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Abstract

This paper provides an overview and critical analysis on the modeling
and applications of the dynamics of human crowds, where social interactions
can have an important influence on the behavioral dynamics of the crowd
viewed as a living, hence complex, system. The analysis looks at real physical
situations where safety problems might arise in some specific circumstances.
The approach is based on the methods of the kinetic theory of active particles.
Computational applications enlighten the role of human behaviors.

1 Introduction

The modeling, qualitative and computational analysis of human crowds is an in-
terdisciplinary research field which involves a variety of challenging analytic and
numerical problems, generated by the derivation of models as well as by their ap-
plication to real world dynamics.

The growing interest for this research field is motivated by the potential benefits
for the society. As an example, the realistic modeling of human crowds can lead
to simulation tools to support crisis managers to handle emergency situations, as
sudden and rapid evacuation through complex venues, where stress induced by
overcrowding, or even social conflicts may affect safety of the people [20, 27, 29, 37,
41].

The existing literature on general topics of mathematical modeling of human
crowds is reported in some survey papers, which offer to applied mathematicians
different view points and modeling strategies in a field, where a unified, commonly
shared, approach does not exists yet. More in detail, the review by Helbing [22]
presents and critically analyzes the main features of the physics of crowd viewed
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as a multi particle system and focuses on the modeling at the microscopic scale
for pedestrians undergoing individual based interactions. The survey by Huges [26]
and the book [17] deal with the modeling at the macroscopic scale, by methods
analogous to those of hydrodynamics, where one of the most challenging conceptual
difficulties consists in understanding how the crowd, viewed as a continuum, selects
the velocity direction and the speed by which pedestrians move. Papers [6, 9]
have proposed the concept of the crowds as a living, hence complex, system. This
approach requires the search of mathematical tools suitable to take into account,
as far as it is possible, the complexity features of the system under consideration.
Scaling problems and mathematical aspects are treated in the book [17], while the
support of modeling to crisis management during evacuation is critically analyzed
in the survey [7].

A critical analysis of the state of the art indicates that the following issue has
not yet been exhaustively treated:

The greatest part of known models are based on the assumption of rational, say
optimal, behaviors of individuals. However, real conditions can show a presence of
irrational behaviors that can generate events where safety conditions are damaged.
When these conditions appear, small deviations in the input create large deviations
in the output. Some of these extreme event are not easily predictable, however a
rational interpretation can sometimes explain them once they have appeared. The
use of the term “black swan” a metaphoric expression used by Taleb [40] to denote
these events. Derivation of models, and their subsequent validation, should show
the ability to reproduce also these extreme events.

Some of the topics mentioned in the above statement have been put in evidence
in the review [41], where it is stressed that modeling approaches should be based
on a careful understanding of human behaviors and that the majority of current
crowd models do not yet effectively support managers in extreme crisis situations.

Chasing this challenging objective requires acknowledging that the modeling
approach can be developed at the three usual scales, namely microscopic, macro-
scopic, and mesoscopic, the latter is occasionally called kinetic. However none of
the aforesaid scaling approaches is fully satisfactory. In fact, accounting for multi-
ple interactions and for the heterogeneous behavior of the crowd that it empirically
observed is not immediate in the case of various known models at the microscopic
scale. This drawback is also delivered by macroscopic models which kill the afore-
mentioned heterogeneity.

Kinetic type models appear to be more flexible as they can tackle, at least
partially, the previously mentioned drawbacks, but additional work is needed to
develop them toward the challenging objectives treated in this paper. Namely a
multiscale approach is required, where the dynamics at the large scale needs to
be properly related to the social dynamics which appears at the microscopic scale.
Some introductory concepts have been proposed in the literature starting from [4, 6],
where speed is related to an internal variable of a kinetic model suitable to describe
stress conditions by panic.

More recently, [42] considers a dynamics in one space dimension described at
the macroscopic scale, where panic is propagated by a BGK type [15] model, and
the velocity is related to panic. All above reasonings indicate that this research
topic needs new ideas focused on the concept that a crowd is a living system. A
study on the role of social dynamics on individual interactions with influence at the
higher scale is developed in [18, 19]. Hence, human behaviors have to be taken into
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account in the modeling approach.
Although the literature in the field is rapidly growing and it is already vast, far

less developed are the contributions related to the issues that have been enlightened
above. Two recent essays can contribute to deal with the aforementioned objective.
In more detail, the recent paper [1] has proposed a new system sociology approach
to the modeling a variety of social phenomena, while learning dynamics in large
populations is dealt with in [13, 14]. This papers develop an approach based on
kinetic theory methods for active particles, namely by methods that show some
analogy with the mesoscopic approach to crowd modeling.

Our paper is devoted to modeling the complex interaction between social and
mechanical dynamics. The paper also accounts for the additional difficulty of the
modeling of the quality and geometry of the venues where the dynamics occurs and
the interaction of walkers with obstacles and walls. Still the role of the quality of the
venue, which is an important feature that modifies the speed of walkers in a crowd,
is treated in our paper. In more detail, the contents of this paper is presented as
follows:

Section 2 defines the class of social phenomena that our paper aims at including
in the modeling approach. Subsequently, the selection of the mesoscopic scale is
motivated in view of a detailed analysis to be developed in the following sections.
This conceptual background is presented toward the strategic objective of designing
mathematical models suitable to depict the complexity features of a social crowd.

Section 3 deals with the modeling for a crowd of individuals belonging to dif-
ferent groups, where a common different way of organizing the dynamics and the
interactions with other individuals is shared. This section transfers into a math-
ematical framework the general concepts, presented in Section 2, with the aim of
providing the conceptual basis of the derivation of models that can be obtained by
inserting into this structure models suitable to describe interactions at the micro-
scale. This section also enlightens the improvements of our paper with respect to
the existing literature.

