
HAL Id: hal-01949892
https://hal.sorbonne-universite.fr/hal-01949892

Submitted on 10 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantum-enhanced sensing using non-classical spin
states of a highly magnetic atom

Thomas Chalopin, Chayma Bouazza, Alexandre Evrard, Vasiliy Makhalov,
Davide Dreon, Jean Dalibard, Leonid A Sidorenkov, Sylvain Nascimbène

To cite this version:
Thomas Chalopin, Chayma Bouazza, Alexandre Evrard, Vasiliy Makhalov, Davide Dreon, et al..
Quantum-enhanced sensing using non-classical spin states of a highly magnetic atom. Nature Com-
munications, 2018, 9 (1), pp.4955. �10.1038/s41467-018-07433-1�. �hal-01949892�

https://hal.sorbonne-universite.fr/hal-01949892
https://hal.archives-ouvertes.fr


ARTICLE

Quantum-enhanced sensing using non-classical
spin states of a highly magnetic atom
Thomas Chalopin1, Chayma Bouazza1, Alexandre Evrard1, Vasiliy Makhalov1, Davide Dreon1,2, Jean Dalibard1,

Leonid A. Sidorenkov1,3 & Sylvain Nascimbene1

Coherent superposition states of a mesoscopic quantum object play a major role in our

understanding of the quantum to classical boundary, as well as in quantum-enhanced

metrology and computing. However, their practical realization and manipulation remains

challenging, requiring a high degree of control of the system and its coupling to the envir-

onment. Here, we use dysprosium atoms—the most magnetic element in its ground state—to

realize coherent superpositions between electronic spin states of opposite orientation, with a

mesoscopic spin size J= 8. We drive coherent spin states to quantum superpositions using

non-linear light-spin interactions, observing a series of collapses and revivals of quantum

coherence. These states feature highly non-classical behavior, with a sensitivity to magnetic

fields enhanced by a factor 13.9(1.1) compared to coherent spin states—close to the Hei-

senberg limit 2J= 16—and an intrinsic fragility to environmental noise.

DOI: 10.1038/s41467-018-07433-1 OPEN

1 Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL University, Sorbonne Université, 11 Place Marcelin Berthelot, 75005 Paris, France. 2Present
address: Department of Physics, ETH Zurich, 8093 Zurich, Switzerland. 3Present address: SYRTE, Observatoire de Paris, PSL University, CNRS, Sorbonne
Université, LNE, 61 avenue de l’Observatoire, 75014 Paris, France. Correspondence and requests for materials should be addressed to
L.A.S. (email: leonid.sidorenkov@obspm.fr)

NATURE COMMUNICATIONS |          (2018) 9:4955 | DOI: 10.1038/s41467-018-07433-1 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

mailto:leonid.sidorenkov@obspm.fr
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Future progress in quantum technologies is based on the
engineering and manipulation of physical systems with
highly non-classical behavior1, such as quantum coherence2,

entanglement3, and quantum-enhanced metrological
sensitivity4,5. These properties generally come together with an
inherent fragility due to decoherence via the coupling to the
environment, which makes the generation of highly non-classical
states challenging6. An archetype of such systems consists in an
object prepared in a coherent superposition of two distinct quasi-
classical states, realizing a conceptual instance of Schrödinger
cat7. Such states have been realized in systems of moderate size—
referred to as ‘mesoscopic’ hereafter—with trapped ions8,9, cavity
quantum electrodynamics (QED) systems10–12, superconducting
quantum interference devices13, optical photons14–17, and circuit
QED systems18,19. Non-classical behavior can also be achieved
with other types of quantum systems, including squeezed
states20–31.

Inspired by the hypothetical cat state |dead〉+|alive〉 intro-
duced by Schrödinger in his famous Gedanken experiment, one
usually refers to a cat state in quantum optics as a superposition
of quasi-classical states consisting in coherent states of the elec-
tromagnetic field, well separated in phase space and playing the
role of the |dead〉 and |alive〉 states7. Such cat states can be
dynamically generated in photonic systems, e.g. using a Kerr non-
linearity18,32. For a spin J, a quasi-classical coherent state is
represented as a state j± Jibu of maximal spin projection m= ±J
along an arbitrary direction bu. It constitutes the best possible
realization of a classical state of well-defined polarization, as it
features isotropic fluctuations of the perpendicular spin compo-
nents, of minimal variance ΔJbv ¼

