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Four-component relativistic range-separated density-functional theory:
Short-range exchange local-density approximation

Julien Paquier∗ and Julien Toulouse†
Laboratoire de Chimie Théorique (LCT), Sorbonne Université and CNRS, F-75005 Paris, France

(Dated: Octobre 19, 2018)

We lay out the extension of range-separated density-functional theory to a four-component relativistic frame-
work using a Dirac-Coulomb-Breit Hamiltonian in the no-pair approximation. This formalism combines a wave-
function method for the long-range part of the electron-electron interaction with a density(-current) functional
for the short-range part of the interaction. We construct for this formalism a short-range exchange local-density
approximation based on calculations on a relativistic homogeneous electron gas with a modified Coulomb-Breit
electron-electron interaction. More specifically, we provide the relativistic short-range Coulomb and Breit ex-
change energies per particle of the relativistic homogeneous electron gas in the form of Padé approximants
which are systematically improvable to arbitrary accuracy. These quantities, as well as the associated effective
Coulomb-Breit exchange hole, show the important impact of relativity on short-range exchange effects for high
densities.

I. INTRODUCTION

Range-separated density-functional theory (RS-DFT) (see,
e.g., Refs. 1 and 2) is an alternative to Kohn-Sham density-
functional theory (DFT) [3] for electronic-structure calcula-
tions of atoms, molecules, and solids. It permits to rigorously
combine an explicit wave-function calculation for the long-
range part of the electron-electron interaction with a compact
density functional for the complement short-range part of the
electron-electron interaction. RS-DFT leads to a faster basis
convergence than standard wave-function methods [4] and can
provide improvement over usual Kohn-Sham DFT approxi-
mations for the description of strong-correlation effects (see,
e.g., Refs. 5 and 6), weak intermolecular interactions (see,
e.g., Refs. 7–9), fractionally charged subsystems (see, e.g.,
Refs. 10 and 11), and electronic excitation energies (see, e.g.,
Refs. 12–14).

For the description of compounds with heavy elements, rel-
ativistic effects have to be incorporated into RS-DFT. A sim-
ple approach that has been used consists in using standard
scalar-relativistic effective-core potentials in RS-DFT [15,
16]. A more sophisticated approach was developed by Kul-
lie and Saue [17] who extended RS-DFT to a four-component
relativistic Dirac-Coulomb Hamiltonian, using second-order
Møller-Plesset (MP2) perturbation theory for the long-range
part of the calculation and usual non-relativistic short-range
semi-local exchange-correlation density-functional approxi-
mations. To make this approach more rigorous and possi-
bly more accurate, especially for core properties, relativis-
tic short-range density-functional approximations should be
used. A number of relativistic density-functional approxi-
mations have been proposed for four-component relativistic
Kohn-Sham DFT (see, e.g., reviews in Refs. 18 and 19), but
no relativistic short-range density-functional approximations
has been developed yet. This is unfortunate since relativistic
effects are most important in spatial regions of high density
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whose contribution to the energy in RS-DFT mainly comes
from the short-range exchange-correlation density functional.

In the present work, we remedy to this limitation by con-
structing a relativistic short-range exchange local-density ap-
proximation (LDA) based on a relativistic homogeneous elec-
tron gas (RHEG) with a modified electron-electron interac-
tion. The choice to focus on the exchange energy and not on
the correlation energy is motivated by the fact that, at high
densities where relativistic effects are important, exchange
largely dominates correlation, at least in not very strongly cor-
related systems. The choice to target a LDA, as opposed to a
generalized-gradient approximation (GGA), is motivated by
the fact that LDA is the standard first-level approximation to
consider in DFT. Moreover, even though corrections to the
relativistic LDA were shown to be important for the case of
the full-range electron-electron interaction [20, 21], such cor-
rections beyond LDA are expected to be much smaller for the
case of a short-range electron-electron interaction, as known
in non-relativistic RS-DFT [2, 22]. Beyond the goal of using
this relativistic short-range exchange LDA in RS-DFT calcu-
lations of molecular and solid-state systems, the present work
also aims at analyzing the importance of relativistic effects on
the short-range exchange energy.

The paper is organized as follows. In Section II,
we briefly lay out the formalism of RS-DFT for a four-
component relativistic Dirac-Coulomb-Breit Hamiltonian. In
Sections III A, III B, and III C, we review the calculation of the
full-range exchange energy per particle of the RHEG with the
standard Dirac-Coulomb-Breit Hamiltonian in a way that will
prepare for the extension to the short-range case. We discuss
the importance of the separate Coulomb and Breit contribu-
tions to the exchange energy per particle and to the exchange
hole. In Section III D, we derive the exchange energy per par-
ticle of a RHEG with the short-range version of the Coulomb-
Breit electron-electron interaction. Whereas the exchange en-
ergy per particle of a non-relativistic homogeneous electron
gas with a short-range interaction can be obtained analytically
quite easily [1, 23, 24], the calculation of the relativistic ana-
logue turned out to be quite a formidable task. We did not
manage to obtain a closed-form expression for the relativistic
short-range exchange energy per particle, but we could ex-
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press it as a divergent series in inverse powers of the speed
of light that can be summed to high accuracy using Padé ap-
proximants, which is suitable for all practical purposes. In
Section III E, we derive expansions of the relativistic short-
range exchange energy per particle for small and large values
of the range-separation parameter, and use them to construct a
simple approximation to the relativistic short-range exchange
energy per particle which can be used as an alternative to the
Padé approximants. Finally, Section IV contains our conclu-
sions and prospects for future work. Details of the calcula-
tions and the complete expressions obtained are given in the
Supplementary Information [25].

II. RELATIVISTIC RANGE-SEPARATED
DENSITY-FUNCTIONAL THEORY

A. No-pair Dirac-Coulomb-Breit wave-function theory

For relativistic electronic-structure calculations, a good
starting point is the Dirac-Coulomb-Breit (DCB) electronic
Hamiltonian in the no-pair approximation [26]

ĤDCB
+ = ĤD

+ + ŴCB
+ , (1)

where ĤD
+ is the one-electron Dirac Hamiltonian and ŴCB

+ is
the two-electron Coulomb-Breit (CB) interaction. In second-
quantized position representation, ĤD

+ can be written as, in
atomic units,

ĤD
+ =

∫
dr ψ̂†+(r)

[
c (α · p) + β mc2 + vne(r)I4

]
ψ̂+(r), (2)

where p = −i∇r is the momentum operator, c = 137.036 a.u.
is the speed of light, and m = 1 a.u. is the electron mass that
has been kept for clarity, vne(r) is the electron-nuclei scalar
potential energy operator, I4 is the 4 × 4 identity matrix, and
α and β are the 4 × 4 Dirac matrices

α =

(
02 σ
σ 02

)
and β =

(
I2 02
02 −I2

)
, (3)

where σ = (σx,σy,σz) is the 3-dimensional vector of the 2×2
Pauli matrices, and 02 and I2 are the 2 × 2 zero and identity
matrices, respectively. In Eq. (2), ψ̂+(r) and ψ̂†+(r) are the (pro-
jected) annihilation and creation field operators