Section 4 shows how two specific models can be derived according to the afore-
mentioned general structure. The first model describes the onset and propagation
of panic in a crowd starting from a localized onset of stress conditions. The second
model includes the presence of leaders who play the role of driving the crowd out
of a venue in conditions where panic propagates.

Section 5 presents some simulations which provide a pictorial description of
the dynamics. Suitable developments of Monte Carlo particle methods, starting
from [2, 3, 11, 33], are used. Simulations enlighten specific features of the patterns
of the flow focusing specifically on the evacuation time and the concentration high
density that can induce incidents.

Section 6 presents a critical analysis of the contents of the paper as well as an
overview of research perspectives which are mainly focused on multiscale problems.

2 Complexity Features of Social Crowds

This section presents a phenomenological description of the social and mechanical
features which should be taken into account in modeling of social crowds. The
various models proposed in the last decades were derived referring to a general
mathematical structure, suitable to capture the complexity features of large sys-
tems of interacting entities, and hence suitable to provide the conceptual basis
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towards basis for the derivation of specific models, which are derived by implement-
ing the said structure by heuristic models of individual based interactions. On the
other hand, recent papers by researchers involved in the practical management of
real crowd dynamics problems, including crisis and safety problems, have enlighten
that social phenomena pervade heterogeneous crowds and can have an important
influence on the interaction rules [7, 16, 23, 24, 25, 31, 32, 37, 41, 43, 44]. Therefore,
both social and mechanical dynamics, as well as their complex interactions, should
be taken into account. A kinetic theory approach to the modeling of crowd dynam-
ics in the presence of social phenomena, which can modify the rules of mechanical
interactions, has been proposed in our paper. Two types of social dynamics have
been specifically studied, namely the propagation of stress conditions and the role
of leaders. The case study proposed in Section 5 has shown that stress conditions
can induce important modifications in the overall dynamics and on the density pat-
terns thus enhancing formation of overcrowded zones. The specific social dynamics
phenomena studied in our paper have been motivated by situations, such as fire
incidents or rapid evacuations, where safety problems can arise [20, 29, 37, 41].

The achievements presented in the preceding sections motivate a systematic com-
putational analysis focused on a broader variety of case studies focusing specifically
to enlarge the variety of social phenomena inserted in the model. As an example,
one might consider even extreme situations, where antagonist groups contrast each
other in a crowd. This type of developments can be definitely inserted into a pos-
sible research program which is strongly motivated by the security problems of our
society.

Furthermore, we wish returning to the scaling problem, rapidly introduced in
Sections 1 and 2, to propose a critical, as well as self-critical, analysis induced also by
the achievements of our paper on the modeling human behaviors in crowds. In more
detail, we observe that it would be useful introducing aspects of social behaviors also
in the modeling at the microscopic and macroscopic scale. Afterwards, a critical
analysis can be developed to enlighten advantages and withdraws of the selection
of a certain scale with respect to the others.

This type of analysis should not hide the conceptual link which joins the model-
ing approach at the different scales. In fact a detailed analysis of individual based
interactions (microscopic scale) should implement the derivation of kinetic type
models (mesoscopic scale), while hydrodynamic models (macroscopic scale) should
be derived from the underlying description delivered kinetic type models by asymp-
totic methods where a small parameter corresponding to the distances between
individuals is let to tend to zero. Often models are derived independently at each
scale, which prevents a real multiscale approach.

Some achievements have already been obtained on the derivation of macroscopic
equations from the kinetic type description for crowds in unbounded domains [4]
by an approach which has some analogy with that developed for vehicular traf-
fic [5]. However, applied mathematicians might still investigate how the structure
of macroscopic models is modified by social behaviors. This challenging topic might
be addressed even to the relatively simpler problem of vehicular traffic where indi-
vidual behaviors are taken into account [12].

Finally, let us state that the “important” objective, according to our own bias,
is the development of a systems approach to crowd dynamics, where models derived
at the three different scales might coexist in complex venues where the local number
density from rarefied to high number density. This objective induces the derivation
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of models at the microscopic scale consistent with models at the macroscopic scale
with the intermediate description offered by the kinetic theory approach.

We do not naively claim that models can rapidly include the whole variety of
social phenomena. Therefore, this section proposes a modeling strategy, where
only a number of them is selected. An important aspect of the strategy is the
choice of the representation and modeling scale selected referring to the classical
scales, namely microscopic (individual based), macroscopic (hydrodynamical), and
mesoscopic (kinetic). The sequential steps of the strategy are as follows:

1. Assessment of the complexity features of crowds viewed as living systems;

2. Selection of the social phenomena to be inserted in the model;

3. Selection of the modeling scale and derivation of a mathematical structure
consistent with the requirements in the first two items;

4. Derivation of models by inserting, into the said structure, the mathematical
description of interactions for both social and mechanical dynamics including
their reciprocal interplay.

The structure mentioned in Item 3. should be general enough to include a broad
variety of social dynamics. However, the derivation of models mentioned in Item 4.
can be effectively specialized only if specific case studies are selected. Some rationale
is now proposed, in the next subsections, for each of these topics referring to the
existing literature so that repetitions are avoided.

2.1 Complexity features

The recent literature on crowd modeling [6, 9, 10] has enlightened the need of mod-
eling crowd dynamics, where the behavioral features of crowds to be viewed as a
living, hence complex system, are taken into account. Indeed, different behaviors
induce different interactions and hence walkers’ trajectories. The most important
feature is the ability to express a strategy which is heterogeneously distributed
among walkers and depends on their own state and on that of the entities in their
surrounding walkers and environment. Heterogeneity can include a possible pres-
ence of leaders, who aim at driving the crowd to their own strategy. As an example,
leaders can contribute, in evacuation dynamics, to drive walkers toward appropriate
strategies including the selection of optimal routes among the available ones.

