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Abstract

We introduce in this paper a new algorithm of Proper Generalized Decomposition for para-
metric symmetric elliptic partial differential equations. For any given dimension, we prove the
existence of an optimal subspace of at most that dimension which realizes the best approx-
imation –in mean parametric norm associated to the elliptic operator– of the error between
the exact solution and the Galerkin solution calculated on the subspace. This is analogous to
the best approximation property of the Proper Orthogonal Decomposition (POD) subspaces,
excepting that in our case the norm is parameter-depending.

We apply a deflation technique to build a series of approximating solutions on finite-dimensional
optimal subspaces, directly in the on-line step, and we prove that the partial sums converge to
the continuous solution in mean parametric elliptic norm.

We show that the standard PGD for the considered parametric problem is strongly related
to the deflation algorithm introduced in this paper. This opens the possibility of computing the
PGD expansion by directly solving the optimization problems that yield the optimal sub-spaces.

∗I2M, IPB (UMR CNRS 5295), Université de Bordeaux, 33607 Pessac (France).
†Sorbonne Universités, UTC, EA 2222, Laboratoire de Mathématiques Appliquées de Compiègne, 60205 Compiègne
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¶Laboratoire Jacques-Louis Lions, Bôıte courrier 187, Sorbonne Universités, 75252 Paris cedex 05 (France).

1



2

1 Introduction

The Karhunen-Loève’s expansion (KLE) is a widely used tool, that provides a reliable procedure
for a low dimensional representation of spatiotemporal signals (see [13, 23]). It is referred to
as the principal components analysis (PCA) in statistics (see [15, 17, 30]), or called singular
value decomposition (SVD) in linear algebra (see [14]). It is named the proper orthogonal
decomposition (POD) in mechanical computation, where it is also widely used (see [5]). Its
use allows large savings of computational costs, and make affordable the solution of problems
that need a large amount of solutions of parameter-depending Partial Differential Equations
(see [4, 10, 16, 21, 30, 31, 32, 34]).

However the computation of the POD expansion requires to know the function to be ex-
panded, or at least its values at the nodes of a fine enough net. This makes it rather expensive
to solve parametric elliptic Partial Differential Equations (PDEs), as it requires the previous
solution of the PDE for a large enough number of values of the parameter (“snapshots”) (see
[18]), even if these can be located at optimal positions (see [20]). Galerkin-POD strategies are
well suited to solve parabolic problems, where the POD basis is obtained from the previous
solution of the underlying elliptic operator (see [19, 26]).

An alternative approach is the Proper Generalized Decomposition that iteratively computes
a tensorized representation of the parameterized PDE, that separates the parameter and the
independent variables, introduced in [3]. It has been interpreted as a Power type Generalized
Spectral Decomposition (see [27, 28]). It has experienced a fast development, being applied to
the low-dimensional tensorized solution of many applied problems. The mathematical analysis
of the PGD has experienced a relevant development in the last years. The convergence of a
version of the PGD for symmetric elliptic PDEs via minimization of the associated energy has
been proved in [22]. Also, in [11] the convergence of a recursive approximation of the solution
of a linear elliptic PDE is proved, based on the existence of optimal subspaces of rank 1 that
minimize the elliptic norm of the current residual.

The present paper is aimed at the direct determination of a variety of reduced dimension
for the solution of parameterized symmetric elliptic PDEs. We intend to on-line determine an
optimal subspace of given dimension that yields the best approximation in mean (with respect
to the parameter) of the error (in the parametric norm associated to the elliptic operator)
between the exact solution and the Galerkin solution calculated on the subspace. The optimal
POD sub-spaced can no longer be characterized by means of a spectral problem for a compact
self-adjoint operator (the standard POD operator) and thus the spectral theory for compact
self-adjoint operators does no apply. We build recursive approximations on finite-dimensional
optimal subspaces by minimizing the mean parametric error of the current residual, similar
to the one introduced in [11], that we prove to be strongly convergent in the “intrinsic”mean
parametric elliptic norm. For this reason we call “intrinsic”PGD the method introduced.

In addition, we prove that the method introduced is a genuine extension of both POD and
PGD methods, when applied to the solution of parametric elliptic equations. In particular it
is strongly related to the PGD method in the sense that the standard formulation of the PGD
method actually provides the optimality conditions of the minimization problem satisfied by
the optimal 1D sub-spaces. As a consequence of the analysis developed in the paper, the PGD
expansion is strongly convergent to the targeted solution in parametric elliptic norm, whenever
it is implemented in such a way that all modes are optimal. Furthermore, the characterization
of the modes by means of optimization problems opens the door to their computation by using
optimization techniques, in addition to the usual Power Iteration algorithm.

The abstract framework considered includes several kind of problems of practical interest,
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to which the PGD has been and continues being applied. This is the case of the design analysis
in computational mechanics. For instance in the design of energy efficient devices (HVACs) or
buildings, it is mandatory to address the heat equation with several structural parameters, for
instance the thermal diffusivity or transmittance, and the geometric shape of the device, among
others. Also, the optimal design of heterogeneous materials with linear behavior law fits into
the framework considered, as the parameters model the structural configuration of the various
materials (cf. [29, 33]). Moreover, in practice the structural configuration that optimizes a
certain predefined criterion (e.g. construction costs, benefits, etc.) needs to take into account
the unavoidable uncertainties in the structural performance. This leads to elliptic problems
including modeling of the targeted uncertainty that, when the PDE model is linear, also fits
into the abstract framework considered. In addition classical homogenization problems governed
by linear symmetric elliptic PDEs formally also fit into this general framework, although the
kind of approximation of the solution that is proposed in this work is different than the usual
one, that looks for a limit averaged solution. Here we rather approximate the whole family of
parameter-depending solutions by a function series.

The method, however, does not apply, for instance, to non-symmetric elliptic forms, neither
to non-linear problems.

The present paper focuses on theoretical aspects: We study the existence of the intrinsic
POD, and give a convergence result for the deflation algorithm. We keep the quantitative
analysis of the convergence as well as numerical investigations for future works.

