W. G. Mcmillan and J. E. Mayer, The statistical mechanics of multicomponents systems solutions, J. Chem. Phys, vol.13, p.276, 1945.

C. W. Outhwaite and V. C. Hutson, The mean spherical model for charged hard spheres, Mol. Phys, vol.29, pp.1521-1531, 1975.

L. Blum, Theoretical chemistry: advances and perspectives, vol.5, pp.1-66, 1980.

L. Blum, Mean spherical model for asymmetric electrolytes I. Method of solution, Mol. Phys, vol.30, pp.1529-1535, 1975.

L. Blum and J. Hoe, Mean spherical model for asymmetric electrolytes .2. thermodynamic properties and pair correlation-function, J. Phys. Chem, vol.81, pp.1311-1316, 1977.

R. Triolo, J. R. Grigera, and L. Blum, Simple electrolytes in the mean spherical approximation, J. Phys. Chem, vol.80, pp.1858-1861, 1976.

R. Triolo, L. Blum, and M. Floriano, Simple electrolytes in Mean Spherical Approximation .3. workable model for aqueous solutions, vol.67, p.5956, 1977.

S. Watanasiri, M. R. , and B. L. Lee, Prediction of thermodynamic properties of electrolytic solutions using the mean spherical approximation, J. Phys. Chem, vol.86, pp.292-294, 1982.

W. Ebeling and J. Rose, Conductance theory of concentrated electrolytes in an MSA-type approximation, J. Sol. Chem, vol.10, pp.599-609, 1981.

J. Dufrêche, O. Bernard, and P. Turq, Transport equations for concentrated electrolyte solutions: reference frame, mutual diffusion, J. Chem. Phys, vol.116, p.2085, 2002.

J. Dufrêche, O. Bernard, P. Turq, A. Mukherjee, and B. Bagchi, Phys. Rev. Lett, vol.88, p.95902, 2002.

J. Dufrêche, O. Bernard, S. Durand-vidal, and P. Turq, Analytical theories of transport in concentrated electrolyte solutions from the MSA, J. Phys. Chem. B, vol.109, pp.9873-9884, 2005.

H. Krienke, J. Barthel, M. Holovko, I. Protsykevich, and Y. Kalyushnyi, Osmotic and activity coefficients of strongly associated electrolytes over large concentration ranges from chemical model calculations, Associated Fluids and Ionic Systems Vth Liblice Conference on Statistical Mechanics of Liquids, vol.87, pp.191-216, 2000.

L. Blum, M. F. Holovko, and I. A. Protsykevych, A solution of the multiple-binding mean spherical approximation for ionic mixtures, J. Stat. Phys, vol.79, pp.569-583, 1996.

J. Barthel, H. Krienke, R. Neueder, and M. F. Holovko, The role of ion-aggregate formation in the calculation of physical properties of electrolyte solutions, Fluid Phase Equilib, pp.107-122, 2002.

. V. Yu, M. F. Kalyuzhnyi, and . Holovko, Thermodynamics of the associative mean spherical approximation for the fluid of dimerizing particles, J. Chem. Phys, vol.108, pp.3709-3715, 1998.

O. Bernard and L. Blum, Binding mean spherical approximation for pairing ions: an exponential approximation and thermodynamics, J. Chem. Phys, vol.104, pp.4746-4654, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00165063

T. Cartailler, P. Turq, L. Blum, and N. Condamine, Thermodynamics of ion association in the mean spherical approximation, J. Phys. Chem, vol.96, pp.6766-6772, 1992.

H. Krienke and J. Barthel, Association concepts in electrolyte solutions, J. Mol. Liq, vol.78, pp.123-128, 1998.

A. P. Lyubartsev and A. Laaksonen, Osmotic and activity coefficients from effective potentials for hydrated ions, Phys. Rev. E, vol.55, pp.5689-5696, 1997.

R. Kjellander, A. P. Lyubartsev, and S. Marcelja, Mcmillan-Mayer theory for solvent effects in inhomogeneous systems: calculation of interaction pressure in aqueous electrical double layers, J. Chem. Phys, vol.114, pp.9565-9577, 2001.