ψ̂+(r) =

+∑
p

ψp(r) âp and ψ̂†+(r) =

+∑
p

ψ†p(r) â†p, (4)

where the sum is over a set of orthonormal 4-component-
spinor orbitals {ψp(r)} which are positive-energy eigenfunc-
tions of a Dirac Hamiltonian with some potential [27], and
âp and â†p are the corresponding annihilation and creation
operators of these orbitals. The restriction in the sum to
positive-energy states corresponds to the no-pair approxi-
mation, in which negative-energy states corresponding to
positronic states are disregarded. The two-electron Coulomb-

Breit interaction term is written as

ŴCB
+ =

1
2

"
dr1dr2 ψ̂

†
+(r1)ψ̂†+(r2)wCB(r12)ψ̂+(r2)ψ̂+(r1), (5)

where wCB(r12) is the sum of the Coulomb and Breit contri-
butions

wCB(r12) = wC(r12) + wB(r12), (6)

where r12 = r1 − r2 and r12 = |r12|. The Coulomb interaction
is

wC(r12) = wee(r12) (I4)1 (I4)2, (7)

where wee(r12) = 1/r12, and (I4)1 and (I4)2 are the 4×4 identity
matrices acting on electron 1 and 2, respectively. The Breit
interaction is

wB(r12) = −
1
2

wee(r12)
α1 ·α2 +

(α1 · r12) (α2 · r12)
r2

12

 ,(8)

where the Dirac matrices α1 and α2 act on electron 1 and 2,
respectively. The Coulomb-Breit interaction corresponds to
the single-photon exchange electron-electron scattering am-
plitude in quantum-electrodynamics (QED) evaluated with the
zero-frequency limit of the photon propagator in the Coulomb
electromagnetic gauge. More specifically, the instantaneous
Coulomb interaction corresponds to the longitudinal compo-
nent of the photon propagator, whereas the Breit interaction is
obtained from to the zero-frequency transverse component of
the photon propagator. The Breit interaction comprises the in-
stantaneous magnetic Gaunt interaction, −wee(r12)α1 ·α2, and
the remaining lowest-order retardation correction (see, e.g.,
Ref. 28).

The no-pair Hamiltonian is not unique since it depends on
the choice of the set of orbitals {ψp}. It has been proposed [29,
30] to define the no-pair relativistic ground-state energy of
a N-electron system using a minmax principle, that we will
formally write as

E = min
Ψ

[
max
{ψp}
〈Ψ|ĤD

+ + ŴCB
+ |Ψ〉

]
, (9)

where the maximization is done with respect to the set of
positive-energy orbitals {ψp} [on which the Hamiltonian is
projected via Eq. (4)] by rotations with its complement set
of negative-energy orbitals, and the minimization is done
with respect to normalized multideterminant wave functions
Ψ within the N-electron space generated by the set of positive-
energy orbitals {ψp}. In practice, Eq. (9) can be realized with
a multiconfiguration self-consistent-field (MCSCF) algorithm
which targets a saddle point in the parameter space [30–32].
For one-electron Dirac Hamiltonians, this type of minmax
principle appears well founded (see Refs. 33–36). For the no-
pair Dirac-Coulomb-Breit Hamiltonian with a correlated wave
function, to the best of our knowledge this minmax principle
has not been rigorously examined mathematically but the re-
sults of Ref. 30 on two-electron systems suggests that it is
indeed a reasonable definition of the no-pair ground-state en-
ergy.
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B. No-pair Dirac-Coulomb-Breit range-separated
density-functional theory

The Dirac-Coulomb RS-DFT introduced by Kullie and
Saue [17] can be readily extended to a Dirac-Coulomb-Breit
Hamiltonian. We will do so using the general formalism
of relativistic current-density-functional theory [37–39], even
though we do not consider any external vector potential.

The starting point is the following decomposition of the
Coulomb-form electron-electron potential wee(r12) = 1/r12
appearing in Eqs. (7) and (8)

wee(r12) = wlr,µ
ee (r12) + wsr,µ

ee (r12), (10)

where wlr,µ
ee (r12) = erf(µr12)/r12 and wsr,µ

ee (r12) = erfc(µr12)/r12
are long-range and short-range potentials, respectively. Here,
erf(x) = (2/

√
π)

∫ x
0 e−t2

dt is the error function, erfc(x) =

1 − erf(x) is the complementary error function, and µ is the
range-separation parameter acting like an inverse smooth cut-
off radius. We then assume that the no-pair relativistic ground-
state energy can be expressed as

E = min
Ψ

[
max
{ψp}

{
〈Ψ|ĤD

+ + ŴCB,lr,µ
+ |Ψ〉 + ĒCB,sr,µ

Hxc [nΨ, jΨ]
}]
, (11)

where, as before, the maximization is over the set of project-
ing positive-energy orbitals {ψp} by rotations with its com-
plement set of negative-energy orbitals and the minimiza-
tion is over normalized multideterminant wave functions Ψ

within the N-electron space generated by the set of positive-
energy orbitals. In Eq. (11), ŴCB,lr,µ

+ is the long-range version
of the two-electron Coulomb-Breit interaction as defined by
Eqs. (5)-(8) but with the substitution wee(r12) −→ wlr,µ

ee (r12),
and ĒCB,sr,µ

Hxc [nΨ, jΨ] is a complement short-range Coulomb-
Breit Hartree-exchange-correlation functional of the electron
density nΨ(r) = 〈Ψ|n̂(r)|Ψ〉 and current electron density
jΨ(r) = 〈Ψ|ĵ(r)|Ψ〉, where n̂(r) = ψ̂†+(r)ψ̂+(r) and ĵ(r) =

ψ̂†+(r)cαψ̂+(r) are the density and current density operators,
respectively. The term “complement short-range” means
that the functional contains not only a pure short-range con-
tribution but also a mixed long-range/short-range contribu-
tion [40]. We note that, even though Eq. (11) seems a natural
extension of non-relativistic RS-DFT [1, 2], the existence of
a universal density-current functional ĒCB,sr,µ

Hxc [n, j] giving the
no-pair relativistic ground-state energy via the minmax pro-
cedure of Eq. (11) is not established. Indeed, similarly to the
problem of defining static density functionals for excited-state
energies (see, e.g., Refs. 41 and 42), it seems a priori only
possible to define a no-pair relativistic functional which either
is universal but satisfies only a stationary principle (instead of
a minmax principle) or satisfies a minmax principle but is not
universal (i.e., depending on an external potential via the pro-
jecting orbitals {ψp}). It might be necessary to go at the QED
level to rigorously formulate a RS-DFT approach, as it was
done for Kohn-Sham DFT [18]. These aspects are beyond the
scope of the present work.

The limiting cases of the relativistic RS-DFT approach
of Eq. (11) should be mentioned. For µ → ∞, the long-

range interaction reduces to the Coulomb form, wlr,µ→∞
ee (r12) =

1/r12, and the complement short-range functional vanishes,
ĒCB,sr,µ→∞

Hxc [n] = 0, so Eq. (11) reduces to the wave-function
theory of Eq. (9). For µ = 0, the long-range interac-
tion vanishes, wlr,µ=0

ee (r12) = 0, and the complement short-
range functional reduces to a full-range density functional,
ĒCB,sr,µ=0

Hxc [n] = ECB
Hxc[n], so it reduces to a no-pair relativis-

tic Kohn-Sham DFT method (see, e.g., Ref. 43), and the cor-
responding minimizing wave function in Eq. (11) is a single
Slater determinant Ψµ=0 = Φ.

