A. Alhebshi, T. C. Sideri, S. L. Holland, A. , and S. V. , The essential iron-sulfur protein Rli1 is an important target accounting for inhibition of cell growth by reactive oxygen species, Mol. Biol. Cell, vol.23, pp.3582-3590, 2012.

M. Altvater, Y. Chang, A. Melnik, L. Occhipinti, S. Schutz et al., Targeted proteomics reveals compositional dynamics of 60S preribosomes after nuclear export, Mol. Syst. Biol, vol.8, p.628, 2012.

G. Bairwa, H. Jung, W. Kronstad, and J. W. , Iron acquisition in fungal pathogens of humans, Metallomics, vol.9, pp.215-227, 2017.

L. Banci, S. Ciofi-baffoni, K. Gajda, R. Muzzioli, R. Peruzzini et al., N-terminal domains mediate, Nat. Chem. Biol, vol.11, pp.772-778, 2015.

P. L. Blaiseau, E. Lesuisse, and J. M. Camadro, Aft2p, a novel ironregulated transcription activator that modulates, with Aft1p, intracellular iron use and resistance to oxidative stress in yeast, J. Biol. Chem, vol.276, pp.34221-34226, 2001.

S. Brunke and B. Hube, Two unlike cousins: Candida albicans and C. glabrata infection strategies, Cell. Microbiol, vol.15, pp.701-708, 2013.

S. Brunke, J. Quintin, L. Kasper, I. D. Jacobsen, M. E. Richter et al., Of mice, flies-and men? Comparing fungal infection models for largescale screening efforts, Dis. Model. Mech, vol.8, pp.473-486, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01423101

A. R. Buskirk and R. Green, Ribosome pausing, arrest and rescue in bacteria and eukaryotes, Philos. Trans. R. Soc. Lond. B Biol. Sci, vol.372, 2017.

S. M. Caetano, R. Menezes, C. Amaral, C. Rodrigues-pousada, and C. Pimentel, Repression of the low affinity iron transporter Gene FET4: a novel mechanism against cadmium toxicity orchestrated by YAP1 via ROX1, J. Biol. Chem, vol.290, pp.18584-18595, 2015.

E. E. Capowski, T. , and J. W. , Ribosomal RNA processing and the role of SmMAK16 in ribosome biogenesis in Schistosoma mansoni, Mol. Biochem. Parasitol, vol.132, pp.67-74, 2003.

M. Cardenas-rodriguez, A. Chatzi, and K. Tokatlidis, Iron-sulfur clusters: from metals through mitochondria biogenesis to disease, J. Biol. Inorg. Chem, vol.23, pp.509-520, 2018.

C. B. Chi, Y. Tang, J. Zhang, Y. N. Dai, M. Abdalla et al., Structural and biochemical insights into the multiple functions of yeast Grx3, J. Mol. Biol, vol.430, pp.1235-1248, 2018.

S. E. Cole, F. J. Lariviere, C. N. Merrikh, M. , and M. J. , A convergence of rRNA and mRNA quality control pathways revealed by mechanistic analysis of nonfunctional rRNA decay, Mol. Cell, vol.34, pp.440-450, 2009.

G. C. Conant and K. H. Wolfe, Functional partitioning of yeast coexpression networks after genome duplication, PLoS Biol, vol.4, p.109, 2006.

N. Conde-e-silva, I. R. Goncalves, M. Lemaire, E. Lesuisse, J. M. Camadro et al., KlAft, the Kluyveromyces lactis ortholog of Aft1 and Aft2, mediates activation of iron-responsive transcription through the PuCACCC Aft-type sequence, Genetics, vol.183, pp.93-106, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00419229

B. P. Cormack, N. Ghori, and S. Falkow, An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells, Science, vol.285, pp.578-582, 1999.

M. Courel, S. Lallet, J. M. Camadro, and P. L. Blaiseau, Direct activation of genes involved in intracellular iron use by the yeast iron-responsive transcription factor Aft2 without its paralog Aft1, Mol. Cell. Biol, vol.25, pp.6760-6771, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00007671

A. De-las-penas, S. J. Pan, I. Castano, J. Alder, R. Cregg et al., Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1-and SIR-dependent transcriptional silencing, Genes Dev, vol.17, pp.2245-2258, 2003.

