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The sonocatalytic degradation of EDTA in aqueous solution was studied under ultrasound irradiation (345 kHz, 73 W, acoustic power 0.20 W•mL -1 , Ar and Ar/O 2 saturating gases, T = 20-50 °C) in the presence of Co 3 O 4 /TiO 2 and Pt/TiO 2 nanocatalysts. About 90% of EDTA (C 0 = 5 10 -3 M) was oxidized during ultrasonic treatment at 40 °C in the presence of the Co 3 O 4 /TiO 2 catalyst and Ar/O 2 gas mixture. By contrast, Pt/TiO 2 catalyst exhibited much lower sonocatalytic activity in this system. Suggested mechanism of EDTA oxidation in the presence of Co 3 O 4 /TiO 2 catalyst involved the generation of oxidizing radicals by acoustic cavitation and Co(II)-Co(III) redox process. Quite low apparent activation energy of the sonocatalytic process (E a = 19 kJ mol -1 ) was attributed to diffusion of reagents in the vicinity of the active sites of catalyst. Sonocatalytic degradation of EDTA is accompanied by formation of iminodiacetic acid, formic acid, oxalic acid, glycolic acid and acetic acid as intermediate products in an agreement with radical-driven mechanism.

Introduction

Ethylenediaminetetraacetic acid (EDTA) is widely used in food, cosmetic and pharmaceutical industries [START_REF] Hart | Ethylenediaminetetraacetic Acid and Related Chelating Agents[END_REF]. While EDTA is nontoxic itself, it is a metal-mobilizing pollutant that requires its removal from wastewater. In nuclear industry, EDTA is an obvious decontaminating agent due to its ability to form strong chelating complexes with a large number of radionuclides [START_REF] Severa | Handbook of Radioactive Contamination and Decontamination[END_REF]. However, the formation of such complexes may impede further radionuclide removal from the liquid waste, i.e. through chemical precipitation or ion exchange [START_REF] Papynov | Sol-gel (template) synthesis of macroporous Mo-based catalysts for hydrothermal oxidation of radionuclide-organic complexes[END_REF]. Therefore, EDTA must be decomposed or at least defunctionalized prior to radionuclide specific treatments, whereas the methods of its decomposition should use minimal amounts of reagents, in order to minimize the volume of final waste. Advanced Oxidation Processes (AOP), based on the generation of highly reactive radical species, can potentially enable the effective oxidation of chelating agents in waste solutions [START_REF] Sillanpää | Degradation of chelating agents in aqueous solution using advanced oxidation process (AOP)[END_REF]. Indeed, different AOPs have been lately considered for EDTA oxidation, such as catalytic Fenton-like processes [START_REF] Sashkina | Fe-silicalites as heterogeneous Fenton-type catalysts for radiocobalt removal from EDTA chelates[END_REF][START_REF] Englehardt | Oxidation of aqueous EDTA and associated organics and coprecipitation of inorganics by ambient iron-mediated aeration[END_REF], ozonolysis [START_REF] Gilbert | Ozonation of ethylenediaminetetraacetic acid (EDTA) in aqueous solution, influence of pH value and metal ions[END_REF], hydrothermal oxidation [START_REF] Avramenko | Hydrothermal oxidation of Co-EDTA complexes[END_REF], photolysis [START_REF] Seliverstov | Oxidative degradation of EDTA in aqueous solutions under UV irradiation[END_REF] and photocatalysis [START_REF] Seshadri | Efficient decomposition of liquid waste containing EDTA by advanced oxidation nanotechnology[END_REF]. All of these techniques have some limitations, for instance, large amount of catalyst and H 2 O 2 are required for Fenton processes. In the same way, ozone is not an eco-friendly and healthy product and the others treatments need high energy input. For all these reasons, researches have to be carried out to find more ecological and cost effective approaches for the treatment of wastewaters.