ffiffiffiffiffiffiffi
J=2

p
for bv?bu33. A cat state

can then be achieved for large J values, and it consists in the
coherent superposition of two coherent spin states of opposite
magnetization, which are well separated in phase space. We
mention that the Hilbert space dimension of 2J+ 1 scales linearly
with the separation between the two coherent states of the
superposition. Such cat states can be created under the action of
non-linear spin couplings34–37. These techniques have been
implemented with individual alkali atoms, using laser fields to
provide almost full control over the quantum state of their
hyperfine spin38–42. However, the small spin size involved in
these systems intrinsically limits the achievable degree of non-
classical behavior.

Non-classical spin states have also been created in ensembles of
one-electron and two-electron atoms5. When each atom carries a
spin-1/2 degree of freedom, a set of N atoms evolving identically
can collectively behave as an effective spin J=N/2, that can be
driven into non-classical states via the interactions between
atoms34–37,43. In such systems, spin-squeezed states have been
realized experimentally20–22,25,26,28–31, as well as non-gaussian
entangled states44. Yet, cat states remain out of reach due to their
extreme sensitivity to perturbations in such systems. This beha-
vior results from the large size 2N of the Hilbert space (when
taking into account non-symmetric quantum states), which scales
exponentially with the system size N, resulting in a large number
of decoherence channels (e.g. losing a single particle fully destroys
their quantum coherence).

In this work, we use samples of dysprosium atoms, each of
them carrying an electronic spin of mesoscopic size J= 8. We
exploit the AC Stark shift produced by off-resonant light38 to
drive non-linear spin dynamics. Each atomic spin independently
evolves in a Hilbert space of dimension 2J+ 1= 17, much smaller
than the dimension 2N ~ 105 of an equivalent system of N=
16 spins 1/2. We achieve the production of quantum super-
positions of effective size 13.9(1.1) (as defined hereafter), close to
the maximum allowed value 2J= 16 for a spin J. As this size can
be considered large, but not macroscopic according to the original

Schrödinger idea, we will hereafter refer to such quantum
superpositions as Schrödinger kitten states45. We provide a
tomographic reconstruction of the full density matrix of these
states and monitor their decoherence due to the dephasing
induced by magnetic field noise.

Results
Experimental protocol. Our experimental scheme is sketched in
Fig. 1a. We use an ultracold sample of about 105 164Dy atoms,
initially spin-polarized in the absolute ground state |−J〉z, under a
quantization magnetic field B ¼ Bbz, with B= 18.5(3) mG (see
Methods). The non-linear spin dynamics results from spin-
dependent energy shifts induced by a laser beam focused on the
atomic sample. The laser wavelength is chosen close to the 626-
nm resonance line, such that the light shifts are proportional to
the polarizability tensor of a J= 8 to J′= 9 optical transition. For
a linear light polarization along x, the light shift operator reduces
to a coupling / J2x (up to a constant), and we expect the spin
dynamics to be described by the Hamiltonian38

Ĥ ¼ �hωL Ĵz þ �hωĴ2x ; ð1Þ

where the first term corresponds to the Larmor precession
induced by the magnetic field, and the second term is the light-
induced spin coupling. The light beam intensity and detuning
from resonance are set such that the light-induced coupling fre-
quency ω= 2π × 1.98(1) MHz largely exceeds the Larmor pre-
cession frequency ωL= 2π × 31.7(5) kHz. In such a regime the
Hamiltonian of Eq. (1) takes the form of the so-called one-axis
twisting Hamiltonian, originally introduced for generating spin
squeezing21,22,43. We drive the spin dynamics using light pulses of
duration t ~ 10 ns to 1. Once all laser fields are switched off, we
perform a projective measurement of the spin along the z-axis in
a Stern–Gerlach experiment (see Fig. 1c). Measuring the atom
number corresponding to each projection value m allows to infer
the projection probabilities Πm, −J ≤m ≤ J.

Quantum state collapses and revivals. We first investigated the
evolution of the spin projection probabilities Πm as a function of
the light pulse duration t. As shown in Fig. 2, we find the spin
dynamics to involve mostly the even |m〉z states. This behavior is
expected from the structure of the Ĵ2x coupling, which does not
mix the even-|m〉z and odd-|m〉z sectors.