A. P. Lyubartsev and S. Marcelja, Evaluation of effective ion-ion potentials in aqueous electrolytes, Phys. Rev. E, vol.65, p.41202, 2002.

A. P. Lyubartsev and A. Laaksonen, Calculation of effective interaction potentials from radial distributions functions: a reverse Monte Carlo approach, Phys. Rev. E, vol.52, pp.3730-3737, 1995.

J. J. Molina, J. Dufrêche, M. Salanne, O. Bernard, M. Jardat et al., Models of electrolyte solutions from molecular descriptions: the example of NaCl solutions, Phys. Rev. E, vol.80, p.65103, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02002625

K. D. Collins, Charge density-dependent strength of hydration and biological structure, BioPhys. J, vol.72, p.65, 1997.

J. Salacuse and G. Stell, Polydisperse sytems-statistical thermodynamics, with applications to several models including hard and permeable spheres, J. Chem. Phys, vol.77, p.3714, 1982.

J. Simonin, L. Blum, and P. Turq, Real ionic solutions in the mean spherical approximation. 1. Simple salts in the primitive model, J. Phys. Chem, vol.100, pp.7704-7709, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00162536

L. Blum and O. Bernard, The general solution of the binding mean spherical approximation for pairing ions, J. Stat. Phys, vol.79, pp.569-583, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00165084

J. J. Molina, J. Dufrêche, M. Salanne, O. Bernard, and P. Turq, Primitive models of ions in solution from molecular descriptions: a perturbation approach, J. Chem. Phys, vol.135, p.235509, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02002570

J. Barthel, H. Krienke, and W. Kunz, Physical Chemistry of Electrolyte Solutions, 1998.

W. Ebeling and K. Scherwinski, On the estimation of theoretical individual activity-coefficent of electrolytes .1. Hard-sphere model, Zeit. Phys Chem.-Leip, vol.264, p.1, 1983.

R. Robinsons and R. Stokes, Electrolyte Solutions: Second Revised Edition, 2002.

V. Lobo, Handbook of Electrolyte Solutions, Part A, 1989.

V. Lobo and J. Quaresma, Handbook of Electrolyte Solutions, Part B, 1989.

Y. Marcus, Ion Solvation, 1985.

J. P. Simonin, O. Bernard, and L. Blum, Description des proprits thermodynamiques de solutions aqueuses ioniques dans l'approximation sphrique moyenne, Oil Gas Sci. Technol.-Rev. IFP, vol.63, pp.321-327, 2008.

K. D. Collins, Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process, Methods, vol.34, issue.3, pp.300-311, 2004.

D. Morris, Structure and Bonding, vol.6, pp.157-159, 1969.

W. Kunz, Specific Ion Effects, 2010.

P. Debye and E. Hückel, The theory of electrolytes. i. Lowering of freezing point and related phenomena, Phys. Z, vol.24, p.185, 1923.

X. Ji, X. Lu, S. Li, L. Zhang, Y. Wang et al., Activity coefficients of HCl in the HCl + NH4cl + H2O systems at 298.15 and 313.15 k, J. Chem. Eng. Data, vol.45, pp.29-33, 2000.

M. E. Guendouzi, A. Benbiyi, A. Dinane, and R. Azougen, Thermodynamic properties of multicomponent NaClLiClH2O aqueous solutions at temperature 298.15 K, Calphad, vol.28, pp.97-103, 2004.

A. B. Zdanovskii, Trudy Solvanoi Laboratorii (Trans. Salt Lab.), vol.6, 1936.

R. H. Stokes and R. A. Robinson, Interactions in aqueous nonelectrolyte solutions. I. Solute-solvent equilibria, J. Phys. Chem, vol.70, pp.2126-2131, 1966.

D. Rowland and P. M. May, An investigation of Zdanovskiis rule for predicting the water activity of multicomponent aqueous strong electrolyte solutions, J. Chem. Eng. Data, vol.57, pp.2589-2602, 2012.