2.2 Selection of social phenomena

The importance of understanding human behaviors in crowds is undisputed [37, 41]
as they can have an important influence on the individual and collective dynamics
and can contribute to understand crisis situations and support their management [7].

A crowd might be subdivided into different groups due both to social and me-
chanical features which have to be precisely referred to the type of dynamics which
is object of modeling. Examples include the presence of leaders as well as of stress
conditions which, in some cases, are induced by overcrowding. In some cases, a
crowd in a public demonstration includes the presence of groups of rioters, whose
aim is not the expression of a political-social opinion, but instead to create conflict
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with security forces. These examples should be made more precise when specific
case studies are examined.

An important topic, is the role of irrational behaviors, where these emotional
states can be induced by perception of danger [21] or simply by overcrowding.
Our interest consists in understanding which type of collective behavior develop in
different social situations and how this behavior propagates. Indeed, we look at a
crowd in a broad context, where different social phenomena can appear [1].

2.3 Modeling interactions

Interactions are nonlinearly additive and refer both to mechanical and social dy-
namics and include the way by which walkers adjust their dynamics to the specific
features of the venue, where they move. Propagation of social behaviors has to be
modeled as related to interactions.

A key example is given by the onset and propagation of stress conditions, which
may be generated in a certain restricted area and then diffused over the whole
crowd. These conditions can have an important influence over dynamical behaviors
of walkers [25].

The so called faster-is-slower effect, namely increase of the individual speed but
toward congested area, rather than the optimal directions, which corresponds to
an increase of evacuation time in crisis situation that require exit from a venue.
In addition, stress conditions can break cooperative behaviors inducing irrational
selfishness. This topic was introduced in [6], where it was shown how an internal
variable can be introduced to model stress conditions which modify flow patterns,
see also [9, 42].

Recent research activity on empirical data has been addressed to acquire in-
formation on the estimate of forces exchanged by pedestrians [16] and on crowd
behaviors including aggregation phenomena by coarse grain observation. These
investigations go beyond the study of velocity diagrams [30].

2.4 Scaling and derivation of mathematical structures:

The mesoscopic description is based on kinetic theory methods, where the repre-
sentation of the system is delivered by a suitable probability distribution over the
microscopic state of walkers, which is still identified by the individual position and
velocity, however additional parameters can be added such as size, and variables to
model the social state. Models describe the dynamics of this distribution function
by nonlinear integral-differential equations. As it is known, none of the aforesaid
scaling approaches, namely at the microscopic, macroscopic, and mesoscopic scales,
are fully satisfactory. In fact, known models at the microscopic scale do not ac-
count for multiple interactions and it may difficult, if not impossible, to use data
from microscopic observations to infer the crowd dynamics in a different but similar
situation. On the other hand, the heterogeneous behavior of pedestrians get lost
in the averaging process needed to derive the macroscopic models which therefore
totally disregard this important feature. Mesoscale (kinetic) models appear to be
more flexible as they can tackle the previously mentioned drawbacks, but additional
work is needed to develop them toward the challenging objectives treated in this
paper.
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2.5 Derivation of models:

The derivation requires the modeling of interactions among walkers and the insertion
of these models into a mathematical structure consistent with the aforementioned
scale as well as with the specific phenomenology of the system under consideration.

This approach needs a deep understanding of the psychology and emotional
states of the crowd. The modeling approach should depict how the heterogeneous
distribution evolves in time. The conceptual difficulty consists in understanding
how emotional states can modify the rules of interactions. Therefore, the modeling
approach should include all of them, heterogeneity, as well as the heterogeneous
behavior of individuals and the growth of some of them also induced by collective
learning [13].

Furthermore, the features of the venue where walkers move cannot be neglected,
as enlightened in [35, 38], as it can have an influence on the speed due both to
mechanical actions, for instance the presence of stairs, or to emotional states which
can induce aggregation or disaggregation dynamics. All dynamics need to be prop-
erly referred to the geometrical and physical features of the venue which, at least in
principles, might be designed according to well defined safety requirements [34, 36].

3 On a Kinetic Mathematical Theory of Social Crowd

Dynamics

This section deals with the derivation of models by suitable developments of the
kinetic theory for active particles [8]. Our approach focuses on heterogeneous human
crowds in domains with boundaries, obstacles and walls. According to this theory,
walkers are considered active particles, for short a-particles, whose state is identified,
in addition to mechanical variables, typically position and velocity, by an additional
variable modeling their emotional or social state called activity. These particles can
be subdivided into functional subsystems, for short FSs, grouping a-particles that
share the same activity and mechanical purposes, although if heterogeneously within
each FS.

The theoretical approach to modeling aims at transferring into a formalized
framework the phenomenological description proposed in Section 2. This objective
can be achieved in the following sequential steps:

1. Assessment of the possible dynamics, mechanical and social, which are selected
toward the modeling approach, and representation of social crowds;

2. Modeling interactions;

3. Derivation of a mathematical structure suitable to provide the conceptual
basis for the derivation of specific models.

These sequential steps are treated in the following subsections. The model-
ing approach proposed in our paper includes a broad variety of mechanical-social
dynamics that have not yet been treated exhaustively in the literature.
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3.1 Mechanical-social dynamics and representation

Let us now provide a detailed description of the specific features that our paper
takes into account in the search for a mathematical structure accounted for deriving
mathematical models of social crowds.

• The a-particles are heterogeneously distributed in the crowd which is sub-
divided into groups labeled by the subscript i = 1, . . . , n, corresponding to
different functional subsystems.

• The mechanical state of the a-particles is defined by position x, velocity v,
while their emotional state modeled by a variable at the microscopic scale,
namely the activity, which takes value in the domain [0, 1] such that u = 0
denotes the null expression, while u = 1 the highest one.

• If the overall crowd moves toward different walking directions a further sub-
division can be necessary to account for them.