A. De-las-penas, J. Juarez-cepeda, E. Lopez-fuentes, M. Briones-martin-delcampo, G. Gutierrez-escobedo et al., Local and regional chromatin silencing in Candida glabrata: consequences for adhesion and the response to stress, FEMS Yeast Res, vol.15, p.56, 2015.

T. Delaveau, D. Davoine, A. Jolly, A. Vallot, J. O. Rouviere et al., Tma108, a putative M1 aminopeptidase, is a specific nascent chain-associated protein in Saccharomyces cerevisiae, Nucleic Acids Res, vol.44, pp.8826-8841, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01361729

M. K. Doma, P. , and R. , Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation, Nature, vol.440, pp.561-564, 2006.

R. Domergue, I. Castano, A. De-las-penas, M. Zupancic, V. Lockatell et al., Nicotinic acid limitation regulates silencing of Candida adhesins during UTI, Science, vol.308, pp.866-870, 2005.

B. Dujon, D. Sherman, G. Fischer, P. Durrens, S. Casaregola et al., Genome evolution in yeasts, Nature, vol.430, pp.35-44, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00104411

J. Encinar-del-dedo, N. Gabrielli, M. Carmona, J. Ayte, and E. Hidalgo, A cascade of iron-containing proteins governs the genetic iron starvation response to promote iron uptake and inhibit iron storage in fission yeast, PLoS Genet, vol.11, 2015.

M. Fauchon, G. Lagniel, J. C. Aude, L. Lombardia, P. Soularue et al., Sulfur sparing in the yeast proteome in response to sulfur demand, Mol. Cell, vol.9, pp.713-723, 2002.

T. Fukuda and T. Kanki, Mechanisms and physiological roles of mitophagy in yeast, Mol. Cells, vol.41, pp.35-44, 2018.

T. Gabaldon, T. Martin, M. Marcet-houben, P. Durrens, M. Bolotin-fukuhara et al., Comparative genomics of emerging pathogens in the Candida glabrata clade, BMC Genomics, vol.14, p.623, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00871184

T. Gabaldon, C. , and L. , The birth of a deadly yeast: tracing the evolutionary emergence of virulence traits in Candida glabrata, FEMS Yeast Res, vol.16, p.110, 2015.

A. P. Gasch, P. T. Spellman, C. M. Kao, O. Carmel-harel, M. B. Eisen et al., Genomic expression programs in the response of yeast cells to environmental changes, Mol. Biol. Cell, vol.11, pp.4241-4257, 2000.

A. P. Gasch, A. M. Moses, D. Y. Chiang, H. B. Fraser, M. Berardini et al., Conservation and evolution of cis-regulatory systems in ascomycete fungi, PLoS Biol, vol.2, p.398, 2004.

A. P. Gasch, Comparative genomics of the environmental stress response in ascomycete fungi, Yeast, vol.24, pp.961-976, 2007.

C. Genolevures, J. L. Souciet, B. Dujon, C. Gaillardin, M. Johnston et al., Comparative genomics of protoploid Saccharomycetaceae, 2009.

, Genome Res, vol.19, pp.1696-1709

F. Gerwien, A. Safyan, S. Wisgott, F. Hille, P. Kaemmer et al., A novel hybrid iron regulation network combines features from pathogenic and nonpathogenic yeasts, mBio, vol.7, pp.1782-1798, 2016.

F. Gerwien, A. Safyan, S. Wisgott, S. Brunke, L. Kasper et al., The fungal pathogen Candida glabrata does not depend on surface ferric reductases for iron acquisition, Front. Microbiol, vol.8, p.1055, 2017.

F. Gerwien, V. Skrahina, L. Kasper, B. Hube, and S. Brunke, Metals in fungal virulence, FEMS Microbiol. Rev, vol.42, p.50, 2018.