The paper is structured as follows: In Section 2 we state the general problem of finding
optimal subspaces of a given dimension. We prove in Section 3 that there exists a solution for
1D optimal subspaces, characterized as a maximization problem with a non-linear normalization
restriction. We extend this existence result in Section 4 to general dimensions. In Section 5 we
use the results in Sections 3 and 4 to build a deflation algorithm to approximate the solution of
a parametric family of elliptic problems and we show the convergence. Section 6 explains why
the method introduced is a genuine extension of both POD and PGD algorithms, and provides
a theoretical analysis for the latter. Finally in Section 7 we present the main conclusions of the
paper.
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2 Statement of the problem

Let H be a separable Hilbert space endowed with the scalar product (·, ·). The related norm is
denoted by ‖ · ‖. We denote by Bs(H) the space of bilinear, symmetric and continuous forms
in H.

Assume given a measure space (Γ,B, µ), with standard notation, so that µ is σ-finite.
Let a ∈ L∞(Γ, Bs(H); dµ) be such that there exists α > 0 satisfying

α ‖u‖2 ≤ a(u, u; γ), ∀u ∈ H, dµ-a.e. γ ∈ Γ. (1)

For µ−a.e γ ∈ Γ, the bilinear form a(·, ·; γ) determines a norm uniformly equivalent to the norm
‖ · ‖. Moreover, a ∈ Bs(L2(Γ, H; dµ)) defined by

a(v, w) =

∫
Γ
a(v(γ), w(γ); γ) dµ(γ), ∀v, w ∈ L2(Γ, H; dµ) (2)

defines an inner product in L2(Γ, H; dµ) which generates a norm equivalent to the standard one
in L2(Γ, H; dµ).

Let be given a data function f ∈ L2(Γ, H ′; dµ). We are interested in the variational problem:

Find u(γ) ∈ H such that a(u(γ), v; γ) = 〈f(γ), v〉, ∀v ∈ H, dµ-a.e. γ ∈ Γ, (3)

where 〈·, ·〉 denotes the duality pairing between H ′ and H.
By Riesz representation theorem, problem (3) admits a unique solution for dµ-a.e. γ ∈ Γ.

On the other hand, we claim that ũ solution of

ũ ∈ L2(Γ, H; dµ), ā(ũ, v̄) =

∫
Γ
〈f(γ), v̄(γ)〉 dµ(γ), ∀ v̄ ∈ L2(Γ, H; dµ), (4)

also satisfies (3): Indeed taking v̄ = vχB, with v ∈ H fixed and B ∈ B arbitrary, implies that
there exists a subset Nv ∈ B with µ(Nv) = 0 such that

a(ũ(γ), v; γ) = 〈f(γ), v〉, ∀ γ ∈ Γ \Nv.

The separability of H implies that Nv can be chosen independent of v, which proves the claim.
By the uniqueness of the solution of (3) this shows that

ũ = u dµ-a.e. γ ∈ Γ. (5)

This proves that u defined by (3) belongs to L2(Γ, H; dµ) and provides an equivalent definition
of u,namely, that u is the solution of (4).

Given a closed subspace Z of H, let us denote by uZ(γ) the solution of the Galerkin approx-
imation of problem (3) on Z, which is defined as

uZ(γ) ∈ Z, a(uZ(γ), z; γ) = 〈f(γ), z〉, ∀z ∈ Z, dµ-a.e. γ ∈ Γ, (6)

or equivalently as

uZ ∈ L2(Γ, Z; dµ), ā(uZ , z) =

∫
Γ
〈f(γ), z(γ)〉 dµ(γ), ∀ z ∈ L2(Γ, Z; dµ). (7)
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For every k ∈ IN, we intend to find the best subspace W of H of dimension smaller than or
equal to k that minimizes the mean error (in the norm defined by ā) between u and uW . That
is, W solves

min
Z∈G≤k

ā(u− uZ , u− uZ), (8)

where G≤k is the family of subspaces of H of dimension smaller than or equal to k. Note that
G≤k is a connected component of the Grassmaniann variety G≤k of H, defined as

G≤k =
⋃
k≥0

Gk,

where Gk is the set formed by all sub-spaces of H of dimension k. The set Gk is a Hilbert
manifold modeled in a particular Hilbert space (see [1, 25]).

Problem (8) will be proved to have a solution in Sections 3 and 4. We will then use this
result in Section 5 to approximate the solution u of problem (3) by a deflation algorithm.

Note that when looking at the formulation of the minimization problem (8), it seems that
solving it requires the knowledge of the solution u of (3). Such is not the case, since Proposition
2.6 below provides an equivalent formulation of (8) which does not depend on the knowledge of
u but only on the data f .

Let us provide some equivalent formulations of problem (8). First we observe that

Proposition 2.1 For every closed subspace Z ⊂ H, the function uZ defined by (7) is also the
unique solution of

min
z∈L2(Γ,Z;dµ)

ā(u− z, u− z). (9)

Moreover, for dµ-a.e. γ ∈ Γ, the vector uZ(γ) is the solution of

min
z∈Z

a(u(γ)− z, u(γ)− z; γ). (10)

Proof: It is a classical property of the Galerkin approximation of the variational formulation
of linear elliptic problems that uZ satisfies (9). Indeed, the symmetry of ā gives

ā(u− z, u− z) = ā(u− uZ , u− uZ) + 2ā(u− uZ , uZ − z) + ā(uZ − z, uZ − z),

for every z ∈ L2(Γ, H; dµ), where by (4), (5) and (7) the second term on the right-hand side
vanishes, while the third one is nonnegative. This proves (9).

The proof of (10) is the same by taking into account (3) and (6) instead of (4) and (7).