Among the different AOPs, sonochemistry stands as a promising technology that can provide an answer to this EDTA degradation issue. Indeed, this technique enables the in situ production of radical species. The chemical effects of power ultrasound come from acoustic cavitation, which is a set of consequent events: nucleation, growth and violent collapse of microbubbles in liquids submitted to ultrasonic vibrations. In aqueous solutions, cavitation causes splitting of water molecules leading to formation of OH % radicals and H atoms, and to the products of their mutual recombination: H 2 O 2 and H 2 , respectively [START_REF] Mason | Applied Sonochemistry: Uses of Power Ultrasound in Chemistry and Processing[END_REF]. Recent spectroscopic studies of light emitted by collapsing bubbles, called sonoluminescence, revealed formation of nonequilibrium plasma inside the bubble [START_REF] Nikitenko | Toward a new paradigm for sonochemistry: short review on nonequilibrium plasma observations by means of MBSL spectroscopy in aqueous solutions[END_REF]. Therefore, each cavitation bubble can be considered as microscopic plasma reactor producing highly reactive species in liquids at almost room bulk temperature. Indeed, the sonochemical degradation of EDTA in homogeneous aqueous solutions has been reported in the presence of oxygen [START_REF] Frim | Sonochemical destruction of free and metalbinding ethylenediaminetetraacetic acid[END_REF] and hydrogen peroxide [START_REF] Chitra | Ultrasonic treatment of liquid waste containing EDTA[END_REF]. However, despite the extreme local conditions inside the cavitation bubbles, the overall reaction rate was found to be quite low. Sonochemical oxidation of EDTA can be significantly accelerated in the presence of zero-valent iron particles via Fenton-like mechanism [START_REF] Zhou | The role and fate of EDTA in ultrasoundenhanced zero-valent iron/air system[END_REF]. However, iron dissolution during this process would require additional purification stage after EDTA degradation.

It has been recently shown that power ultrasound accelerates the catalytic oxidation of carboxylic acids in the presence of powdered Pt/ TiO 2 and Ar/O 2 gas mixtures [START_REF] Chave | Sonocatalytic degradation of oxalic acid in the presence of oxygen and Pt/TiO 2[END_REF]. The sonocatalytic effect was attributed to the strong dispersion of the Pt/TiO 2 catalyst together with the generation of chemically active species during water sonolysis. Though active, noble metals are quite expensive and, therefore, alternative catalytic systems need to be found. In the present paper we report, for the first time, quantitative sonochemical defunctionalization of EDTA in the presence of a noble metal-free catalyst Co 3 O 4 /TiO 2 . Moreover, we found that Co 3 O 4 /TiO 2 exhibits much higher sonocatalytic activity than Pt/TiO 2 in studied reaction. Ultrasonic frequency and gas composition were chosen on the basis of previous researches [START_REF] Nikitenko | Toward a new paradigm for sonochemistry: short review on nonequilibrium plasma observations by means of MBSL spectroscopy in aqueous solutions[END_REF][START_REF] Chave | Sonocatalytic degradation of oxalic acid in the presence of oxygen and Pt/TiO 2[END_REF].

Materials and methods

Reagents

Solids Na 2 H 2 EDTA•2H 2 O (98%, Fluka AG), Co(NO 3 ) 2 •6H 2 O (98%, Alfa Aesar), TiO 2 anatase (99%, Sigma Aldrich, 95% anatase, 5% rutile), TiO 2 P25 (Aeroxide ® , Evonik) and H 2 PtCl 6 (999%, Strem) were used as received without further purification. All solutions were prepared with deionized water (Milli-Q 18.2 MΩ cm at 25 °C). Ar/O 2 gas mixture with 20 vol.% of O 2 , Ar of 99.999% purity and O 2 99.999% purity were supplied by Air Liquide.

Synthesis of catalysts

Co 3 O 4 /TiO 2 catalysts with 6.4%wt., 3.3%wt. and 1.3%wt. of Co 3 O 4 were prepared by excess solution impregnation using Co(NO 3 ) 2 •6H 2 O solution as cobalt precursor. The solution with suspended TiO 2 anatase powder was stirred one hour, and then dried at 65 °C for 30 min in a rotary evaporator. The resulting material was further dried in an oven at 80 °C for 20 min and subsequently calcinated at 550 °C for 4 h in order to ensure a maximal yield of crystallized Co 3 O 4 [START_REF] Del Arco | Interactions with the support in Co/TiO 2 and Co 3 O 4 /TiO 2 systems[END_REF].

Pt/TiO 2 catalyst was prepared by incipient wetness impregnation technique, using H 2 PtCl 6 solution and P25 TiO 2 as the support for a Pt nominal content of 1%wt. After drying Pt(IV) was reduced with hydrazine hydrate solution, washed until the absence of chloride ions (control with Ag + ) and dried overnight under vacuum at room temperature. This technique enables a complete reduction of Pt(IV) at room temperature without modification of TiO 2 support [START_REF] Beyribey | Synthesis of platinum particles from H 2 PtCl 6 with hydrazine as reducing agent[END_REF].