I. R. Goncalves, N. Conde-e-silva, C. L. Garay, E. Lesuisse, J. M. Camadro et al., The basis for evolution of DNA-binding specificity of the Aft1 transcription factor in yeasts, Genetics, vol.196, pp.149-160, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00916571

X. Gu, Z. Zhang, and W. Huang, Rapid evolution of expression and regulatory divergences after yeast gene duplication, Proc. Natl. Acad. Sci. U.S.A, vol.102, pp.707-712, 2005.

Z. Gu, S. A. Rifkin, K. P. White, L. , and W. H. , Duplicate genes increase gene expression diversity within and between species, Nat. Genet, vol.36, pp.577-579, 2004.

N. R. Guydosh and R. Green, Dom34 rescues ribosomes in 3 untranslated regions, Cell, vol.156, pp.950-962, 2014.

N. Habib, I. Wapinski, H. Margalit, A. Regev, and N. Friedman, A functional selection model explains evolutionary robustness despite plasticity in regulatory networks, Mol. Syst. Biol, vol.8, p.619, 2012.

E. Herrero, G. Belli, C. , and C. , Structural and functional diversity of glutaredoxins in yeast, Curr. Protein Pept. Sci, vol.11, pp.659-668, 2010.

E. Herrero and R. E. Wellinger, Yeast as a model system to study metabolic impact of selenium compounds, Microb. Cell, vol.2, pp.139-149, 2015.

J. Huerta-cepas, S. Capella-gutierrez, L. P. Pryszcz, M. Marcet-houben, and T. Gabaldon, PhylomeDB v4: zooming into the plurality of evolutionary histories of a genome, Nucleic Acids Res, vol.42, 2014.

T. Icho, H. S. Lee, S. S. Sommer, and R. B. Wickner, Molecular characterization of chromosomal genes affecting double-stranded RNA replication in Saccharomyces cerevisiae, Basic Life Sci, vol.40, pp.165-171, 1986.

J. Ihmels, S. Bergmann, M. Gerami-nejad, I. Yanai, M. Mcclellan et al., Rewiring of the yeast transcriptional network through the evolution of motif usage, Science, vol.309, pp.938-940, 2005.

J. F. Jacques, A. Mercier, A. Brault, T. Mourer, and S. Labbe, Fra2 is a coregulator of Fep1 inhibition in response to iron starvation, PLoS One, vol.9, p.98959, 2014.

A. D. Johnson, The rewiring of transcription circuits in evolution, Curr. Opin. Genet. Dev, vol.47, pp.121-127, 2017.

L. Jourdren, A. Duclos, C. Brion, T. Portnoy, H. Mathis et al., Teolenn: an efficient and customizable workflow to design high-quality probes for microarray experiments, Nucleic Acids Res, vol.38, p.117, 2010.

J. Juarez-cepeda, E. Orta-zavalza, I. Canas-villamar, J. Arreola-gomez, G. P. Perezcornejo et al., The EPA2 adhesin encoding gene is responsive to oxidative stress in the opportunistic fungal pathogen Candida glabrata, Curr. Genet, vol.61, pp.529-544, 2015.

D. B. Kaback, P. W. Oeller, Y. Steensma, H. Hirschman, J. Ruezinsky et al., Temperature-sensitive lethal mutations on yeast chromosome I appear to define only a small number of genes, Genetics, vol.108, pp.67-90, 1984.

E. V. Kalinina, N. N. Chernov, and M. D. Novichkova, Role of glutathione, glutathione transferase, and glutaredoxin in regulation of redox-dependent processes, Biochemistry, vol.79, pp.1562-1583, 2014.

L. Kasper, K. Seider, and B. Hube, Intracellular survival of Candida glabrata in macrophages: immune evasion and persistence, FEMS Yeast Res, vol.15, p.42, 2015.

L. Kater, M. Thoms, C. Barrio-garcia, J. Cheng, S. Ismail et al., Visualizing the assembly pathway of nucleolar Pre-60S ribosomes, Cell, vol.171, p.1599, 2017.

R. Kaur, B. Ma, and B. P. Cormack, A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of Candida glabrata, Proc. Natl. Acad. Sci. U.S.A, vol.104, pp.7628-7633, 2007.