• Interactions lead not only to modification of mechanical variables, but also of
the activity which, in turn, modifies the rules of mechanical interactions.

According to this description, the microscopic state of the a-particles, is defined
by position x, velocity v, and activity u. Dynamics in two space dimensions is
considered, while polar coordinates are used for the velocity variable, namely v =
{v, θ}, where v is the speed and θ denotes the velocity direction. Dimensionless, or
normalized, quantities are used by referring the components of x to a characteristic
length ℓ, while the velocity modulus is divided by the limit velocity, Vℓ, which can
be reached by a fast pedestrian in free flow conditions; t is the dimensionless time
variable obtained referring the real time to a suitable critical time Tc identified
by the ratio between ℓ and Vℓ. The limit velocity depends on the quality of the
environment, such as presence of positive or negative slopes, lighting and so on.

The mesoscopic (kinetic) representation of each FS is delivered by the statistical
distribution at time t, over the microscopic state:

fi = fi(t, x, v, θ, u), x ∈ Σ ⊂ R
3, v ∈ [0, 1], θ ∈ [0, 2π) u ∈ [0, 1]. (1)

If fi is locally integrable then fi(t, x, v, u) dx dv du is the (expected) infinitesi-
mal number of pedestrians of the i-th FS whose micro-state, at time t, is comprised
in the elementary volume [x,x + dx] × [v,v + dv] × [u, u + du] of the space of
the micro-states, corresponding to the variables space, velocity and activity. The
statistical distributions fi are divided by nM , which defines the maximal full pack-
ing density of pedestrians and it is assumed to be approximately seven walkers per
square meter.

Macroscopic observable quantities can be obtained, under suitable integrability
assumptions, by weighted moments of the distribution functions. As an example,
the local density and mean velocity for each i-FS reads

ρi(t,x) =

∫ 1

0

∫ 2π

0

∫ 1

0

fi(t, x, v, θ, u) vdv dθ du, (2)

and

ξi(t,x) =
1

ρi(t,x)

∫ 1

0

∫ 2π

0

∫ 1

0

v fi(t, x, v, θ, u) vdv dθ du, (3)
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whereas global expressions are obtained by summing over all i indexes

ρ(t,x) =

n
∑

i=1

ρi(t,x), and ξ(t,x) =
1

ρ(t,x)

n
∑

i=1

ρi(t,x)ξi(t,x). (4)

Specific applications might require computation of marginal densities such as
the local mechanical distribution and the local activity distribution in each FS:

fM
i (t,x,v) =

∫ 1

0

fi(t, x, v, θ, u) du, (5)

and

fA
i (t,x, u) =

∫ 1

0

∫ 2π

0

fi(t, x, v, θ, u) vdv dθ. (6)

3.2 Modeling interactions

Interactions correspond to a decision process by which each active particle modifies
its activity and decides its mechanical dynamics depending on the micro-state and
distribution function of the neighboring particles in its interaction domain. This
process modifies velocity direction and speed. Interactions involve, at each time t

and for each FS, three types of a-particles: The test particle, the field particle, and
the candidate particle. Their distribution functions are, respectively fi(t,x,v, u),
fk(t,x,v

∗, u∗), and fh(t,x,v∗, u∗). The test particle, is representative, for each FS,
of the whole system, while the candidate particle can acquire, in probability, the
micro-state of the test particle after interaction with the field particles. The test
particle loses its state by interaction with the field particles.

Interactions can be modeled using the following quantities: Interaction domain
Ωs, interaction rate η, transition probability density A, and the overall action of
the field particles. These quantities can depend on the micro-state and on the
distribution function of the interacting particles, as well as on the quality of the
venue-environment where the crowd moves. The definition of these terms, is re-
ported in the following, where the terms i-particle is occasionally used to denote
a-particles belonging to the i-th FS.

• Short range interaction domain: A-particles interact with the other a-particles
in a domain Ωs which is a circular sector, with radius Rs, symmetric with
respect to the velocity direction being defined by the visibility angles Θ and
−Θ. The a-particles perceives in Ωs local density and density gradients.

• Perceived density: Particles moving along the direction θ perceive a density
ρ
p
θ different from the local density ρ. Models should account that ρpθ > ρ when

the density increases along θ, while ρ
p
θ < ρ, when the density decreases.

• Quality of the venue is a local quantity modeled by the parameter α = α(x) ∈
[0, 1], where α = 0 corresponds the worse conditions which prevent motion,
while α = 1 corresponds to the best ones, which allows a rapid motion.

• Interaction rate models the frequency by which a candidate (or test) h-particle
in x develops contacts, in Ωs, with a field k-particle. The following notation
is used ηhk[f ](x,v∗,v

∗, u∗, u
∗;α).
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• Transition probability density: Ai
hk[f ](v∗ → v, u∗ → u|v∗,v

∗, u∗, u
∗;α) mod-

els the probability density that a candidate h-particle in x with state {v∗, u∗}
shifts to the state of the i-test particle due to the interaction with a field
k-particle in Ωs with state {v∗, u∗}.

• The overall action of the field particles: F(t, x,v, u, α) which describes the
average action of the field particles, in the interaction domain Ωs, over the
test particle with the state {x,v, u}, and is defined by

F(t,x,v, u, α) = ε

∫

Ωs

ϕ(x,x∗,v,v∗, u, u∗, α)f(t,x∗,v∗, u∗) dx∗ dv∗ du∗,

(7)
where ϕ(x,x∗,v,v∗, u, u∗, α) models the action at the microscopic scale be-
tween the field and the test particle and ε corresponds to the scaling related
to the independent variables.