Starting in |−J〉z, we observe for short times that all even-|m〉z
states get gradually populated. The magnetization mz � ĥJzi and
spin projection variance ΔJ2z relax to almost constant values mz=
−0.3(2) and ΔJ2z ¼ 33ð1Þ in the whole range 0.2π < ωt < 0.36π.
This behavior agrees with the expected collapse of coherence
induced by a non-linear coupling. To understand its mechanism
in our system, we write the initial state in the x basis, as

j � Jiz ¼
X
m

ð�1Þmcmjmix; cm ¼ 2�J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J

J þm

� �s
: ð2Þ

In this basis, the non-linear coupling Ĵ2x induces m-dependent
phase factors, leading to the state

jψðtÞi ¼
X
m

ð�1Þme�im2ωtcmjmix: ð3Þ

The variations between the accumulated phase factors lead to
an apparent collapse of the state coherence46. The collapse
timescale tc can be estimated by calculating the typical
relaxation time of the magnetization, yielding tc ¼ 1=ð ffiffiffiffiffi

2J
p

ωÞ,
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Fig. 1 Experimental scheme and expected spin dynamics. a Experimental scheme. The spin J= 8 of Dy atoms is manipulated using an off-resonant laser
field linearly polarized along x, leading to a non-linear coupling �hωĴ2x . The spin state is subsequently probed by imaging the atoms after a Stern–Gerlach
separation of magnetic sublevels |m〉z, allowing to determine their individual populations. b Expected spin dynamics. The spin, initially prepared in |−J〉z
(corresponding atom image in panel c for time t1), first collapses to a featureless state (time t2) on a fast timescale tc � 1=ω. We subsequently observe the
formation of a superposition between states |−J〉z and |J〉z (time t3) and later of the polarized state |J〉z (time t4). Each image is the average of typically 10
resonant absorption images
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43, and the blue solid lines correspond to a fit taking into account experimental imperfections (see Methods). Each point
is the average of five measurements, and the error bars represent the 1σ statistical uncertainty
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i.e. ωtc= 0.08π37,43 (see the Supplementary Note 1 and
Supplementary Fig. 1).

For longer evolution times, we observe the occurence of peaks
in mz(t) or ΔJ2z , that we interpret as the formation of states with
significant quantum coherence18,47,48. After a quarter of the
period, i.e. ωt= π/2, all odd-m (and all even-m) phase factors in
Eq. (3) get in phase again, leading to the superposition

jψkitteni ¼ eiπ=4ðj � Jiz � ijJizÞ=
ffiffiffi
2

p
; ð4Þ

between maximally polarized states of opposite orientation35,37,
that we refer to as a ‘kitten’ state14. We observe that, for durations
0.45π < ωt < 0.49π, the magnetization remains close to zero while
the variance in the spin projection features a peak of maximal
value ΔJ2z ¼ 57:1ð2Þ (see Fig. 2).

For pure quantum states, such a large variance is characteristic
of coherent superpositions between states of very different
magnetization. However, from this sole measurement we cannot
exclude the creation of an incoherent mixture of |±J〉z states. We
observe at later times revivals of magnetization that provide a first
evidence that the state discussed above indeed corresponds to a
coherent quantum superposition. The first revival occurs around
ωt= π, and corresponds to a re-polarization of the spin up to
mz= 6.0(1), with most of the atoms occupying the state |J〉z. We
detect another revival of magnetization around ωt= 2π, corre-
sponding to a magnetized state close to the initial state (mz=
−6.0(2)). Between these two revivals, we observe another
superposition state (large spin projection variance
ΔJ2z ¼ 47:0ð6Þ) around ωt= 3π/2.

The observed spin dynamics qualitatively agrees with the one
expected for a pure Ĵ2x coupling

43 (dashed red line in Fig. 2), while
a more precise modeling of the data—taking into account the
linear Zeeman coupling produced by the applied magnetic field,
as well as a fit of experimental imperfections (see Methods)—
matches well our data (blue line in Fig. 2).