As a consequence of Proposition 2.1 and definition (2) of ā, we have

Corollary 2.2 A space W ∈ G≤k is a solution of (8) if and only if it is a solution of

min
Z∈G≤k

min
z∈L2(Γ,Z;dµ)

ā(u− z, u− z). (11)

Moreover

min
Z∈G≤k

min
z∈L2(Γ,Z;dµ)

ā(u− z, u− z) = min
Z∈G≤k

∫
Γ

min
z∈Z

a(u(γ)− z, u(γ)− z; γ)dµ(γ). (12)
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Remark 2.3 Optimization problem (11) is reminiscent of the Kolmogorov k-width related to the
best approximation of the manifold (u(γ))γ∈Γ by subspaces in H with dimension k as presented
in [24]. In the present minimization problem, we use the norm of L2(Γ, H; dµ) instead of the
norm of L∞(Γ, H; dµ) as used there. The minimization problem in [24] can indeed be written as

min
Z∈G≤k

esssup
γ∈Γ

min
z∈Z

a(u(γ)− z, u(γ)− z; γ), (13)

if one uses a(·, ·; γ) as the inner product in H.
The analysis performed in the present paper is strongly based on the Hilbertian framework

associated to the minimization in L2(Γ, H; dµ). To the best of our knowledge few is known
about problem (13), in particular there is no proof of existence of solutions. The extension to
this problem of the techniques used in the present paper is far from being straightforward, and
we intend to discuss this in a future paper. Indeed the L∞(Γ, H; dµ) framework is specially
interesting whenever uniform error estimates with respect to the parameter are needed. This
happens, for instance, when upper bounds for energy consumption (either mechanical, thermal,
etc.) should be respected.

For a function v ∈ L2(Γ, H; dµ), we denote by R(v) the closure of the vectorial space spanned
by v(γ) when γ belongs to Γ; more exactly, taking into account that v is only defined up to sets
of zero measure, the correct definition of R(v) is given by

R(v) =
⋂

µ(N)=0

Span
{
v(γ) : γ ∈ Γ \N

}
. (14)

The following result proves that in (14) the intersection can be replaced a single closed
spanned space corresponding to a single set M ∈ B. This proves in particular that it does not
reduce to {0} if R(v) is not zero dµ-a.e. γ ∈ Γ:

Proposition 2.4 For every v ∈ L2(Γ, H; dµ) there exists M ∈ B, with µ(M) = 0 such that

R(v) = Span
{
v(γ) : γ ∈ Γ \M

}
.

Proof: For every N ∈ B, we define PN as the orthogonal projection of H into

RN := Span
{
v(γ) : γ ∈ Γ \N

}
.

We also define P as the orthogonal projection of H into R(v).
Let us first prove

∀ z ∈ H, ∃Mz ∈ B with µ(Mz) = 0 such that Pz = PMzz. (15)

In order to prove this result, we consider Nn ∈ B, with µ(Nn) = 0, such that

‖PNnz‖ → inf
µ(N)=0

‖PNz‖.

Taking Mz = ∪nNn, we have that µ(Mz) = 0. Moreover, using that Nn ⊂ Mz implies RMz ⊂
RNn , we get

inf
µ(N)=0

‖PNz‖ ≤ ‖PMzz‖ ≤ ‖PNnz‖, ∀n ≥ 1.
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Therefore
‖PMzz‖ = inf

µ(N)=0
‖PNz‖.

Now, we use that for every N ∈ B with Mz ⊂ N , µ(N) = 0, we have

RN ⊂ RMz , ‖PMzz‖ ≤ ‖PNz‖

and then
PNz = PMzz, ∀N ⊃Mz with µ(N) = 0. (16)

We take now an arbitrary N ∈ B with µ(N) = 0. Using Mz ⊂ N ∪Mz, µ(N ∪Mz) = 0 and
(16), we get

PMzz = PN∪Mzz ∈ RN∪Mz ⊂ RN , ∀N ∈ B, with µ(N) = 0,

and so, PMzz belongs to R(v). On the other hand, observe that R(v) ⊂ RMz and the definition
of PMz imply

‖z − PMzz‖ ≤ ‖z − η‖, ∀ η ∈ R(v)

and thus, PMzz = Pz. This proves (15).
Let us now use (15) to prove the statement of Proposition 2.4. We consider an orthonormal

basis {zk} of R(v)⊥. By (15), we know that for every k ≥ 1, there exists Mzk ∈ B with
µ(Mzk) = 0 such that PMk

zk = 0. Then, we define

M =
⋃
k≥1

Mzk ,

let us prove that M satisfies the thesis of the Proposition. Clearly µ(M) = 0, moreover, (16)
and Mzk ⊂M for every k ≥ 1, imply

PMek = 0, ∀ k ≥ 1.

This shows PMz = 0 for every z ∈ R(v)⊥ and then R(v)⊥ ⊂ R⊥M or equivalently RM ⊂ R(v).
Since the other contention is immediate, we have then proved RM = R(v), which finishes the
proof.

Taking into account (11), a new formulation of (8) is given by

Proposition 2.5 If W is a solution of (8), then uW is a solution of

min
v∈L2(Γ,H;dµ)

dimR(v)≤k

ā(u− v, u− v). (17)

Reciprocally, if û is a solution of (17), then R(û) is a solution of (8) and û = uR(û).

As announced above, the next Proposition provides an equivalent formulation for (8) which
does not depend on the knowledge of the solution u of (3), but only on the data f .

Proposition 2.6 The subspace W ∈ G≤k solves problem (8) if and only if it is a solution of
the problem

max
Z∈G≤k

∫
Γ
〈f(γ), uZ(γ)〉 dµ(γ), (18)

where uZ is defined by (7).
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Proof: As in the proof of the first part of Proposition 2.1, one deduces from (4), (5) and (7)
that

ā(u− uZ , z) = 0, ∀z ∈ L2(Γ, Z; dµ).

Using the symmetry of ā, we then have

ā(u− uZ , u− uZ) = ā(u, u)− a(uZ , u) = ā(u, u)− ā(uZ , uZ)

= ā(u, u)−
∫

Γ
〈f(γ), uZ(γ)〉 dµ(γ).

Thus W solves (8) if and only if it solves (18).
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3 One-dimensional approximations

In Section 4 we shall show the existence of the solution of problem (8) for any arbitrary k.
However a particularly interesting case from the point of view of the applications is k = 1. We
dedicate this section to this special case. Observe that for Z ∈ G1, there exists z ∈ H \{0} such
that Z = Span{z}. The problem to solve can be reformulated as follows.

Lemma 3.1 Assume f 6≡ 0. Then, the subspace W ∈ G1 solves problem (18) if and only if
W = Span{w}, where w is a solution of

max
z∈H
z 6=0

∫
Γ

〈f(γ), z〉2

a(z, z; γ)
dµ(γ). (19)

Proof: Let Z ∈ G1. Then Z = Span{z}, for some z ∈ H \ {0}, and there exists a function
ϕ : Γ 7→ R such that

uZ(γ) = ϕ(γ) z, dµ-a.e. γ ∈ Γ.