We decompose now the short-range density-current func-
tional into Hartree, exchange, and correlation contributions

ĒCB,sr,µ
Hxc [n, j] = ECB,sr,µ

H [n, j] + ECB,sr,µ
x [n, j] + ĒCB,sr,µ

c [n, j].
(12)

The short-range Hartree contribution, containing Coulomb
and Breit contributions, is an explicit functional of the den-
sity n and the current j

ECB,sr,µ
H [n, j] =

1
2

"
wsr,µ

ee (r12) n(r1)n(r2) dr1dr2

−
1

4c2

["
wsr,µ

ee (r12) j(r1) · j(r2) dr1dr2

+

"
wsr,µ

ee (r12)
j(r1) · r12 j(r2) · r12

r2
12

dr1dr2

]
. (13)

Note that, in relativistic Kohn-Sham DFT, the Hartree en-
ergy is usually defined with the full QED photon propaga-
tor in the Feynman gauge [18]. Here, instead, we define the
short-range Hartree energy with the two-electron Coulomb-
Breit interaction in the Coulomb gauge, in order to be consis-
tent with the corresponding long-range wave-function contri-
bution. The short-range exchange density-current functional
is consequently defined by

ECB,sr,µ
x [n, j] = 〈Φ[n, j]| ŴCB,sr,µ

+ |Φ[n, j]〉 − ECB,sr,µ
H [n, j],

(14)

where Φ[n, j] is the Kohn-Sham determinant associated with
density n and current j, and ŴCB,sr,µ

+ is the short-range version
of the two-electron Coulomb-Breit interaction obtained as in
Eqs. (5)-(8) but with the substitution wee(r12) −→ wsr,µ

ee (r12). In
Eq. (12), ĒCB,sr,µ

c [n, j] is the complement short-range correla-
tion functional including all interaction effects beyond Hartree
and exchange. Finally, note that, for closed-shell systems, the
current vanishes, j = 0, and thus we have simply short-range
functionals of the density only. We only consider this case in
this work.

In practice, the application of the relativistic RS-DFT ap-
proach of Eq. (11) requires to use approximations for the
long-range wave-function part and for the short-range ex-
change and correlation functionals. For the long-range wave-
function part, one can use standard approximations: Hartree-
Fock, MP2, MCSCF, etc. For the short-range functionals, no
approximation including the relativistic effects has been pro-
posed so far. The rest of paper is devoted to the development
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of a relativistic LDA for the short-range exchange functional

ECB,sr,µ
x,LDA [n] =

∫
n(r) εCB,sr,µ

x

(
n(r)

)
dr, (15)

where ε
CB,sr,µ
x (n) is the exchange energy per particle of a

RHEG with the short-range two-electron Coulomb-Breit in-
teraction. The calculation of the latter quantity is quite com-
plicated and was performed with the help of the software Wol-
fram Mathematica [44].

III. EXCHANGE EFFECTS IN THE RELATIVISTIC
HOMOGENEOUS ELECTRON GAS

We consider a homogeneous electron gas, i.e. a box of vol-
ume V containing N electrons with electronic density n =

N/V characteristic of the system and a uniform background
of positive charges with density nb equal to n in order to en-
sure the electroneutrality of the system. The electron gas is
studied in the thermodynamic limit, i.e. N → ∞ and V → ∞
while n = N/V is kept constant, the positive background can-
celling the diverging Hartree energy term. Such an electron
gas is considered to be relativistic when the Fermi wave vec-
tor kF = (3π2n)1/3 is non negligible compared to the speed of
light c. This must really be understood as a comparison be-
tween the energy related to the Fermi wave vector ~kFc and
the rest energy mc2 where we take these quantities in atomic
units.

In order to get an idea of the maximal value of kF that
one encounters in an heavy element, one may consider a 1s
hydrogen-like orbital, ψ1s(r) =

(
Z3/π

)1/2e−Zr where Z is the
atomic number, and calculate the density of this doubly occu-
pied 1s orbital at the nucleus: n = 2 |ψ1s(0)|2 = 2 Z3/π corre-
sponding to a Fermi wave vector of kF = (6π)1/3 Z = 2.66 Z.
The heaviest elements having atomic numbers Z of about 100,
this corresponds to a maximal value of kF of nearly 300 a.u..

A. One-electron part

The form of the non-interacting one-electron Dirac equa-
tion for this homogeneous electron gas is(

c(α · p) + βmc2
)
ψk,σ(r) = Ek ψk,σ(r), (16)

where ψk,σ(r) is a one-electron wave function with wave vec-
tor k and “spin” index σ =↑, ↓ associated with the positive-

energy eigenvalue

Ek =
√

k2c2 + m2c4. (17)

The wave functions ψk,σ(r) are four-component spinors of the
form

ψk,σ(r) =

(
ϕk,σ(r)
χk,σ(r)

)
, (18)

where each component is itself a two-component spinor. The
large component ϕk,σ(r) has a plane-wave form

ϕk,σ(r) =
1
√

V

√
Ek + mc2

2Ek
e−ik·rϕσ, (19)

and the small component is obtained from the large compo-
nent by

χk,σ(r) =
c(σ · k)

Ek + mc2ϕk,σ(r), (20)

and ϕσ is a two-component spin part with ϕ↑ =
( 1

0

)
and

ϕ↓ =
( 0

1

)
. What we call “spin” here really refers to the in-

dex σ identifying the two components of the large-component
spinor.

As in the non-relativistic case, we will calculate the
exchange energy of the relativistic homogeneous electron
gas using these non-interacting one-electron wave functions
ψk,σ(r). We note however that, in the relativistic case, there
is in principle an ambiguity on which one-electron wave
functions to use to calculate the exchange energy. Indeed,
adding for example the Hartree-Fock exchange potential in
Eq. (16) will a priori lead to different one-electron wave
functions since translational symmetry only imposes the real-
space plane-wave form but not the spinor components. In the
non-relativistic case, this ambiguity does not appear since in
this case the one-electron plane-wave wave functions are com-
pletely determined by translational symmetry, independently
of the one-electron potential used. We leave further discus-
sions of this interacting point for future work.

B. Full-range Coulomb-Breit exchange energy

As the preparation for the case of the short-range Coulomb-
Breit interaction, we recall the form of the full-range
Coulomb-Breit exchange energy. The Coulomb exchange
energy per particle can be expressed as [39, 45] (see Ap-
pendix A)

εC
x = −

3 kF

4π

(
5
6

+
1
3

c̃2 +
2
3

√
1 + c̃2 arcsinh

(
1
c̃

)
−

1
3

(
1 + c̃2

)2

ln
(
1 +

1
c̃2

)
−

1
2

(
√

1 + c̃2 − c̃2arcsinh
(

1
c̃

))2 )
, (21)
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where c̃ = c/kF. The Breit exchange energy per particle has a similar form 46 (see Appendix A)

εB
x =

3 kF

4π

(
1 − 2

(
1 + c̃2

)(
1 − c̃2

(
− 2 ln (c̃) + ln

(
1 + c̃2

) ))
+ 2

(
√

1 + c̃2 − c̃2arcsinh
(

1
c̃

))2 )
. (22)