Probing the coherence of the superposition. In order to directly
probe the coherences we follow another experimental protocol
allowing us to retrieve the spin projection along directions lying
in the xy equatorial plane, corresponding to observables Ĵϕ �
cosϕĴx þ sinϕĴy (see Methods). The coherence of the state
|ψkitten〉, involving the opposite coherent states |±J〉z, cannot be
probed using a linear spin observable, such as the magnetization,
but requires interpreting the detailed structure of the probability
distributions Πm(ϕ)49. By expanding the coherent states |±J〉z on
the eigen-basis |m〉ϕ of the spin component Ĵϕ, we rewrite the
state as

jψkitteni ¼
eiπ=4ffiffiffi

2
p

X
m

e�iðJϕþmπÞ � ei Jϕþπ
2ð Þh i

cmjmiϕ ð5Þ

where the cm coefficients were introduced in Eq. (2). For the
particular angles ϕ= (p+ 1/4)π/J (p integer), the two terms in
brackets cancel each other for odd m values. Alternatively, for
angles ϕ= (p− 1/4)π/J we expect destructive interferences for
even m8,49. This behavior can be revealed in the parity of the spin
projection

PðϕÞ �
X
m

ð�1ÞmΠmðϕÞ ¼ sinð2JϕÞ; ð6Þ

which oscillates with a period 2π/(2J).
As shown in Fig. 3a, the experimental probability distributions

Πm(ϕ) feature strong variations with respect to the angle ϕ. The
center of mass of these distributions remains close to zero,
consistent with the zero magnetization of the state |ψkitten〉. We
furthermore observe high-contrast parity oscillations agreeing

with the above discussion and supporting quantum coherence
between the |±J〉z components (see Fig. 3c).

Information on maximal-order coherences can be unveiled
using another measurement protocol, which consists in applying
an additional light pulse identical to the one used for the kitten
state generation50. When performed right after the first pulse, the
second pulse brings the state |ψkitten〉 to the polarized state |J〉z,
which corresponds to the second revival occuring around ωt= π
in Fig. 2. An additional wait time between the two pulses allows
for a Larmor precession of angle ϕ around z, leading to the
expected evolution

jψðϕÞi ¼ cosðJϕÞjJiz þ sinðJϕÞj � Jiz; ð7Þ

mzðϕÞ ¼ J cosð2JϕÞ: ð8Þ

We vary the wait time and measure corresponding probability
distributions Πm(ϕ) (Fig. 3b) and magnetization mz(ϕ) (Fig. 3c)
consistent with Eqs. (7) and (8), respectively. This non-linear
detection scheme reduces the sensitivity to external perturbations,
as it transfers information from high-order quantum coherences
onto the magnetization, much less prone to decoherence. It also
decreases the requirements on the detection noise51–55.

A highly sensitive one-atom magnetic probe. The Larmor pre-
cession of the atomic spins in small samples of atoms can be used
for magnetometry combining high spatial resolution and high
sensitivity56. While previous developments of atomic magnet-
ometers were based on alkali atoms, multi-electron lanthanides,
such as erbium or dysprosium intrinsically provide an increased
sensitivity due to their larger magnetic moment, and potentially a
substantial quantum enhancement when probing with non-
classical spin states57.

We interpret below the oscillation of the parity P(ϕ) discussed
in the previous section as the footing of a magnetometer with
quantum-enhanced precision, based on the non-classical char-
acter of the kitten state. According to generic parameter
estimation theory, the Larmor phase ϕ can be estimated by
measuring a generic observable Ô with an uncertainty

Δϕ ¼ ΔÔ
dhÔi=dϕ ð9Þ

for a single measurement58. Measuring the angle ϕ using coherent
spin states (e.g. in a Ramsey experiment) leads to a minimum
phase uncertainty ΔϕSQL ¼ 1=

ffiffiffiffiffi
2J

p
; corresponding to the stan-

dard quantum limit (SQL). For an uncertainty limit on phase
measurement Δϕ we define the metrological gain compared to the
SQL as the ratio G≡(ΔϕSQL/Δϕ)2, also commonly referred to as
the quantum enhancement of measurement precision5. In this
framework, the parity oscillation P(ϕ) expected from Eq. (6) for
the state |ψkitten〉 yields a metrological gain G= 2J, corresponding
to the best precision limit Δϕ= 1/(2J) achievable for a spin J—the
Heisenberg limit. From the finite contrast C= 0.74(2) of a sine fit
of the measured parity oscillation, we deduce a metrological gain
G= 2JC2= 8.8(4).