3.3 Derivation of a mathematical structure

Let us now consider the derivation of a general structure suitable to include all
types of interactions presented in the preceding subsection. This approach aims at
overcoming the lack of first principles that govern the living matter. Indeed, such
structure claims to be consistent with the complexity features of living systems [8].
The mathematical structure consists in an integro-differential equation suitable to
describe the time dynamics of the distribution functions fi. It can be obtained by a
balance of particles in the elementary volume, [x,x+dx]× [v,v+dv]× [u, u+du], of
the space of the micro-states. This conservation equation corresponds to equating
the variation rate of the number of active particles plus the transport due to the
velocity variable and the acceleration term to net flux rates within the same FS and
across FSs.

It is worth stressing that this structure is consistent with the paradigms pre-
sented in Section 2. In more detail, ability of pedestrians to express walking strate-
gies based on interactions with other individuals is modeled by the transition prob-
ability density, while the heterogeneous distribution of the said strategy (behavior)
corresponding both to different psycho-logic attitudes and mobility abilities is taken
into account by the use of a probability distribution over the mechanical and ac-
tivity variables. Interactions have been assumed to be nonlocal and nonlinearly
additive as the strategy developed by a pedestrian is a nonlinear combination of
different stimuli generated by interactions with other pedestrians and with the ex-
ternal environment.

We consider different structures, which progressively account for dynamics that
include a reacher and reacher dynamics. All of them are obtained by a balance of
number of particles in the elementary volume of the space of microscopic states.

•One component crowd: In the case of only one FS, namely n = 1, the subscripts
can be dropped and crossing FSs is not included. Hence, the balance of particles
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yields:

(∂t + v · ∂x) f(t,x,v, u) = A[f ](t,x,v, u)

=

∫

D×D

η[f ](x,v∗,v
∗, u∗, u

∗;α)A[f ](v∗ → v, u∗ → u|v∗,v
∗, u∗, u

∗;α)

× f(t,x,v∗, u∗)f(t,x,v
∗, u∗) dv∗ dv

∗ du∗ du
∗ ,

−f(t,x,v, u)

∫

D

η[f ](x,v,v∗, u, u∗;α) f(t,x,v∗, u∗) dv∗ du∗, (8)

where D = [0, 1]× [0, 2π)× [0, 1].

• Multicomponent crowd without FS-crossing: Corresponding to the case of
multiple FSs while the dynamic across them is not included. The mathematical
structure in this case, using the simplified notation Aik := Ai

ik, reads:

(∂t + v · ∂x) fi(t,x,v, u) = Pi[f ](t,x,v, u)

=

n
∑

k=1

∫

D2

ηik[f ](x,v∗,v
∗, u∗, u

∗;α)Aik[f ](v∗ → v, u∗ → u|v∗,v
∗, u∗, u

∗;α)

× fi(t,x,v∗, u∗)fk(t,x,v
∗, u∗) dv∗ dv

∗ du∗ du
∗,

−fi(t,x,v, u)
n
∑

k=1

∫

D

ηik[f ](x,v,v
∗, u, u∗;α) fk(t,x,v

∗, u∗) dv∗ du∗. (9)

• Multi-component crowd with FSs crossing. Corresponding to the general
case of multiple FSs and where the dynamic across them is taken into account:

(∂t + v · ∂x) fi(t,x,v, u) = Qi[f ](t,x,v, u)

=

n
∑

h=1

n
∑

k=1

∫

D×D

ηhk[f ](x,v∗,v
∗, u∗, u

∗;α)

×Ai
hk[f ](v∗ → v, u∗ → u|v∗,v

∗, u∗, u
∗;α)

× fh(t,x,v∗, u∗)fk(t,x,v
∗, u∗) dv∗ dv

∗ du∗ du
∗

−fi(t,x,v, u)

n
∑

k=1

∫

D

ηik[f ](x,v,v
∗, u, u∗;α)fk(t,x,v

∗, u∗) dv∗ du∗.(10)

• One component crowd with long large interactions. In large venues, ag-
gregation of walkers can also be modeled by long range interactions involve test
particles interacting with field particles. Interactions occur in a visibility domain
Ωv which can be defined as a circular sector, with radius Rv, symmetric with re-
spect to the velocity direction being defined by the visibility angles Θ and −Θ.
These interactions can modify the activity variable depending on the distance of
the interacting pairs. The mathematical structure (8) is then modified as follows:

(∂t + v · ∂x) f(t,x,v, u) + T (f)(t,x,v, u) = A[f ](t,x, v, u), (11)

where the acceleration term T is defined by

T (f)(t,x,v, u) = ε ∂v
(

F(t,x,v, u, α) f(t,x,v, u)
)

, (12)

while the term A modeling the net flux and can be formally defined by Eq. (9).
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In (8)-(11) round and square parenthesis distinguish, respectively, the argument
of linear and nonlinear interactions, where linearity involves only microscopic and
independent variables, while nonlinearity involves the dependent variables, namely
the distribution function and/or its moments. In addition, these terms are nonlocal
and depend on the quality of the environment-venue. The derivation of specific
models can clarify this matter.

4 From the Mathematical Structure to Models

The mathematical structures presented in the preceding section provide the con-
ceptual framework for the derivation of models which can be obtained by selecting
the functional subsystems relevant to the specific study to be developed and by
modeling interactions related to the strategies developed by a-particles within each
subsystem. This section shows how certain models of interest for the applications,
selected among various possible ones, can be derived. Subsequently, Section 5 in-
vestigates, by appropriate simulations, their predictive ability.

In more detail, we look for models suitable to understand how the stress propa-
gates in the crowd and how the flow patterns are subsequently modified with respect
to the initial flow conditions. An additional topic consists in understanding how
the flow patterns can be modified by the presence of leaders. The derivation of
models is proposed in the next two subsections, the first of the two deals with the
modeling of the crowd in absence of leaders, while the second subsection shows how
the modeling approach can account for the presence of leaders.