The Breit exchange energy per particle is an approximation to
the exchange energy per particle obtained with the transverse
component of the full QED photon propagator [38, 39, 45].
The exchange energy per particle obtained with the full QED
photon propagator has in fact a simpler expression than the
Coulomb-Breit one, thanks to the cancellation of many terms
between the Coulomb and transverse components,

εQED
x = −

3 kF

4π

(
1 −

3
2

(
√

1 + c̃2 − c̃2arcsinh
(

1
c̃

))2 )
. (23)

It is interesting to consider the non-relativistic and ultra-
relativistic limits of the Coulomb and Breit exchange energies.
In the non-relativistic (NR) limit c̃ → ∞ (or equivalently the
low-density limit), only the Coulomb contribution survives

εC,NR
x = −

3 kF

4π
and εB,NR

x = 0, (24)

which is consistent with the fact that the Breit interaction
is a purely relativistic phenomenon. In the opposite ultra-
relativistic (UR) limit c̃→ 0 (or equivalently the high-density
limit), we have

εC,UR
x = −

(1 + ln4) kF

4π
and εB,UR

x =
3 kF

4π
, (25)

i.e. the Breit contribution becomes the opposite of the non-
relativistic Coulomb exchange energy, and is larger in abso-
lute value than the Coulomb contribution, implying that the
total exchange energy becomes positive.

The different exchange energies per particle are plotted in
Figure 1 as functions of the Fermi wave vector kF, up to
kF = 300 a.u. which is about the largest value that could
be encountered in an heavy element. We observe that, com-
pared to the non-relativistic energy energy, relativity always
reduces the exchange energy in absolute value, and this ef-
fect increases with the density. The relativistic effects for the
Coulomb exchange contribution remain relatively small, even
at high densities. By contrast, the Breit exchange contribu-
tion has a much larger effect at sufficiently high densities. The
Coulomb-Breit exchange energy per particle is a good approx-
imation to the exchange energy per particle obtained with the
full QED photon propagator for kF . c ≈ 137 a.u., which is
consistent with the fact that the Breit interaction constitutes
only the leading term in the expansion of the QED photon
propagator in 1/c.

Finally, we note that the exchange energy per particle cor-
responding to the Gaunt interaction can also be similarly ob-
tained, but it starts to deviate from the transverse exchange
energy obtained from the QED photon propagator for sub-
stantially smaller values of kF than the Breit exchange energy
does. For this reason, we prefer in this work to use the Breit

FIG. 1. Non-relativistic and relativistic exchange energies per par-
ticle for the Coulomb, Coulomb-Breit, and QED photon propagator
electron-electron interactions as functions of the Fermi wave vector
kF.

interaction.

C. Effective Coulomb-Breit exchange hole

A convenient way of analyzing the exchange effects in
terms of the interelectronic distance r12 is to introduce an ef-
fective Coulomb-Breit exchange hole nCB

x (r12) such that

εCB
x =

1
2

∫
nCB

x (r12) wee(r12) dr12. (26)

For the case of the Coulomb interaction, the associated ex-
change hole was derived by Ellis [47] and MacDonald and
Vosko [39] (see Appendix A)

nC
x (r12) = −

9
4

n
1

(kFr12)2

[
j1(kFr12)2 + (1 − λ)Aλ(kFr12)2

+ λBλ(kFr12)2
]
, (27)

with λ = 1/(1 + c̃2) and

Aλ(kFr12) =

∞∑
ν=0

(2ν + 1)!!
(2ν + 1)

jν+1(kFr12)
(

λ

kFr12

)ν
,

Bλ(kFr12) =

∞∑
ν=0

(2ν + 1)!!
(2ν + 1)

jν+2(kFr12)
(

λ

kFr12

)ν
, (28)
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where jν are the spherical Bessel functions. We have extended
this result to the case of the Breit interaction. The associated
exchange hole is (see Appendix A)

nB
x (r12) = −

9
2

n
1

(kFr12)2

[
− j1(kFr12)2 + (1−λ)Aλ(kFr12)2

]
.

(29)

To the best of our knowledge this expression had not been
derived before. This Breit exchange hole should not be in-
terpreted as a modification of the pair density, but simply as
giving after integration the Breit exchange energy.

Like the non-relativistic exchange hole, the relativistic
Coulomb exchange hole is normalized to −1∫

nC
x (r12)dr12 = −1, (30)

but the Breit exchange hole is not. When the density increases
from the low-density limit to the high-density limit, its inte-
gral varies from 0 to 1

0 ≤
∫

nB
x (r12)dr12 ≤ 1, (31)

which confirms that it should be considered as an effective
exchange hole with only purpose to give the Breit exchange
energy.

In the non-relativistic limit, corresponding to λ = 0, the
Coulomb exchange hole reduces to the well-known non-
relativistic form and the Breit exchange hole vanishes

nC,NR
x (r12) = −

9
2

n
j1(kFr12)2

(kFr12)2 and nB,NR
x (r12) = 0. (32)

In the opposite ultra-relativistic limit, corresponding to λ = 1,
we have

nC,UR
x (r12) = −

9
4

n
1

(kFr12)2

[
j1(kFr12)2 + B1(kFr12)2

]
,

and

nB,UR
x (r12) =

9
2

n
1

(kFr12)2 j1(kFr12)2, (33)

where we observe again the ultra-relativistic limit of the Breit
term is the exact opposite of the non-relativistic limit of the
Coulomb contribution.

In Figure 2, we plot the effective Coulomb-Breit exchange
pair-distribution function gCB

x (r12) = nCB
x (r12)/n for different

values of the density (or equivalently kF). For a low value of

the density, kF = 1 a.u., gCB
x (r12) has the usual shape of the ex-

change hole and is indistinguishable from the non-relativistic
calculation, with the on-top value being gCB

x (0) ≈ −1/2. For
the higher values of the density, kF = 137 and 274 u.a., we
observe that the Coulomb-Breit exchange hole becomes shal-
lower. In particular, for kF = 274 a.u., the Coulomb-Breit
exchange hole is almost flat, with a very small minimum not
located at r12 = 0 anymore. These dramatic modifications of
the exchange effects due to relativity underline the importance
of considering relativistic effects when calculating short-range

FIG. 2. Effective Coulomb-Breit exchange pair-distribution function
at different values of kF as a function of kFr12.

exchange energies in systems containing high-density regions.

D. Short-range Coulomb-Breit exchange energy per particle

Since we have previously calculated the Coulomb-Breit ex-
change hole, the most straightforward way of calculating the
short-range Coulomb-Breit exchange energy per particle is
to integrate the exchange hole with the short-range electron-
electron interaction

ε
CB,sr,µ
x =

1
2

∫
nCB

x (r12) wsr,µ
ee (r12) dr12. (34)

Unfortunately, we did not manage to calculate this integral
analytically. We thus instead follow the same route as for
the calculation of the full-range exchange energy (see Ap-
pendix A), i.e. integrating over space variables first. Similarly
to Eq. (A1), we obtain the short-range Coulomb exchange en-
ergy per particle as a Fourier-space integral where each wave
vector spans the volume of the Fermi sphere VkF
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ε
C,sr,µ
x = −

1
2n(2π)6

"
VkF

w̃sr,µ
ee (k12)