A further increase of sensitivity can be achieved using the full
information given by the measured probability distributions
Πm(ϕ) (see Fig. 3a), i.e. without assuming the parity to be the
most sensitive observable to measure phase variations44. In this
more general approach, the phase sensitivity is obtained from the
rate of change of the probability distribution Πm(ϕ) upon a
variation of ϕ, that we quantify using the Hellinger distance

d2Hðϕ; ϕ′Þ � 1
2

P
m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΠmðϕÞ

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Πmðϕ′Þ

p� �2
between the
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distributions Πm(ϕ) and Πm(ϕ′). For small angle differences, one
expects the scaling behavior dHðϕ; ϕ′Þ ’

ffiffiffiffiffiffiffiffi
F=8

p jϕ� ϕ′j, where F
is the classical Fisher information, which quantifies the measure-
ment sensitivity as Δϕ ¼ 1=

ffiffiffi
F

p
44,58. For coherent spin states, the

Fisher information F= 2J corresponds to a measurement
precision at the SQL. More generally, an increase in the slope
of the Hellinger distance variation signals a gain in precision
compared to the SQL, quantified by the metrological gain G= F/
(2J). For the kitten state given by Eq. (5), we expect a metrological
gain G= 2J at the Heisenberg limit. We show in Fig. 3d the
Hellinger distance computed from the distributions Πm(ϕ) shown
in Fig. 3a. Its variation for small angle differences yields a
metrological gain G= 13.9(1.1). We thus find that using the full
information from the probability distributions—rather than using
its parity P(ϕ) only—increases the phase sensitivity.

For a given quantum state used to measure the Larmor phase,
we expect the metrological gain to remain bounded by the value
of its spin projection variance, as G � 2ΔJ2z =J ¼ 14:3ð1Þ58. As the
measured gain coincides with this bound within error bars, we
conclude that the phase measurement based on the Hellinger
distance is optimum. We also performed a similar Hellinger
distance analysis based on the distributions Πm(ϕ) shown in
Fig. 3b leading to a comparable metrological gain G= 14.0(9) (see
the Supplementary Note 3). Further increase of sensitivity would
require improving the state preparation.

Tomography of the superposition state. In order to completely
characterize the superposition state, we perform a tomographic
reconstruction of its density matrix59. The latter involves
(2J+ 1)2− 1= 288 independent real coefficients, that we

determine from a fit of the spin projection probabilities Πm

measured on the z-axis and on a set of directions uniformly
sampling the xy equatorial plane60. The inferred density matrix is
plotted in Fig. 4a. Its strongest elements correspond to popula-
tions and coherences involving the coherent states |±J〉z, as
expected for the state |ψkitten〉. We measure a coherence to
population ratio 2|ρ−J,J|/(ρ−J,−J+ ρJ,J)= 0.92(8).

In order to further illustrate the non-classical character of the
superposition state, we compute from the density matrix its
associated Wigner function W(θ, ϕ)22, defined for a spin over the
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spherical angles θ, ϕ as

Wðθ; ϕÞ ¼
X2J
‘¼0

X‘

m¼�‘

ρm‘ Y
m
‘ ðθ; ϕÞ; ð10Þ

where ρm‘ is the density matrix component on the spherical
harmonics Ym

‘ ðθ; ϕÞ61. The reconstructed Wigner function,
plotted in Fig. 4b, exhibits two lobes of positive value around
the south and north poles, associated with the population of the
states |±J〉z. It also features interferences around the equatorial
plane originating from coherences between these two states, with
strongly negative values in a large phase space area. This behavior
directly illustrates the highly non-classical character of the kitten
state.

Dephasing due to classical noise. We furthermore investigated
the environment-induced decay of quantum coherence by fol-
lowing the evolution of density matrices ρ(t) reconstructed after
variable wait times t in the 10–100 µs range.

While we do not detect significant evolution of the populations
Πm, we observe a decrease of the extremal coherence |ρ−J,J|, of 1/e
decay time τ= 58 ± 4 µs, which we attribute to fluctuations of the
ambient magnetic field. To calibrate such a dephasing process, we
study the damping of the amplitude J⊥(t) of a coherent state,
initially prepared in the state |J〉x and evolving under the applied
magnetic field along z and the ambient magnetic field fluctuations
(see Methods). As shown in Fig. 5b, the transverse spin amplitude
J⊥ decays on a 1/e timescale τ0= 740 ± 80 µs, consistent with
residual magnetic field fluctuations in the mG range. The
decoherence rate of the kitten state is thus enhanced by a factor
τ0/τ= 13(2) compared to a coherent state, which illustrates the
intrinsic fragility of mesoscopic coherent superpositions.

