a(u Z , u) = ā(u, u) -ā(u Z , u Z ) = ā(u, u) - Γ f (γ), u Z (γ) dµ(γ).
Thus W solves [START_REF] Bris | Results and questions on a nonlinear approximation approach for solving high-dimensional partial differential equations[END_REF] if and only if it solves (18).

One-dimensional approximations

In Section 4 we shall show the existence of the solution of problem [START_REF] Bris | Results and questions on a nonlinear approximation approach for solving high-dimensional partial differential equations[END_REF] for any arbitrary k. However a particularly interesting case from the point of view of the applications is k = 1. We dedicate this section to this special case. Observe that for Z ∈ G 1 , there exists z ∈ H \ {0} such that Z = Span{z}. The problem to solve can be reformulated as follows.

Lemma 3.1 Assume f ≡ 0. Then, the subspace W ∈ G 1 solves problem [START_REF] Kahlbacher | Galerkin proper orthogonal decomposition methods for parameter depending elliptic systems[END_REF] if and only if W = Span{w}, where w is a solution of

max z∈H z =0 Γ f (γ), z 2 a(z, z; γ) dµ(γ). (19) 
Proof: Let Z ∈ G 1 . Then Z = Span{z}, for some z ∈ H \ {0}, and there exists a function ϕ : Γ → R such that u Z (γ) = ϕ(γ) z, dµ-a.e. γ ∈ Γ.

As z = 0, then, as u Z (γ) is the solution to the variational equation ( 6), we derive that

ϕ(γ) = f (γ), z a(z, z; γ)
, dµ-a.e. γ ∈ Γ.

Using this formula we obtain that

Γ f, u Z (γ) dγ = Γ f (γ), z 2 a(z, z; γ) dµ(γ). (20) 
If the maximum in ( 18) is obtained by a space of dimension one, then formula (20) proves the desired result.

In contrast, if the maximum in ( 18) is obtained by the null space, then the maximum in G 1 is equal to zero. Therefore the right-hand side of ( 20) is zero for every z ∈ H, which implies that f = 0 dµ-a.e. in Γ, in contradiction with the assumption f ≡ 0. Remark 3.2 Since the integrand which appears in [START_REF] Kunisch | Galerkin proper orthogonal decomposition methods for parabolic problems[END_REF] is homogenous of degree zero in z, problem [START_REF] Kunisch | Galerkin proper orthogonal decomposition methods for parabolic problems[END_REF] is equivalent to

max z∈H z =1 Γ f (γ), z 2 a(z, z; γ) dµ(γ).
We now prove the existence of a solution to problem [START_REF] Kunisch | Galerkin proper orthogonal decomposition methods for parabolic problems[END_REF]. [START_REF] Kunisch | Galerkin proper orthogonal decomposition methods for parabolic problems[END_REF] admits at least a solution.

Theorem 3.3 Assume f ≡ 0. Problem ( 
Note that if f ≡ 0, then, every vector w ∈ H \ {0} is a solution of [START_REF] Kunisch | Galerkin proper orthogonal decomposition methods for parabolic problems[END_REF].

Proof: Define

M * := sup z∈H z =1 Γ f (γ), z 2 a(z, z; γ) dµ(γ), (21) 
and consider a sequence w n ⊂ H, with w n = 1 such that

lim n→∞ Γ f (γ), w n 2 a(w n , w n ; γ) dµ(γ) = M * . ( 22 
)
Up to a subsequence, we can assume the existence of w ∈ H, such that w n converges weakly in H to w. Taking into account that f (γ) ∈ H , a(•, •, γ) ∈ B s (H) dµ-a.e. γ ∈ Γ and ( 1) is satisfied, we get lim

n→∞ f (γ), w n = f (γ), w , dµ-a.e. γ ∈ Γ, (23) 
lim inf n→∞ a(w n , w n ; γ) ≥ a(w, w; γ), dµ-a.e. γ ∈ Γ.