As z 6= 0, then, as uZ(γ) is the solution to the variational equation (6), we derive that

ϕ(γ) =
〈f(γ), z〉
a(z, z; γ)

, dµ-a.e. γ ∈ Γ.

Using this formula we obtain that∫
Γ
〈f, uZ(γ)〉 dγ =

∫
Γ

〈f(γ), z〉2

a(z, z; γ)
dµ(γ). (20)

If the maximum in (18) is obtained by a space of dimension one, then formula (20) proves
the desired result.

In contrast, if the maximum in (18) is obtained by the null space, then the maximum in G1

is equal to zero. Therefore the right-hand side of (20) is zero for every z ∈ H, which implies
that f = 0 dµ-a.e. in Γ, in contradiction with the assumption f 6≡ 0.

Remark 3.2 Since the integrand which appears in (19) is homogenous of degree zero in z,
problem (19) is equivalent to

max
z∈H
‖z‖=1

∫
Γ

〈f(γ), z〉2

a(z, z; γ)
dµ(γ).

We now prove the existence of a solution to problem (19).

Theorem 3.3 Assume f 6≡ 0. Problem (19) admits at least a solution.

Note that if f ≡ 0, then, every vector w ∈ H \ {0} is a solution of (19).

Proof: Define

M∗ := sup
z∈H
‖z‖=1

∫
Γ

〈f(γ), z〉2

a(z, z; γ)
dµ(γ), (21)

and consider a sequence wn ⊂ H, with ‖wn‖ = 1 such that

lim
n→∞

∫
Γ

〈f(γ), wn〉2

a(wn, wn; γ)
dµ(γ) = M∗. (22)
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Up to a subsequence, we can assume the existence of w ∈ H, such that wn converges weakly
in H to w. Taking into account that f(γ) ∈ H ′, a(·, ·, γ) ∈ Bs(H) dµ-a.e. γ ∈ Γ and (1) is
satisfied, we get

lim
n→∞

〈f(γ), wn〉 = 〈f(γ), w〉, dµ-a.e. γ ∈ Γ, (23)

lim inf
n→∞

a(wn, wn; γ) ≥ a(w,w; γ), dµ-a.e. γ ∈ Γ. (24)

On the other hand, we observe that (1) and ‖wn‖ = 1 imply

|〈f(γ), wn〉| ≤ ‖f(γ)‖H′ ,
1

a(wn, wn; γ)
≤ 1

α
dµ-a.e. γ ∈ Γ. (25)

If w = 0, then (23), (25) and Lebesgue’s dominated convergence theorem imply

lim
n→∞

∫
Γ

〈f(γ), wn〉2

a(wn, wn; γ)
dµ(γ) = 0,

which by (22) is equivalent to M∗ = 0. Taking into account (1) and the definition (21) of M∗,
this is only possible if f ≡ 0 is the null function. As we are assuming f 6≡ 0, we conclude that
w is different of zero. Then, (25) proves

0 ≤
‖f(γ)‖2H′

α
− 〈f(γ), wn〉2

a(wn, wn; γ)
, dµ-a.e. γ ∈ Γ,

while (23) and (24) prove

lim inf
n→∞

(
‖f(γ)‖2H′

α
− 〈f(γ), wn〉2

a(wn, wn; γ)

)
≥
‖f(γ)‖2H′

α
− 〈f(γ), w〉2

a(w,w; γ)
, dµ-a.e. γ ∈ Γ. (26)

Using (22), Fatou’s lemma implies∫
Γ

(
‖f(γ)‖2H′

α
− 〈f(γ), w〉2

a(w,w; γ)

)
dµ(γ) ≤ lim inf

n→∞

∫
Γ

(
‖f(γ)‖2H′

α
− 〈f(γ), wn〉2

a(wn, wn; γ)

)
dµ(γ)

=

∫
Γ

‖f(γ)‖2H′
α

dµ(γ)−M∗,

or equivalently

M∗ ≤
∫

Γ

〈f(γ), w〉2

a(w,w; γ)
dµ(γ). (27)

By definition (21) of M∗, this proves that the above inequality is an equality and that w is a
solution of (19).

Remark 3.4 Actually, in place of (26), one has the stronger result

lim inf
n→∞

(
‖f(γ)‖2H′

α
− 〈f(γ), wn〉2

a(wn, wn; γ)

)
=
‖f(γ)‖2H′

α
− 〈f(γ), w〉2

lim inf
n→∞

a(wn, wn; γ))
, dµ-a.e. γ ∈ Γ,

which by the proof used to prove (27) shows

M∗ ≤
∫

Γ

〈f(γ), w〉2

lim inf
n→∞

a(wn, wn; γ)
dµ(γ).
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Combined with

M∗ =

∫
Γ

〈f(γ), w〉2

a(w,w; γ)
dµ(γ)

and (24), this implies

a(w,w; γ) = lim inf
n→∞

a(wn, wn; γ) dµ-a.e. γ ∈ Γ such that 〈f(γ), w〉 6= 0.

By (1) and f 6≡ 0, this proves the existence of a subsequence of wn which converges strongly to
w a. e. γ.

Since this proof can be carried out by replacing wn by any subsequence of wn, we conclude
that the whole sequence wn (which we extracted just after (22) assuming that it converges weakly
to some w) actually converges strongly to w.

The above result may be used to build a computable approximation of a solution of (19).
Indeed, for f 6≡ 0, let {Hn}n≥1 be an internal approximation of H, that is a sequence of subspaces
of finite dimension of H such that

lim
n→∞

inf
ψ∈Hn

‖z − ψ‖ = 0, ∀z ∈ H.

and consider a solution wn of

max
z∈Hn
‖z‖=1

∫
Γ

〈f(γ), z〉2

a(z, z; γ)
dµ(γ).

The existence of such a wn can be obtained by reasoning as in the proof of Theorem 3.3 or just
using Weierstrass theorem because the dimension of Hn is finite.

