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Abstract

We consider an abstract second order evolution equation of the form

u′′ + g(t, u′) +∇F (u) = 0

set for t ∈ (0, T ) on a Hilbert space V such that F ∈ C1(V ) with velocities in a larger
Hilbert space H identified with its dual. The term g(t, u′) represents a dissipation
mechanism and the restoring force −∇F (u) dominates in a certain sense the dissipative
term which is strictly superlinear at infinity with respect to the velocity. Under relevant
conditions we establish that the energy E(t) := 1

2
|u′(t)|+F (u(t)) of any strong solution

u is bounded for any t ∈ (0, T ) by a constant multiple of a negative power of t, thus
independently of the initial state (u(0), u′(0)) ∈ V × H. Applications are given to the
general solution of some nonlinear wave, plate and Kirchhoff equations in a bounded
domain.

Mathematics Subject Classification 2010 (MSC2010): 35B40, 35L70, 35L75,
35Q74, 35L90.
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1 Introduction

It is well known that a certain number of dynamical systems S(t) defined on a Banach
space X have the property of universal boundedness for all t > 0, in the sense that

∀t > 0, S(t)X is a bounded subset of X.

As a simple example we can consider the first order scalar ODE

u′ + δ|u|ρu = 0

with δ, ρ positive. Indeed for any initial state u(0) = u0 we have

|u(t)| ≤ C

t1/ρ

Where C = (ρδ)−1/ρ is independent of u0. This property extends classically to some
classes of nonlinear parabolic PDEs, for instance the semilinear parabolic equation

u′ −∆u+ δ|u|ρu = 0

with either Dirichlet or Neumann homogeneous boundary conditions, the result follows
at once from the maximum principle. For a more elaborate quasilinear case, cf. Jacques
Simon [10].

It is natural to ask whether second order ODEs with superlinear dampings such as

u′′ + ω2u+ δ|u′|ρu′ = 0

have the same property, however the equation

u′′ + u+ |u′|u′ = 0

has an explicit solution defined for all t on the line, more precisely u(t) = 1
4
t2 − 1

2
is a

solution for t ≤ 0 which extends uniquely for t ≥ 0 and has an unbounded range. In
such a case, due to the autonomous character of the equation, the entire range of the
unbounded solution is contained in S(t)R2 for all t > 0 and universal boundedness fails.
The next step is to consider the scalar second order ODE

u′′ + |u′|αu′ + |u|βu = 0, (1.1)

For this equation, Philippe Souplet [11] gave a definitive negative answer when α ≥ β ≥
0. On the other hand if 0 < α < β, it was shown very recently in [2] that the universal
boundedness holds and moreover the method of [2] yields the optimal estimate

∀t > 0, E(t) ≤ C max{t−
2
α , t−

(α+1)(β+2)
β−α } (1.2)
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where

E(t) =
1

2
u′(t)2 +

1

β + 2
|u(t)|β+2 (1.3)

and C does not depend on the initial data. After this result, which can be easily extended
in the finite dimensional vector framework, it was reasonable to ask what happens for
wave equations of the type

u′′ −∆u+ |u|βu+ |u′|αu′ = 0, (1.4)

with either Dirichlet or Neumann boundary conditions. Since in the absence of the
nonlinear term |u|βu, the universal boundedness does not take place as shown in [4],
and there is no such maximum principle as in the parabolic case, the issue seems to be
non-trivial and one would rather expect the result to hold for quasilinear equations of
the form

u′′ −
(∫

Ω

|∇u|2dx
)β

2

∆u+ |u′|αu′ = 0, (1.5)

with the problem that the interpretation of “solutions” is not at all clear in that case.
Then one would think of limiting the investigation to equations like

u′′ −
(∫

Ω

|∇u|2dx
)β

2

∆u+

(∫
Ω

|u′|2dx
)α

2

u′ = 0, (1.6)

for which we have a nice interpretation for solutions emanating from a pair of finite
linear combination of eigenfunctions of the Laplacian. It turns out that a natural slight
change of the method, inspired by a technique devised in [7] involving a power of the
total energy, gives the result in all cases which enter a natural functional framework
containing as particular cases the three situations. The main object of the present
paper is to report on this rather unexpected general result. The plan of the paper
is as follows. In Section 2 we give a general functional setting for the problem. The
main result concerning general second order evolutions is stated and proved in Section
3. Section 4 is devoted to examples in the PDE framework and Section 5 to some
counterexamples showing the limitation of the results. Finally in Section 6, we state
and prove a universal decay property relying on our main result for the solutions of
semilinear wave equations.

