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A B S T R A C T

By considering the solution of the Mean Spherical Approximation (MSA) given by Lesser Blum, we addressed
the problem of specificity in aqueous electrolyte solutions. The reference diameter of the cations is defined
as the biggest possible diameter of the cation (obtained with the less associating anion). Then the specificity
is taken into account by an association term similar to Bjerrum theory. The resulting activity coefficients can
be used to describe pure electrolyte and electrolyte mixtures up to molar concentrations. Hydration appear
to be relatively stable with small cations but it strongly depends on the anion for big cations. The validity of
Zdanovskii-Stokes-Robinson mixing rule has also been tested and it appears to be valid with typically a 1%
accuracy for molar concentrations.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

From a long time, thermodynamic properties of electrolyte
solutions are described considering the solvent as a continuum
characterized only by its dielectric constant. For systems where the
solvent does not appear explicitly, thermodynamic and structural
quantities can be deduced from the McMillan Mayer’s theory [1]. In
particular thermodynamic properties such as the chemical potential
of the ions or the osmotic coefficient can be calculated from the
Helmholtz energy F . Specifically, in order to describe solely the
deviations from ideality, these quantities are calculated from the
excess of Helmholtz energy (per volume unit) f exc

v .
For weakly charged electrolytes, completely dissociated in

aqueous solutions, Debye and Hückel have shown that the excess
thermodynamic properties of the solution at very low concentrations
can be described by considering only the electrostatic interactions
at long distances between the components of the electrolyte. The
ions are characterized only by their charges. Then the interaction
potentials between charged species are given by

Vij(r) =
zizje2

4pe0err
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where zi is the valence of ion i and e is the elementary charge.
The relative dielectric constant of the solvent er in the denominator
accounts for the screening of interactions due to the solvent
molecules present between species i and j.

However for more concentrated electrolytes, interactions at
shorter distances are becoming increasingly important. To prevent
a possible overlap of ions, a distance of closest approach must be
taken into account in the interaction between the ions at short
distance. Regarding the interaction between ions of the same sign,
Coulomb repulsion is sufficient to prevent the overlap of ions at low
concentrations. By contrast for interactions between ions of opposite
sign, a short-range repulsion is necessary to oppose the Coulomb
attraction. Accordingly, the distances of closest approach introduced
to improve the description of thermodynamic properties, are, espe-
cially at low concentrations, representative of the repulsive interac-
tions between ions of opposite sign. In practice, these short range
repulsions are described by considering all the ions i as hard spheres
of diameter s i. Considering that these interactions are additive, the
distance of lowest approach between an ion i of diameter s i and an
ion j, different from i, of diameter s j is equal to (s i + s j)/2. This
choice was made because it allows to obtain analytical expressions
for the structure and the thermodynamics of mixture of charged
hard spheres. For highly solvated monoatomic ions, the distance of
less approach deduced from measured thermodynamic properties
appears to be greater than the sum of the crystallographic radii. To
explain this fact we consider that these ions are surrounded by an
impenetrable layer of solvent. The relatively simple solution of the
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Mean Spherical Approximation given by Blum et al. [2–5] for the
Primitive Model (for which ions are modeled as hard spheres) has
been able to take proper account of these hard sphere effects in the
ionic atmosphere even if the solution is concentrated. This solution is
able to interpret activity coefficients of dissociated electrolytes [6–8]
up to moderately concentrated solutions (typically up to 1 mol.L- 1).
Even transport coefficients [9–12] can be obtained with the same
approach when the MSA solution is coupled to Fuoss-Onsager
approach and Brownian theory.

Nevertheless, Debye and Hückel used a linearized analytical
theory to account for the electrostatic interactions. This approach
must be corrected to properly account for the Coulomb interactions
at short distances. The Bjerrum’s approach allows a better descrip-
tion of these short range electrostatic interactions and thus
completes the Debye Hückel (DH) theory in the treatment of these
interactions. It adds the concept of ion pairs. Cations and anions
can form a new species, the pair because of the magnitude of
the electrostatic force. In fact for many real electrolytes, additional
specific interactions must be considered to account for the observed
properties. The most striking case is that of weak electrolytes, acids,
or basic solutions in which chemical bonds occur between the
components. For these systems, new species of long life are formed
and their interactions with existing species must be considered.
More generally, many ionic species seem to have a solvent averaged
interaction potential comprising a short range attractive contribu-
tion of non-electrostatic origin. Thus extended version of the MSA
has been proposed in order to consider this association effect. For
example, Holovko et al. proposed an associated MSA scheme [13–16].
The Wertheim formalism [17] gives similar results for the treatment
of association. Globally these associated models [13,18,19] are in
agreement with the experiments for associated electrolytes but the
ion sizes and sometimes the association constant have be fitted.
Moreover, it is not possible to give a universal value of an ion size
because it depends on the nature of the counterion.