Techniques of catalyst characterization

High-resolution transmission electron microscopy (TEM) measurements were carried out in a Jeol JEM 2200 FS device, equipped with a numeric camcorder. An ultrasonic bath was used to disperse the samples in deionized water. Then, one drop was deposited on carboncoated copper grid and dried in atmospheric air prior to analysis. Powder XRD measurements were performed on the readily-prepared, fresh and used oxide catalysts in a Bruker D8 Advance Diffractometer, equipped with a Cu K α (λ = 1.54056 Å) radiation source and a Lynx Eye detector. Powder XRD patterns were collected in the 10-90 2-theta degree range with a step size of 0.01°and a step time of 1 s. N 2 -adsorption study at -196 °C was achieved with a BELSORB-Mini II device (BEL-Japan). Specific surface area was calculated with BET method. Temperature programmed reduction (H 2 -TPR) was performed in a BELCAT-M apparatus from BEL Japan equipped with a thermal conductivity detector. In each experiment 60 mg of catalyst were degassed at 100 °C for 2 h and then heated to 900 °C at 7.5 °C min -1 heating rate in the presence of 5% vol. H 2 /Ar gas mixture.

EDTA degradation experiments

A home-made 400 mL glass reactor enabled the control of temperature and gas atmosphere was used in the experiments (Fig. 1). This reactor was fixed on the top of a 345 kHz transducer (ELAC Nautik, 25 cm 2 ), connected to a generator with a maximum electrical power of 125 W (T&C Power Conversion, Inc.). The electric load power was regulated at 73 W and the corresponding absorbed acoustic power was evaluated by thermal probe method at 0.20 W•mL -1 . The volume of sonicated solution was 200 mL, while additional mechanical stirring at 250 rpm was used in order to warranty a homogeneous suspension of catalyst particles [START_REF] Chave | Sonocatalytic degradation of oxalic acid in the presence of oxygen and Pt/TiO 2[END_REF]. The temperature during sonolysis was controlled between 20 and 50 °C with a Huber Unistat Tango thermo-cryostat and measured by a thermocouple immersed into ultrasound-irradiated solution. Ar/O 2 gas mixture was bubbled through solution for 20 min at 204 mL•min -1 flowrate before the experiment and kept during sonication. 400 mg of catalyst were dispersed in a minimal volume of water using ultrasonic bath prior to its injection to the EDTA solution. Sample aliquots were taken each hour to follow the evolution of EDTA, H 2 O 2 , intermediate degradation products and total organic carbon concentrations after their filtration using 0.2 μm PTFE membrane. No EDTA adsorption in sampling filters was observed, since the EDTA concentration measured in the first filtered aliquot extracted from the reactor during the silent catalytic experiment was identical to the nominal initial concentration of EDTA used in the experiment. All experiments were reproduced twice to verify the suitability of our uncertainties. Formed CO 2 was continuously monitored in the outlet gas using a Prima BT mass spectrometer (Thermo Scientific).

A Thermo Scientific Evolution 220 UV-vis spectrophotometer was used for the analysis either of EDTA, titrated using a (Fe-TPTZ) 2+ complex, where TPTZ stands for Bis(2,4,6-tripyridyl-s-triazine) [START_REF] Kratochvil | Spectrophotometric determination of microgram quantities of (ethylenedinitrilo)tetraacetic acid with bis(2/4,6-tripyridyl-s-triazine) iron(ll)[END_REF], or of H 2 O 2 , titrated with TiOSO 4 [START_REF] O'sullivan | The kinetics of complex formation between Ti(IV) and hydrogen peroxide[END_REF]. The total carbon in solution was followed using a Shimadzu TOC-VCSH analyzer calibrated with potassium phthalate solution. Various intermediate degradation products of EDTA were detected by ion chromatography in a Dionex AS-AP device equipped with a capillary column AS11. The used eluent for the measurement method was 10 mM KOH at 0.012 mL.min -1 and 40 °C. The identified species were glycolic, acetic, formic, oxalic and iminodiacetic acid in agreement with the literature [START_REF] Sillanpää | Degradation of chelating agents in aqueous solution using advanced oxidation process (AOP)[END_REF].

The catalyst stability in reaction media, i.e. in the treated EDTA solution, was evaluated through the measurement of dissolved platinum and cobalt after catalytic and sonocatalytic experiments using a Spectro Arcos ICP-OES spectrometer. Prior to analysis, the solution samples were diluted in 0.3 M HNO 3 , after catalyst separation with a 0.2 μm PTFE filter. ICP calibration curves were obtained using SCP Science standard solutions.

Results and discussion

Physico-chemical characterization of the Co 3 O 4 /TiO 2 and Pt/TiO 2 catalysts

All the catalysts prepared using cobalt salts were characterized upon their calcination, by means of both powder XRD and HRTEM techniques. In contrast, only HRTEM analysis was performed on the Pt/TiO 2 catalyst. The powder XRD patterns acquired for the Co-containing catalysts (JCPDS file no. 00-042-1467) confirmed the presence of cobalt oxide Co 3 O 4 as the principal Co-phase, as well as of anatase, together with traces of rutile TiO 2 (Fig. S1 of the Supplementary data). The presence of these two TiO 2 phases is typical for commercial anatase product. In the case of 1.3%wt. Co 3 O 4 /TiO 2 , the cobalt oxide phase was not detected in the diffractograms, most probably due to the low cobalt concentration in this catalyst.