Taking w̃ a solution of (19) and a sequence w̃n ∈ Hn converging to w̃ in H, we have∫
Γ

〈f(γ), w̃〉2

a(w̃, w̃; γ)
dµ(γ) = lim

n→∞

∫
Γ

〈f(γ), w̃n〉2

a(w̃n, w̃n; γ)
dµ(γ)

≤ lim inf
n→∞

∫
Γ

〈f(γ), wn〉2

a(wn, wn; γ)
dµ(γ) ≤ lim sup

n→∞

∫
Γ

〈f(γ), wn〉2

a(wn, wn; γ)
dµ(γ) ≤

∫
Γ

〈f(γ), w̃〉2

a(w̃, w̃; γ)
dµ(γ),

and thus

lim
n→∞

∫
Γ

〈f(γ), wn〉2

a(wn, wn; γ)
dµ(γ) =

∫
Γ

〈f(γ), w̃〉2

a(w̃, w̃; γ)
dµ(γ) = M∗.

This proves that the sequence wn satisfies (22). Therefore any subsequence of wn which converges
weakly to some w converges strongly to w which is a solution of (19).
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4 Higher-dimensional approximations

This section is devoted to the proof of the existence of an optimal subspace which is solution of
(8) when k ≥ 1 is any given number.

Theorem 4.1 For any given k ≥ 1, problem (8) admits at least one solution.

Proof: As in the proof of Theorem 3.3, we use the direct method of the Calculus of Variations.
Denoting by mk

mk = inf
Z∈G≤k

ā(u− uZ , u− uZ), (28)

we consider a sequence of spaces Wn ∈ G≤k such that wn := uWn satisfies

lim
n→∞

ā(u− wn, u− wn) = mk. (29)

Taking into account that by Proposition 2.1

Z ⊂ Z̃ =⇒ ā(u− uZ̃ , u− uZ̃) ≤ ā(u− uZ , u− uZ), (30)

we can assume that the dimension of Wn is equal to k. Moreover, we observe that (29) implies
that wn is bounded in L2(Γ, H; dµ).

Let (z1
n, · · · , zkn) be an orthonormal basis of Wn. It holds

wn(γ) =
k∑
j=1

(wn(γ), zjn) zjn, dµ-a.e. γ ∈ Γ. (31)

Since the norm of the vectors zjn is one, there exists a subsequence of n and k vectors zj ∈ H
such that

zjn ⇀ zj in H, ∀ j ∈ {1, · · · , k}. (32)

Using also
|(wn(γ), zjn)| ≤ ‖wn(γ)‖, dµ-a.e γ ∈ Γ,

we get that (wn, z
j
n) is bounded in L2(Γ, H; dµ) for every j and thus, there exists a subsequence

of n and k functions pj ∈ L2(Γ; dµ) such that

(wn, z
j
n) ⇀ pj in L2(Γ, H; dµ), ∀ j ∈ {1, · · · , k}. (33)

We claim that

wn ⇀ w :=
n∑
j=1

pjzj in L2(Γ; dµ). (34)

Indeed, taking into account that wn is bounded in L2(Γ, H; dµ) and (31), it is enough to show

lim
n→∞

∫
Γ

(
(wn, z

j
n)zjn, ϕ v

)
dµ(γ) =

∫
Γ
(pjzj , ϕ v) dµ(γ), ∀ϕ ∈ L2(Γ; dµ), ∀ v ∈ H. (35)

This is a simple consequence of∫
Γ

(
(wn, z

j
n)zjn, ϕ v

)
dµ(γ) = (zjn, v)

∫
Γ
(wn, z

j
n)ϕdµ(γ),

combined with (32) and (33).
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From the continuity and convexity of the quadratic form associated to ā, as well as from
(34) and (29), we have

ā(u− w, u− w) ≤ lim
n→∞

ā(u− wn, u− wn) = mk. (36)

Using that W = Span{z1, · · · , zk} ∈ G≤k, and that (see Proposition 2.1)

ā(u− uW , u− uW ) ≤ ā(u− w, u− w), (37)

we conclude that W is a solution of (8).

Remark 4.2 From (36), (37), definition (28) of mk and Proposition 2.1, we have that w = uW
in the proof of Theorem 4.1. Moreover,

ā(u− w, u− w) = mk = lim
n→∞

ā(u− wn, u− wn),

which combined with (34) proves that wn converges strongly to w in L2(Γ, H; dµ). As in Remark
3.4, this can be used to build a strong approximation of a solution of (8) by using an internal
approximation of H.



14

5 An iterative algorithm by deflation

In the previous section, for any given k ≥ 1, we have proved the existence of an optimal subspace
for problem (8). We use here this fact to build an iterative approximation of the solution of
(3) by a deflation approach. We build recursive approximations on finite-dimensional optimal
subspaces by minimizing the mean parametric error of the current residual, similar to the one
introduced in [11]. Let us denote

Πk(v) =

{
vW | W solves min

Z∈G≤k
ā(v − vZ , v − vZ),

}
, ∀ v ∈ L2(Γ, H; dµ). (38)

where vZ is defined by (7)
The deflation algorithm is as follows

• Initialization:
u0 = 0 (39)

• Iteration: Assuming ui−1 ∈ H known for i = 1, 2, · · · , set

ei−1 = u− ui−1, choose si ∈ Πk(ei−1), and define ui = ui−1 + si. (40)

Remark 5.1 Note that si (and therefore ui) in general is not defined in a unique way.
Note also that the algorithm (40) does not need the knowledge of the solution u of (4), since

ei−1 = u− ui−1 is directly defined from f and ui−1 by
ei−1 ∈ L2(Γ, H; dµ),

ā(ei−1, v) =

∫
Γ
〈f(γ), v(γ)〉 dµ(γ)− ā(ui−1, v), ∀ v ∈ L2(Γ, H; dµ).

(41)

Then Proposition 2.6 applied to the case where f is replaced by the function fi defined by∫
Γ
〈fi(γ), v(γ)〉dµ(γ) =

∫
Γ
〈f(γ), v(γ)〉 dµ(γ)− ā(ui−1, v), ∀ v ∈ L2(Γ, H; dµ), (42)

proves that
si ∈ Πk(ei−1) ⇐⇒ si = (ei−1)Wi ,

where Wi is a solution of

max
Z∈G≤k

{∫
Γ
〈f(γ), (ei−1)Z(γ)〉 dµ(γ)− ā(ui−1, (ei−1)Z)

}
, (43)

where, in accordance to (7), (ei−1)Z denotes the solution of
(ei−1)Z ∈ L2(Γ, Z; dµ),

ā
(
(ei−1)Z , z

)
=

∫
Γ
〈f(γ), z(γ)〉 dµ(γ)− ā(ui−1, z), ∀ z ∈ L2(Γ, Z; dµ).