Recently, molecular dynamics clarified our view of activity
coefficients in electrolyte solutions. Indeed, the McMillan-Mayer
theory [1] proposes a rigorous framework for these continuous
solvent approaches. The average over the configurations can be done
in a two stages procedure. In the first stage the force between the ions
is averaged over the solvent configuration and a McMillan-Mayer
potential between the ions can be calculated. Then in a second stage,
the average over the ion configuration can be done. That as exactly
what the MSA does from a primitive model for which the solvent
averaged McMillan potential between the solute particles is the one
of charged hard spheres. Molecular dynamics simulations [20–23]
confirm that the potential between ions is globally Coulombic, but
a short term part has to be added and it is not a hard sphere
repulsion. Globally it is an oscillating potential [24] that represents
the hydrophilic/phobic interactions between the solute particles. At
short distances there is generally a minimum which represents the
Contact Ion Pairs for which there is no solvent molecules between
the two ions. Further minima can exist represented Solvent Sepa-
rated Ion Pair or more complicated species. All these minima are
separated by unlikely domain with activation energies. Generally,
the magnitude of the oscillating short-range potential between the
ions is more than kBT for the first minima so that it is rigorously
impossible to consider an equivalent hard-sphere model [24] and at
least the contact ion pair has to be taken into account rigorously if
the structure of the solution is to be described. If only the free energy
of the solution is required, then an effective diameter is possible,
but there is a price to pay: non-additivity: the short-range potential
strongly depends on the nature of the ions and specific attraction
can occur between ions. For example it is often stated [25] that small
ions are dehydrated when they interact with small ions whereas
they stay hydrated when they interact with bigger ions. Hence the
impossibility to derive universal hydrated diameter tables.

Considering this non-additivity, we propose in this article to use
the concept of ion pairs in order to take proper account of ion
specificity and non-additivity in electrolyte solutions. First we will
write down an associated MSA theory in order to describe activity
coefficients forelectrolytemixtures.Thenwewilldeducethehydrated
ion diameters by considering the maximum size of the ions when no
association is considered. Then, the mixing effect will be modeled by
adding when necessary ion pairs in order to take into account the
possible dehydration of ions at contact. The case of mixtures and the
validity of mixtures rules are described in the last part.

2. Theory and calculation procedure

The electrolyte is modelled by the primitive model for which
the various solute species (free cations, free anions, and ions
pairs) are modelled by charged hard spheres. The thermodynamical
properties of such a model are calculated by the MSA. Within that
approximation, the McMillan-Mayer [1] excess free energy of the
solution is decomposed into two terms as:

bf ex
V = bf el + bf HS (1)

where f el is the electrostatic contribution and f HS is the hard
sphere contribution that takes into account short range repulsions.
b = 1/kBT with kB the Boltzmann’s constant and T the temperature.
Debye-Hückel’s limiting-law is only applicable at low concentrations
(below 10- 2 M). The MSA is able to describe concentrated solutions
because the electrostatic contribution f el is not the one of DH theory,
the size of the ions being taken into account in the ionic atmosphere.
Moreover the hard sphere contribution f HS which represents the free
energy of an equivalent hard sphere mixture, i.e. the free energy of
the system at infinite temperature (entropic effects,) is considered.
The MSA recovers at low concentrations the variations given by the
DH theory. Thus it can be understood as an extension of the DH
theory when the size of the electrolyte is properly taken into account.

2.1. MSA calculation procedure

Here we consider the case where there is no association. Only
free ions are present. The mean activity coefficient of the electrolyte
solution in a binary system is calculated as:

c± =
(
c
m+
+ c

m−−
) 1

m++m− (2)

where m+ and m- are, respectively, the stoichiometric coefficient
of the cation and the anion. The excess free energy derived from
the MSA theory is then the sum of two terms. The first one
is the electrostatic term and the second one is the hard sphere
contribution:

bf ex
V =

(
b

Felec

V
+ b

FHS

V

)
(3)

The chemical potential reads

li =
∂F
∂Ni

=
∂ f ex

V

∂qi
(4)

where qi the molar concentration of the i species:

qi =
Ni

V

with V the volume and Ni the number of particles i.
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The mathematical expression of the excess free energy of the hard
sphere [26] term is defined as:

bf HS
V =

[(
n3

2

n0 n2
3

− 1

)
lnD +

3 n1 n2

n0 D
+

n3
2

n3 n0 D2

] ∑
i

qi (5)

with

ni =
p

6

∑
j

qjs
i
j i = 0, 1, 2, 3 (6)

where s i is the diameter of an ion of type i,

D = 1 − n3 (7)

The expression of the hard sphere activity coefficient can be
calculated from Eqs. (3), (4) and (5) and it is given by [27]:

lncHS
± =

(
n3

2

n0 n2
3

− 1

)
lnD+

n3

D
+

n3
2

(
1 + 2n3 − n2

3

)
n0 n3D2

+
3n1 n2(2 − n3)

n0D2

(8)

The hard sphere contribution to the osmotic pressure is given by:

VHS =
n3

1 − n3
+

3n1 n2

n0(1 − n3)2
+

n3
2(3 − n3)

n0(1 − n3)3
(9)

The mathematical expression of the electrostatic excess free
energy i [5] is:

b
Felec

V
= bEelec +

C3

3p
(10)

bEelec = −LB

(
C

∑
i

qi
z2

i

1 + Csi
+

pYP2
n

2D

)
(11)

C2 = p LB

∑
i

qi

(
zi − p

2D Pns
2
i

1 + Csi

)2

(12)

Pn =
1
Y

∑
i

qisizi

(1 + Csi)
(13)

Y = 1 +
p

2D

∑
i

qis
3
i

(1 + Csi)
(14)

The electrostatic activity coefficient can be obtained from Eqs. (3), (4)
and (10), as the hard sphere contribution, and it is given by:

ln yelec
± =

bEelec

n0
− pLB

P2
n

2n0D2
(15)

The electrostatic contribution to the osmotic pressure is given by

Velec = − C3

3pn0
− pLB

P2
n

2n0D2
(16)

with the Bjerrum length:

LB =
e2

4pere0kBT
(17)

where e is the elementary charge, T the absolute temperature, kB the
Boltzmann constant, e0 the vacuum permittivity and er the water
permittivity.