On the other hand, we observe that (1) and w n = 1 imply

| f (γ), w n | ≤ f (γ) H , 1 a(w n , w n ; γ) ≤ 1 α dµ-a.e. γ ∈ Γ. ( 25 
)
If w = 0, then ( 23), ( 25) and Lebesgue's dominated convergence theorem imply

lim n→∞ Γ f (γ), w n 2 a(w n , w n ; γ) dµ(γ) = 0,
which by ( 22) is equivalent to M * = 0. Taking into account (1) and the definition (21) of M * , this is only possible if f ≡ 0 is the null function. As we are assuming f ≡ 0, we conclude that w is different of zero. Then, [START_REF] Margalef-Roig | Differential Topology[END_REF] proves

0 ≤ f (γ) 2 H α - f (γ), w n 2 a(w n , w n ; γ)
, dµ-a.e. γ ∈ Γ, while ( 23) and ( 24) prove

lim inf n→∞ f (γ) 2 H α - f (γ), w n 2 a(w n , w n ; γ) ≥ f (γ) 2 H α - f (γ), w 2 a(w, w; γ) , dµ-a.e. γ ∈ Γ. ( 26 
)
Using ( 22), Fatou's lemma implies

Γ f (γ) 2 H α - f (γ), w 2 a(w, w; γ) dµ(γ) ≤ lim inf n→∞ Γ f (γ) 2 H α - f (γ), w n 2 a(w n , w n ; γ) dµ(γ) = Γ f (γ) 2 H α dµ(γ) -M * ,
or equivalently

M * ≤ Γ f (γ), w 2 a(w, w; γ) dµ(γ). (27) 
By definition [START_REF] Lass | Adaptive POD basis computation for parametrized nonlinear systems using optimal snapshot location[END_REF] of M * , this proves that the above inequality is an equality and that w is a solution of [START_REF] Kunisch | Galerkin proper orthogonal decomposition methods for parabolic problems[END_REF].

Remark 3.4 Actually, in place of [START_REF] Muller | On the POD method. An abstract investigation with applications to reduced-order modeling and suboptimal control[END_REF], one has the stronger result

lim inf n→∞ f (γ) 2 H α - f (γ), w n 2 a(w n , w n ; γ) = f (γ) 2 H α - f (γ), w 2 lim inf n→∞ a(w n , w n ; γ))
, dµ-a.e. γ ∈ Γ, which by the proof used to prove [START_REF] Nouy | A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations[END_REF] shows

M * ≤ Γ f (γ), w 2 lim inf n→∞ a(w n , w n ; γ) dµ(γ).
Combined with

M * = Γ f (γ), w 2 a(w, w; γ) dµ(γ)
and [START_REF] Maday | Reduced basis method for the rapid and reliable solution of partial differential equations[END_REF], this implies a(w, w; γ) = lim inf n→∞ a(w n , w n ; γ) dµ-a.e. γ ∈ Γ such that f (γ), w = 0.

By (1) and f ≡ 0, this proves the existence of a subsequence of w n which converges strongly to w a. e. γ.

Since this proof can be carried out by replacing w n by any subsequence of w n , we conclude that the whole sequence w n (which we extracted just after [START_REF] Bris | Results and questions on a nonlinear approximation approach for solving high-dimensional partial differential equations[END_REF] assuming that it converges weakly to some w) actually converges strongly to w.

The above result may be used to build a computable approximation of a solution of (19). Indeed, for f ≡ 0, let {H n } n≥1 be an internal approximation of H, that is a sequence of subspaces of finite dimension of H such that

lim n→∞ inf ψ∈Hn z -ψ = 0, ∀z ∈ H.
and consider a solution w n of

max z∈Hn z =1 Γ f (γ), z 2 a(z, z; γ) dµ(γ).
The existence of such a w n can be obtained by reasoning as in the proof of Theorem 

lim n→∞ Γ f (γ), w n 2 a(w n , w n ; γ) dµ(γ) = Γ f (γ), w 2 a( w, w; γ) dµ(γ) = M * .
This proves that the sequence w n satisfies [START_REF] Bris | Results and questions on a nonlinear approximation approach for solving high-dimensional partial differential equations[END_REF]. Therefore any subsequence of w n which converges weakly to some w converges strongly to w which is a solution of (19).

Higher-dimensional approximations

This section is devoted to the proof of the existence of an optimal subspace which is solution of (8) when k ≥ 1 is any given number.

Theorem 4.1 For any given k ≥ 1, problem (8) admits at least one solution.

Proof: As in the proof of Theorem 3.3, we use the direct method of the Calculus of Variations.