The HRTEM/EDX images shown in Figs. 2 and 1) were found to be equal to 39.7 ± 7.5 nm for 3.3%wt. Co 3 O 4 /TiO 2 and 37.5 nm for 6.4%wt. Co 3 O 4 /TiO 2 . These values are consistent with HRTEM measurements taking into account quite broad particle size distribution and uncertainties of both techniques. No XRD information could be obtained for the 1.3%wt. Co 3 O 4 sample because of low cobalt concentration. The specific surface area (Table 1) was measured quite low compared to TiO 2 anatase specific surface area (45-55 m 2 g -1 ) used in this work as well as other studies with TiO 2 support [START_REF] Li | Effect of TiO 2 crystal structure on the catalytic performance of Co 3 O 4 /TiO 2 catalyst for low-temperature CO oxidation[END_REF]. This could be attributed to the calcination at 550 °C which favorites aggregation of cobalt oxide and titanium oxide particles [START_REF] Chen | Effect of calcination temperature on the porous structure of cobalt oxide micro-flowers[END_REF]. The HRTEM micrographs acquired for the Pt/TiO 2 catalyst are shown in Fig. 4 and reveal well dispersed 1-3 nm Pt nanoparticles on the TiO 2 support as it was already reported in the literature [START_REF] Chave | Sonocatalytic degradation of oxalic acid in the presence of oxygen and Pt/TiO 2[END_REF].

Fig. 5 shows the H 2 -TPR profiles acquired for the different Cocontaining catalysts. Table 2 summarizes the amounts of H 2 consumed during TPR experiments for each catalyst. As expected, increasing Coloading leads to higher H 2 -consumption during TPR, but this correlation is not directly proportional. TPR analysis reveals two reduction peaks common for all studied samples centered at 350 °C and 480-500 °C. According to the literature, the reduction of Co 3 O 4 species on a TiO 2 surface is a 2-step process involving the consecutive reduction of Co(III) to Co(II) and Co(II) to metallic Co [START_REF] Li | Effect of TiO 2 crystal structure on the catalytic performance of Co 3 O 4 /TiO 2 catalyst for low-temperature CO oxidation[END_REF][START_REF] Xaba | Sintering behavior of TiO 2 -supported model cobalt Fischer-Tropsch catalysts under H 2 reducing conditions and elevated temperature[END_REF][START_REF] Takanabe | Titania-supported cobalt and nickel bimetallic catalysts for carbon dioxide reforming of methane[END_REF]. Therefore, a first peak at about 350 °C is expected to occur due to the reduction of Co 3 O 4 to CoO, followed by a second peak at 450-500 °C attributed to the reduction of CoO to metallic Co. Surprisingly, an intermediate reduction peak appeared at 500 °C-520 °C for the samples with higher Co 3 O 4 content. As previously commented, HRTEM pointed out some agglomeration of the Co-phase with increasing of Co-loading. The coexistence of Co 3 O 4 particles of different size may account for the splitting of the low temperature H 2 consumption peak, i.e. larger Co 3 O 4 particles will be reduced to CoO at higher temperatures [START_REF] Huang | Effect of calcination temperature on the catalytic oxidation of formaldehyde over Co 3 O 4 -CeO 2 catalysts[END_REF]. The slight increase of the CoO reduction temperature from 500 °C to 520 °C with increasing of Co 3 O 4 concentration from 3.3% to 6.4% (Fig. 5) can be attributed to the similar phenomenon. In the case of 2-step process, the area of the second peak should be three time more important than of the first one. However, in our study no direct relation could be found between each peak area. Then maybe, interaction with the support affects Co(III) and Co(II) reduction [START_REF] Li | Effect of TiO 2 crystal structure on the catalytic performance of Co 3 O 4 /TiO 2 catalyst for low-temperature CO oxidation[END_REF]. Another assumption could be the formation of intermediate nonstoichiometric cobalt oxides CoO x during H 2 -TPR reduction [START_REF] Capela | Metallic active species for de NO x SCR by methane with Co and Pd/Co HFER catalysts[END_REF].