G. Kispal, K. Sipos, H. Lange, Z. Fekete, T. Bedekovics et al., Biogenesis of cytosolic ribosomes requires the essential iron-sulphur protein Rli1p and mitochondria, EMBO J, vol.24, pp.589-598, 2005.

C. Koch, J. Konieczka, T. Delorey, A. Lyons, A. Socha et al., Inference and evolutionary analysis of genome-scale regulatory networks in large phylogenies, Cell Syst, vol.4, 2017.

A. Kumanovics, O. S. Chen, L. Li, D. Bagley, E. M. Adkins et al., Identification of FRA1 and FRA2 as genes involved in regulating the yeast iron regulon in response to decreased mitochondrial iron-sulfur cluster synthesis, J. Biol. Chem, vol.283, pp.10276-10286, 2008.

C. Kumar, A. Igbaria, B. D'autreaux, A. G. Planson, C. Junot et al., Glutathione revisited: a vital function in iron metabolism and ancillary role in thiol-redox control, EMBO J, vol.30, pp.2044-2056, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00606359

D. Kuo, K. Tan, G. Zinman, T. Ravasi, Z. Bar-joseph et al., Evolutionary divergence in the fungal response to fluconazole revealed by soft clustering, Genome Biol, vol.11, p.77, 2010.

S. Labbe, M. G. Khan, J. , and J. F. , Iron uptake and regulation in Schizosaccharomyces pombe, Curr. Opin. Microbiol, vol.16, pp.669-676, 2013.

H. Lavoie, H. Hogues, J. Mallick, A. Sellam, A. Nantel et al., Evolutionary tinkering with conserved components of a transcriptional regulatory network, PLoS Biol, vol.8, p.1000329, 2010.

S. Lebaron, C. Schneider, R. W. Van-nues, A. Swiatkowska, D. Walsh et al., Proofreading of pre-40S ribosome maturation by a translation initiation factor and 60S subunits, Nat. Struct. Mol. Biol, vol.19, pp.744-753, 2012.

S. Lemoine, F. Combes, N. Servant, L. Crom, and S. , Goulphar: rapid access and expertise for standard two-color microarray normalization methods, BMC Bioinformatics, vol.7, p.467, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00122139

H. Li, D. T. Mapolelo, S. Randeniya, M. K. Johnson, and C. E. Outten, Human glutaredoxin 3 forms [2Fe-2S]-bridged complexes with human BolA2, Biochemistry, vol.51, pp.1687-1696, 2012.

M. S. Longtine, A. Mckenzie, . Iii, D. J. Demarini, N. G. Shah et al., Additional modules for versatile and economical PCRbased gene deletion and modification in Saccharomyces cerevisiae, Nat. Genet, vol.14, pp.1154-1159, 1998.

V. J. Lynch, M. C. Nnamani, A. Kapusta, K. Brayer, S. L. Plaza et al., Ancient transposable elements transformed the uterine regulatory landscape and transcriptome during the evolution of mammalian pregnancy, Cell Rep, vol.10, pp.551-561, 2015.

M. T. Martinez-pastor, A. Perea-garcia, P. , and S. , Mechanisms of iron sensing and regulation in the yeast Saccharomyces cerevisiae, World J. Microbiol. Biotechnol, vol.33, p.75, 2017.

R. Matsuo, S. Mizobuchi, M. Nakashima, K. Miki, D. Ayusawa et al., Central roles of iron in the regulation of oxidative stress in the yeast Saccharomyces cerevisiae, Curr. Genet, vol.63, pp.895-907, 2017.

S. Mcgoldrick, S. M. O'sullivan, and D. Sheehan, Glutathione transferaselike proteins encoded in genomes of yeasts and fungi: insights into evolution of a multifunctional protein superfamily, FEMS Microbiol. Lett, vol.242, pp.1-12, 2005.