The mean activity coefficient of the system can be expressed as
the sum of the electrostatic and hard sphere terms as:

ln y± = ln yelec
± + ln yHS

± (18)

These equations are valid for a dissociated electrolyte.

2.2. Paired systems and association constant

In order to fit the experimental data, we have chosen to introduce
a new parameter: the ion pair which is characterized by an
association constant. The associative contribution to the excess free
energy is inserted in the same spirit as in a previous article [28]. This
contribution was added previously to take into account the attrac-
tive interactions at short distances found into the solvent averaged
potentials deduced from simulations dealing explicitly the solvent.
In the same way, specific attractive interactions at short distance
required to describe real electrolytes have been taken into account in
this study. Accordingly a system containing two ionic species (anions
and cations) is described as a system in which the cations and anions
can form pairs. These pairs are described as sphere of charge equal
to the sum of those of its constituents. The ionic diameter of the
associated pair has been calculated as the co-volume of the hard
sphere [29] (Eq. (19)). The value of the association constant has been
fitted by the least-square method with the Pauling’s diameter for
the anions and the biggest hydrated diameter for each cations. The
results have been summarized in Table 4. The MAL reads

Kasso =
Pn−m+

pair

An−Cm+ (19)

where the activity of the species are present in the right-hand side of
the equation. The diameter of the pair is defined by [29]

spair = 3
√
s3

An− + s3
Cm+ (20)

When the association is due only to electrostatic interactions, the
value of the association constant can be calculated using an integral
such as that of Bjerrum [29] (Eq. (21)):

K0 = 4p
∫ ssup

scontact

exp

(
− z+z−e2b

4pe0err

)
r2dr (21)

where b is 1
kBT . Originally, this association constant was obtained

from an integral whose lower bound scontact was the distance of
closest approach between a given pair of ions. The upper limit s sup

was the distance beyond which the ions are not associated because
the attractive interactions are no longer large enough. This upper
bound was set by Bjerrum to the value LB/2. It must be noted that
this value of the upper bound is arbitrary and that other choices
have been made. An alternative expression to that of Bjerrum, was
defined also by Ebeling in which an upper limit was not necessary.
When the electrostatic interactions at short distance are very impor-
tant, both expressions lead to numerically similar values. This is
because those integrals are much more sensitive to the choice made
for the lower limit, than to the choice made for the upper limit of
integration. In view of the similarity of the numerical values obtained
using these alternative choices when the electrostatic interactions at
short distance are very important, we have not tried other types of
expressions in this study. In this study we have considered arbitrarily
that the upper limit of integration, for a given pair anion-cation was
given by: s sup = (s+ + s - )/2, were s - is the crystallographic
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diameter and s+ the diameter of the cation fitted previously. Now
considering that the association constant K0, calculated using this
expression, is equal to the fitted one Kasso, we have deduced the lower
limit of integration scontact.

Then the Bjerrum size has been calculated from the anionic
diameter and cationic diameter and the association constant,
summarized in Tables 1, 3 and 4. The Bjerrum size’s results have been
summarized in Table 5.

In order to determine the mean activity coefficient for the three
components model 3CM (free ions + pair), we match this 3CM
into an equivalent two components model 2CM (cations and anions
without distinguishing if they are free or associated). We start from
the Gibbs energy of 2CM which is defined as:

dG = l+dn+ + l−dn− = ldn (22)

where the chemical potential of the salt is l = l+ m+ + l- m- . The
Gibbs energy of the 3CM reads

dG = l
f
+dnf

+ + l
f
−ddf

− + lpdnp (23)

The two models (3CM and 2CM) match at chemical equilibrium
where

lp = l
f
+m+ + l

f
−m− (24)

where the subscript f means free and the subscript p means
associated. By identifying the differentials of two Gibbs energy, we
obtain

l = l
f
+m+ + l

f
−m− (25)

The means activity coefficient for three components is therefore
described by:

c
f
± =

(
c

f
+

m+c
f
−m−

) 1
m++m− (26)

Thus, the global formula is the same as the one for dissociated
electrolyes, but the activity coefficients are the one of free ions.

2.3. McMillan-Mayer to Lewis-Randall conversion

The calculated activity coefficient of the electrolyte has been
converted from the McMillan-Mayer reference to the Lewis-Randall
reference thanks to Eq. (27).

lncLR
± = lncMM

± − 0MMv̄±
∑

j

qj (27)

where lncMM± = ln y±;, 0MM is the osmotic coefficient in the
McMillan-Mayer reference, v̄± is the mean partial molar volume, and
qj the concentration of the j in particles • m- 3.

0MM = 1 +

∑
i
qi lncMM

i − f ex
V∑

i
qi

(28)

Table 1
The different anion’s diameters which are equal to the Pauling’s diameter expressed
in Å.

anions CH3COO- F- Cl- Br- I- NO−
3 ClO−

4 SCN-

s−Pauling 3.18 2.72 3.62 3.9 4.32 3.78 4.72 4.26

These equations have been successfully used in the calculation of
mean activity coefficient of pure electrolyte solution [7,12,30,31].