4.1 Dynamics with stress propagation

Let us consider a crowd in a venue of the type represented in Fig. 1. Only one FS
is considered, therefore the mathematical structure used towards the modeling is
given by Eq. (9) for a system whose state is described by the distribution function
f = f(t,x,v, u). Let us consider the modeling of the various terms of the said
structure.

Modeling the limit velocity: The limit velocity depends on the quality of the venue.
A simple assumption is as follows: Vℓ = αVL, where VL is the limit velocity in an
optimal environment.

Modeling the encounter rate: A simple assumption consists in supposing that that
it grows with the activity variable and with the perceived density starting from a
minimal value η0, namely

η = η[f ] = η0(1 + β u ρθ[f ]), (13)

where β is a positive defined constant. A minimal model is obtained with η ∼= η0.

Modeling the dynamics of interactions: These interactions correspond to a decision
process by which, following the rationale of [9], each walker develops a strategy
obtained by the following sequence of decisions: (1) Exchange of the emotional state;
(2) Selection of the walking direction; (3) Selection of the walking speed. Decisions
are supposed to be sequentially dependent and to occur with an encounter rate
related to the local flow conditions. Hence, the process corresponds to the following

12



factorization:

A(v∗ → v, u∗ → u) = Au(u∗ → u)×Aθ(θ∗ → θ)×Av(v∗ → v). (14)

Starting from this assumption, a simple model can be obtained for each of the
three types of dynamics under the additional assumption that the output of the
interaction is a delta function over the most probable state:

1. Dynamics of the emotional state: The dynamics by which the stress initially in
Σs diffuse among all walkers is driven by the highest value, namely:

u∗ > u∗ : Au(u∗ → u|u∗, u
∗) = δ

(

u− ε(u∗ − u∗)(1 − u∗)
)

, (15)

and
u∗ ≤ u∗ : Au(u∗ → u|u∗, u

∗) = δ
(

u− u∗

)

. (16)

2. Dynamics of the velocity direction: It is expected that at high density, walkers
try to drift apart from the more congested area moving in the direction of νV

(direction of the less congested area), while at low density, walkers head for the
target identified νT (the exit door) unless their level of anxiety is high in which
case they tend to follow the mean stream as given by νS (direction of the stream).
Walkers select the velocity direction θ by an individual estimate of the local flow
conditions and consequently develop a decision process which leads to the said
directions. The sequential steps of the process are:

1. Perception of the density ρ which has an influence on the attraction to νT , as
it increases by decreasing density.

2. Selection of a walking direction between the attraction to νS and the search of
less congested areas is identified by the direction given by the unit vector νV ,
where this selection is based on the assumption that increasing β increases
the attraction to νS and decreased that to νT increases.

3. Accounting for for the presence of walls which is modified by the distance
from the wall dw supposing that the search of less congested areas decreases
with decreasing distance which induces an attraction toward νT .

The selection of the preferred walking direction θ is in two steps: first the walker
in a point P selects a direction θ1, then if the new direction effectively moves toward
the exit area, then θ1 is not modified. On the other hand, if it is directed toward
a point Pw of the boundary then the direction is modified by a weighted choice
between θ1 and the direction from the position θT from P to T , where the weight
is given by the distance dw = |P − Pw|. Accordingly, the transition probability
density for the angles is thus defined as follows:

Aθ[ρ,x](θ∗ → θ) = δ (θ − θ∗) , with θ = (1− dw)θT + dwθ1, (17)

where dw is assumed to be equal to one dw = 1 if θ1 is directed toward T , and
where θ1 is given by:

θ1[ρ,x, u] =

ρνV + (1− ρ)
uνS + (1− u)νT

‖uνS + (1− u)νT ‖
∥

∥

∥

∥

ρνV + (1− ρ)
uνS + (1− u)νT

‖uνS + (1− u)νT ‖

∥

∥

∥

∥

, (18)
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where

νV = −
∇xρ

‖∇xρ‖
, νS =

ξ

‖ξ‖
· (19)

3. Perceived density: Walkers moving along a certain direction perceive a density
higher (lower) than the real one in the presence of positive (negative) gradients.
The following model has been proposed in [9]:

ρp = ρp[ρ] = ρ+
∂pρ

√

1 + (∂pρ)2
[(1− ρ)H(∂pρ) + ρH(−∂pρ)] , (20)

where ∂p denotes the derivative along the direction θ(p) while H(·) is the Heaviside
function H(· ≥ 0) = 1, and H(· < 0) = 0. The density ρp delivered by this model
takes value in the domain [0, 1].

4. Dynamics of the speed: Once the direction of motion has been selected, the
walker adjusts the speed to the local density and mean speed conditions. A specific
model, in agreement with [10] can be used:
• If ξ ≥ v∗:

Av(v∗ → v) = pa(α, u, ρ) δ(v − ξa(α, u, ρ)) + (1− pa(α, u, ρ)) δ(v − v∗), (21)

and, if ξ > v∗:

Av(v∗ → v) = pd(α, u, ρ)δ(v − ξd(ξ, ρp)) + (1 − pd(α, u, ρ)) δ(v − v∗) (22)

where

pa(α, u, ρ) = αu(1− ρp), ξa(α, u, ρ) = ξ + αu(1− ρp)(αu − ξ),

and
pd(α, u, ρ) = (1− αu)ρp, ξd(u, ρ) = ξ(1 − ρp).

This heuristic model corresponds to the following dynamics: If the walker’s
speed is lower than the mean speed, then the model describes a trend of the walker
increase the speed by a decision process which is enhanced by low values of the
perceived density and by the goodness are the quality of the venue. The opposite
trend is modeled when the walker’s speed is lower than the mean speed.