Denoting by

m k m k = inf Z∈G ≤k ā(u -u Z , u -u Z ), (28) 
we consider a sequence of spaces

W n ∈ G ≤k such that w n := u Wn satisfies lim n→∞ ā(u -w n , u -w n ) = m k . ( 29 
)
Taking into account that by Proposition 2.1

Z ⊂ Z =⇒ ā(u -u Z , u -u Z ) ≤ ā(u -u Z , u -u Z ), (30) 
we can assume that the dimension of W n is equal to k. Moreover, we observe that (29) implies that w n is bounded in L 2 (Γ, H; dµ).

Let (z 1 n , • • • , z k n ) be an orthonormal basis of W n . It holds w n (γ) = k j=1 (w n (γ), z j n ) z j n , dµ-a.e. γ ∈ Γ. ( 31 
)
Since the norm of the vectors z j n is one, there exists a subsequence of n and k vectors z j ∈ H such that

z j n z j in H, ∀ j ∈ {1, • • • , k}. (32) 
Using also

|(w n (γ), z j n )| ≤ w n (γ) , dµ-a.e γ ∈ Γ,
we get that (w n , z j n ) is bounded in L 2 (Γ, H; dµ) for every j and thus, there exists a subsequence of n and k functions p j ∈ L 2 (Γ; dµ) such that

(w n , z j n ) p j in L 2 (Γ, H; dµ), ∀ j ∈ {1, • • • , k}. (33) 
We claim that

w n w := n j=1 p j z j in L 2 (Γ; dµ). (34) 
Indeed, taking into account that w n is bounded in L 2 (Γ, H; dµ) and [START_REF] Quarteroni | Reduced order methods for modeling and computational reduction[END_REF], it is enough to show

lim n→∞ Γ (w n , z j n )z j n , ϕ v dµ(γ) = Γ (p j z j , ϕ v) dµ(γ), ∀ ϕ ∈ L 2 (Γ; dµ), ∀ v ∈ H. (35) 
This is a simple consequence of

Γ (w n , z j n )z j n , ϕ v dµ(γ) = (z j n , v) Γ (w n , z j n ) ϕ dµ(γ),
combined with ( 32) and [START_REF] Torquato | Optimal Design of Heterogeneous Materials[END_REF].

From the continuity and convexity of the quadratic form associated to ā, as well as from ( 34) and ( 29), we have

ā(u -w, u -w) ≤ lim n→∞ ā(u -w n , u -w n ) = m k . ( 36 
)
Using that W = Span{z 1 , • • • , z k } ∈ G ≤k , and that (see Proposition 2.1)

ā(u -u W , u -u W ) ≤ ā(u -w, u -w), (37) 
we conclude that W is a solution of ( 8). 

ā(u -w, u -w) = m k = lim n→∞ ā(u -w n , u -w n ),
which combined with [START_REF] Volkwein | Proper orthogonal decomposition: Theory and reduced-order Modelling[END_REF] proves that w n converges strongly to w in L 2 (Γ, H; dµ). As in Remark 3.4, this can be used to build a strong approximation of a solution of (8) by using an internal approximation of H.

An iterative algorithm by deflation

In the previous section, for any given k ≥ 1, we have proved the existence of an optimal subspace for problem [START_REF] Bris | Results and questions on a nonlinear approximation approach for solving high-dimensional partial differential equations[END_REF]. We use here this fact to build an iterative approximation of the solution of (3) by a deflation approach. We build recursive approximations on finite-dimensional optimal subspaces by minimizing the mean parametric error of the current residual, similar to the one introduced in [START_REF] Falcó | A proper generalized decomposition for the solution of elliptic problems in abstract form by using a functional Eckart Young approach[END_REF]. Let us denote

Π k (v) = v W | W solves min Z∈G ≤k ā(v -v Z , v -v Z ), , ∀ v ∈ L 2 (Γ, H; dµ). ( 38 
)
where v Z is defined by [START_REF] Azaïez | Error Bounds for POD expansions of parametrized transient temperatures[END_REF] The deflation algorithm is as follows