Ek1 Ek2 + (k1 · k2)c2 + c4

Ek1 Ek2

dk1dk2

=
3kF

4π

∫ 1

0

∫ 1

0
dk̃1dk̃2 k̃1k̃2

(
1√

c̃2 + k̃2
1

√
c̃2 + k̃2

2

[
k̃1k̃2 +

(
e−

( k̃1+k̃2
2µ̃

)2

− e−
( k̃1−k̃2

2µ̃

)2)
µ̃2

]

+
2c̃2 + k̃2

1 + k̃2
2 + 2

√
c̃2 + k̃2

1

√
c̃2 + k̃2

2

4
√

c̃2 + k̃2
1

√
c̃2 + k̃2

2

Ei

− (
k̃1 + k̃2

2µ̃

)2 − Ei

− (
k̃1 − k̃2

2µ̃

)2 + ln
(
(k̃1 − k̃2)2

)
− ln

(
(k̃1 + k̃2)2

) ), (35)

where w̃sr,µ
ee (k12) = (4π/k2

12)(1 − e−k2
12/4µ

2
) is the Fourier trans-

form of the short-range interaction in terms of the relative
wave vector k12 = |k12| with k12 = k1 − k2, Ei(x) =

−
∫ ∞
−x e−t/t dt is the exponential integral function, and we have

introduced the scaled variables µ̃ = µ/kF, k̃1 = k1/kF, and
k̃2 = k2/kF. Unfortunately we were unable to straightfor-
wardly calculate the double integral in Eq. (35). To circum-
vent this difficulty we first make an asymptotic expansion of

the integrand for c̃ → ∞ and then integrate term by term to
obtain the asymptotic series

ε
C,sr,µ
x ∼ kF

∞∑
i=0

α2i(µ̃)
c̃2i , (36)

where the coefficients α2i(µ̃) can be obtained analytically.
Their derivation being quite lengthy, it is discussed in detail
in the Supplementary Information [25]. We give here the first
three coefficients.

α0(µ̃) =
1

4π

(
− 3 + 4

√
π erf

(1
µ̃

)
µ̃ + 2

(
2e−

1
µ̃2 − 3

)
µ̃2 − 2

(
e−

1
µ̃2 − 1

)
µ̃4

)
,

α2(µ̃) =
1

12π

(
1 − 6

√
π erf

(1
µ̃

)
µ̃3 − 6

(
e−

1
µ̃2 − 3

)
µ̃4 + 12

(
e−

1
µ̃2 − 1

)
µ̃6

)
,

α4(µ̃) =
1

240π

(
− 13 + 12

√
π erf

(1
µ̃

) (
8 + 45µ̃2

)
µ̃3 + 12

(
4e−

1
µ̃2 − 45

)
µ̃4 + 24

(
13e−

1
µ̃2 − 40

)
µ̃6

)
− 648

(
e−

1
µ̃2 − 1

)
µ̃8

)
. (37)

However, the asymptotic series of Eq. (36) diverges for c̃ < 1,
i.e. for kF & 137 a.u.. To avoid this divergence, we use a
diagonal Padé approximant [48] of even order M

ε
C,sr,µ
x,Padé = kF

∑M/2
i=0 A2i(µ̃)/c̃2i∑M/2
i=0 B2i(µ̃)/c̃2i

, (38)

with the choice B0(µ̃) = 1 without loss of generality, and the
other coefficients A2i(µ̃) and B2i(µ̃) are uniquely determined,
for a given M, from the coefficients α2i(µ̃) so that the asymp-
totic expansion of the Padé approximant matches the asymp-

totic expansion of Eq. (36) up to order 2M (see Appendix B).
For example, we give here the coefficients for the diagonal
Padé approximant of order 2

A0(µ̃) = α0(µ̃) and A2(µ̃) = α2(µ̃) −
α0(µ̃)α4(µ̃)
α2(µ̃)

,

B2(µ̃) = −
α4(µ̃)
α2(µ̃)

. (39)

We proceed similarly for the short-range Breit exchange en-
ergy per particle. Adapting Eq. (A2) to the case of the short-
range interaction gives the Fourier-space integral

ε
B,sr,µ
x =

1
2n(2π)6

"
VkF

w̃sr,µ
ee (k12)

c2

Ek1 Ek2

(
Ek2 + c2

Ek1 + c2 k2
1 +

Ek1 + c2

Ek2 + c2 k2
2

)
dk1dk2

=
3kF

4π

∫ 1

0

∫ 1

0
dk̃1dk̃2 k̃1k̃2

c̃2 −

√
c̃2 + k̃2

1

√
c̃2 + k̃2

2√
c̃2 + k̃2

1

√
c̃2 + k̃2

2

Ei

− (
k̃1 + k̃2

2µ̃

)2 − Ei

− (
k̃1 − k̃2

2µ̃

)2 + ln
(
(k̃1 − k̃2)2

)
− ln

(
(k̃1 + k̃2)2

) ,(40)

which, after asymptotically expanding the integrand for c̃ → ∞ and integrating term by term, turns into the asymptotic se-
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FIG. 3. Left plot: Exact full-range Coulomb-Breit exchange energy per particle and its Padé approximants of orders 2, 4, and 6 as functions of
the Fermi wave vector kF. Right plot: Relative errors, ∆εCB

x =
∣∣∣(εCB

x,Padé − ε
CB
x )/εCB

x

∣∣∣, of the Padé approximants compared to the exact full-range
Coulomb-Breit exchange energy per particle.

ries

ε
B,sr,µ
x ∼ kF

∞∑
i=0

β2i(µ̃)
c̃2i , (41)

where the coefficients β2i(µ̃) can be obtained analytically. The
first three of them are

β0(µ̃) = 0,

β2(µ̃) =
1

60π

(
25 − 12

√
π
(
3 + 5µ̃2

)
erf

(1
µ̃

)
µ̃ + 18

(
5 − 2e−

1
µ̃2
)
µ̃2 + 6

(
15 − 7e−

1
µ̃2
)
µ̃4 − 48

(
1 − e−

1
µ̃2
)
µ̃6

)
,

β4(µ̃) =
1

280π

(
− 77 + 12

√
π
(
10 + 42µ̃2 + 105µ̃4

)
erf

(1
µ̃

)
µ̃ − 60

(
7 − 2e−

1
µ̃2
)
µ̃2 − 12

(
140 − 37e−

1
µ̃2
)
µ̃4

− 24
(
70 − 37e−

1
µ̃2
)
µ̃6 + 792

(
1 − e−

1
µ̃2
)
µ̃8

)
. (42)

The fact that β0(µ̃) = 0 corresponds to the fact that the Breit
exchange energy vanishes in the non-relativistic limit. Again,
the asymptotic series of Eq. (41) diverges for c̃ < 1, so we
construct a diagonal Padé approximant of even order M

ε
B,sr,µ
x,Padé = kF

∑M/2
i=0 C2i(µ̃)/c̃2i∑M/2
i=0 D2i(µ̃)/c̃2i

, (43)

with D0(µ̃) = 1 and the other coefficients C2i(µ̃) and D2i(µ̃)
are uniquely determined, for a given M, from the coefficients
β2i(µ̃). We give here the coefficients of the diagonal Padé ap-
proximant of order 2

C0(µ̃) = β0(µ̃) and C2(µ̃) = β2(µ̃) −
β0(µ̃)β4(µ̃)
β2(µ̃)

,

D2(µ̃) = −
β4(µ̃)
β2(µ̃)

. (44)

The complete expressions of the large-c̃ expansions in
Eqs. (36) and (41) and their associated Padé approximants in
Eqs. (38) and (43) are explicitly given up to an arbitrary order

in the Mathematica notebook available in the Supplementary
Information [25].