2 Functional setting

Let H be a real Hilbert space with inner product denoted by (, .) and norm denoted by
|.|. Let V ⊂ H be another Hilbert space continuously imbedded into H. The norm and
inner product on V will be denoted by ||.|| and ((, .)). We assume that V is dense in H,
so that

V ⊂ H ⊂ V ′
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Let F ∈ C1(V ) and
A = ∇F ∈ C(V, V ′)

In the sequel we shall be concerned with local solutions around t = 0 of the evolution
equation

u′′ +Au(t) + g(t, u′) = 0 (2.1)

where g satisfies the following properties.

Let J = (0, T ) with T > 0. We assume that g : J × V → V ′ is such that

∀v := v(t) ∈ L∞(J, V ), g(t, v(t)) ∈ L1(J, V ′)

Definition 2.1. A function u : J → V is called a strong solution of (2.1) if

u ∈ W 1,∞(J, V ) ∩W 2,1(J, V ′) (2.2)

and
u′′ +Au(t) + g(t, u′) = 0 in L1(J, V ′) (2.3)

Remark 2.2. It is clear that

W 1,∞(J, V ) ∩W 2,1(J, V ′) ⊂ C([0, T ], V ) ∩ C1([0, T ], H).

In particular the values u(t) ∈ V and u′(t) ∈ H are well defined for all t ∈ [0, T ].

Remark 2.3. For any strong solution u of (2.1) the fiunction

E(t) :=
1

2
|u′(t)|+ F (u(t)

satisfies E ∈ W 1,∞(J,R) with

E ′(t) = −〈g(t, u′(t)), u′(t)〉V ′,V a.e. on J. (2.4)

For the main result of the next section, we shall assume that F and g satisfy the
following additional conditions. There exist two Banach spaces X, Y such that

V ⊂ Y ⊂ X ⊂ H

with continous and dense imbeddings for which we have for some positive constants
α, β, δ1, δ2, δ3, C1, C2, C3, C4 the inequalities

∀t ∈ J,∀v ∈ V, 〈g(t, v), v〉V ′,V ≥ δ1||v||α+2
X − C1 (2.5)

∀t ∈ J,∀v ∈ V, ||g(t, v)||Y ′ ≤ C2(1 + ||v||α+1
X ) (2.6)

∀u ∈ V, F (u) ≥ δ2||u||β+2
Y − C3 (2.7)

∀u ∈ V, 〈Au, u〉 ≥ δ3F (u)− C4 (2.8)
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3 Universal bound when 0 < α < β.

Theorem 3.1. Let F, g be as in section 2 and assume that conditions (2.5), (2.6), (2.7)
and (2.8)are satisfied with 0 < α < β. Then there is a constant C > 0 such that for any
strong solution u of (2.1) on J = (0, T ) we have

∀t ∈ (0, T ), E(t) ≤ Ct−λ (3.1)

with

λ = max{ 2

α
,
(α + 1)(β + 2)

β − α
}

Proof. First of all we observe that by replacing F by F+C3 +1 we may assume E(t) ≥ 1
for all t and C4 = 0. We introduce the modified energy

Φ(t) := E(t) + εE(t)γ(u, u′) (3.2)

where γ and ε > 0 will be chosen later. First, in order for Φ to be a small perturbation
of the energy E we require that for some constant K

|E(t)γ(u, u′)| ≤ KE(t) (3.3)

But by definition of the energy we have |u′| ≤ 2E1/2 and (2.7) implies |u| ≤ K1E
1

β+2 .
So the conclusion will follow if γ + 1

β+2
≤ 1/2 , equivalent to

γ ≤ β

2(β + 2)

Assuming this condition, for all ε small enough we shall have throughout the interval J