(44)

This observation allows one to carry out the iterative process without knowing the function u.
Note also that

ui =
i∑

j=1

sj ,

namely that ui is the partial sum of the series
∑
j≥1

sj.
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Remark 5.2 In this remark we take k = 1. Then every space of G≤1 is spanned by an element

of H, and in particular Wi = Span{wi} for some wi ∈ H, then ui(γ) =
i∑

j=1

Φj(γ)wj , where

Φj(γ) ∈ L2(Γ, dµ) is defined by sj = Φj(γ)wj. Note also that if wi = 0 for some i ≥ 0, then
fi = 0 and thus u ≡ ui−1,

The convergence of the algorithm is given by the following theorem. Its proof follows the
ideas of [11].

Theorem 5.3 The sequence ui provided by the least-squares PGD algorithm (39)-(40) strongly
converges in L2(Γ, H; dµ) to the parameterized solution γ ∈ Γ 7→ u(γ) ∈ H of problem (3).

Remark 5.4 In view of the last assertion of Remark 5.1, Theorem 5.3 proves that the series∑
j≥1

sj converges in L2(Γ, H; dµ) to the parametrized solution γ ∈ Γ 7→ u(γ) ∈ H of problem (3).

When k = 1, Remark 5.2 implies that the series
∑
j≥1

Φj(γ)wj converges in L2(Γ, H; dµ) to

this parametrized solution.

Proof: By (40) and Proposition 2.5 applied to the case where u is replaced by ei−1, we have
that si is a solution of

min
v∈L2(Γ,H;dµ)

dimR(v)≤k

ā(ei−1 − v, ei−1 − v). (45)

This proves in particular that si is a solution of

min
v∈L2(Γ,H;dµ)
R(v)⊂R(si)

ā(ei−1 − v, ei−1 − v),

and therefore

ā(ei−1 − si, v) = 0, ∀ v ∈ L2(Γ, H; dµ) with R(v) ⊂ R(si).

But (40) implies that
ei−1 − si = ei, (46)

which gives
ā(ei, v) = 0, ∀ v ∈ L2(Γ, H; dµ) with R(v) ⊂ R(si). (47)

Taking v = si and using again (46) we get

ā(ei−1, ei−1) = ā(si, si) + ā(ei, ei), ∀ i ≥ 1, (48)

and therefore

ā(ei, ei) +

i∑
j=1

ā(sj , sj) = ā(e0, e0), ∀ i ≥ 1. (49)

Thus, we have
ei is bounded in L2(Γ, H; dµ), (50)

∞∑
j=1

ā(sj , sj) ≤ ā(e0, e0). (51)
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By (50), there exists a subsequence ein of ei and e ∈ L2(Γ, H; dµ), such that

ein ⇀ e in L2(Γ, H; dµ). (52)

On the other hand, since sin+1 is a solution of (45) with i− 1 replaced by in, we get

ā(ein − sin+1, ein − sin+1) ≤ ā(ein − v, ein − v) = ā(ein , ein)− 2ā(ein , v) + ā(v, v),

∀ v ∈ L2(Γ, H; dµ), dimR(v) ≤ k,
(53)

and then

ā(ein−sin+1, ein−sin+1)− ā(ein , ein) ≤ −2ā(ein , v)+ ā(v, v), ∀ v ∈ L2(Γ, H; dµ), dimR(v) ≤ k,

or in other terms

−2ā(ein , sin+1) + ā(sin+1, sin+1) ≤ −2ā(ein , v) + ā(v, v), ∀ v ∈ L2(Γ, H; dµ), dimR(v) ≤ k.

Thanks to (50) and (51), the left-hand side tends to zero when n tends to infinity, while in the
right-hand side we can pass to the limit by (52). Thus, we have

2ā(e, v) ≤ ā(v, v), ∀ v ∈ L2(Γ, H; dµ), dim R(v) ≤ k.

Replacing in this equality v by tv with t > 0, dividing by t, letting t tend to zero and writing
the resulting inequality for v and −v, we get

ā(e, v) = 0, ∀ v ∈ L2(Γ, H; dµ), dim R(v) ≤ k.

Taking v = wϕ, with w ∈ H, ϕ ∈ L2(Γ; dµ), and recalling definition (2) of ā we deduce∫
Γ
a(e(γ), w; γ)ϕ(γ) dµ(γ) = 0, ∀ z ∈ H, ∀ϕ ∈ L2(Γ; dµ),

and then for any w ∈ H, there exists a subset Nw ∈ B with µ(Nw) = 0 such that

a(e(γ), w; γ) = 0, ∀ γ ∈ Γ \Nw.

The separability of H implies that Nw can be chosen independent of w, and then we have

a(e(γ), w; γ) = 0, ∀w ∈ H, dµ-a.e. γ ∈ Γ,

and therefore
e(γ) = 0 dµ-a.e. γ ∈ Γ. (54)

This proves that e does not depend on the subsequence in (52) and that

ei ⇀ 0 in L2(Γ, H; dµ). (55)

Let us now prove that in (55) the convergence is strong in L2(Γ, H; dµ). We use that thanks
to (46), we have

ei = −
i∑

j=1

sj + e0, ∀ i ≥ 1,
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and so,

ā(ei, ei) = −
i∑

j=1

ā(ei, sj) + ā(ei, e0), ∀ i ≥ 1. (56)

In order to estimate the right-hand side of the latest equality, we introduce, for i, j ≥ 1, the
function zi,j as the solution of

zi,j ∈ L2(Γ,R(sj); dµ), ā(zi,j , v) = ā(ei−1, v), ∀ v ∈ L2(Γ,R(sj); dµ). (57)

We have ∣∣ā(ei−1, sj)
∣∣ =

∣∣ā(zi,j , sj)
∣∣ ≤ ā(zi,j , zi,j)

1
2 ā(sj , sj)

1
2 . (58)

Using (48), (46), the fact that si is a solution of (45) and dim R(sj) ≤ k

ā(ei−1, ei−1)− ā(si, si) = ā(ei−1 − si, ei−1 − si) ≤ ā(ei−1 − zi,j , ei−1 − zi,j).