We want to check the accuracy of these Padé approxi-
mants to the short-range Coulomb-Breit exchange energy per
particle and at which order M we can truncate the expan-
sion. For this, we may check for the most demanding case
of µ = 0 corresponding to the full-range interaction and
for which we know the exact exchange energy per particle
[Eqs. (21) and (22)]. We thus plot in Figure 3 the exact
full-range Coulomb-Breit exchange energy per particle and
its Padé approximants of orders 2, 4, and 6, as well as their
relative errors ∆εCB

x =
∣∣∣∣(εCB

x,Padé − ε
CB
x )/εCB

x

∣∣∣∣, as functions of
the Fermi wave vector kF. We note in passing that the Padé
approximants can be calculated either for the Coulomb and
Breit exchange energies per particle separately, or directly for
the total Coulomb-Breit exchange energy per particle, as done
here for the plot. It turns out that these two ways of proceeding
give very similar Padé approximants for the Coulomb-Breit
exchange energy per particle, for example differing by at most
about 10−4 % for the Padé approximants of order 6. As seen
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in Figure 3, the error of all Padé approximants naturally in-
creases with the density. The error of the Padé approximant
of order 2 increases most rapidly with the density, the relative
error exceeding 5% as soon as kF & 200 a.u.. The relative er-
ror in the Padé approximant of order 4 is less than 0.5% until
about kF = 200 a.u. and increases to about 4% at kF = 300
a.u.. The Padé approximant of order 6 has a maximal relative
error of 0.5% at kF = 300 a.u.. We thus conclude that the Padé
approximant of order 6 provides an excellent approximation
for all the density range in which we are interested. We have
also explicitly checked that this accuracy of the Padé approx-
imant of order 6 is preserved for the short-range Coulomb-
Breit exchange energy per particle for a non-zero value of µ
by comparing to results obtained by numerical integration in
Eq. (34). Hence, numerically, the Padé approximants appear
to rapidly converge to the correct limit as M → ∞.

In Figure 4 we plot the relativistic short-range Coulomb-
Breit exchange energy per particle, using the Padé approxi-
mant of order 6, as a function of the scaled range-separation
parameter µ/kF for different values of kF, and compare it to
the non-relativistic short-range exchange energy per particle
(whose expression can be found in Refs. 1 and 24). For kF = 1
a.u., the relativistic exchange energy per particle is indistin-
guishable from its non-relativistic counterpart, for all values
of µ. For higher values of the Fermi wave vector, kF = 137 and
274 a.u., the relativistic short-range Coulomb-Breit exchange
energy per particle becomes much smaller, in absolute value,
than the non-relativistic short-range exchange energy per par-
ticle. Also, it appears that, for large kF, the relativistic short-
range exchange energy per particle goes to zero when increas-
ing µ/kF significantly faster than does its non-relativistic ana-
logue.

E. Small- and large-µ expansions and simple approximation
for the short-range Coulomb-Breit exchange energy per particle

We have determined the short-range Coulomb and Breit ex-
change energies per particle εC,sr,µ

x and ε
B,sr,µ
x in the form of

Padé approximants with quite complicated coefficients. We
now derive simple expressions valid for small and large values
of the range-separation parameter µ and use them to construct
simple approximations for εC,sr,µ

x and εB,sr,µ
x .

In order to obtain the expansions of εC,sr,µ
x and εB,sr,µ

x for µ→
0, we start from the asymptotic series in Eqs. (36) and (41),
expand them with respect to µ, and extract the µ and µ2 terms.
For the short-range Coulomb exchange energy per particle, we
obtain directly expressions independent of c̃ for the linear and
quadratic terms in µ

ε
C,sr,µ
x = εC

x +
µ
√
π
−

3 µ2

2π kF
+ O

(
µ3

)
, (45)

and for the short-range Breit exchange energy per particle we

FIG. 4. Non-relativistic and relativistic Coulomb-Breit short-range
exchange energies per particle as functions of µ/kF. The relativis-
tic Coulomb-Breit short-range exchange energy is obtained from the
Padé approximant of order 6.

obtain expansions in c̃ for the linear and quadratic terms in µ

ε
B,sr,µ
x = εB

x −
µ
√
π

(
3

5c̃2 −
3

7c̃4 +
3

9c̃6 −
3

11c̃8 + O
(

1
c̃10

))
+

3 µ2

2π kF

(
1
c̃2 −

1
c̃4 +

1
c̃6 −

1
c̃8 + O

(
1

c̃10

))
+ O

(
µ3

)
.(46)

In this expression, the series in 1/c̃ can be exactly summed,
and we can write Eq. (46) as

ε
B,sr,µ
x = εB

x −
µ
√
π

(1 − f (c̃)) +
3 µ2

2π kF
(1 − g(c̃)) + O

(
µ3

)
,

(47)
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where

f (c̃) = 3 c̃2 − 3 c̃3 arctan
(1

c̃

)
, (48)

and

g(c̃) =
1

1 + 1
c̃2

. (49)

We note that the linear term in µ in Eq. (47) can also been
found by inserting into Eq. (40) the Fourier transform of the
linear term in µ of the expansion of the short-range interac-
tion. However, such an approach cannot be used for higher-
order terms in µ because these terms lead to divergences when
inserting into Eq. (40). The expansion of the short-range
Coulomb-Breit exchange energy per particle for µ→ 0 is thus

ε
CB,sr,µ
x = εCB

x +
µ
√
π

f (c̃) −
3 µ2

2π kF
g(c̃) + O

(
µ3

)
. (50)

Therefore, near µ = 0, the linear and quadratic terms in µ

of εCB,sr,µ
x depend on c̃. In the non-relativistic limit, we have

f (c̃ → ∞) = 1 and g(c̃ → ∞) = 1, and thus we correctly
recover the non-relativistic expansion µ/

√
π− 3 µ2/(2πkF) [2,

24]. In the ultra-relativistic limit, we have f (c̃ → 0) = 0 and
g(c̃ → 0) = 0, and thus the linear and quadratic terms in µ
vanish.

In order to obtain the expansions of εC,sr,µ
x and ε

B,sr,µ
x for

µ→ ∞, we start from the asymptotic expansion of the Fourier
transform of the short-range interaction

w̃sr,µ
ee (k12) =

π

µ2 + O
(

1
µ4

)
. (51)

Inserting then Eq. (51) into Eq. (35) leads to the expansion of
the short-range Coulomb exchange energy per particle

ε
C,sr,µ
x = −

k3
F

24πµ2 (1 + h(c̃)) + O
(

1
µ4

)
, (52)

with

h(c̃) =
9
4

(c̃2 + c̃4)

−
9
4

c̃4arcsinh
(1

c̃

)(
2
√

1 + c̃2 − c̃2 arcsinh
(1

c̃

))
. (53)

Similarly, inserting Eq. (51) into Eq. (40) leads to the expan-
sion of the short-range Breit exchange energy per particle

ε
B,sr,µ
x =

k3
F

12πµ2 (1 − h(c̃)) + O
(

1
µ4

)
. (54)

The asymptotic expansion of the short-range Coulomb-Breit
exchange energy per particle for µ→ ∞ is thus