1

2
E ≤ Φ ≤ 2E

We compute

Φ′ = E ′(1 + γεE(t)γ−1(u, u′)) + εE(t)γ(|u′|2 + 〈u′′, u〉)

and by (3.3) and (2.4) we deduce, by distinguishing the 2 cases for the sign of 〈g(u′), u′〉
that for ε < 1

2γK

∀t ∈ (0, T ), Φ′ ≤ −δ1

2
||u′||α+2

X +
3

2
C1 + εE(t)γ(|u′|2 + 〈u′′, u〉) (3.4)

Let us for the moment forget about the term εE(t)γ|u′|2 and concentrate on the more
interesting product

〈u′′, u〉 = −〈Au, u〉 − 〈g(t, u′), u〉 ≤ −δ3F (u) + C4 + ||g(t, u′)||Y ′||u||Y
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By using the identity F (u) = E − 1
2
|u′|2 we now obtain (reducing to C4 = 0)

Φ′ ≤ −εδ3E
1+γ− δ1

2
||u′||α+2

X + ε(1 + δ3/2)E(t)γ|u′|2 + εEγ||g(t, u′)||Y ′||u||Y +
3

2
C1 (3.5)

We now choose

γ = min

{
α

2
,

β − α
(α + 1)(β + 2)

}
:= γ0 (3.6)

and we claim that in all cases γ0 ≤ β
2(β+2)

and consequently (3.3) is satisfied . Indeed this

is clearly true if α ≤ β
β+2

. On the other hand if α ≥ β
β+2

an easy calculation shows that
β−α

(α+1)(β+2)
= γ0 and we just need to check that β ≥ 2(β−α)

α+1
, an immediate consequence of

α ≥ β
β+2

. We now need to show that the third and fourth term in (3.5) are dominated
by the sum of the two first terms. For the third term we write

E(t)γ|u′|2 ≤ µE1+γ + C(µ)|u′|2(1+γ)

with 2+2γ ≤ 2+α and by fixing µ small enough, we obtain under a smallness condition
on ε

Φ′ ≤ −εδ3

2
E1+γ − δ1

4
||u′||α+2

X + εEγ||g(t, u′)||Y ′||u||Y + C5

Finally we have

Eγ||g(t, u′)||Y ′||u||Y ≤ C6E
γ+ 1

β+2 (1 + ||u′||α+1
X )

The term Eγ+ 1
β+2 is easily absorbed since γ+ 1

β+2
< 1+γ. Moreover we have by Young’s

inequality

Eγ+ 1
β+2 ||u′||α+1

X ≤ νE(γ+ 1
β+2

)(α+2) + C(ν)||u′||α+2
X

We claim that

(γ +
1

β + 2
)(α + 2) ≤ 1 + γ

indeed this inequality reduces to

γ(α + 1) ≤ 1− α + 2

β + 2
=
β − α
β + 2

Finally by choosing ε sufficiently small we find

Φ′ ≤ −εδ3

4
E1+γ + C6 ≤ −ρΦ1+γ + C6

for some ρ > 0 and the conclusion follows in one step from the standard comparison
principle since the function

Ψ(t) =

(
1

γρt

) 1
γ

+

(
C6

ρ

) 1
1+γ
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satisfies the inequality
Ψ′(t) + ρΨ1+γ ≥ C6

Hence Ψ ≥ Φ since Ψ ≥ Φ for t→ 0+. The inequality Φ ≤ Ψ is referred to in [12], III,
Lemma 5.1 as Ghidaglia’ inequality. �

Remark 3.2. In the finite dimensional case at least, it should be possible to generalize
this result to some singular singular equations and systems such as those studied in
[1, 3].

4 Examples of application

Throughout this section the partial derivatives with respect to time of a function u(t, x)
will be denoted as u′ instead of ut to keep the notation of the abstract section. It also
gives more compact formulas in the calculations. The spatial Lp norm of u will often be
written as ||u||p, with the exception of the L2 norm which will be denoted as |u|. These
conventions should bring no specific difficulty for the reader.