Spin decoherence due to magnetic field fluctuations can be
modeled similarly to the T�

2 decay in nuclear magnetic resonance62

(see the Supplementary Note 4). Using a magnetic probe located
close to the atom position, we measure shot-to-shot magnetic field
fluctuations on a 0.5-mG range, but their variation on the ~100-μs
dephasing timescale remains negligible. In this regime, we expect
the dephasing of the state |ψkitten〉 to occur 2J= 16 times faster than
for a coherent state, a value close to our measurement.

Finally, we plot in Fig. 5c, d the reconstructed density matrix
and its associated Wigner function for the wait time t= 70 ± 3 µs.
The weak amplitude of coherences and the shrinking of the
negative regions in the Wigner function illustrate the dynamics
towards an incoherent statistical mixture6.

Discussion
In this work, we use spin-dependent light shifts to drive the
electronic spin J= 8 of dysprosium atoms under a non-linear
one-axis twisting Hamiltonian. The observation of several col-
lapses and revivals of quantum coherence shows that the spin
dynamics remains coherent over a full period of the evolution. In
particular, the state produced after one quarter of the period
consists of a coherent superposition between quasi-classical spin
states of opposite orientation, which can be viewed as a meso-
scopic instance of Schrödinger cat. While such coherent dynamics
could be achieved with individual alkali atoms of smaller spin
size39,40, the realization of large-size coherent superpositions with
ensembles of spin-1/2 particles is extremely challenging9,17. The
high fidelity of our protocol stems from the reduced size 2J+ 1 of
the available Hilbert space, that scales linearly with the effective
distance 2J between the states involved in the superposition. Such
scaling contrasts with the exponential scaling in the number of
accessible states for ensembles of qubits, which dramatically
increases the number of decoherence channels. Similarly, the full
tomographic reconstruction of the produced quantum state also
crucially relies on this limited size of the Hilbert space. Quantum
state tomography of an equivalent 16-qubit ensemble remains
inaccessible, unless restricting the Hilbert space to the permuta-
tionally invariant subspace63 or using compressed sensing for
almost pure states64.

We show that our kitten state provides a quantum enhancement
of precision of 13.9(1.1), up to 87(2)% of the Heisenberg limit. So
far, such a high value could only be reached in ensembles of
thousands of qubits based on multiparticle entanglement25,27–30.
In such systems, while entanglement occurs between a large
number of qubits, the quantum enhancement of precision
remains small compared to the system size, far from the
Heisenberg limit. Our protocol could be extended to prepare
kitten states ðj � Kiz � ijKizÞ=

ffiffiffi
2

p
with |K| ≤ J, by initiating the

atoms in |−K〉z before applying a non-linear spin coupling identical
to the one used in this work. This would allow us to demonstrate
the Heisenberg scaling of measurement sensitivity δϕ∝1/K. We
could also implement, using similar techniques, protocols to pre-
pare non-classical states based on adiabatic evolutions65–67.

Our method could also be applied to systems of larger elec-
tronic spin J. Dysprosium being the optimum choice among all
atomic elements in the electronic ground state, further
improvement would require using highly excited electronic levels,
such as Rydberg atomic states12, or using ultracold molecules68.
By increasing the atom density, one could also use interactions
between N atoms of spin J to act on a collective spin of very large
size J ¼ NJ , allowing to explore non-classical states of much
larger size.