• Initialization: u 0 = 0 (39) • Iteration: Assuming u i-1 ∈ H known for i = 1, 2, • • • , set e i-1 = u -u i-1 , choose s i ∈ Π k (e i-1
), and define

u i = u i-1 + s i . ( 40 
)
Remark 5.1 Note that s i (and therefore u i ) in general is not defined in a unique way. Note also that the algorithm (40) does not need the knowledge of the solution u of ( 4), since e i-1 = u -u i-1 is directly defined from f and u i-1 by

     e i-1 ∈ L 2 (Γ, H; dµ), ā(e i-1 , v) = Γ f (γ), v(γ) dµ(γ) -ā(u i-1 , v), ∀ v ∈ L 2 (Γ, H; dµ). (41)
Then Proposition 2.6 applied to the case where f is replaced by the function f i defined by

Γ f i (γ), v(γ) dµ(γ) = Γ f (γ), v(γ) dµ(γ) -ā(u i-1 , v), ∀ v ∈ L 2 (Γ, H; dµ), (42) 
proves that

s i ∈ Π k (e i-1 ) ⇐⇒ s i = (e i-1 ) W i ,
where W i is a solution of

max Z∈G ≤k Γ f (γ), (e i-1 ) Z (γ) dµ(γ) -ā(u i-1 , (e i-1 ) Z ) , (43) 
where, in accordance to [START_REF] Azaïez | Error Bounds for POD expansions of parametrized transient temperatures[END_REF], (e i-1 ) Z denotes the solution of

     (e i-1 ) Z ∈ L 2 (Γ, Z; dµ), ā (e i-1 ) Z , z = Γ f (γ), z(γ) dµ(γ) -ā(u i-1 , z), ∀ z ∈ L 2 (Γ, Z; dµ). ( 44 
)
This observation allows one to carry out the iterative process without knowing the function u. Note also that

u i = i j=1 s j ,
namely that u i is the partial sum of the series j≥1 s j .

Remark 5.2 In this remark we take k = 1. Then every space of G ≤1 is spanned by an element of H, and in particular W i = Span{w i } for some w i ∈ H, then u i (γ) = i j=1 Φ j (γ) w j , where

Φ j (γ) ∈ L 2 (Γ, dµ
) is defined by s j = Φ j (γ) w j . Note also that if w i = 0 for some i ≥ 0, then

f i = 0 and thus u ≡ u i-1 ,
The convergence of the algorithm is given by the following theorem. Its proof follows the ideas of [START_REF] Falcó | A proper generalized decomposition for the solution of elliptic problems in abstract form by using a functional Eckart Young approach[END_REF]. When k = 1, Remark 5.2 implies that the series j≥1 Φ j (γ) w j converges in L 2 (Γ, H; dµ) to this parametrized solution.

Proof: By (40) and Proposition 2.5 applied to the case where u is replaced by e i-1 , we have that s i is a solution of min

v∈L 2 (Γ,H;dµ) dim R(v)≤k ā(e i-1 -v, e i-1 -v). (45) 
This proves in particular that s i is a solution of min

v∈L 2 (Γ,H;dµ) R(v)⊂R(s i ) ā(e i-1 -v, e i-1 -v),
and therefore

ā(e i-1 -s i , v) = 0, ∀ v ∈ L 2 (Γ, H; dµ) with R(v) ⊂ R(s i ). But (40) implies that e i-1 -s i = e i , (46) 
which gives ā(e i , v) = 0, ∀ v ∈ L 2 (Γ, H; dµ) with R(v) ⊂ R(s i ). (47) 
Taking v = s i and using again (46) we get ā(e i-1 , e i-1 ) = ā(s i , s i ) + ā(e i , e i ),

∀ i ≥ 1, (48) and therefore 
ā(e i , e i ) + i j=1 ā(s j , s j ) = ā(e 0 , e 0 ), ∀ i ≥ 1.

(49) Thus, we have

e i is bounded in L 2 (Γ, H; dµ), (50) 
∞ j=1 ā(s j , s j ) ≤ ā(e 0 , e 0 ). (51) 
By (50), there exists a subsequence e in of e i and e ∈ L 2 (Γ, H; dµ), such that e in e in L 2 (Γ, H; dµ).