4.1 Semilinear wave equations

Let Ω be a bounded domain of RN . Given the positive constants α, β, c, b and the real
constants λ, µ, we consider the semilinear equation

u′′ −∆u+ b|u|βu− λu+ c|u′|αu′ − µu′ = h(t, x), (t, x) ∈ (0, T )× Ω (4.1)

with either Dirichlet homogeneous boundary conditions

u(t, x) = 0 (t, x) ∈ (0, T )× ∂Ω (4.2)

or Neumann homogeneous boundary conditions

∂u(t, x)

∂n
= 0 (t, x) ∈ (0, T )× ∂Ω (4.3)

Assuming h ∈ L1(0, T ;L2(Ω)), the initial-value problem corresponding to (4.1) is clas-
sically well-posed for initial data

(u(0), u′(0)) = (u0, u1) ∈ H1
0 (Ω)× L2(Ω)

in the case of BC (4.2) and for initial data

(u(0), u′(0)) = (u0, u1) ∈ H1(Ω)× L2(Ω)

in the case of BC (4.3). In both cases, under the condition

(N − 2)α ≤ 2, (4.4)
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the solutions lie in the regularity class

u ∈ C([0, T ], V ) ∩ C1([0, T ], L2(Ω)) ∩W 2,1([0, T ], V ′)

with V = H1
0 (Ω) in the case of BC (4.2) ; V = H1(Ω) in the case of BC (4.3). Moreover

the additional regularity conditions (u0, u1) ∈ H2(Ω) ×H1(Ω)) in the case of BC (4.3)
(resp. (u0, u1) ∈ H2(Ω) × H1

0 (Ω)) in the case of BC (4.2) and h ∈ W 1,1(0, T ;L2(Ω))
imply that the solution is strong in the sense of definition 2.1.

Corollary 4.1. Let 0 < α < β and assume h ∈ L∞(0, T ;L2(Ω)), (N −2)α ≤ 2. Then
there is a constant C > 0 such for any (weak) solution u of (4.1) satisfying either (4.2)
or (4.3)we have

∀t ∈ (0, T ),

∫
Ω

[
u′2(t, x) + |∇u|2(t, x) + |u|β+2

]
dx ≤ Ct−λ

with

λ = max

{
2

α
,
(α + 1)(β + 2)

β − α

}
Proof. We apply Theorem 3.1 with

H = L2(Ω), X = Lα+2(Ω) Y = Lβ+2(Ω)

The result is immediate for strong solutions and follows by density in the case of weak
solutions (cf. e.g. [8], Proposition II.2.2.1 and Theorem II.3.2.1 for the construction of
weak and strong solutions.) �

The following consequence of Corollary 4.1 is straightforward.

Corollary 4.2. Under the hypotheses of the previous corollary, there are constants
C1, C2 > 0 such for any (weak) solution u of (4.1) satisfying either (4.2) or (4.3)we
have for all t ∈ (0, T )

||u(t, .)||Lβ+2(Ω) ≤ C1t
−µ with µ = max

{
2

α(β + 2)
,
(α + 1)

β − α

}
||u(t, .)||H1(Ω) + ||u′(t, .)||L2(Ω) ≤ C2t

−ν with ν = max

{
1

α
,
(α + 1)(β + 2)

2(β − α)

}
Remark 4.3. There is no difference here between the Dirichlet and Neumann case
since the coercivity for large energies is driven by the super-quadratic power β + 2. The
situation will be different for large time estimates when h = 0 (cf. Section 6).

Remark 4.4. It is difficult to understand why we get different bounds for the Lβ+2

norm and the H1 norm of u. One possible explanation would be an imperfect transfer
of dissipation on higher order modes. We do not know if this corresponds to a real
phenomenon.
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4.2 Semilinear plate equations

Let Ω be a bounded domain of RN . Given the positive constants α, β, c, b and the real
constants λ, µ, we consider the semilinear equation

u′′ + ∆2u+ b|u|βu− λu+ c|u′|αu′ − µu′ = h(t, x), (t, x) ∈ (0, T )× Ω (4.5)

with either hinged boundary conditions

u(t, x) = ∆u(t, x) = 0 (t, x) ∈ (0, T )× ∂Ω (4.6)

or clamped boundary conditions

u(t, x) =
∂u(t, x)