The experimental data have been taken from references [32–34].
Nevertheless, the activity coefficients are commonly measured in the
molality scale (mol • kg- 1 of solvent) whereas the MSA formulae is
typically in the molarity scale (particles • m- 3 of solvent). Therefore,
a conversion is needed. We conversed the experimental activity
coefficient from the molality scale to the molarity scale (Eq. (29)).
This latter equation is valid because at infinite dilution 1 mol • L- 1 is
equal to 1 mol • kg- 1.

cC
± =

m±cm±
C±

(29)

where the superscript C and m correspond, respectively, to molarity
and molality scale. Conversion has been performed in the following
way:

lncLR(m) = lncLR(c) + ln
c

dwm
(30)

dw is the density of water, the density of pure water has been taken
approximately equal to 1 kg • L- 1 at 25◦C. The ratio c

m is the density
of the solution and it is defined by:

c
m

≈ 1∑
imim̄i + d−1

w

=
dw

1 + dw
∑

imim̄i
(31)

In this formula, the partial molar volume of the ion is assumed to
be constant and the tabulated values of Marcus reference tables [35]
have been chosen.

3. Results and discussion

3.1. Derivation of ionic diameters without association constant

It has long been recognized that the MSA theory is powerful
and able to evaluate the activity coefficients of simple aqueous
electrolyte solutions [7,31]. Then, as a first step, we used the MSA
theory with no association to evaluate the average activity coeffi-
cient of binary electrolyte solutions. This theory requires only the
ionic diameter of each ions composing this electrolyte. Different
procedures can be used to determine the ionic diameter. We have
chosen, classically, to set that the anionic diameter equals the
Pauling’s diameter [35] (Table 1) whereas the cationic diameter has
been fitted thanks to the least-square method. The results have been

Table 2
Cationic’s diameters without association constant expressed in Å. The red value rep-
resents the highest cationic diameter. This diameter has been chosen as reference
diameter.

CH3COO- F- Cl- Br- I- NO−
3 ClO−

4 SCN-

H+ 4.61 4.81 4.00 3.95
Li+ 4.35 4.36 4.38 4.12 4.37
Na+ 2.89 3.27 3.49 3.61 1.81 2.13
K+ 3.89 2.80 2.77 2.84 2.05 0.93
Rb+ 4.49 2.55 2.27 1.92 0.15 −0.78
Cs+ 4.82 1.99 1.7 1.33 0.096 −1.08
NH+

4 2.11 2.41 1.27 0.14 2.28
Mg2+ 3.87 5.74 6.12 5.57 6.04
Ca2+ 5.39 5.67 4.1 5.53
Sr2+ 5.18 5.37 3.43 5.08
Ba2+ 4.85 4.76 5.05 2.29 4.53
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Table 3
Pauling’s and hydrated’s diameter for the cations expressed in Å.

Cation H+ Li+ Na+ K+ Rb+ Cs+ NH+
4 Mg2+ Ca2+ Sr2+ Ba2+

s+Pauling 1.2 1.9 2.66 2.96 3.38 2.96 1.3 1.98 2.26 2.7
s+Hydrated 5.04 4.81 4.89 5.17 5.42 5.42 2.92 6.3 5.88 5.68 5.59

summarized in Table 2 where the red values represent the biggest
diameter for each cationic series.

Table 1 summarized the different anion’s diameters used in this
paper. Each anionic diameter corresponds to the Pauling’s diam-
eter extracted from reference [35]. We have chosen to order the
different anions following the Hofmeister series. Nitrate is to be
placed between the bromide and the iodide in order to respect the
Hofmeister series.

Table 2 summarized the different cationic diameters fitted
without association constant expressed in Å. The root mean square
deviation for each cation without association has been reported in
the supporting information. The red value corresponds to the biggest
cationic diameter used and later it will be used in order to calculate
the mean activity coefficient with the association constant.

For the acetate and the fluoride, the diameter increases along
the alkaline and alkaline earth series. This means that the cation is
bigger along the alkaline and alkaline earth series. This effect actually
corresponds to the one of bare ions given by then Pauling diameters.
For the halide series, from chloride to iodide, the diameter decreases
along the alkaline and alkaline earth series. This is a reverse effect
compared to the bare diameters: The smaller the ion in a crystal
(Pauling diameter), the bigger it is in water because of hydration.
Indeed, small ions like lithium are heavily linked to the solvent
and big anions (as halides) cannot replace water molecules [29].
For nitrate and perchlorate, the cation diameter similarly decreases
along the alkaline earth series (excepted for the hydrogen).

Rubidium and caesium have a negative diameter with respect
to perchlorate, which is physically impossible. It is possible that
a strong association occurs and that rubidium and caesium are
strongly associated to the perchlorate tetrahedron. This effect
strengthens our choice to introduce the association constant in order
to reduce artificially the diameter. For the nitrate, the diameter
decreases along the alkaline series excepted for the hydrogen, like
the perchlorate, and the potassium. The rubidium and the caesium
present a diameter close to 0 which is physically impossible for
nitrate. It is possible, like for the perchlorate, that the nitrate
approaches the rubidium and the caesium by its thickness. Indeed
the nitrate is a flat anion therefore its diameter is not properly
defined.

Lithium diameter changes little along the anion series. It means
that the lithium does not in fact dehydrate in the presence of the
different anions. The first shell of four water molecules around it is
very rigid and hydration appears to be stable. On the other hand,

Table 4
Association constant (Kasso).