On the other hand, since s in+1 is a solution of (45) with i -1 replaced by i n , we get

ā(e in -s in+1 , e in -s in+1 ) ≤ ā(e in -v, e in -v) = ā(e in , e in ) -2ā(e in , v) + ā(v, v), ∀ v ∈ L 2 (Γ, H; dµ), dim R(v) ≤ k, (53) 
and then

ā(e in -s in+1 , e in -s in+1 )-ā(e in , e in ) ≤ -2ā(e in , v)+ ā(v, v), ∀ v ∈ L 2 (Γ, H; dµ), dim R(v) ≤ k,
or in other terms

-2ā(e in , s in+1 ) + ā(s in+1 , s in+1 ) ≤ -2ā(e in , v) + ā(v, v), ∀ v ∈ L 2 (Γ, H; dµ), dim R(v) ≤ k.
Thanks to (50) and ( 51), the left-hand side tends to zero when n tends to infinity, while in the right-hand side we can pass to the limit by (52). Thus, we have

2ā(e, v) ≤ ā(v, v), ∀ v ∈ L 2 (Γ, H; dµ), dim R(v) ≤ k.
Replacing in this equality v by tv with t > 0, dividing by t, letting t tend to zero and writing the resulting inequality for v and -v, we get

ā(e, v) = 0, ∀ v ∈ L 2 (Γ, H; dµ), dim R(v) ≤ k.
Taking v = wϕ, with w ∈ H, ϕ ∈ L 2 (Γ; dµ), and recalling definition (2) of ā we deduce

Γ a(e(γ), w; γ) ϕ(γ) dµ(γ) = 0, ∀ z ∈ H, ∀ ϕ ∈ L 2 (Γ; dµ),
and then for any w ∈ H, there exists a subset N w ∈ B with µ(N w ) = 0 such that a(e(γ), w; γ) = 0, ∀ γ ∈ Γ \ N w .

The separability of H implies that N w can be chosen independent of w, and then we have

a(e(γ), w; γ) = 0, ∀ w ∈ H, dµ-a.e. γ ∈ Γ,
and therefore e(γ) = 0 dµ-a.e. γ ∈ Γ.

This proves that e does not depend on the subsequence in (52) and that

e i 0 in L 2 (Γ, H; dµ). (55) 
Let us now prove that in (55) the convergence is strong in L 2 (Γ, H; dµ). We use that thanks to (46), we have

e i = - i j=1 s j + e 0 , ∀ i ≥ 1,
and so, ā(e i , e i ) = -i j=1 ā(e i , s j ) + ā(e i , e 0 ), ∀ i ≥ 1.

(56)

In order to estimate the right-hand side of the latest equality, we introduce, for i, j ≥ 1, the function z i,j as the solution of

z i,j ∈ L 2 (Γ, R(s j ); dµ), ā(z i,j , v) = ā(e i-1 , v), ∀ v ∈ L 2 (Γ, R(s j ); dµ). (57) 
We have ā(e i-1 , s j ) = ā(z i,j , s j ) ≤ ā(z i,j , z i,j )

1 2 ā(s j , s j ) 1 2 . ( 58 
)
Using ( 48), ( 46), the fact that s i is a solution of (45) and dim R(s j ) ≤ k ā(e i-1 , e i-1 ) -ā(s i , s i ) = ā(e i-1 -s i , e i-1 -s i ) ≤ ā(e i-1 -z i,j , e i-1 -z i,j ).

Expending the right-hand side and using v = z i,j in (57) this gives ā(z i,j , z i,j ) ≤ ā(s i , s i ), which combined with (58) provides the estimate ā(e i-1 , s j ) ≤ ā(s i , s i )

1 2 ā(s j , s j ) 1 2 , ∀ i, j ≥ 1.
Using the latest estimate in (56) and then Cauchy-Schwarz's inequality, we get

                
ā(e i , e i ) ≤ ā(s i+1 , s i+1 )

1 2 i j=1
ā(s j , s j )

1 2 + ā(e i , e 0 ) ≤ ā(s i+1 , s i+1 ) 1 2 i 1 2   ∞ j=1 ā(s j , s j )   1 2
+ ā(e i , e 0 ), ∀ i ≥ 1.