∂n
= 0 (t, x) ∈ (0, T )× ∂Ω (4.7)

Assuming h ∈ L1(0, T ;L2(Ω)), the initial-value problem corresponding to (4.1) is clas-
sically well-posed for initial data

(u(0), u′(0)) = (u0, u1) ∈ H2
0 (Ω)× L2(Ω)

in the case of BC (4.7) and for initial data

(u(0), u′(0)) = (u0, u1) ∈ H2 ∩H1
0 (Ω)× L2(Ω)

in the case of BC (4.6) in both cases the solutions lie in the regularity class

u ∈ C([0, T ], H2(Ω)) ∩ C1([0, T ], L2(Ω))

under the condition
(N − 4)α ≤ 4

and assuming h ∈ W 1,1(0, T ;L2(Ω)), the additional regularity condition (u0, u1) ∈
H4(Ω) × H2

0 (Ω)) in the case of BC (4.7)(resp. (∆u0, u1) ∈ (H2 ∩ H1
0 (Ω)))2 in the

case of BC (4.6) imply that the solution is strong in the sense of definition 2.1.

Corollary 4.5. Let 0 < α < β and assume h ∈ L∞(0, T ;L2(Ω)), (N −4)α ≤ 4. Then
there is a constant C > 0 such for any (weak) solution u of (4.5) satisfying either (4.2)
or (4.3)we have

∀t ∈ (0, T ),

∫
Ω

[
u′2(t, x) + |∆u|2(t, x)

]
dx ≤ Ct−λ

with

λ = max{ 2

α
,
(α + 1)(β + 2)

β − α
}
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Proof. We apply Theorem 3.1 with

H = L2(Ω), X = Lα+2(Ω) Y = Lβ+2(Ω)

and V = H2 ∩ H1
0 (Ω) in the case of BC (4.6) ; V = H2

0 (Ω) in the case of BC (4.7).
The result is immediate for strong solutions and follows by density in the case of weak
solutions. �

Corollary 4.6. Under the hypotheses of the previous corollary, there are constants
C1, C2 > 0 such for any (weak) solution u of (4.1) satisfying either (4.2) or (4.3)we
have for all t ∈ (0, T )

||u(t, .)||Lβ+2(Ω) ≤ C1t
−µ with µ = max

{
2

α(β + 2)
,
(α + 1)

β − α

}
||u(t, .)||H2(Ω) + ||u′(t, .)||L2(Ω) ≤ C1t

−ν with ν = max

{
1

α
,
(α + 1)(β + 2)

2(β − α)

}
Remark 4.7. As previously we do not understand why we get different bounds for the
Lβ+2 norm and the H2 norm of u.

4.3 A Kirchhoff equation with averaged damping

Let Ω be a bounded domain of RN . Given the positive constants α, β, c and the real
constants λ, µ, we consider the equation

u′′−
(∫

Ω

|∇u|2dx
)β

2

∆u+ c

(∫
Ω

|u′|2dx
)α

2

u′−λu−µu′ = 0 (t, x) ∈ (0, T )×Ω (4.8)

with either Dirichlet homogeneous boundary conditions (4.2)or Neumann homogeneous
boundary conditions (4.3) the initial-value problem corresponding to (4.8) is not presently
known to be well-posed in any classical regularity class except for analytic initial data
satisfying compatibility conditions. However if

(u(0), u′(0)) = (u0, u1)

is a pair of finite linear combinations of eigen-functions of the Laplacian, then the
equation is equivalent to a finite dimensional system of ODEs and then the problem is
well-posed with a solution which is trivially strong in the sense of definition 2.1. For
such solutions our main result is applicable, and we get a universal bound in the energy
space. We skip the details which are fairly obvious, the situation is in fact identical to
the case of scalar equation.
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Corollary 4.8. Let 0 < α < β . Then there is a constant C > 0 such for any solution
u of (4.1) satisfying either (4.2) or (4.3) and having as initial conditions a pair of finite
linear combinations of eigen-functions of the Laplacian, we have

∀t ∈ (0, T ),

∫
Ω

u′2(t, x)dx+

[∫
Ω

|∇u|2(t, x)dx

]1+β
2

≤ Ct−λ

with

λ = max{ 2

α
,
(α + 1)(β + 2)