This model which is valid if αu < 1 has shown to reproduce realistic velocity
diagrams, where the mean velocity decays with the density by a slope which is close
to zero for ρ = 0 and ρ = 1. In addition, the diagram decreases when the quality
of the venue and the level of anxiety decreases [10]. Of course, it is a heuristic
model based on a phenomenological interpretation of reality. Therefore it might be
technically improved.

4.2 Modeling the presence of leaders

This section develops a model where a number of leaders are mixed within the crowd.
The aim of the modeling consists in understanding how their presence modifies the
dynamics. Two FSs are needed to represents the overall systems, while additional
work on modeling interactions has to be developed. In consonance with to the
modeling approach proposed in the preceding section, the following subdivision is
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proposed: i = 1 walkers , i = 2 leaders . The main features of the interactions that
a candidate (or test) particle can undergo is sketched in the following;

• Within the same FS























(i) Interactions between a walker

and the field walkers (I-WW ).

(ii) Interactions between a leader

and the field leaders (I-LL).

• Within different FSs























(iii) Interactions between a walker

and the field leaders (I-WL).

(iv) Interactions between a leader

and the field walkers (I-LW ).

The representation of the system is delivered by the normalized probability
distributions

f1, f2 : [0, T [×Σ× [0, 1]× [0, 2π)× [0, 1], (23)

by referring the actual (true) local densities to the packing density nM . Therefore,
f1(t,x,v, u)dxdvdu (respectively f2(t,x,v, u)dxdvdu) denotes the fraction of the
walkers (respectively of the leaders), at time t, in the elementary volume [x,x +
dx]× [v,v + dv]× [u, u+ du].

The macroscopic quantities are still defined by Eqs. (2)-(3), in particular the
initial numbers of walkers and leaders are defined by

Ni0 =

∫

Ω

∫ 1

0

∫ 2π

0

∫ 1

0

fi(t = 0, x, v, θ, u) vdv dθ du, dx i = 1, 2. (24)

In addition, we introduce the following parameter

σ(x) =
N20(x)

N10(x)
, (25)

which measures the presence of leaders over the walkers. In general, it is supposed
that σ is a small number with respect to one.

The mathematical structure is obtained within the general framework given by
Eq.(9), for a system whose state is described by the distribution functions fi =
fi(t,x,v, u), i = 1, 2,







(∂t + v · ∂x) f1(t,x,v, u) = P1[f , f1](t,x,v, u),

(∂t + v · ∂x) f2(t,x,v, u) = P2[f , f2](t,x,v, u),
(26)

where

P1[f , f1] =
2

∑

k=1

η0

∫

D2

A1k[f ](v∗ → v, u∗ → u|v∗,v
∗, u∗, u

∗; Σ)

× f1(t,x,v∗, u∗)fk(t,x,v
∗, u∗) dv∗ dv

∗ du∗ du
∗,

−η0 f1(t,x,v, u)

2
∑

k=1

∫

D

fk(t,x,v
∗, u∗) dv∗ du∗, (27)
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and

P2[f , f2] = η0

2
∑

k=1

∫

D2

A2k[f ](v∗ → v, u∗ → u|v∗,v
∗, u∗, u

∗; Σ)

× f2(t,x,v∗, u∗)fk(t,x,v
∗, u∗) dv∗ dv

∗ du∗ du
∗,

−η0 f2(t,x,v, u)

2
∑

k=1

∫

D

fk(t,x,v
∗, u∗) dv∗ du∗, (28)

where η0 is a parameter which describes the frequency of interactions.
The derivation of the mathematical model is obtained by particularizing the

interaction termsA. More precisely the transition probability density, as in Eq. (14),
is factorized as follows:

Aik(v∗ → v, u∗ → u) = Au
ik(u

∗ → u)×Aθ
ik(θ∗ → θ)×Av

ik(v∗ → v), (29)

where the terms Au
ik, A

θ
ik and Av

ik correspond, respectively, to the dynamics of the
emotional state, of the selection of the walking direction and of the walking speed.
The table below, where only the dependence on u has been indicated, summarizes
their expressions.

Interaction Probability transition

A11(v∗ → v, u∗ → u|x,v∗,v
∗, u∗, u

∗)

(I-WW ) =
(

δ
(

u− ε(u∗ − u∗)(1− u∗)
)

× δ (θ[u, ·]− θ∗)× δ (v[u, ·]− v∗)

A12(v∗ → v, u∗ → u|x,v∗,v
∗, u∗, u

∗)

(I-WL) = δ(u− u∗ + ε(u∗ − u0))× δ (θ[u, ·]− θ∗)× δ (v[u, ·]− v∗)

A21(v∗ → v, u∗ → u|x,v∗,v
∗, u∗, u

∗)

(I-LW ) = δ(u− u∗ + ε(u∗ − u0))× δ (θ[u, ·]− θ∗)× δ (v[u, ·]− v∗)

(I-LL) A22(v∗ → v, u0 → u|x,v∗,v
∗, u0, u

∗)

(I-LL) = δ(u∗ − u0)× δ (θ[u0, ·]− θ∗)× δ (v[u0, ·]− v∗)

This modeling result has been obtained under the following assumptions:

1. The activity, at t = 0, is homogeneously distributed with value u0 both for
leaders and walkers;

2. Walker-walker interactions: The activity is not modified by the presence of
leaders, so that the probability density Au

11 is still given by Eqs. (15),(16);
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3. Walker-leader interactions: The activity of walkers has a trend toward the
activity of the leaders:

Au
12(u∗ → u|u∗, u

∗) = δ(u − u∗ + ε(u∗ − u0)), (30)

subsequently the dynamics of θ and v follows the same rules as in the preceding
item;

4. Leader-walker-leader and leader-leader interactions: The activity is not mod-
ified by both these interactions:

Au
21(u0 → u|u0) = δ(u− u0), and Au

22(u0 → u|u0) = δ(u − u0), (31)

therefore the dynamics of θ and v follows the same rules of the walker, but
with u = u0.