ε
CB,sr,µ
x = −

k3
F

24πµ2 (3h(c̃) − 1) + O
(

1
µ4

)
. (55)

In the non-relativistic limit, we have h(c̃ → ∞) = 1 and we
thus recover the leading term of the asymptotic expansion of

FIG. 5. Relativistic Coulomb-Breit short-range exchange energy per
particle, its small- and large-µ expansions of Eqs. (50) and (55), and
its simple approximation of Eqs. (56) and (58) as functions of µ/kF.
The reference relativistic Coulomb-Breit short-range exchange en-
ergy per particle is obtained from the Padé approximant of order 6.

the non-relativistic short-range exchange energy per particle,
−k3

F/(12πµ2) [2, 24]. In the ultra-relativistic limit, we have
h(c̃→ 0) = 0 and thus the leading term is k3

F/(24πµ2).
We can see on Figure 5 that these small- and large-µ ex-

pansions indeed reproduce well, at the scale of the plot, the
short-range Coulomb-Breit exchange energy per particle for
µ/kF . 0.25 and µ/kF & 1, respectively.

We propose now simple approximations for εC,sr,µ
x and εB,sr,µ

x
as rational interpolations between these small- and large-µ ex-
pansions. The short-range Coulomb exchange energy per par-
ticle can be approximated by

ε
C,sr,µ
x ≈

εC
x + dCµ

1 + aCµ + bCµ2 + cCµ3 , (56)

where the coefficients are determined to recover the µ and
µ2 terms of the small-µ expansion of Eq. (45) and the 1/µ2

term and the vanishing 1/µ3 term of the large-µ expansion of
Eq. (52)

aC =
3

2π1/2kF
+

24π3/2

k3
F(1 + h(c̃))

(εC
x )2,

bC = −
24π

k3
F(1 + h(c̃))

εC
x ,

cC = −
24π

k3
F(1 + h(c̃))

dC,

dC =
1
π1/2 + aCεC

x . (57)

In a similar way, we propose to approximate the short-range
Breit exchange energy per particle by

ε
B,sr,µ
x ≈

εB
x + dBµ

1 + aBµ + bBµ2 + cBµ3 , (58)

where the coefficients are again determined by imposing the
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small-µ expansion of Eq. (47) and the large-µ expansion of
Eq. (54).

aB =
3(1 − g(c̃))

2π1/2kF(1 − f (c̃))
+

12π3/2

k3
F(1 − h(c̃))(1 − f (c̃))

(εB
x )2,

bB =
12π

k3
F(1 − h(c̃))

εB
x ,

cB =
12π

k3
F(1 − h(c̃))

dB,

dB = −
(1 − f (c̃))
π1/2 + aBεB

x . (59)

Using the same form of approximation on directly the
short-range Coulomb-Breit exchange energy per particle can
lead to poles in µ, thus it is preferable to separately con-
struct approximations for the Coulomb and Breit contribu-
tions and to sum them to get an approximation of the short-
range Coulomb-Breit exchange energy per particle. This sim-
ple approximation is reported on Figure 5 where it can be seen
that it is a quite good approximation to the accurate short-
range Coulomb-Breit exchange energy per particle given by
the Padé approximant of order 6. The relative error of this
simple approximation is less than 5% for all values of kF and
µ. For higher accuracy, one could construct rational interpo-
lations with more coefficients determined from higher-order
terms in the small- and large-µ expansions. However, while
the large-µ expansion could easily be obtained at an arbitrary
order, higher-order terms in the small-µ expansion would be
obtained as large-c asymptotic series that might not be always
easy to sum into a closed form.

IV. CONCLUSIONS

In this work, we have considered the extension of RS-DFT
to a four-component relativistic framework using a Dirac-

Coulomb-Breit Hamiltonian, and we have constructed a short-
range LDA exchange density functional based on calculations
on the RHEG with a modified electron-electron interaction.
More specifically, we have provided the relativistic short-
range Coulomb and Breit exchange energies per particle of the
RHEG in the form of Padé approximants [Eqs. (38) and (43)],
constructed from large-c asymptotic expansions (but without
involving expansions with respect to µ) and which are sys-
tematically improvable to arbitrary accuracy. These quan-
tities, as well as the associated effective Coulomb-Breit ex-
change hole of the RHEG, show the important impact of rel-
ativity on short-range exchange effects for high densities. We
have also provided simpler approximations for the relativistic
short-range Coulomb and Breit exchange energies per particle
of the RHEG in the form of rational interpolations [Eqs. (56)
and (58)] constructed from the exact small- and large-µ expan-
sions (but without involving expansions with respect to c) of
the short-range exchange energies per particle, which can also
be used when a limited accuracy is sufficient (relative error
less than 5%).

Possible continuation of this work includes the construc-
tion of a relativistic short-range LDA correlation density func-
tional (even though relativistic effects are expected to be much
smaller for correlation than for exchange), the construction
of relativistic short-range GGA functionals, the inclusion of
the dependence on the current for open-shell systems, and the
implementation of these functionals in a four-component rel-
ativistic RS-DFT program for tests on atomic and molecular
systems. In particular, for compounds with heavy elements,
including relativistic effects in short-range functionals should
have significant effects on quantities sensitive to atomic cores,
such as total energies, NMR and EPR parameters, or X-ray
spectra.

Appendix A: Coulomb-Breit exchange energy per particle and exchange hole of the relativistic homogeneous electron gas

In this appendix, we review the calculation of the Coulomb-Breit exchange energy per particle and the exchange hole of the
RHEG.

1. Coulomb-Breit exchange energy per particle

The Coulomb exchange energy per particle of the RHEG can be straightforwardly calculated by summing over spins, inte-
grating over each space coordinates in the volume V , and finally integrating over each wave vector in the volume of the Fermi
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sphere VkF

εC
x = −

1
2N

V2

(2π)6

"
VkF

"
V

∑
σ1,σ2=↓,↑

wee(r12) ψ†k1,σ1
(r1)ψk2,σ2 (r1)ψ†k2,σ2

(r2)ψk1,σ1 (r2) dr1dr2dk1dk2

= −
1

2N(2π)6

"
VkF

"
V

wee(r12) e−ik12·r12
Ek1 Ek2 + (k1 · k2)c2 + c4

Ek1 Ek2

dr1dr2dk1dk2

= −
1

2n(2π)6

"
VkF

w̃ee(k12)
Ek1 Ek2 + (k1 · k2)c2 + c4

Ek1 Ek2

dk1dk2

= −
3 kF

4π

(
5
6

+
1
3

c̃2 +
2
3

√
1 + c̃2 arcsinh

(
1
c̃

)
−

1
3

(
1 + c̃2

)2

ln
(
1 +

1
c̃2

)
−

1
2

(
√

1 + c̃2 − c̃2arcsinh
(

1
c̃

))2 )
, (A1)

where we have introduced k12 = k1−k2, k12 = |k12|, w̃ee(k12) = 4π/k2
12 which is the Fourier transform of the Coulomb interaction

potential, and c̃ = c/kF. The final expression in Eq. (A1) corresponds to the expression given in Refs. 39 and 45. The Breit
exchange energy per particle of the RHEG can be calculated in a similar way