Methods
Sample preparation and detection. We use samples of about 9(1) × 104 atoms of
164Dy, cooled to a temperature T ’ 2 μK using laser cooling and subsequent
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Fig. 5 Dephasing of coherences. a Evolution of the modulus of the extremal
coherence |ρ−8,8| (blue circles) calculated from the tomography of the
superposition state after a wait time t. The horizontal error bars correspond
to the standard deviation of the Larmor precession times required for
tomography. Vertical error bars are the 1σ statistical error computed using a
random-weight bootstrap method. b Evolution of the mean transverse spin
amplitude J⊥ for an initial state |J〉x in the same magnetic field environment
than for the data in a. The solid lines in a and b are exponential fits of the
data. c, d Density matrix and Wigner function reconstructed for t= 70 ±
3 µs, i.e. after a strong damping of coherences
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evaporative cooling in an optical dipole trap69. The dipole trap has a wavelength
λ= 1064 nm, resulting in negligible interaction with the atomic spin70. The sam-
ples are initially spin-polarized in the absolute ground state |−J〉z, with a bias field
Bz ’ 0:5G along z, such that the induced Zeeman splitting largely exceeds the
thermal energy. Before starting the light-induced spin dynamics, we ramp the bias
field down to the final value Bz= 18.5(3) mG in 20 ms. We checked that the
promotion to higher spin states (with m >−J) due to dipole–dipole interactions
remains negligible on this timescale. The optical trapping light is switched off right
before the spin dynamics experiments.

After the light-induced spin dynamics, we perform a Stern–Gerlach separation
of the various spin components using a transient magnetic field gradient (typically
50 G/cm during 2 ms) with a large bias magnetic field along z. After a 3.5 ms time
of flight, the atomic density is structured as 17 separated profiles (see Fig. 1c),
allowing to measure the individual spin projection probabilites Πm using resonant
absorption imaging, where m is the spin projection along z. The relative scattering
cross-sections between |m〉z sub-levels are calibrated using samples of controlled
spin composition.

Spin projection measurements along equatorial directions are based on spin
rotations followed by a projective measurement along z. We apply a magnetic field
pulse along y, of temporal shape ByðtÞ ¼ Bmax

y sin2ðπt=τÞ, with τ= 3 and Bmax
y

adjusted to map the z-axis on the equator. Taking into account the static field along
z, we expect the pulse to map the equatorial direction of azimutal angle ϕi ’
0:35rad on the z-axis. An arbitrary angle ϕ= ϕi+ ϕL can be reached using an
additional wait time before the By pulse, allowing for a Larmor precession of angle
ϕL. The calculation of the angle ϕLuses the magnetic field component Bz measured
using an external probe, allowing to reduce the effect of shot-to-shot magnetic field
fluctuations.

Spin dynamics modeling. Quantitative understanding of the observed spin
dynamics requires taking into account experimental imperfections. We include the
linear Zeeman coupling induced by the magnetic field applied along z (see Eq.(1)),
leading to a small Larmor rotation on the typical timescales used for the light-
induced spin dynamics. We also take into account the slight polarization ellipticity
expected from the focusing of the laser beam on the atomic sample (beam diver-
gence θ ¼ λ=ðπwÞ ’ 4mrad). Finally, we improve the spin dynamics modeling by
fitting a small angle mismatch ’ 8� between the quantization field and the z-axis.
More details on this modeling can be found in the Supplementary Note 2.

Quantum state tomography. The density matrix of the kitten state is determined
from a least-square fit of the measured spin projection probabilities Πm along z and
Πm(ϕ) on equatorial directions60. We uniformly sample the equatorial plane using
a set of azimutal angles ϕ∈[ϕ0, ϕ0+ π]. The procedure thus requires variable spin
rotation durations (on average ≃10 μs), which limits the quality of the tomography
due to dephasing. To reduce its effect, we use the magnetic field values measured
for each experiment with an external probe to compensate for part of the
dephasing, which increases the quality of the tomography and extents the coher-
ence times by a factor ’ 3. The robustness of the method with respect to mea-
surement noise and finite sampling is tested using a random-weight bootstrap
method, from which we define the statistical error bars in Fig. 5.

Calibration of dephasing. To calibrate the dephasing of coherences due to mag-
netic field fluctuations, we perform a Ramsey experiment using coherent spin
states. We start in the ground state |−J〉z, that we bring on the equator using a π/2
magnetic field pulse applied along y. We then let the spin precess around z for a
duration t, and subsequently perform a second π/2 pulse before performing a spin
projection measurement along z. We observe Ramsey oscillations of the magne-
tization mz(t)= J⊥(t)cos(ωLt+ ϕ), where the local oscillation contrast J⊥(t) corre-
sponds to the transverse spin amplitude shown in Fig. 5b.

Data availability
The datasets generated and analyzed during the current study are available from
the corresponding author on request.
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