Expending the right-hand side and using v = zi,j in (57) this gives

ā(zi,j , zi,j) ≤ ā(si, si),

which combined with (58) provides the estimate∣∣ā(ei−1, sj)
∣∣ ≤ ā(si, si)

1
2 ā(sj , sj)

1
2 , ∀ i, j ≥ 1.

Using the latest estimate in (56) and then Cauchy-Schwarz’s inequality, we get

ā(ei, ei) ≤ ā(si+1, si+1)
1
2

i∑
j=1

ā(sj , sj)
1
2 + ā(ei, e0)

≤ ā(si+1, si+1)
1
2 i

1
2

 ∞∑
j=1

ā(sj , sj)

 1
2

+ ā(ei, e0), ∀ i ≥ 1.

(59)

But the criterion of comparison of two series with nonnegative terms and the facts that (see
(51))

∞∑
i=1

1

i
=∞,

∞∑
i=1

ā(si, si) <∞,

prove that

lim inf
i→∞

ā(si+1, si+1) i = lim inf
i→∞

ā(si+1, si+1)
1
i

= 0.

Since ā(ei, ei) is a decreasing sequence by (48) and since (55) asserts that ei converges weakly
to zero, we can pass to the limit in (59), to deduce

lim
i→∞

ā(ei, ei) = lim inf
i→∞

ā(ei, ei)

≤ lim inf
i→∞

 ā(si+1, si+1)
1
2 i

1
2

 ∞∑
j=1

ā(sj , sj)

 1
2

+ ā(ei, e0)

 = 0.

This proves that ei converges strongly to zero in L2(Γ, H; dµ). Since ei = u − ui this finishes
the proof of Theorem 5.3.
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Remark 5.5 In many cases the corrections si decrease exponentially in the sense that:

|||si||| = O(ρ−i) as i→ +∞, for some ρ > 1,

where |||·||| denotes the norm in L2(Γ, H; dµ). This occurs in particular for the standard POD
expansion when Γ is an open set of RN , µ is the Lebesgue measure and the function f = f(γ)
is analytic with respect to γ (see [7]). Then |||si||| is a good estimator for the error |||u− ui|||.



19

6 Relationship with POD and PGD methods

The “intrinsic” PGD method developed in the previous sections is a genuine extension of both
POD and PGD method.

Indeed, to analyze the connexions with the POD method, let us consider the problem studied
in [11], namely

(Pk)
′ min

Z∈G≤k

∫
Γ
(u(γ)− uZ(γ), u(γ)− uZ(γ))H dµ(γ), (60)

where (·, ·)H is an inner product on H. In this case a solution of (Pk)
′ is the space generated

by the first k eigenfunctions of the POD operator P : H 7→ H, which is given by (see below)

P(v) =

∫
Γ
(u(γ), v)H u(γ) dµ(γ), ∀v ∈ H.

In the present case, due the dependence of a with respect to γ, it does not seem that the
problem can be reduced to a spectral problem.

As an example, from now on we fix in this Section

k = 1.

Then problem (17) can be written as

min
v∈H,ϕ∈L2(Γ;dµ)

∫
Γ
a(u(γ)− ϕ(γ)v, u(γ)− ϕ(γ)v; γ)dµ(γ). (61)

Note that problem (61) has at least a solution (see Section 3 above). So, taking the derivative
of the functional

(v, ϕ) ∈ H × L2(Γ; dµ) 7→
∫

Γ
a(u(γ)− ϕ(γ)v, u(γ)− ϕ(γ)v; γ) dµ(γ),

we deduce that if (w,ψ) ∈ H × L2(Γ; dµ) is a solution of (61), with w 6= 0, then

ψ(γ) =
a(u(γ), w; γ)

a(w,w; γ)
, dµ-a.e. γ ∈ Γ, (62)

and w is a solution of the non-linear variational problem∫
Γ

a(u(γ), w; γ)

a(w,w; γ)
a(u(γ), v; γ)dµ(γ) =

∫
Γ

a(u(γ), w; γ)2

a(w,w; γ)2
a(w, v; γ)dµ(γ), ∀ v ∈ H. (63)

Note that if w = 0,∫
Γ
a(u(γ)−ϕ(γ)v, u(γ)−ϕ(γ)v; γ) dµ(γ) ≥

∫
Γ
a(u(γ), u(γ); γ) dµ(γ), ∀v ∈ H, ∀ϕ ∈ L2(Γ, dµ).

This implies that u = 0 and therefore f = 0.
If a does not depend on γ, statement (63) can be written as

a

(∫
Γ
a(u(γ), w)u(γ)dµ(γ), v

)
= a


∫

Γ
a(u(γ), w)2dµ(γ)

a(w,w)
w, v

 , ∀ v ∈ H,
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which implies that

∫
Γ
a(u(γ), w)u(γ)dµ(γ) =

∫
Γ
a(u(γ), w)2dµ(γ)

a(w,w)
w,

which proves that w is an eigenvector of the operator

v ∈ H 7→ P(v) =

∫
Γ
a(u(γ), v)u(γ)dµ(γ)

for the eigenvalue ∫
Γ
a(u(γ), w)2dµ(γ)

a(w,w)
.

In contrast, when a depends on γ it does not seem that problem (63) corresponds to an eigenvalue
problem.