Catalytic activity in EDTA sonochemical oxidation 3.2.1. Non-catalytic EDTA sonochemical oxidation

In a first instance, the sonochemical oxidation of EDTA was studied in homogeneous aqueous solutions, i.e. in the absence of any catalyst. Thus, these results highlight the temperature and gas atmosphere influence the EDTA degradation rate and would allow further assess the benefit to add catalyst in the system. Kinetic curves shown in Fig. 6 point out overall zero-order reaction. The observed reaction rate of EDTA degradation slightly increased in the presence of oxygen, seeming almost independent of the solution temperature in the range of 20-40 °C. In general, whatever the experimental conditions used, EDTA oxidation is quite slow in the absence of catalyst, as has been previously reported elsewhere [START_REF] Frim | Sonochemical destruction of free and metalbinding ethylenediaminetetraacetic acid[END_REF].

Indeed, the slowest formation rate of H 2 O 2 in the presence of EDTA than in water (Fig. 6b) suggests that the initial stage of EDTA sonochemical oxidation involves reactions with OH % and HO 2 % radicals formed via water molecule splitting inside the cavitation bubbles:

(1)

2 OH % → H 2 O 2 (2) 
H % + O 2 → HO 2 % (3) 2 HO 2 % → H 2 O 2 (4) 
OH % + EDTA → Oxidation Products (5)

HO 2 % + EDTA → Oxidation Products (6)
Actually, the Reactions ( 5) and ( 6) are competing with the reactions leading to H 2 O 2 formation shown in the Eqs. ( 2) and ( 4). The plots in Fig. 6b show the H 2 O 2 formation during water sonolysis and in presence of EDTA. The difference between these plots evidences that only about 40% of oxidizing radicals reacts with EDTA and intermediate 

EDTA sonocatalytic oxidation

The sonochemical oxidation of EDTA is largely enhanced in the presence of Co 3 O 4 /TiO 2 catalyst. Fig. 7a shows that under the studied experimental conditions about 90% of EDTA can be oxidized upon 7 h ultrasonic treatment. Similar to homogeneous solutions, sonocatalytic reaction exhibits zero-order kinetics on EDTA. By contrast, the presence of Pt/TiO 2 enhances EDTA degradation of only 10% compared to sonochemical process without catalyst (Figs. 6a and7b). This is a surprising result since noble metal-based catalysts usually show high catalytic performance in AOPs [START_REF] Chave | Sonocatalytic degradation of oxalic acid in the presence of oxygen and Pt/TiO 2[END_REF].

It is interesting to note that in the presence of pristine TiO 2 the reaction rate is very similar to that measured in homogeneous solutions, i.e. in absence of any solid material. This indicates that the active sites of the sonocatalytic reaction are situated on the surface of Co TiO 2 catalyst would be limited by the reactions with radicals in homogeneous solution or cavitation bubble/solution interface rather than by redox process on Pt/TiO 2 surface.

For better understanding of the reaction mechanism, the influence of temperature on the sonocatalytic oxidation of EDTA was evaluated in the range of 20-50 °C. The derived Arrhenius linear plot is shown in Fig. S4 of the Supplementary data. The relatively low apparent activation energy calculated from these data (E a = 19 ± 2 kJ•mol -1 ) suggests that the thermal effect is governed by reagent diffusion rather than by the splitting of EDTA chemical bonds, since the influence of the temperature on the intrinsic chemical reaction rate is expected to be much stronger [START_REF] Avramenko | Hydrothermal oxidation of Co-EDTA complexes[END_REF]. Indeed, this conclusion is in line with the proposed radical-induced mechanism of EDTA sonocatalytic oxidation.

In order to elucidate the role of H 2 O 2 in the reaction mechanism, the experiment of EDTA degradation was performed at 40 °C under mechanical stirring and Ar/20%O 2 atmosphere without ultrasound in the presence of Co 3 O 4 /TiO 2 catalyst and under progressive addition of H 2 O 2 . No oxidation of EDTA was detected in this experiment indicating that H 2 O 2 itself is not involved in the reaction mechanism. In contrast, quite rapid decomposition of H 2 O 2 was observed with a rate of 2.4 μmol min -1 in the presence of Co 3 O 4 /TiO 2 (Figs. 9 and S5 of the Supplementary data) in agreement with recently published results [START_REF] El-Shobaky | Catalytic decomposition of H 2 O 2 on Co 3 O 4 doped with MgO and V 2 O 5[END_REF][START_REF] Dong | Co 3 O 4 Nanoparticles with multi-enzyme activities and their application in immunohistochemical assay[END_REF].