J. Merhej, A. Frigo, S. Le-crom, J. M. Camadro, F. Devaux et al., bPeaks: a bioinformatics tool to detect transcription factor binding sites from ChIPseq data in yeasts and other organisms with small genomes, Yeast, vol.31, pp.375-391, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01132624

J. Merhej, T. Delaveau, J. Guitard, B. Palancade, C. Hennequin et al., Yap7 is a transcriptional repressor of nitric oxide oxidase in yeasts, which arose from neofunctionalization after whole genome duplication, Mol. Microbiol, vol.96, pp.951-972, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01262282

J. Merhej, A. Thiebaut, C. Blugeon, J. Pouch, A. Ali-chaouche-mel et al., A network of paralogous stress response transcription factors in the human pathogen Candida glabrata, Front. Microbiol, vol.7, p.645, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01323791

J. L. Milhon, T. J. Albert, E. A. Vande-waa, K. A. O'leary, R. N. Jackson et al., SmMAK16, the Schistosoma mansoni homologue of MAK16 from yeast, targets protein transport to the nucleolus, Mol. Biochem. Parasitol, vol.108, pp.225-236, 2000.

E. W. Mills, J. Wangen, R. Green, and N. T. Ingolia, Dynamic regulation of a ribosome rescue pathway in erythroid cells and platelets, Cell Rep, vol.17, pp.1-10, 2016.

M. M. Molina, G. Belli, M. A. De-la-torre, M. T. Rodriguez-manzaneque, and E. Herrero, Nuclear monothiol glutaredoxins of Saccharomyces cerevisiae can function as mitochondrial glutaredoxins, J. Biol. Chem, vol.279, pp.51923-51930, 2004.

U. Muhlenhoff, S. Molik, J. R. Godoy, M. A. Uzarska, N. Richter et al., Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron-sulfur cluster, Cell Metab, vol.12, pp.373-385, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00630763

M. Nagi, K. Tanabe, H. Nakayama, K. Ueno, S. Yamagoe et al., Iron-depletion promotes mitophagy to maintain mitochondrial integrity in pathogenic yeast Candida glabrata, Autophagy, vol.12, pp.1259-1271, 2016.

T. Nevitt and D. J. Thiele, Host iron withholding demands siderophore utilization for Candida glabrata to survive macrophage killing, PLoS Pathog, vol.7, p.1001322, 2011.

Y. Ohtake and R. B. Wickner, Yeast virus propagation depends critically on free 60S ribosomal subunit concentration, Mol. Cell. Biol, vol.15, pp.2772-2781, 1995.

L. Ojeda, G. Keller, U. Muhlenhoff, J. C. Rutherford, R. Lill et al., Role of glutaredoxin-3 and glutaredoxin-4 in the iron regulation of the Aft1 transcriptional activator in Saccharomyces cerevisiae, J. Biol. Chem, vol.281, pp.17661-17669, 2006.

C. E. Outten, A. , and A. N. , Iron sensing and regulation in Saccharomyces cerevisiae: ironing out the mechanistic details, Curr. Opin. Microbiol, vol.16, pp.662-668, 2013.

B. Papp, C. Pal, and L. D. Hurst, Evolution of cis-regulatory elements in duplicated genes of yeast, Trends Genet, vol.19, pp.174-178, 2003.

D. O. Passos, M. K. Doma, C. J. Shoemaker, D. Muhlrad, R. Green et al., Analysis of Dom34 and its function in no-go decay, Mol. Biol. Cell, vol.20, pp.3025-3032, 2009.

V. D. Paul, U. Muhlenhoff, M. Stumpfig, J. Seebacher, K. G. Kugler et al., The deca-GX3 proteins Yae1-Lto1 function as adaptors recruiting the ABC protein Rli1 for iron-sulfur cluster insertion, vol.4, p.8231, 2015.

S. Pellett, T. , and J. W. , Mak16p is required for the maturation of 25S and 5.8S rRNAs in the yeast Saccharomyces cerevisiae, Yeast, vol.23, pp.495-506, 2006.

M. Perez-sampietro and E. Herrero, The PacC-family protein Rim101 prevents selenite toxicity in Saccharomyces cerevisiae by controlling vacuolar acidification, Fungal Genet. Biol, vol.71, pp.76-85, 2014.