CH3COO- F- Cl- Br- I- NO−
3 ClO−

4 SCN-

H+ 0.24 0.12 0 0.58 0.6
Li+ 0.24 0.24 0.225 0 0.36 0.22
Na+ 0 1.11 0.86 0.76 0.696 1.76 1.58
K+ 0 0.77 1.40 1.42 1.37 3.48 2.67
Rb+ 0 0.59 1.82 2.00 2.22 4.06 3.39
Cs+ 0 0.37 2.19 2.4 2.7 4.12 3.7
NH+

4 0 0.36 0.22 0.79 1.64 0.28
Mg2+ 3.43 0.87 0.25 0 1.12 0.32
Ca2+ 0.78 0.32 0 3.19 0.46
Sr2+ 0.83 0.48 0 4.42 0.85
Ba2+ 1.35 1.43 0.87 0 6.58 1.61

rubidium and caesium present a wide range of diameters. It means
that this two alkaline cations strongly modify their hydration as a
function of the anion. They are indeed the biggest alkali: the water
molecules around them are not firmly sticked in the first sphere so
that hydration strongly depends on the cation environment. Acetate
and iodide anions are mainly dissociated with the different cations.
The ammonium seems to be different from the other cations but it is
a molecular ion contrary to the alkaline and alkaline earth ions and
it misses data with acetate or fluoride anions.

Considering this study, the recommended hydrated diameters are
given in Table 3. It should be noted that they are not universal. They
represent the highest possible cation diameter, which is the one
when it interacts with the less associating anions. It is always equal
or bigger than Pauling diameter. Typically it represents one water
molecule whose diameter is around 3 Å, but there are exceptions
since NH4 is not hydrated and magnesium cation has the biggest
solvation shell (5 Å).

3.2. Procedure for the derivation of consistent ionic diameters and
association constants

If there is no specific effects, in different binary electrolytes
having a common ion, the latter must have the same size so that the
distance of closest approach between cations and anions is given by
half the sum of their diameters (s+ − = (s+ + s - )/2). We note
that the use of a larger diameter for a given ion, in order to evaluate
the average activity coefficient leads to an upward deviation of the
theoretical curve. On the contrary, the fact of taking into account
an additional short range attractive interaction leads to a downward
deviation of the calculated curve. Accordingly, in a series of binary
electrolyte solutions having a common cation, the solution in which
the cation is the largest can be regarded as the one where short
attractions are the smallest. That is the reason why we assumed that
in this solution attraction can be considered to be zero: the biggest
cationic diameter has to be chosen. Therefore, this latter has been
chosen as the reference for each cation (Table 3).

If this reference cation diameter is chosen, specific effects are
represented by a decrease of the diameter when further anions
are considered. A possible method would be the treatment of non-
additive hard spheres. Unfortunately, the solution of the primitive
model with non-additive hard spheres does not exist. So the speci-
ficity has been taken into account by an attraction at short distance

Table 5
Cation diameters fitted from the association constant thanks to the Bjerrum formula
(Eq. (21)).

CH3COO- F- Cl- Br- I- NO−
3 ClO−

4 SCN-

H+ 4.38 4.72 5.04 3.44 3.44
Li+ 4.14 4.15 4.20 4.81 3.82 4.23
Na+ 4.89 1.95 2.51 2.79 2.98 0.34 0.60
K+ 5.17 3.04 1.38 1.31 1.43 −1.37 −1.33
Rb+ 5.42 3.78 0.65 0.22 −0.30 −1.27 −1.97
Cs+ 5.42 4.39 −0.01 −0.44 −1.04 −1.58 −2.18
NH+

4 2.92 1.93 1.94 0.88 −1.05 2.14
Mg2+ 4.56 5.79 6.15 6.3 5.64 6.09
Ca2+ 5.44 5.69 5.88 4.21 5.59
Sr2+ 5.23 5.40 5.68 3.53 5.16
Ba2+ 4.93 4.83 5.10 5.59 2.72 4.63
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represented by the formation of pairs. The new hypothetical activity
coefficient curve with the biggest diameter parameter doesn’t pass
through the experimental data, except for the salt with this biggest
cation because the specific effects are neglected and they will be
treated now by a chemical model.

Table 3 summarized the cationic Pauling’s size and the biggest
cation hydrated’s size. The alkaline series presents a difference,
between the hydrated and Pauling’s diameter, close to 2–3 Å
which corresponds to the size of one water molecule. The alkaline
earth series presents a difference, between hydrated and Pauling’s
diameter, between 3 and 5 Å which corresponds to the size of
1.5 water molecules which implies that the half particles are
hydrated by 1 water molecule and the second half are hydrated
by 2 water molecules. The ammonium diameter is equal to the
Pauling’s diameter in solution, as already noticed. It means that
the ammonium is non-hydrated in solution. The hydrated alkaline
diameters increase along the series like the Pauling’s diameters
whereas the hydrated alkaline earth diameters decrease along the
series unlike the Pauling’s diameters. Similar hydrogen diameter has
been obtained by Simonin et al. [36] by another procedure.

Table 4 represents the different association constants for the
whole electrolyte studied in this paper. The root mean square
deviation for each cation with association has been reported in
the supporting information. For the chloride and bromide, the
association constant increases along the alkaline and alkaline earth
series. Whereas the association constant decreases along the alkaline
series for the fluoride. The association constant for the nitrate and
perchlorate increases along the alkaline and alkaline earth series
except for the hydrogen. The iodide is not associated for the whole
alkaline earth and for the hydrogen and the lithium while the acetate
is not associated with the rest of the alkaline series. The smaller
the Pauling’s diameter, the more associated the alkali acetate is. The
ammonium presents a specific association which is not classified like
the other cations.