(59)

But the criterion of comparison of two series with nonnegative terms and the facts that (see (51))

∞ i=1 1 i = ∞, ∞ i=1 ā(s i , s i ) < ∞, prove that lim inf i→∞ ā(s i+1 , s i+1 ) i = lim inf i→∞ ā(s i+1 , s i+1 ) 1 i = 0.
Since ā(e i , e i ) is a decreasing sequence by (48) and since (55) asserts that e i converges weakly to zero, we can pass to the limit in (59), to deduce lim i→∞ ā(e i , e i ) = lim inf i→∞ ā(e i , e i )

≤ lim inf i→∞    ā(s i+1 , s i+1 ) 1 2 i 1 2   ∞ j=1 ā(s j , s j )   1 2 + ā(e i , e 0 )    = 0.
This proves that e i converges strongly to zero in L 2 (Γ, H; dµ). Since e i = u -u i this finishes the proof of Theorem 5.3.

Remark 5.5 In many cases the corrections s i decrease exponentially in the sense that:

|||s i ||| = O(ρ -i ) as i → +∞, for some ρ > 1,
where |||•||| denotes the norm in L 2 (Γ, H; dµ). This occurs in particular for the standard POD expansion when Γ is an open set of R N , µ is the Lebesgue measure and the function f = f (γ) is analytic with respect to γ (see [START_REF] Azaïez | Error Bounds for POD expansions of parametrized transient temperatures[END_REF]). Then |||s i ||| is a good estimator for the error |||u -u i |||.

Relationship with POD and PGD methods

The "intrinsic" PGD method developed in the previous sections is a genuine extension of both POD and PGD method. Indeed, to analyze the connexions with the POD method, let us consider the problem studied in [START_REF] Falcó | A proper generalized decomposition for the solution of elliptic problems in abstract form by using a functional Eckart Young approach[END_REF], namely (P k ) min

Z∈G ≤k Γ (u(γ) -u Z (γ), u(γ) -u Z (γ)) H dµ(γ), (60) 
where (•, •) H is an inner product on H. In this case a solution of (P k ) is the space generated by the first k eigenfunctions of the POD operator P : H → H, which is given by (see below)

P(v) = Γ (u(γ), v) H u(γ) dµ(γ), ∀v ∈ H.
In the present case, due the dependence of a with respect to γ, it does not seem that the problem can be reduced to a spectral problem.

As an example, from now on we fix in this Section

k = 1.
Then problem [START_REF] Jollife | Principal component analysis[END_REF] can be written as

min v∈H, ϕ∈L 2 (Γ;dµ) Γ a(u(γ) -ϕ(γ)v, u(γ) -ϕ(γ)v; γ)dµ(γ). (61) 
Note that problem (61) has at least a solution (see Section 3 above). So, taking the derivative of the functional

(v, ϕ) ∈ H × L 2 (Γ; dµ) → Γ a(u(γ) -ϕ(γ)v, u(γ) -ϕ(γ)v; γ) dµ(γ),
we deduce that if (w, ψ) ∈ H × L 2 (Γ; dµ) is a solution of (61), with w = 0, then ψ(γ) = a(u(γ), w; γ) a(w, w; γ) , dµ-a.e. γ ∈ Γ,

and w is a solution of the non-linear variational problem

Γ a(u(γ), w; γ) a(w, w; γ) a(u(γ), v; γ)dµ(γ) = Γ a(u(γ), w; γ) 2 a(w, w; γ) 2 a(w, v; γ)dµ(γ), ∀ v ∈ H. ( 63 
) Note that if w = 0, Γ a(u(γ)-ϕ(γ)v, u(γ)-ϕ(γ)v; γ) dµ(γ) ≥ Γ a(u(γ), u(γ); γ) dµ(γ), ∀v ∈ H, ∀ϕ ∈ L 2 (Γ, dµ).
This implies that u = 0 and therefore f = 0. If a does not depend on γ, statement (63) can be written as

a Γ a(u(γ), w) u(γ)dµ(γ), v = a     Γ a(u(γ), w) 2 dµ(γ) a(w, w) w, v     , ∀ v ∈ H, f i (γ), v(γ) dµ(γ) = Γ f (γ), v(γ) dµ(γ) -ā( u i-1 , v), ∀ v ∈ L 2 (Γ, H; dµ), (65) 
with

u i-1 (γ) = i-1 j=1 Φ j (γ) w j , for i ≥ 2. ( 66 
)
If problem (64) admits a solution such that w i = 0, then the second equation in (64) is equivalent to, a( Φ i (γ) w i , w i ; γ) = f i (γ), w i dµ -a. e. γ ∈ Γ, which in turn is equivalent to