To analyze the relationship with the PGD method, let us remember that this method ap-
proximates the solution u of problem (8) by a series similar to that provided by the deflation
algorithm introduced in Section 5, namely

u(γ) =
∑
i≥1

Φ̃i(γ) w̃i,

where the pair (Φ̃i, w̃i) ∈ L2(Γ, dµ) ×H is recursively obtained as a solution of the non-linear
coupled problems

∫
Γ
a(Φ̃i(γ) w̃i, Φ̃i(γ) v; γ) dµ(γ) =

∫
Γ
〈f̃i(γ), Φ̃i(γ) v〉 dµ(γ), ∀v ∈ H,∫

Γ
a(Φ̃i(γ) w̃i, Φ̃

∗(γ) w̃i; γ) dµ(γ) =

∫
Γ
〈f̃i(γ), Φ̃∗(γ) w̃i〉 dµ(γ), ∀Φ̃∗ ∈ L2(Γ, dµ),

(64)

where f̃1 = f , and f̃i is defined by∫
Γ
〈f̃i(γ), v(γ)〉dµ(γ) =

∫
Γ
〈f(γ), v(γ)〉 dµ(γ)− ā(ũi−1, v), ∀ v ∈ L2(Γ, H; dµ), (65)

with

ũi−1(γ) =

i−1∑
j=1

Φ̃j(γ) w̃j , for i ≥ 2. (66)

If problem (64) admits a solution such that w̃i 6= 0, then the second equation in (64) is
equivalent to,

a(Φ̃i(γ) w̃i, w̃i; γ) = 〈f̃i(γ), w̃i〉 dµ− a. e. γ ∈ Γ,

which in turn is equivalent to

Φ̃i(γ) =
〈f̃i(γ), w̃i〉
a(w̃i, w̃i; γ)

dµ− a. e. γ ∈ Γ. (67)

Then the first equation in (64), is equivalent to the non-linear variational problem

w̃i ∈ H,
∫

Γ

〈f̃i(γ), w̃i〉
a(w̃i, w̃i; γ)

〈f̃i(γ), v〉 dµ(γ) =

∫
Γ

〈f̃i(γ), w̃i〉2

a(w̃i, w̃i; γ)2
a(w̃i, v; γ) dµ(γ), ∀ v ∈ H. (68)
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Note that this problem is just problem (63) with w replaced by w̃i and f replaced by f̃i.
Conversely, if problem (68) admits a solution, then the pair (w̃i, Φ̃i), with Φ defined by (67),

is a solution on the PGD problem (64).
Consequently the sequence (Φi, wi) provided by the deflation algorithm (39)-(40) is also a

solution of the PGD algorithm (64)-(65)-(66), with f̃i = fi for all i ≥ 1. Thus, if the PGD
algorithm is computed in such a way that at each step Φ̃i w̃i = Φiwi(= si), the analysis
developed in Section 5 proves that the sequence ũi converges in L2(Γ, H; dµ) to the parametric
solution u(γ) of problem (3).

However there is the possibility that problem (64) admits several solutions and that some
of these do not provide a solution of the optimization problem (45). Then the convergence
properties studied in Section 5 may be lost. It is then convenient to solve the PGD problem
(64) ensuring that the solution does provide an optimal sub-space.

The previous analysis presents some differences with preceding works on the analysis of
convergence of PGD methods applied to the solution of PDEs and optimization problems. Let
us describe some of them. In [2] the authors prove the convergence of the PGD for finite
dimensional linear systems Ax = b where A ∈ RN×N is an invertible high dimensional matrix,
i.e. N = N1N2 · · ·Nn. The solution is searched as a series of rank-one summands, belonging to
RN = RN1 ⊗a RN2 ⊗a · · · ⊗a RNn (where ⊗a denotes the algebraic tensor product). Also, in [8]
the authors prove the convergence of the PGD algorithm applied to the Laplace problem in a
tensor product domain,

−∆u = f in Ωx × Ωy, u|∂Ωx×Ωy = 0,

where Ωx ⊂ R and Ωy ⊂ R are two bounded domains. They solve the problem on the tensor
space H1

0 (Ωx)⊗aH1
0 (Ωy) which is dense in H1

0 (Ωx×Ωy) for the norm of H1
0 (Ωx×Ωy). The work

[9] proves the convergence of the PGD for the optimization problem: Find u ∈ L2(Ω, H1(I))
such that u ∈ arg min

v∈L2(Ω,H1(I))
E(v), where E is a strongly convex functional, with Lipschitz

gradient on bounded sets. This method can be used for high-dimensional nonlinear convex
problems. Further, in [12], the authors prove the convergence of a PGD-like algorithm, where
the set of rank-one tensors in a tensor space is substituted by a closed cone Σ, to solve the
variational problem: Find u ∈ X such that u ∈ arg min

v∈X
E(v), where E : X −→ R is a convex

functional defined over a reflexive Banach space X. Moreover, in [11] the authors prove the
convergence of the PGD for elliptic PDEs in the form Au = f where u and f belong to a

Hilbert tensor space H = H1 ⊗a H2 ⊗a · · · ⊗a Hn
|||·|||

. Here the norm ||| · |||2 = 〈·, ·〉 is given by
〈·, ·〉 = 〈·, ·〉1〈·, ·〉2 · · · 〈·, ·〉n. This is a generalization of Eckart and Young theorem.

The results reported in the present paper are a generalization of this last work [11] when
the operator A depends on a parameter.

7 Conclusion

In this paper we have introduced an iterative deflation algorithm to solve parametric symmetric
elliptic equations. It is a Proper Generalized Decomposition algorithm as it builds a tensorized
representation of the parameterized solutions, by means of optimal subspaces that minimize
the residual in mean quadratic norm. It is intrinsic in the sense that in each deflation step the
residual is minimized in the “natural” parametric norm generated by the parametric elliptic
operator. It is conceptually close to the Proper Orthogonal Decomposition with the difference
that in the POD the residual is minimized with respect to a fixed mean quadratic norm. Due
to this difference, spectral theory cannot be applied.
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We have proved the existence of the optimal subspaces of dimension less than or equal to a
fixed number, as required in each iteration of the deflation algorithm, with a specific analysis
for the one-dimensional case. Also, we have proved the strong convergence in the parametric
elliptic norm of the deflation algorithm for quite general parametric elliptic operators.

We have further proved that the method introduced is a genuine extension of both POD
and PGD methods, and that in particular it provides a theoretical analysis of the PGD method,
when this method is applied in such a way that it provides the optimal sub-spaces : The PGD
expansion is strongly convergent to the targeted solution in parametric elliptic norm.

We will next focus our research on the analysis of convergence rates of the intrinsic PGD
expansion that we introduced. We will analyze wether the standard PGD provides the optimal
sub-spaces, and compare the convergence rates with those of the POD expansion, to determine
whether the use of optimal modes provides improved convergence rates. We will also work on
the use of optimization techniques as an alternative way to compute the optimal modes, rather
than the Power Iteration method that is common in PGD computations.

All the results obtained in the present paper refer to a symmetric. In a future work we will
consider the non-symmetric case.
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