M. Perez-sampietro, A. Serra-cardona, D. Canadell, C. Casas, J. Arino et al., The yeast Aft2 transcription factor determines selenite toxicity by controlling the low affinity phosphate transport system, Sci. Rep, vol.6, p.32836, 2016.

J. C. Perez, P. M. Fordyce, M. B. Lohse, V. Hanson-smith, J. L. Derisi et al., How duplicated transcription regulators can diversify to govern the expression of nonoverlapping sets of genes, Genes Dev, vol.28, pp.1272-1277, 2014.

M. A. Pfaller and D. J. Diekema, Epidemiology of invasive candidiasis: a persistent public health problem, Clin. Microbiol. Rev, vol.20, pp.133-163, 2007.

M. A. Pfaller, D. R. Andes, D. J. Diekema, D. L. Horn, A. C. Reboli et al., Epidemiology and outcomes of invasive candidiasis due to non-albicans species of Candida in 2,496 patients: data from the prospective antifungal therapy (PATH) registry, PLoS One, vol.9, p.101510, 2004.

B. Pinson, I. Sagot, and B. Daignan-fornier, Identification of genes affecting selenite toxicity and resistance in Saccharomyces cerevisiae, Mol. Microbiol, vol.36, pp.679-687, 2000.

C. B. Poor, S. V. Wegner, H. Li, A. C. Dlouhy, J. P. Schuermann et al., Molecular mechanism and structure of the Saccharomyces cerevisiae iron regulator Aft2, Proc. Natl. Acad. Sci. U.S.A, vol.111, pp.4043-4048, 2014.

K. Pougach, A. Voet, F. A. Kondrashov, K. Voordeckers, J. F. Christiaens et al., Duplication of a promiscuous transcription factor drives the emergence of a new regulatory network, Nat. Commun, vol.5, p.4868, 2014.

O. Puig, F. Caspary, G. Rigaut, B. Rutz, E. Bouveret et al., The tandem affinity purification (TAP) method: a general procedure of protein complex purification, Methods, vol.24, pp.218-229, 2001.

S. Puig, E. Askeland, and D. J. Thiele, Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation, Cell, vol.120, pp.99-110, 2005.

S. Puig, S. V. Vergara, and D. J. Thiele, Cooperation of two mRNA-binding proteins drives metabolic adaptation to iron deficiency, Cell Metab, vol.7, pp.555-564, 2008.

N. Pujol-carrion, G. Belli, E. Herrero, A. Nogues, and M. A. De-la-torre-ruiz, Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae, J. Cell Sci, vol.119, pp.4554-4564, 2006.

N. Pujol-carrion and M. A. De-la-torre-ruiz, Glutaredoxins Grx4 and Grx3 of Saccharomyces cerevisiae play a role in actin dynamics through their Trx domains, which contributes to oxidative stress resistance, Appl. Environ. Microbiol, vol.76, pp.7826-7835, 2010.

N. Pujol-carrion, T. , and M. A. , Physical interaction between the MAPK Slt2 of the PKC1-MAPK pathway and Grx3/Grx4 glutaredoxins is required for the oxidative stress response in budding yeast. Free Radic, Biol. Med, vol.103, pp.107-120, 2017.

A. R. Quinlan and I. M. Hall, BEDTools: a flexible suite of utilities for comparing genomic features, Bioinformatics, vol.26, pp.841-842, 2010.

M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law et al., limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res, vol.43, p.47, 2015.

A. Roetzer, N. Gratz, P. Kovarik, and C. Schuller, Autophagy supports Candida glabrata survival during phagocytosis, Cell. Microbiol, vol.12, pp.199-216, 2010.

A. Roetzer, T. Gabaldon, and C. Schüller, From Saccharomyces cerevisiae to Candida glabrata in a few easy steps: important adaptations for an opportunistic pathogen, FEMS Microbiol. Lett, vol.314, pp.1-9, 2011.