For the beginning of the alkaline series, from the hydrogen to
the sodium, and the alkaline earth series, the association constant
decreases along the halide series. For the rubidium and the caesium,
the association constant increases along the halide series. The potas-
sium presents a middle behaviour. The association constant for the
nitrate is higher than the perchlorate for the whole cations except the
hydrogen and the ammonium. The small cations, in point of view of
the Pauling’s diameter (the hydrogen and the lithium), have an asso-
ciation constant fairly constant with the whole anions. It is quite dif-
ficult to dehydrate this cations which implies that the hydrogen and
the lithium present one shape: hydrated. The big cations, in point of
view of the Pauling’s diameter (the potassium, the rubidium and the
caesium), have an association constant which varies a lot. It means
these cations can be dehydrated easily as a function of the counter
ions present in the solution which implies these cations don’t present
a specific shape. The sodium presents a middle behaviour which
implies that the sodium presents, mainly, two shapes: one hydrated
and one non-hydrated. This specific behaviour of sodium has been
obtained from molecular dynamics by Molina et al. [29].

In his paper, Collins [37] has resumed an appendix written by
Morris [38] in which he presented the standard heat of solution of
a crystalline alkali halide as a function of the difference between
the absolute heats of hydration of the corresponding gaseous anion
and cation. In general, the potassium, the rubidium and the cae-
sium chloride, bromide and iodide present a positive value of the
Gibbs energy which corresponds to an association constant value
upper than 1. Whereas the lithium and sodium halide and the potas-
sium, rubidium and caesium fluoride present a negative value of
Gibbs energy which correspond to an association constant value
lower than 1. These blocks agree with the blocks of kosmotropes
and chaotropes described in the paper written by Collins [37] and
resumed by Kunz [39].

3.3. An attempt to interpret fitted constants with the theoretical
expression of the type of Bjerrum (purely electrostatic):

To assess if the previously fitted association constants are only
due to the effect of electrostatic interactions at short distances, we
now present the result of the evaluation of these constants with
the theoretical expression of the type introduced by Bjerrum. We
recall that by considering that the calculated association constant is
equal to the adjusted one, we deduced the lower limit of integration
scontact. Given the fact that only the electrostatic interactions were
taken into account for this calculation, the value of scontact deducted
is not necessarily relevant physically. If this quantity is between the
distance of lowest approach deduced from the crystallographic radii
of both ions on the one hand and the adjusted distance spm, then the
specific interactions between these ions are not necessary to account
for the adjusted constants.

Table 5 summarized the different cationic diameters calculated
thanks to the Bjerrum formula (Eq. (21)). When the electrolyte is
dissociated, the Bjerrum cationic is equal to the MSA cationic (the red
value in Table 2). For the alkali acetate and fluoride the cationic diam-
eter increases along the series like the cationic diameter calculated
by the MSA formula. For the alkali and alkali earth chloride, bromide
and iodide, the cationic diameter decreases along the series like the
cationic diameter calculated by the MSA formula. For the alkali and
alkali earth nitrate and perchlorate, the cationic diameter decreases
along the series except for the hydrogen and the lithium.

For the hydrogen, the lithium and the alkali earth, the cationic
diameter changes little with the different anions and is always higher
than the Pauling’s diameter. For sodium, potassium, rubidium and
caesium, the cationic diameter changes widely. The more the atomic
number increases, the more the negative cationic diameters are
calculated. These values are physically meaningless. The ammonium
diameter is always smaller than the Pauling’s diameter except for
the chloride. Every time the negative diameter corresponds to the
diameter smaller than the Pauling’s diameter calculated with the
MSA formula.

Table 6 summarized the ration of the cation diameter calcu-
lated from the association constant thanks to the Bjerrum formula
(Eq. (21)) divided by the MSA diameter where no association is
included (non-hydrated diameter). The idea is that if it is close to
one it is mainly an electrostatic effect whereas if it is very dif-
ferent, specific effects are from another nature. For the hydrogen,
lithium and alkali earth electrolyte, the association is mainly an
electrostatic association. Indeed, the cationic diameter calculated
by the Bjerrum formula (Eq. (21)) is very close to the cationic
diameter calculated by the MSA formulas. The association for the
sodium, potassium, rubidium and caesium is due to more than the
electrostatic interaction except for the acetate electrolyte. For the

Table 6
Ratio of the cation diameter calculated from the association constant thanks to the
Bjerrum formula (Eq. (21)) divided by the MSA diameter where no association is
included (non-hydrated diameter).

CH3COO- F- Cl- Br- I- NO−
3 ClO−

4 SCN-

H+ 0.95 0.98 1.00 0.86 0.87
Li+ 0.95 0.95 0.96 1.00 0.93 0.97
Na+ 1.00 0.67 0.77 0.80 0.83 0.19 0.28
K+ 1.00 0.78 0.49 0.47 0.5 −0.69 −1.43
Rb+ 1.00 0.84 0.25 0.10 −0.16 −8.47 2.53
Cs+ 1.00 0.91 −0.005 −0.26 −0.78 −16.46 2.02
NH+

4 1.00 0.91 0.80 0.69 −7.5 0.94
Mg2+ 1.18 1.01 1.00 1.00 1.01 1.01
Ca2+ 1.01 1.00 1.00 1.03 1.01
Sr2+ 1.01 1.01 1.00 1.03 1.02
Ba2+ 1.02 1.01 1.01 1.00 1.19 1.02
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Fig. 1. The mean activity coefficient of sodium salt as a function of square root of the
total salt molar concentration.

fluoride, the more the atomic number increases, the more asso-
ciation is mainly electrostatic. The different negative ratios for
the potassium, rubidium and caesium correspond to the cationic
diameter smaller than the Pauling’s diameter. For the rubidium and
caesium perchlorate the ratio is positive but both cationic diameter,
MSA and Bjerrum, are negative. The association for the nitrate and
the perchlorate, more than the other anions, seems to be different
than a solely electrostatic interaction. Probably it is due to the fact
that this two anions are poly atomic anions.