Table 3 summarizes the kinetics of EDTA degradation as a function of Co 3 O 4 content. The normalized EDTA oxidation rate clearly increases with decreasing of cobalt oxide loading. This effect can be most probably attributed to the decrease of Co 3 O 4 particle size with decreasing of Co 3 O 4 content. According to literature, the enhanced catalytic activity of small Co 3 O 4 nanoparticles is related to their higher surface density of Co(III) moieties [START_REF] Iablokov | Catalytic CO oxidation over well-defined cobalt oxide nanoparticles: size-reactivity correlation[END_REF][START_REF] Sadasivan | Size dependent reduction-oxidation-reduction behaviour of cobalt oxide nanocrystals[END_REF]. It is noteworthy that Co(III) is known to form very strong complexes with EDTA [START_REF] Avramenko | Hydrothermal oxidation of Co-EDTA complexes[END_REF], which subsequently leads to more efficient sonocatalytic oxidation.

Finally, the influence of oxygen concentration in Ar/O 2 gas mixture was investigated under the same reaction conditions (2 g L -1 of 6.4% wt. Co 3 O 4 /TiO 2 , 40 °C, 200 mL, 5 mM EDTA, 345 kHz, P ac = 0.20 W•mL -1 ). Pure argon, Ar/20%O 2 and Ar/40%O 2 gas mixtures were used. The results are shown in Fig. S6 of the Supplementary data. Without oxygen in the system, EDTA degradation rate is very similar to the one observed under ultrasonic irradiation without catalyst. In addition, no significant differences were observed between 20% and 40% of oxygen in the gas mixture. One can conclude that oxygen is essential to provide maximal yield of OH % and HO 2 % radicals via H atom scavenging without being a limiting species in this system.

Analysis of intermediate products

The plots shown in Fig. 10 evidence less effective TOC removal than EDTA degradation (Fig. 6a) which implies the formation of intermediate products. TOC data are supported by CO 2 mass spectrometric analysis in the outlet gas. For instance, in the experiment with Co 3 O 4 /TiO 2 catalyst 1.98 mmoL of CO 2 were measured corresponding to 2 mmoL TOC abatement (Fig. 10). Indeed, ion chromatography analysis allowed to identify the presence of iminodiacetic acid, formic acid, oxalic acid, glycolic acid and acetic acid in the solutions treated with ultrasound. Chemical structure of these products and typical chromatograms are shown in Figs. S7 and S8 of the Supplementary data respectively. The concentrations of these products measured after 7 h of sonolysis are summarized in Fig. 11. The fragments of EDTA degradation observed in our experiments are very similar to those reported for EDTA γ-radiolysis in oxygenated solutions [START_REF] Höbel | OH-radical induced degradation of ethylenediaminetetraacetic acid (EDTA) in aqueous solution: a pulse radiolysis study[END_REF]. Radiolytic degradation of EDTA occurs via the reactions with OH % and HO 2 % radicals. Therefore, the similarity of the intermediate products for both processes would indicate the radical mechanism of EDTA sonocatalytic degradation. Iminodiacetic acid is formed at the earlier stage of EDTA oxidation. By contrast, formic acid is a product of deep EDTA degradation. Consequently, lower concentration of iminodiacetic acid and higher concentration of formic acid in solution treated with Co 3 O 4 /TiO 2 catalyst compared to sonicated homogeneous solution indicate more profound EDTA degradation in sonocatalytic process. The ultrasonic irradiation in the presence of Pt/TiO 2 catalyst is less effective for TOC removal compared to Co 3 O 4 /TiO 2 catalyst (Fig. 10), which agrees with general lower catalytic activity of platinized catalyst for EDTA oxidation. On the other hand, the concentrations of iminodiacetic acid, formic acid and oxalic acid are clearly lower in the presence of Pt/TiO 2 particles than in homogeneous solutions (Fig. 11). Therefore, one can conclude that this catalyst improves the degradation of intermediates, which lead to somewhat better TOC abatement compared to homogeneous solution (Fig. 10). This is traced back to the difference in the reaction mechanisms with Co 3 O 4 /TiO 2 and Pt/TiO 2 catalysts. In the case of Pt/TiO 2 , the principal mechanism related to the activation of O 2 molecules on Pt surface provides better efficiency for oxidation of small carboxylic acids [START_REF] Chave | Sonocatalytic degradation of oxalic acid in the presence of oxygen and Pt/TiO 2[END_REF] formed as intermediates during sonochemical degradation of EDTA.

Thorough chemical analysis allowed to establish a carbon balance in solution summarized in Fig. S8 of the Supplementary data. In sonocatalytic process with Co 3 O 4 /TiO 2 , some unidentified species can reach 35% of initial carbon balance. On the other hand, the concentration of such products is negligible for the process in homogeneous solution which can be related to some difference in the reaction mechanism with and without catalyst.