β − α
}

Corollary 4.9. Under the hypotheses of the previous corollary, there are constants
C1, C2 > 0 such for any (weak) solution u of (4.1) satisfying either (4.2) or (4.3)we
have for all t ∈ (0, T )

||u(t, .)||H1(Ω) ≤ C1t
−µ with µ = max

{
2

α(β + 2)
,
(α + 1)

β − α

}
||u′(t, .)||L2(Ω) ≤ C1t

−ν with ν = max

{
1

α
,
(α + 1)(β + 2)

2(β − α)

}
Remark 4.10. Of course a similar result for t small would be applicable to strong
solutions of (1.5), but an existence theory of both strong and weak solutions is missing
here as in the conservative case, in particular no existence result is known with a life
time bounded away from 0 for large initial energies.

5 Negative results in the PDE case

The general theorem 3.1 is optimal since it is already the case in the particular case of
scalar ODEs as recalled in the inroduction. However it is not useless to summarize the
impact of counterexamples in the framework of PDEs .

5.1 The semilinear wave equation with Neumann boundary
conditions

More specifically let us consider the model equation

u′′ −∆u+ |u|βu+ |u′|αu′ = 0

with Neumann boundary conditions. In this case, since solutions homogeneous in space
coincide with the solutions of the ODE, we know from Souplet’s Theorem 1 in [11] that
for β ≤ α, the universal bound does not exist.
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5.2 The semilinear wave equation with Dirichlet boundary con-
ditions

In that case, we know from Theorem 1 by Ana Carpio [4] that for the equation

u′′ −∆u+ |u′|αu′ = 0

the universal bound does not exist. It would be interesting to construct a counterexam-
ple for the model equation (1.4) with 0 < β ≤ α, but this does not seem to follow from
any result presently established.

5.3 Kirchhoff’s equation.

For the equation (1.6), any solution for which both initial data are multiples of the same
eigenfunction of the Laplacian is the product of the eigenfunction with solutions of a
scalar ODE of the form (1.1), therefore Theorem 1 of [11] implies that for β ≤ α, the
universal bound does not exist.

6 Universal decay bounds when h = 0.

Here we state, in order to be complete, the consequences of uniform boundedness for
t > 0 on the asymptotic form of trajectories for t large when h = 0. We limit the
statements to the case of the wave equation, the other cases are left to the reader. Here
the results will be different for Dirichlet and Neumann. More precisely we have

Proposition 6.1. Let 0 < α < β and (N − 2)β ≤ 2. Then for any pair of constants
b, c > 0 and λ < λ1(Ω) there is a constant D > 0 such that for any weak solution u of

u′′ −∆u+ b|u|βu− λu+ c|u′|αu′ = 0, (t, x) ∈ R+ × Ω

with boundary conditions (4.2) we have

∀t ≥ 1,

∫
Ω

[
u′2(t, x) + |∇u|2(t, x)

]
dx ≤ Dt−

2
α (6.1)

Proof. We set

E(t) :=
1

2

∫
Ω

[
u′2(t, x) + |∇u|2(t, x)− λu2(t, x)

]
dx+

b

β + 2

∫
Ω

|u|β+2(t, x)dx

=:
1

2
|u′|2 + F (u(t))

and after observing that

E ′ = −c||u′||α+2
Lα+2(Ω) := −c||u′||α+2

α+2

11



we introduce the modified energy

Φ(t) := E(t) + εE(t)γ(u, u′) (6.2)

where γ and ε > 0 will be chosen later. First we know that 0 ≤ E(t) ≤ M for t ≥ 1/2
and since E dominates the inner product (u, u′) , for all ε small enough we shall have

∀t ≥ 1/2,
1

2
E ≤ Φ ≤ 2E

Moreover since the energy is non-increasing, either it vanishes on a halfline [T,∞) or
we may assume E > 0 for t ≥ 1/2. Now

Φ′ = E ′(1 + γεE(t)γ−1(u, u′)) + εE(t)γ(|u′|2 + 〈u′′, u〉)

and for ε small enough this yields

∀t ∈ (0, T ),Φ′ ≤ − c
2
||u′||α+2

α+2 + εE(t)γ(|u′|2 + 〈u′′, u〉) (6.3)