Φ i (γ) = f i (γ), w i a( w i , w i ; γ) dµ -a. e. γ ∈ Γ. ( 67 
)
Then the first equation in (64), is equivalent to the non-linear variational problem

w i ∈ H, Γ f i (γ), w i a( w i , w i ; γ) f i (γ), v dµ(γ) = Γ f i (γ), w i 2 a( w i , w i ; γ) 2 a( w i , v; γ) dµ(γ), ∀ v ∈ H. (68)
Note that this problem is just problem (63) with w replaced by w i and f replaced by f i . Conversely, if problem (68) admits a solution, then the pair ( w i , Φ i ), with Φ defined by (67), is a solution on the PGD problem (64).

Consequently the sequence (Φ i , w i ) provided by the deflation algorithm (39)-( 40) is also a solution of the PGD algorithm (64)-( 65)-(66), with fi = f i for all i ≥ 1. Thus, if the PGD algorithm is computed in such a way that at each step Φ i w i = Φ i w i (= s i ), the analysis developed in Section 5 proves that the sequence u i converges in L 2 (Γ, H; dµ) to the parametric solution u(γ) of problem [START_REF] Ammar | A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids[END_REF].

However there is the possibility that problem (64) admits several solutions and that some of these do not provide a solution of the optimization problem (45). Then the convergence properties studied in Section 5 may be lost. It is then convenient to solve the PGD problem (64) ensuring that the solution does provide an optimal sub-space.

The previous analysis presents some differences with preceding works on the analysis of convergence of PGD methods applied to the solution of PDEs and optimization problems. Let us describe some of them. In [START_REF] Ammar | On the convergence of a Greedy Rank-One Update Algorithm for a class of Linear Systems[END_REF] the authors prove the convergence of the PGD for finite dimensional linear systems Ax = b where A ∈ R N ×N is an invertible high dimensional matrix, i.e. N = N 1 N 2 • • • N n . The solution is searched as a series of rank-one summands, belonging to

R N = R N 1 ⊗ a R N 2 ⊗ a • • • ⊗ a R Nn (
where ⊗ a denotes the algebraic tensor product). Also, in [START_REF] Bris | Results and questions on a nonlinear approximation approach for solving high-dimensional partial differential equations[END_REF] the authors prove the convergence of the PGD algorithm applied to the Laplace problem in a tensor product domain,

-∆u = f in Ω x × Ω y , u| ∂Ωx×Ωy = 0,
where Ω x ⊂ R and Ω y ⊂ R are two bounded domains. They solve the problem on the tensor space H 1 0 (Ω x ) ⊗ a H 1 0 (Ω y ) which is dense in H 1 0 (Ω x × Ω y ) for the norm of H 1 0 (Ω x × Ω y ). The work [START_REF] Cancès | Convergence of a greedy algorithm for high-dimensional convex nonlinear problems[END_REF] proves the convergence of the PGD for the optimization problem: Find u ∈ L 2 (Ω, H 1 (I)) such that u ∈ arg min v∈L 2 (Ω,H 1 (I))

E(v)

, where E is a strongly convex functional, with Lipschitz gradient on bounded sets. This method can be used for high-dimensional nonlinear convex problems. Further, in [START_REF] Falcó | Proper generalized decomposition for nonlinear convex problems in tensor Banach spaces[END_REF], the authors prove the convergence of a PGD-like algorithm, where the set of rank-one tensors in a tensor space is substituted by a closed cone Σ, to solve the variational problem: Find u ∈ X such that u ∈ arg min v∈X E(v), where E : X -→ R is a convex functional defined over a reflexive Banach space X. Moreover, in [START_REF] Falcó | A proper generalized decomposition for the solution of elliptic problems in abstract form by using a functional Eckart Young approach[END_REF] the authors prove the convergence of the PGD for elliptic PDEs in the form Au = f where u and f belong to a Hilbert tensor space

H = H 1 ⊗ a H 2 ⊗ a • • • ⊗ a H n |||•||| .
Here the norm ||| • ||| 2 = •, • is given by

•, • = •, • 1 •, • 2 • • • •,
• n . This is a generalization of Eckart and Young theorem.