Catalyst stability

The stability of both catalysts was assessed in the presence of 5 mM EDTA with mechanical stirring and Ar/O 2 atmosphere under ultrasonic irradiation and silent conditions during 7 h at 40 °C. ICP OES analysis showed that only 0.2% and 1.4% for Pt and Co respectively of an equivalent metal quantity were leached into the solution under ultrasound. Metal leaching under silent conditions was found to be equal to 0.2% and 2% for Pt and Co respectively. These results are within the ICP technique uncertainty and point out a good catalyst stability, and practically rules out the possibility of any secondary homogeneous oxidation reaction occurring within the liquid phase. ) normalized to cobalt mass in catalyst (2 g L -1 ). f = 345 kHz, P ac = 0.20 W•mL -1 , T = 40 °C, Ar/20%O 2 . The error of W measurements was about 10%. 

Characterization of the spent catalysts

The Co-containing catalysts where characterized by XRD, BET and H 2 -TPR upon their exposure to ultrasound irradiation during the sonocatalytic experiments. XRD measurements of spent 6.4%wt. Co 3 O 4 / TiO 2 catalyst show the same patterns as initial catalyst. The crystallite size of Co 3 O 4 and the specific surface area of spent Co 3 O 4 /TiO 2 catalyst were also found practically equal to that before the sonocatalytic treatment (37.8 ± 7.5 nm and 6.9 ± 1.5 m 2 g -1 respectively). So, this catalyst was apparently stable during 7 h of ultrasonic treatment.

The H 2 -TPR profiles acquired for the fresh and spent 6.4%wt. Co 3 O 4 /TiO 2 catalysts are shown in Fig. 12. The profile obtained for the spent catalyst differs from that acquired for the fresh catalyst indicating a redistribution of the Co-active sites upon the sonocatalytic reaction. The main reduction peaks are still present, however, their intensity and appearance clearly change. In addition, lower H 2 -consumption was obtained for the spent catalysts (25.5 μmol/g catalysts ) than for the fresh one (64.5 μmol/g catalysts , Table 2), indicating the presence of already reduced Co-species upon the sonocatalytic reaction. This observation further confirms the sonocatalytic mechanism proposed in Fig. 8 

Conclusions

The present study reveals advanced sonocatalytic activity of Co 3 O 4 / TiO 2 noble metal-free catalyst in the reaction of EDTA oxidation. Quantitative EDTA degradation can be reached using high-frequency 345 kHz ultrasound and Ar/O 2 gas atmosphere at near-room temperature. Surprisingly, the sonocatalytic activity of Co 3 O 4 /TiO 2 was found to be significantly higher than that of traditional Pt/TiO 2 catalyst. This striking phenomenon can be attributed to the stronger interaction of EDTA with Co 3 O 4 compared to metallic platinum. It is interesting to note that both catalysts are inactive under silent conditions. We suggest that the mechanism of sonocatalytic process involves the adsorption of EDTA at the cobalt oxide sites, the production of oxidizing radicals during cavitation bubble collapse and redox reaction at Co 3 O 4 surface intermediated by Co(II)-Co(III) electron transfer. Relatively low activation energy of the overall process equal to E a = 19 kJ mol -1 pointed out that the thermal effect is related to reagent diffusion rather than to excitation of chemical bonds. Sonochemical and sonocatalytic degradation of EDTA is accompanied by formation of several acidic intermediates, such as iminodiacetic acid, formic acid, oxalic acid, glycolic acid, and acetic acid. Similar intermediates have been observed during radical degradation of EDTA induced by γ-irradiation. Despite low catalytic activity toward EDTA oxidation, Pt/TiO 2 catalyst improves sonochemical degradation of intermediate products compared to homogeneous solutions. To conclude, these results revealed a new possibility to decompose persistent organic pollutants, such as EDTA, with noble metal-free catalyst.

Fig. 1 .

 1 Fig. 1. Sonochemical reactor with (1) mechanical stirrer, (2) gas outlet, (3) thermocouple, (4) gas inlet, (5) water jacket, (6) sampling septum, (7) 345 kHz transducer.

  3 for 1.3%wt. and 6.4%wt. Co 3 O 4 /TiO 2 respectively and in Fig. S2 (Supplementary data) for 3.3%wt. Co 3 O 4 /TiO 2 evidence presence of cobalt oxide nanoparticles dispersed on the surface of TiO 2 support. The average size of Co 3 O 4 nanoparticles calculated from HRTEM for each catalyst is shown in Table 1. Cobalt oxide nanoparticles around 10-15 nm are present in the 1.3%wt. Co 3 O 4 /TiO 2 catalyst. Higher Co-loading results in an increase of the average Co 3 O 4 particle size, i.e. in the 3.3%wt. Co 3 O 4 / TiO 2 and 6.4%wt. Co 3 O 4 /TiO 2 catalysts the size of the Co 3 O 4 particles reaches 15-20 nm. Also certain cobalt oxide agglomeration can be observed at HRTEM images at high Co-loading. Whereas, crystallite size calculated by Scherrer equation (Table

Fig. 2 .