Let us for the moment forget about the term εE(t)γ|u′|2 which will appear a second
time later and will be estimated at the end. We compute

〈u′′, u〉 = 〈∆u+ λu− b|u|βu, u〉 − 〈c|u′|αu′, u〉 ≤ −2F (u) + δ||u||α+2
α+2 + C(δ)||u′||α+2

α+2

≤ −2F (u) + δKMαF (u) + C(δ)||u′||α+2
α+2 ≤ −F (u) + C||u′||α+2

α+2

by a suitable choice of δ. By using the identity F (u) = E − 1
2
|u′|2 we now obtain

Φ′ ≤ −εE1+γ − c

2
||u′||α+2

α+2 + 2εE(t)γ|u′|2 + C ′ε||u′||α+2
α+2

so that for ε small enough we find

Φ′ ≤ −εE1+γ − c

4
||u′||α+2

α+2 + 2εE(t)γ|u′|2

We now choose γ = α
2
. Then we can see that α+2

α
γ = 1 + γ and

2εE(t)γ|u′|2 ≤ 1

2
εE1+γ +Nε||u′||α+2

α+2

Finally by choosing ε sufficiently small we find

∀t ≥ 1/2, Φ′ ≤ −ε
2
E1+γ ≤ − ε

22+γ
Φ1+γ

and the conclusion follows in one step �

Remark 6.2. Even in one dimension, we do not know whether this estimate is optimal.
This is connected to a classical problem for individual trajectories of the simpler equation

u′′ −∆u+ |u′|αu′ = 0

cf. e.g. [9] , Problem 4.1.
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Proposition 6.3. Let 0 < α < β and (N − 2)β ≤ 2. Then for any pair of constants
b, c > 0 there are positive constants D1, D2 such that for any weak solution u of

u′′ −∆u+ b|u|βu+ c|u′|αu′ = 0, (t, x) ∈ R+ × Ω

with boundary conditions (4.3) we have

∀t ≥ 1, ||u(t, .)||Lβ+2(Ω) ≤ D1t
−µ with µ = min

{
2

α(β + 2)
,
(α + 1)

β − α

}
(6.4)

∀t ≥ 1, ||u′(t, .)||L2(Ω) + ||∇u(t, .)||L2(Ω,RN ) ≤ D2t
−ν (6.5)

with

ν = min

{
1

α
,
(α + 1)(β + 2)

2(β − α)

}
(6.6)

Proof. The proof is similar to the previous one with the same energy (but with λ = 0)
and the more complicated choice γ = max{α

2
, β−α

(α+1)(β+2)
}. Actually with respect to the

previous proof there are two non-trivial additional steps. First we need that |u||u′|Eγ−1

be bounded. Since |u||u′| ≤ CE( 1
2

+ 1
β+2

) it is sufficient to have 1
2

+ 1
β+2
≥ 1 − γ or

equivalently γ ≥ β
2(β+2)

If α ≥ β
(β+2)

we can choose γ = α
2

as in the Dirichlet case.
Otherwise we need

γ ≥ β

2(β + 2)

Now there is another problematic term coming from the product Eγ〈u′′, u〉 , we need to
control Eγ||u′||α+1

α+2||u||α+2 by δE1+γ + C(δ)||u′||α+2
α+2. This reduces to the condition

(α + 2)(γ +
β

β + 2
) ≥ 1 + γ

Finally we need

γ(α + 1) ≥ β − α
β + 2

It is then not difficult to check that if α ≥ β
(β+2)

, the choice γ = α
2

fulfills this second

condition. On the other hand if α < β
(β+2)

, the choice γ = β−α
(α+1)(β+2)

satisfies the second

condition, but we also have β−α
(α+1)(β+2)

≥ β
2(β+2)

so that the first condition is also satisfied.
The remaining details are left to the reader �

Remark 6.4. Here the consideration of solutions constant in space shows that our
estimates are optimal, except maybe for the estimate on ||∇u(t, .)||L2(Ω,RN ).
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