I. G. Romero, I. Ruvinsky, G. , and Y. , Comparative studies of gene expression and the evolution of gene regulation, Nat. Rev. Genet, vol.13, pp.505-516, 2012.

S. Roy, I. Wapinski, J. Pfiffner, C. French, A. Socha et al., Arboretum: reconstruction and analysis of the evolutionary history of condition-specific transcriptional modules, Genome Res, vol.23, pp.1039-1050, 2013.

S. Roy and D. Thompson, Evolution of regulatory networks in Candida glabrata: learning to live with the human host, FEMS Yeast Res, vol.15, p.87, 2015.

J. C. Rutherford, S. Jaron, E. Ray, P. O. Brown, and D. R. Winge, A second iron-regulatory system in yeast independent of Aft1p, Proc. Natl. Acad. Sci. U.S.A, vol.98, pp.14322-14327, 2001.

J. C. Rutherford, S. Jaron, and D. R. Winge, Aft1p and Aft2p mediate ironresponsive gene expression in yeast through related promoter elements, J. Biol. Chem, vol.278, pp.27636-27643, 2003.

H. Salin, V. Fardeau, E. Piccini, G. Lelandais, V. Tanty et al., Structure and properties of transcriptional networks driving selenite stress response in yeasts, BMC Genomics, vol.9, p.333, 2008.

D. R. Scannell, O. A. Zill, A. Rokas, C. Payen, M. J. Dunham et al., The Awesome power of yeast evolutionary genetics: new genome sequences and strain resources for the Saccharomyces sensu stricto, Genus. G3, vol.1, pp.11-25, 2011.

T. Schwarzmuller, B. Ma, E. Hiller, F. Istel, M. Tscherner et al., Systematic phenotyping of a large-scale Candida glabrata deletion collection reveals novel antifungal tolerance genes, PLoS Pathog, vol.10, p.1004211, 2014.

K. Seider, S. Brunke, L. Schild, N. Jablonowski, D. Wilson et al., The facultative intracellular pathogen Candida glabrata subverts macrophage cytokine production and phagolysosome maturation, J. Immunol, vol.187, pp.3072-3086, 2011.

K. Seider, F. Gerwien, L. Kasper, S. Allert, S. Brunke et al., Immune evasion, stress resistance, and efficient nutrient acquisition are crucial for intracellular survival of Candida glabrata within macrophages, Eukaryot. Cell, vol.13, pp.170-183, 2014.

X. X. Shen, X. Zhou, J. Kominek, C. P. Kurtzman, C. T. Hittinger et al., Reconstructing the backbone of the saccharomycotina yeast phylogeny using genome-scale data, G3, vol.6, pp.3927-3939, 2016.

C. L. Simms, B. H. Hudson, J. W. Mosior, A. S. Rangwala, and H. S. Zaher, An active role for the ribosome in determining the fate of oxidized mRNA, Cell Rep, vol.9, pp.1256-1264, 2014.

C. L. Simms, E. N. Thomas, and H. S. Zaher, Ribosome-based quality control of mRNA and nascent peptides, Wiley Interdiscip. Rev. RNA, vol.8, p.1366, 2017.

V. K. Srivastava, K. J. Suneetha, and R. Kaur, A systematic analysis reveals an essential role for high-affinity iron uptake system, haemolysin and CFEM domain-containing protein in iron homoeostasis and virulence in Candida glabrata, Biochem. J, vol.463, pp.103-114, 2014.

V. K. Srivastava, K. J. Suneetha, and R. Kaur, The mitogen-activated protein kinase CgHog1 is required for iron homeostasis, adherence and virulence in Candida glabrata, FEBS J, vol.282, pp.2142-2166, 2015.

B. S. Strunk, M. N. Novak, C. L. Young, and K. Karbstein, A translationlike cycle is a quality control checkpoint for maturing 40S ribosome subunits, Cell, vol.150, pp.111-121, 2012.

M. C. Teixeira, P. T. Monteiro, M. Palma, C. Costa, C. P. Godinho et al., Yeastract: an upgraded database for the analysis of transcription regulatory networks in Saccharomyces cerevisiae, Nucleic Acids Res, vol.46, 2018.