 2 Fig. 2. TEM picture (a) and EDX map (b) for the 6.4% wt. Co 3 O 4 /TiO 2 catalyst.

Fig. 3 .

 3 Fig. 3. TEM picture (a) and EDX map (b) for the 1.3% wt. Co 3 O 4 /TiO 2 catalyst.

Table 1

 1 Co 3 O 4 mean particle size obtained from HRTEM pictures and calculated from XRD patterns at 2-Thêta = 65.2°of Co 3 O 4 using Scherrer equation, and specific surface area calculated by BET analysis. Particle size obtained by TEM was average from at least 20 parallel measurements.

1 Fig. 4 .

 14 Fig. 4. HRTEM images of the 1% wt. Pt/TiO 2 catalyst.

Fig. 5 .

 5 Fig. 5. H 2 -TPR profiles acquired for the 1.3% wt. Co 3 O 4 /TiO 2 , 3.3% wt. Co 3 O 4 / TiO 2 and 6.4% wt. Co 3 O 4 /TiO 2 catalysts.

Fig. 6 .

 6 Fig. 6. (a) Evolution of EDTA amounts during sonolysis of homogeneous aqueous solutions as a function of temperature and various Ar/O 2 gas mixture composition. (b) Kinetic curves of H 2 O 2 formation at 40 °C and Ar/20% O 2 gas atmosphere. The other conditions studied at 20 °C under Ar/20% O 2 gas mixture and at 40 °C under argon atmosphere are in Supplementary Data (Fig S3). V = 200 mL, [EDTA] 0 = 5 10 -3 M, under 345 kHz ultrasound (P ac = 0.20 W mL -1 ).

Fig. 7 .

 7 Fig. 7. Kinetic curves of EDTA sonocatalytic oxidation with 6.4%wt. Co 3 O 4 /TiO 2 (a) and 1% wt. Pt/TiO 2 (b). 345 kHz ultrasound or silent conditions (P ac = 0.20 W mL -1 , T = 40 °C, Ar/20%O 2 , catalyst concentration -2 g L -1 ).

Fig. 8 .

 8 Fig. 8. Mechanism of EDTA sonocatalytic degradation in the presence of Co 3 O 4 /TiO 2 catalyst.

Fig. 9 .

 9 Fig. 9. Evolution of H 2 O 2 quantity under 345 kHz ultrasound (P ac = 0.20 W mL -1 , T = 40 °C, Ar/20%O 2 ).

  involving Co(II)-Co(III) redox process in the reaction mechanism. Absence of Co(II) moieties in the DRX patterns of spent catalyst most likely is related to their low concentrations.

Fig. 10 .

 10 Fig. 10. Kinetics of TOC removal expressed in % (a) and mmol (b) during sonolysis of EDTA homogeneous solution and heterogeneous system with 6.4%wt. Co 3 O 4 / TiO 2 catalyst and 1%wt. Pt/TiO 2 (2 gL -1 of catalyst, 40 °C, 200 mL, 5 mM EDTA, f = 345 kHz, P ac = 0.20 W•mL -1 , 20%O 2 /Ar). TOC measurement error was about 5%.

Fig. 11 .

 11 Fig. 11. Intermediate products of EDTA solutions (2 g L -1 of 6.4% wt. Co 3 O 4 /TiO 2 or 1% wt. Pt/TiO 2 , 40 °C, 200 mL, 5 mM EDTA, f = 345 kHz, P ac = 0.20 W mL -1 , 20%O 2 /Ar). Concentration error was about 10%.

Fig. 12 .

 12 Fig. 12. H 2 -TPR profiles acquired for the 6.4% wt. Co 3 O 4 /TiO 2 catalyst, before and after the sonocatalytic test.

Table 2

 2 Hydrogen consumption during H 2 -TPR runs performed on the Co-containing catalysts.

	Co 3 O 4 /TiO 2 Catalyst	1.3%wt.	3.3%wt.	6.4%wt.
	H 2 (μmol/g cat )	16.1	28.2	64.5

products, while the remaining recombine into H 2 O 2 . The H 2 O 2 evolution under argon atmosphere at 40 °C and under Ar/20%O 2 atmosphere at 20 °C is represented in Fig.

S3

of the Supplementary data. Similar H 2 O 2 evolution plot profile at 20 °C and 40 °C confirms the temperature independence on the H 2 O 2 production yield and the EDTA degradation yield in homogeneous solutions.

Table 3

 3 EDTA degradation rate (W, mmol h -1 •g Co
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Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.apcatb.2018.09.001.