Generally, the ratio of both cationic diameter is close to 1
which implies to introduce that the association constant is equal to

reduce the ionic diameter. In order to calculate the mixture activity
coefficient, it is in our interest to choose and take the higher cationic
diameter for each cation.

Fig. 1 represents the mean activity coefficient, for the different
anions, as a function of the square root of the total salt molar
concentration. The experimental values have been taken from
references [32,34]. The blue square is the sodium iodide, the red
circle is the sodium bromide, the green diamond is the sodium
perchlorate, the black triangle up is the sodium chloride, the orange
star is sodium nitrate, the violet down triangle is sodium acetate and
the brown left triangle is sodium fluoride. As described previously,
for each sodium salt, the cationic diameter has been fitted in order
to reproduce the experimental data by fixing the anionic diame-
ter equal to the Pauling’s size (cf. Table 1). Table 2 summarized the
different cationic diameter for each alkali and alkali earth salt. Then,
the biggest diameter has been chosen as the reference. Finally the
association constant has been fitted in order to reproduce at the
best the experimental data. The association constants have been
summarized in Table 4. The better fit is for the non-associating
pair. The association returns a sense more natural but the fit is less
accurate.

From 0 mol • L- 1 to 10- 2 mol • L- 1, the whole curves are
superimposed. It is due to the limiting law described by Debye and
Hükel [40]. The chloride and perchloride sodium present an activity
coefficient very close like the fluoride and nitrate. The difference of
the mean association constant is due to the difference of the diam-
eter of each anions. The sodium chloride, bromide and iodide are
likewise associated. The more association is important, the more the
difference between the experimental data and the AMSA calculated
curve is important.

The same graphic has been plotted for the whole alkali and alkali
earth salts (cf. supplementary information) and the results have been
summarized in the Table 3.

In order to understand the influence of the anions on the
association, the mean activity coefficient of the bromide and acetate

Fig. 2. The mean activity coefficient of alkali acetate (a), bromide (b), alkali earth acetate (c) and bromide (d) as a function of the square root of the total molar concentration.
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Fig. 3. The mean activity coefficient of the hydrochloric acid in the mixture of HCl-
NH4Cl as a function of the square root of the total chloride molar concentration.

salts for the whole cations (alkali and alkali earth) have been plotted,
Fig. 2 a) and c) for the acetate and b) and d) for the bromide.

Thus, Fig. 2 represents the mean activity coefficient of the
different acetate and bromide salts as a function of the square root
of the total molar salt concentration. The experimental data have
been extracted from the references [32–34]. The alkali acetate and
bromide salts have been plotted, respectively, in the quarter a) and
b). The alkali have been represented by different colored circles: the
orange ammonium (for the bromide), the black hydrogen, the red
lithium, the violet sodium, the blue potassium, the green rubidium
and the maroon caesium. The alkali earth acetate and bromide salts
have been plotted, respectively, in the quarter c) and d). The alkali
earth have been represented by different colored squares: the red
magnesium, the violet calcium, the blue strontium and the green
barium.

Two blocks can be highlighted: the first is the alkali blocks and
the second is the alkali earth. In function of the anion, the block is
more or less extended. The whole mean activity coefficient of the
different alkali acetate is concentrated around 0.8 ± 0.1 whereas
the alkali bromide is extended from around 0.55 to 0.9. For the
bromide the order of the mean activity coefficient corresponds to
the atomic number whereas for the acetate salts is the reverse. As
the alkali acetate and bromide salts, the alkali earth acetate is con-
centrated around 0.35 whereas the alkali earth bromide is extended

from 0.5 to 0.75. As the alkali bromide, the order of the activity
coefficient of the different alkali earth corresponds to the atomic
number whereas for the alkali earth acetate is the reverse, like the
alkali acetate. The calcium and strontium acetate activity coefficient
should be present between the magnesium and barium acetate activ-
ity coefficient. The alkali earth bromide block and alkali bromide
block are interpenetrated whereas the alkali earth acetate block and
alkali acetate block are perfectly separated. Up to 10- 2 mol • L- 1 the
whole alkali salts present the same linear coefficient representative
of the salt 1:1 (1 cation for 1 anion) which corresponds to the lim-
iting law. The whole alkali earth salts present, as the alkaline salts,
their specific linear coefficient representative of the salts 1:2.

The alkali acetate salts are not associated except for the lithium
acetate and hydrogen acetate (acetic acid), indeed it is a weak
acid therefore it is associated. The difference between the different
alkali acetate salts non-associated is only due to their diameter. The
ammonium cation is different because it is a poly-atomic cation
which explains why the curve is little different than the other
monovalent cation.

3.4. Mixture

Fig. 3 represents the mean activity coefficient of the hydrochloric
acid in the mixture HCl-NH4Cl as a function of the square root of the
total chloride molar concentration. The experimental data have been
extracted from [41]. The orange triangles left represent the experi-
mental data of a pure hydrochloric acid. The black circles represent
the mix of 90% of hydrochloric acid and 10% of ammonium chloride.
The red squares represent the mix of 70% of hydrochloric acid and
30% of ammonium chloride. The green diamonds represent the mix
of 50% of hydrochloric acid and 50% of ammonium chloride. The blue
triangles up represent the mix of 30% of hydrochloric acid and 70% of
ammonium chloride. The violet triangles down represent the mix of
10% of hydrochloric acid and 90% of ammonium chloride. The cyan
triangles right represent the experimental data of a pure hydrochlo-
ric acid. The cationic diameters and the association constants of the
different salts have been summarized in Tables 3 and 4 respectively.