M. Thomas-chollier, C. Herrmann, M. Defrance, O. Sand, D. Thieffry et al., RSAT peak-motifs: motif analysis in full-size ChIP-seq datasets, Nucleic Acids Res, vol.40, p.31, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01624284

D. Thompson, A. Regev, R. , and S. , Comparative analysis of gene regulatory networks: from network reconstruction to evolution, Annu. Rev. Cell Dev. Biol, vol.31, pp.399-428, 2015.

D. A. Thompson, S. Roy, M. Chan, M. P. Styczynsky, J. Pfiffner et al., Evolutionary principles of modular gene regulation in yeasts, vol.2, p.603, 2013.

H. Thorvaldsdottir, J. T. Robinson, and J. P. Mesirov, Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration, Brief. Bioinform, vol.14, pp.178-192, 2013.

I. Tirosh and N. Barkai, Comparative analysis indicates regulatory neofunctionalization of yeast duplicates, Genome Biol, vol.8, p.50, 2007.

R. Ueta, N. Fujiwara, K. Iwai, Y. , and Y. , Iron-induced dissociation of the Aft1p transcriptional regulator from target gene promoters is an initial event in iron-dependent gene suppression, Mol. Cell. Biol, vol.32, pp.4998-5008, 2012.

N. Vakirlis, V. Sarilar, G. Drillon, A. Fleiss, N. Agier et al., Reconstruction of ancestral chromosome architecture and gene repertoire reveals principles of genome evolution in a model yeast genus, Genome Res, vol.26, pp.918-932, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01331620

N. Vall-llaura, G. Reverter-branchat, C. Vived, N. Weertman, M. J. Rodriguezcolman et al., Reversible glutathionylation of Sir2 by monothiol glutaredoxins Grx3/4 regulates stress resistance. Free Radic, van den Elzen, vol.96, pp.265-276, 2014.

A. Vitenshtein, Y. Charpak-amikam, R. Yamin, Y. Bauman, B. Isaacson et al., NK Cell recognition of Candida glabrata through binding of NKp46 and NCR1 to fungal ligands Epa1, Epa6, and Epa7, Cell Host Microbe, vol.20, pp.527-534, 2016.

I. Wapinski, A. Pfeffer, N. Friedman, R. , and A. , Natural history and evolutionary principles of gene duplication in fungi, Nature, vol.449, pp.54-61, 2007.

I. Wapinski, J. Pfiffner, C. French, A. Socha, D. A. Thompson et al., Gene duplication and the evolution of ribosomal protein gene regulation in yeast, Proc. Natl. Acad. Sci. U.S.A, vol.107, pp.5505-5510, 2010.

R. B. Wickner and M. J. Leibowitz, Mak mutants of yeast: mapping and characterization, J. Bacteriol, vol.140, pp.154-160, 1979.

R. B. Wickner, T. J. Koh, J. C. Crowley, J. O'neil, and D. B. Kaback, Molecular cloning of chromosome I DNA from Saccharomyces cerevisiae: isolation of the MAK16 gene and analysis of an adjacent gene essential for growth at low temperatures, Yeast, vol.3, pp.51-57, 1987.

A. Yarunin, V. G. Panse, E. Petfalski, C. Dez, D. Tollervey et al., Functional link between ribosome formation and biogenesis of iron-sulfur proteins, EMBO J, vol.24, pp.580-588, 2005.

D. J. Young, N. R. Guydosh, F. Zhang, A. G. Hinnebusch, and R. Green, Rli1/ABCE1 recycles terminating ribosomes and controls translation reinitiation in 3 UTRs in vivo, Cell, vol.162, pp.872-884, 2015.

Z. Zhang, J. Gu, and X. Gu, How much expression divergence after yeast gene duplication could be explained by regulatory motif evolution?, Trends Genet, vol.20, pp.403-407, 2004.

D. Zhou, X. Zhu, S. Zheng, D. Tan, M. Q. Dong et al., Cryo-EM structure of an early precursor of large ribosomal subunit reveals a halfassembled intermediate, Protein Cell, 2018.