εB
x =

1
4N

V2

(2π)6

"
VkF

"
V

∑
σ1,σ2=↓,↑

wee(r12)
(
ψ†k1,σ1

(r1)α1ψk2,σ2 (r1) · ψ†k2,σ2
(r2)α2ψk1,σ1 (r2)

+
ψ†k1,σ1

(r1)(α1 · r12)ψk2,σ2 (r1) ψ†k2,σ2
(r2)(α2 · r12)ψk1,σ1 (r2)

r2
12

)
dr1dr2dk1dk2

=
1

2N(2π)6

"
VkF

"
V

wee(r12) e−ik12·r12
c2

Ek1 Ek2

(
Ek2 + c2

Ek1 + c2 k2
1 +

Ek1 + c2

Ek2 + c2 k2
2

)
dr1dr2dk1dk2

=
1

2n(2π)6

"
VkF

w̃ee(k12)
c2

Ek1 Ek2

(
Ek2 + c2

Ek1 + c2 k2
1 +

Ek1 + c2

Ek2 + c2 k2
2

)
dk1dk2

=
3 kF

4π

(
1 − 2

(
1 + c̃2

)(
1 − c̃2

(
− 2 ln (c̃) + ln

(
1 + c̃2

) ))
+ 2

(
√

1 + c̃2 − c̃2arcsinh
(

1
c̃

))2 )
, (A2)

which corresponds to the expression given in Ref. 46. The sums over spins in Eqs. (A1) and (A2) are explicitly calculated in the
Supplementary Information [25].

2. Effective Coulomb-Breit exchange hole

The Coulomb exchange hole can be written as an integral over the wave vectors

nC
x (r12)

= −
1

(2π)6n

"
VkF

e−ik12·r12
Ek1 Ek2 + (k1 · k2)c2 + c4

Ek1 Ek2

dk1dk2

= −
2

16π4n

( [ ∫ kF

0
k2 j0(kr12)

(
1 +

c
√

k2 + c2

)
dk

]2

+

[ ∫ kF

0
k2 j0(kr12)

(
1 −

c
√

k2 + c2

)
dk

]2

+ 2
[ ∫ kF

0

k3

√
k2 + c2

j1(kr12)dk
]2 )

,(A3)

where the last expression is obtained after integration over the angle coordinates, and jν are the spherical Bessel functions. After
repeated integrations by parts, using for a general function f ,∫ kF

0
kν+2 jν(kr12) f (k)dk =

[
kν+2

r12
jν+1(kr12) f (k)

]kF

0
−

∫ kF

0

kν+2

r12
jν+1(kr12) f ′(k)dk, (A4)

we obtain the expression of the Coulomb exchange hole as

nC
x (r12) = −

9
4

n
1

(kFr12)2

[
j1(kFr12)2 + (1 − λ)Aλ(kFr12)2 + λBλ(kFr12)2

]
, (A5)
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where λ = 1/(1 + c̃2) and

Aλ(kFr12) =

∞∑
ν=0

(2ν + 1)!!
(2ν + 1)

jν+1(kFr12)
(

λ

kFr12

)ν
,

Bλ(kFr12) =

∞∑
ν=0

(2ν + 1)!!
(2ν + 1)

jν+2(kFr12)
(

λ

kFr12

)ν
. (A6)

This is the expression given in Refs. 39 and 47. Note that there are some typos in the expression given in Ref. 47. We now
extend the previous derivation to the case of the Breit interaction. The associated exchange hole can be expressed as

nB
x (r12) =

1
(2π)6n

"
VkF

e−ik12·r12
c2

Ek1 Ek2

(
Ek2 + c2

Ek1 + c2 k2
1 +

Ek1 + c2

Ek2 + c2 k2
2

)
dk1dk2

=
1

2π4n

∫ kF

0
k2

1 j0(k1r12)
(
1 −

c√
k2

1 + c2

)
dk1 ×

∫ kF

0
k2

2 j0(k2r12)
(
1 +

c√
k2

2 + c2

)
dk2, (A7)

which, after using the same integration by parts as before, gives

nB
x (r12) = −

9
2

n
1

(kFr12)2

[
− j1(kFr12)2 + (1 − λ)Aλ(kFr12)2

]
. (A8)

Appendix B: Padé approximants

We recall here how to calculate Padé approximants and
check their convergence [48]. Consider a function F which
is asymptotic to the following (divergent) power series, as
z→ 0,

F(z) ∼
∞∑

i=0

αizi. (B1)

Its Padé approximant of order (N,M) is

PN
M(z) =

∑N
i=0 Aizi∑M
i=0 Bizi

, (B2)

where B0 = 1 without loss of generality, and the other N +

M + 1 coefficients Ai and Bi are determined so that the power
expansion of Eq. (B2) matches the power series of Eq. (B1)
up to order N + M. This gives the following matrix equation
for the determining the coefficients B1, B2, ..., BM

αN αN−1 ... α1
αN+1 αN ... α2
...

...
. . .

...
αN+M−1 αN+M−2 ... αN




B1
B2
...

BM

 = −


αN+1
αN+2
...

αN+M

 ,(B3)

and then the coefficients A0, A1, ..., AN are simply given by

Ai =

i∑
j=0

αi− j B j. (B4)

A lot about convergence of Padé approximants is known
for the special case where F(z) is a so-called Stieltjes func-
tion. As prescribed in Ref. 48, it can be checked whether F(z)

is a Stieltjes function by verifying the following four proper-
ties: (1) F(z) is analytic in the cut complex plane |arg z| < π;
(2) limz→∞ F(z) = C where C is a nonnegative real constant;
(3) F(z) has an asymptotic series representation of the sign-
alternating form

∑∞
i=0 ai(−z)i where ai ≥ 0; (4) −F(z) is Her-

glotz, i.e. sgn[Im(−F(z))] = sgn[Im z]. If these four proper-
ties are satisfied, then it can shown that, for any real positive
z, the Padé sequences PM

M+1(z) and PM
M(z) both converge as

M → ∞ and sandwich F(z)

lim
M→∞

PM
M+1(z) ≤ F(z) ≤ lim

M→∞
PM

M(z). (B5)

Obviously, if in addition the two limits are equal, then the
two Padé sequences converge to F(z) as M → ∞ for any real
positive z.

We have checked the convergence of the Padé approximants
in the case of the full-range Coulomb and Breit exchange en-
ergies per particle for which we have explicit exact expres-
sions, Eqs. (21) and (22). For the Coulomb term, defining
FC

x (z) = −εC
x (c̃) with z = 1/c̃2, numerical investigations sug-

gest that FC
x (z) satisfies properties (1) to (4) and is thus a

Stieltjes function. Moreover, the Padé approximants PM
M+1(z)

and PM
M(z) appear numerically to converge to the unique limit

FC
x (z) as M → ∞ for real positive z. For the Breit term, defin-

ing FB
x (z) = εB

x (c̃) with z = 1/c̃2, numerical investigations
suggest that FB

x (z) satisfies properties (1) to (3) but not (4),
and thus is not a Stieltjes function. Nevertheless, the Padé
approximants PM

M+1(z) and PM
M(z) still appear numerically to

converge to the unique limit FB
x (z) as M → ∞ for real posi-

tive z. This does not come as a surprise since it is known that
Padé approximants often converge for functions which are not
Stieltjes. We expect the same convergence properties for the
Padé approximants in the case of the short-range Coulomb and
Breit interactions.
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