The results reported in the present paper are a generalization of this last work [START_REF] Falcó | A proper generalized decomposition for the solution of elliptic problems in abstract form by using a functional Eckart Young approach[END_REF] when the operator A depends on a parameter.

Conclusion

In this paper we have introduced an iterative deflation algorithm to solve parametric symmetric elliptic equations. It is a Proper Generalized Decomposition algorithm as it builds a tensorized representation of the parameterized solutions, by means of optimal subspaces that minimize the residual in mean quadratic norm. It is intrinsic in the sense that in each deflation step the residual is minimized in the "natural" parametric norm generated by the parametric elliptic operator. It is conceptually close to the Proper Orthogonal Decomposition with the difference that in the POD the residual is minimized with respect to a fixed mean quadratic norm. Due to this difference, spectral theory cannot be applied.

We have proved the existence of the optimal subspaces of dimension less than or equal to a fixed number, as required in each iteration of the deflation algorithm, with a specific analysis for the one-dimensional case. Also, we have proved the strong convergence in the parametric elliptic norm of the deflation algorithm for quite general parametric elliptic operators.

We have further proved that the method introduced is a genuine extension of both POD and PGD methods, and that in particular it provides a theoretical analysis of the PGD method, when this method is applied in such a way that it provides the optimal sub-spaces : The PGD expansion is strongly convergent to the targeted solution in parametric elliptic norm.

We will next focus our research on the analysis of convergence rates of the intrinsic PGD expansion that we introduced. We will analyze wether the standard PGD provides the optimal sub-spaces, and compare the convergence rates with those of the POD expansion, to determine whether the use of optimal modes provides improved convergence rates. We will also work on the use of optimization techniques as an alternative way to compute the optimal modes, rather than the Power Iteration method that is common in PGD computations.

All the results obtained in the present paper refer to a symmetric. In a future work we will consider the non-symmetric case.

Remark 4 . 2

 42 From (36), (37), definition[START_REF] Nouy | Generalized spectral decomposition method for stochastic non linear problems[END_REF] of m k and Proposition 2.1, we have that w = u W in the proof of Theorem 4.1. Moreover,

Theorem 5 . 3 Remark 5 . 4

 5354 The sequence u i provided by the least-squares PGD algorithm (39)-(40) strongly converges in L 2 (Γ, H; dµ) to the parameterized solution γ ∈ Γ → u(γ) ∈ H of problem[START_REF] Ammar | A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids[END_REF]. In view of the last assertion of Remark 5.1, Theorem 5.3 proves that the series j≥1 s j converges in L 2 (Γ, H; dµ) to the parametrized solution γ ∈ Γ → u(γ) ∈ H of problem (3).

     Γ a( Φ i (γ) w i , Φ i (γ) v; γ) dµ(γ) = Γ f i (γ), Φ i (γ) v dµ(γ), ∀v ∈ H, Γ a( Φ i (γ) w i , Φ * (γ) w i ; γ) dµ(γ) = Γ f i (γ), Φ * (γ) w i dµ(γ), ∀ Φ * ∈ L 2 (Γ, dµ),(64)where f 1 = f , and f i is defined by Γ

Acknowledgements

The work of Mejdi Azaiez and Tomás Chacón has been partially supported by the Spanish Government -Feder EU grant MTM2015-64577-C2-1-R.

The work of Juan Casado-Díaz and François Murat has been partially supported by the Spanish Government -Feder EU grant MTM2014-53309-P.

which implies that Γ a(u(γ), w) u(γ)dµ(γ) = Γ a(u(γ), w) 2 dµ(γ) a(w, w) w, which proves that w is an eigenvector of the operator

for the eigenvalue

a(w, w) .

In contrast, when a depends on γ it does not seem that problem (63) corresponds to an eigenvalue problem.

To analyze the relationship with the PGD method, let us remember that this method approximates the solution u of problem ( 8) by a series similar to that provided by the deflation algorithm introduced in Section 5, namely

where the pair ( Φ i , w i ) ∈ L 2 (Γ, dµ) × H is recursively obtained as a solution of the non-linear coupled problems