5 A Case Study and Simulations

This section presents some simulations developed to test the predictive ability of
the models proposed in Section 4. The mathematical problem that generates these
simulations needs the statement of initial conditions f(t = 0,x,v, u) and boundary
conditions which are necessary although the walking strategy attempts to avoid the
encounter with the walls. In fact, some of the walkers, however viewed as active
particles, might reach, in probability, the wall, then an appropriate reflection model
at the boundary must be given.

The Boltzmann-like structure of the equation requires boundary conditions anal-
ogous to those used by the fundamental model of the classical kinetic theory. In
more detail, we suppose that interaction with the wall modifies only the direction
of velocity, after the dynamics follows the same rules already stated in Section 3.
Accordingly, the statement of boundary conditions can be given as follows:

f r(t,x, θr, u) =
|vi · n|

|vr · n|

∫

R(θi → θr) f
i(t,x, θi, u) dθ

′

i, (32)

where f r and f i denote, respectively, the distribution function after and before
interactions with the wall, while θi and θr denote the velocity directions before and
after the interaction. These directions are, respectively such that v · n ≤ 0 and
v ·n ≥ 0, where n is the unit vector orthogonal do the wall and directed inside the
domain.

Bearing all above in mind, we can now define the specific problem we will address
the simulation to. The main features of the case study are the following:

• The crowd is constituted by Two groups of people move in opposite directions
in a rectangular venue of 20m × 5m;

• The group on the left is composed of 40 people uniformly distributed in a
rectangular area 4m × 4m with the initial emotional state set to u ≃ 0.4
while the group on the right is composed of 20 people uniformly distributed
in a rectangular area of 4m× 2m with an higher level of stressful condition,
namely u ≃ 0.8;
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(a) t = 0 s. (b) t = 0 s.

(c) t = 6 s. (d) t = 6 s.

(e) t = 10 s. (f) t = 10 s.

Figure 1: Density contour plot of the mean density of the emotional state, ρū,
without (left panels) and with (right panels) social interactions.

• The speed ξ is also homogeneously distributed over all walkers at a value
ξ0 ∼= u0;

• When the two groups physically interact, a mixing of stress conditions appears,
which modifies the walking dynamics which would occur in absence of social
interaction.

The objective of simulations consists in understanding how social interactions
modify the patterns of the flow and how high density patterns localize. A quantity
which worth to be computed is the mean density of the emotional state

ū(t,x) =
1

ρ(t,x)

∫

f(t,x,v, u)u dv du. (33)

Simulations related to the case study under consideration are reported in Fig-
ures 1 and 2 which show, respectively, the contour plots of the mean density of the
emotional state with (right panels) and without (left panels) social interactions for
different times. These figures put in evidence how the exchange of emotional states
modifies the aforementioned patterns and, specifically, induces zones with high den-
sity concentration which, as it is known, can generate loss of safety conditions.
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(a) t = 14 s. (b) t = 14 s.

(c) t = 18 s. (d) t = 18 s.

(e) t = 22 s. (f) t = 22 s.

Figure 2: Density contour plot of the mean density of the emotional state, ρū,
without (left panels) and with (right panels) social interactions

6 Critical Analysis and Research Perspectives

A kinetic theory approach to the modeling of crowd dynamics in the presence of
social phenomena, which can modify the rules of mechanical interactions, has been
proposed in our paper. Two types of social dynamics have been specifically stud-
ied, namely the propagation of stress conditions and the role of leaders. The case
study proposed in Section 5 has shown that stress conditions can induce important
modifications in the overall dynamics and on the density patterns thus enhancing
formation of overcrowded zones. The specific social dynamics phenomena studied
in our paper have been motivated by situations, such as fire incidents or rapid
evacuations, where safety problems can arise [20, 29, 37, 41].

The achievements presented in the preceding sections motivate a systematic com-
putational analysis focused on a broader variety of case studies focusing specifically
to enlarge the variety of social phenomena inserted in the model. As an example,
one might consider even extreme situations, where antagonist groups contrast each
other in a crowd. This type of developments can be definitely inserted into a pos-
sible research program which is strongly motivated by the security problems of our
society.

Furthermore, we wish returning to the scaling problem, rapidly introduced in
Sections 1 and 2, to propose a critical, as well as self-critical, analysis induced also by
the achievements of our paper on the modeling human behaviors in crowds. In more
detail, we observe that it would be useful introducing aspects of social behaviors also
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in the modeling at the microscopic and macroscopic scale. Afterwards, a critical
analysis can be developed to enlighten advantages and withdraws of the selection
of a certain scale with respect to the others.

This type of analysis should not hide the conceptual link which joins the model-
ing approach at the different scales. In fact a detailed analysis of individual based
interactions (microscopic scale) should implement the derivation of kinetic type
models (mesoscopic scale), while hydrodynamic models (macroscopic scale) should
be derived from the underlying description delivered kinetic type models by asymp-
totic methods where a small parameter corresponding to the distances between
individuals is let to tend to zero. Often models are derived independently at each
scale, which prevents a real multiscale approach.

Some achievements have already been obtained on the derivation of macroscopic
equations from the kinetic type description for crowds in unbounded domains [4]
by an approach which has some analogy with that developed for vehicular traf-
fic [5]. However, applied mathematicians might still investigate how the structure
of macroscopic models is modified by social behaviors. This challenging topic might
be addressed even to the relatively simpler problem of vehicular traffic where indi-
vidual behaviors are taken into account [12].

Finally, let us state that the “important” objective, according to our own bias,
is the development of a systems approach to crowd dynamics, where models derived
at the three different scales might coexist in complex venues where the local number
density from rarefied to high number density. This objective induces the derivation
of models at the microscopic scale consistent with models at the macroscopic scale
with the intermediate description offered by the kinetic theory approach.
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