This mixture salt has been chosen because the ammonium chlo-
ride, in this paper, is not associated whereas the hydrochloric acid
is little associated. The whole calculated curves respect the order of
the percentage rate of hydrochloric acid and ammonium chloride.
The curve for the pure component presents the best fit compared
to the other different mixture’s curves. The mean hydrochloric acid
activity coefficient of the different mixture’s curves appears to be
underestimated. This difference can come from a problem of offset
in the experimental data because the measure for the rate of 90% of
HCl and 10% of NH4Cl is equal to the pure hydrochloric acid, which
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Fig. 4. The mean activity coefficient for the lithium chloride (a) and the sodium chloride (b) in the mixture NaCl-LiCl as a function of the square root of the total molar chloride
concentration. The filled symbol represent the lithium chloride mean activity, plot a, and the empty symbols represent the sodium chloride mean activity, plot b.
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Fig. 5. The molality lithium chloride concentration as a function of the molality
sodium chloride concentration. Each points correspond to the value of the ZSR relation
in the mixture of NaCl-LiCl.

is practically impossible. The more hydrochloric acid-ammonium
chloride mixture is composed by the hydrochloric acid, the better
the fit is. The difference between the experimental data and the
calculated curve is quite small. The limiting law is respected from 0
to 10- 2 mol • L- 1.

Fig. 4 represents the mean activity coefficient for the lithium
chloride (a) and the sodium chloride (b) in the mixture of NaCl-
LiCl as a function of the square root of the total molar chloride
concentration. The experimental data have been extracted from [42].
The filled symbols represent the lithium chloride mean activity
coefficient, Fig. 4-(a), and the empty symbols represent the sodium
chloride mean activity coefficient, Fig. 4-(b). The blue triangles up
represent the solution containing only the lithium chloride or only
sodium chloride. The green diamonds are the mixture of 67% of
sodium chloride and 33% lithium chloride. The red squares are the
mixture of 50% of sodium chloride and 50% lithium chloride. The
black circles are the mixture of 33% of sodium chloride and 37%
lithium chloride. The filled blue triangles represent the pure lithium
chloride whereas the empty blue triangle represents the pure sodium
chloride. The blue, black, red and green curves represent the mean
activity coefficient of the lithium chloride. The dashed blue, black,
red and green curves represent the mean activity coefficient of the
sodium chloride.

This mixture of lithium chloride and sodium chloride has been
chosen because it presents two associations (Table 4) with one
counter ions which simplify the calculation. The cationic and anionic
diameters have been summarized in Tables 3 and 1 respectively.

The order of the different calculated curves for the two plots
respects the order of the experimental data. The limiting law is
always respected, both for the lithium and sodium chloride, then the
curves slightly underestimate the mean activity coefficient before
slightly overestimating it at the end of the plot. Whatever the sodium
chloride rate, the mean activity coefficient calculated for the lithium
chloride is better than the sodium chloride mean activity coefficient.

Therefore the AMSA model and the fitting procedure presented
here allows the calculation and the prediction of mean activ-
ity coefficient for a ternary system, a mixture of two salts in
aqueous phase.

3.5. Zdanovskii-Stokes-Robinson (ZSR)

The ZSR relation is an empirical relation for a mixture at water
activity constant, discovered independently by Zdanovskii [43] and
Stokes and Robinson [44], which is expressed as

∑
i

mi

m0
i

= 1 (32)

where mi is the molality concentration of the i species in the ternary
system and m0

i is the molal concentration of the i species alone in the
water (pure solution) at the same water activity. The water activity
has been calculated by Eq. (33)

ln aw = −0Mwater
∑

i

mi (33)

where aw is the water activity, 0 is the osmotic coefficient, Mwater

is the molecular weight of the water (18 • 10- 3 kg • mol- 1), mi is the
molality concentration of the i species.

Fig. 5 represents the molality concentration of the lithium
chloride as a function of the molality concentration of the sodium
chloride. Each point corresponds to the value of the ZSR relation
in the mixture of NaCl-LiCl. The value of each point is equal to or
larger than 1. The ZSR relation is rigorously valid when it is equal
to 1 which implies it is valid only for a dilute solution. Fig. 5 is
not symmetric. This dissymmetry is due to the difference between
the two association constants of the lithium and sodium chloride.
The greater the association constant, the more associating pairs
appear, and the faster the ZSR relation is invalidated. Considering
the manipulation uncertainty, the ZSR relation could be considered
as true for the mixture of lithium and sodium chloride with an
uncertainty of 1%. This work is in agreement with the work by
Rowland and May [45] who have identified a wide range of ternary
system, a mixture of two salts in aqueous phase, where the ZSR
relation is not verified.

4. Conclusion

We proposed a new method to address the problem of specificity
and the Hofmeister series of cations in aqueous electrolyte solutions
with the help of the MSA calculated by Lesser Blum. First we consid-
ered the hydrated diameter as the biggest possible cation diameter
in front of the various anions. Then the specific effects between the
species are treated thanks to an associated MSA model. The result is
in agreement with the experiments up to molar concentrations, as
usual when MSA is used. What is more interesting is the fact that
mixtures can be treated because specific effects are properly taken
into account. Globally, hydration of small ions appears to be stable
and the one of big ions fluctuate. Electrostatics is the main force for
association. The validity of Zdanovskii-Stokes-Robinson mixing rule
has also been tested and it appears to be valid with typically a 1%
accuracy for molar concentrations.
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