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ARTICLE

Thermodynamic phases in two-dimensional active
matter
Juliane U. Klamser1,2, Sebastian C. Kapfer2,3 & Werner Krauth1,2,4

Active matter has been much studied for its intriguing properties such as collective motion,

motility-induced phase separation and giant fluctuations. However, it has remained unclear

how the states of active materials connect with the equilibrium phases. For two-dimensional

systems, this is also because the understanding of the liquid, hexatic, and solid equilibrium

phases and their phase transitions is recent. Here we show that two-dimensional self-pro-

pelled point particles with inverse-power-law repulsions moving with a kinetic Monte Carlo

algorithm without alignment interactions preserve all equilibrium phases up to very large

activities. Furthermore, at high activity within the liquid phase, a critical point opens up a

gas–liquid motility-induced phase separation region. In our model, two-step melting and

motility-induced phase separation are thus independent phenomena. We discuss the reasons

for these findings to be common to a wide class of two-dimensional active systems.
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Active matter has been intensely studied for its wealth of
intriguing properties, such as collective motion1, motility-
induced phase separation (MIPS)2, and giant fluctuations

away from criticality3. However, the precise connection of the
steady-state behaviour of active materials with all phases appear-
ing in the equilibrium phase diagram has remained
unclear.

In two spatial dimensions, the analysis of active matter builds
upon the very rich equilibrium behaviour of two-dimensional
(2D) particle systems, for which the existence of a crystalline
phase featuring Bragg peaks and long-range positional order is
excluded by the Mermin–Wagner theorem4. Nevertheless, two-
dimensional particle systems generically undergo two phase
transitions. One transition separates the liquid phase (which has
short-range positional and orientational order) from a hexatic
phase (with short-range positional yet quasi-long-range orienta-
tional order). A second transition separates the hexatic phase
from a solid (albeit non-crystalline) phase with quasi-long-range
positional order and long-range orientational order. The experi-
mental5–7 and theoretical8–11 understanding of these phases and
of the phase transitions by which the dissociated orientational
and positional orderings12 build up is very recent. Today, the
most complete picture is available for the particularly interesting
model of particles with inverse-power-law repulsions (r−n, where
r is the interparticle distance), which leads all the way from the
hard-disk model (for n→∞) to the Coulomb gas (for n= 1).
Because of the absence of an energy scale (e.g. for the
Lennard–Jones potential, an energy scale is provided by the depth
of the potential minimum), the equilibrium behaviour of the
inverse-power-law model depends only on a single parameter,
which combines temperature, overall potential strength, and
density. In the equilibrium phase diagram of all these models with
inverse-power-law interactions, the three phases (liquid, hexatic,
solid) are present. In numerical simulations using Monte Carlo
methods, the identification of all three thermodynamic phases is
far more difficult for the hard-disk model (n→∞) than for softer
potentials n ~ 6.

In this work, we use an “active” non-equilibrium generalisation
of the above equilibrium model as a minimal approach to 2D
active materials, where self-propelled particles interact via
inverse-power-law repulsions (but without alignment interac-
tions). The dynamics is modelled by a kinetic Monte Carlo (MC)
algorithm, which allows us to smoothly access the non-
equilibrium state from an equilibrium state, by tuning a single
control parameter. We map out the full quantitative phase dia-
gram, and we show that the active system preserves all equili-
brium phases. In particular, we positively identify the hexatic
phase, even at large activity, from the decay of the orientational
and positional correlation functions that we compute to high
precision. We thus demonstrate that positional and orientational
degrees of freedom continue to be dissociated in the two-
dimensional active system. With increasing activity, the transi-
tions between these phases shift to higher densities, and the two-
step melting scenario is maintained. At a high enough activity, in
the liquid phase, a critical point opens up a gas–liquid MIPS
region. This demonstrates that the two-step melting and MIPS
are independent phenomena. As our model is minimal, we expect
this finding to be robust and the independence to be common to a
wide class of two-dimensional active systems.

Results
Kinetic Monte Carlo dynamics. The kinetic discrete-time MC
dynamics for active matter, that we use, is closely related to the
active Ornstein–Uhlenbeck process13. The proposed displace-
ments of a single particle are correlated in time, leading to

ballistic local motion characterised by a persistence length λ
which measures the degree of activity (Fig. 1). The correlations
decay exponentially, so that the long-time dynamics remains
diffusive. Detailed balance is satisfied only for vanishing activity,
that is, in the limit λ→ 0. Cooperative effects between multiple
active particles are introduced through a repulsive inverse-power-
law pair potential. A 1/r6 potential is chosen. (This is justified
later.) Individual displacements of particles are accepted or
rejected with the standard Metropolis criterion. The rejections are
without incidence on the sequence of proposed moves, which are
also uncorrelated between particles so that the active many-
particle system is without alignment interactions.We perform
simulations of N particles in a rectangular box of volume V at
constant density ϕ and at constant persistence length λ. (For
definitions see Methods.)

Two-step melting of active system and its equilibrium limit. At
all densities and activities we observe a unique non-equilibrium
steady state in which spatial correlation functions are well-
defined. At vanishing activity λ, where the particle dynamics is
passive, we recover the equilibrium phase diagram with the
established two-step melting scenario (see Fig. 2). In particular,
we observe the exponential decay of positional and orientational
correlation functions (no order) in the liquid, the power-law
decay of orientational correlations (quasi-long-range order) yet
exponential decay of positional correlations in the hexatic phase,
and long-range orientational correlations together with positional
power-law decay in the solid. Our choice of the 1/r6 interaction
potential is particularly amenable to simulation because of its
“soft” hexatic phase, characterised by small positional correlation
lengths11. Soft hexatics feature much shorter MC correlation
times and reach the thermodynamic limit for smaller system sizes
than the hard-disk-like hexatics10 (that correspond to a 1/rn

interaction with n→∞).
In 2D equilibrium systems, a true crystal with Bragg peaks and

long-range positional order exists only in the ϕ→∞ limit, as a
consequence of the Mermin–Wagner theorem4. However, at
finite density there is a solid phase where the positional order is
quasi-long-ranged. We find that the solid phase of the active
system also exhibits algebraic positional order, just as in
equilibrium. Decreasing the density or, remarkably, increasing
the activity weakens the positional correlations and eventually
melts the solid (Fig. 2a, b). Close to the melting transition, the
algebraic decay of the positional correlations can be clearly
observed in our simulation data (points A and B in Fig. 2c).
Together with the long-range orientational order, this explicitly
identifies the solid phase (Fig. 2d).

The hexatic phase in equilibrium is characterised through a
lower degree of order than the solid, namely through short-range
positional correlations and algebraic orientational correlations.
We find precisely such a phase in the active system, in a narrow
strip of densities below and activities above the solid phase (see
Fig. 2a, b). Starting from the solid, we indeed observe positional
correlations that change qualitatively upon a minute increase in
activity while leaving the orientational correlations almost
unchanged, leading to hexatic order (from point B to point C
in Fig. 2c). Positional correlations in the hexatic phase decay
exponentially beyond the correlation length but the orientational
correlations remain quasi-long-ranged (points C through E in
Fig. 2d, e). On moving towards the liquid at any point within the
hexatic phase, the positional correlation lengths decrease,
resulting in a strikingly soft hexatic close to the liquid–hexatic
transition (point E in Fig. 2c–e). This soft hexatic maintains
orientational quasi-order with extremely short-ranged positional
correlations, even at densities for which the equilibrium system is
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already deep inside the solid phase. Increasing the activity thus
shifts the equilibrium phase boundaries towards higher densities.
The stability of the partially ordered hexatic phase is remarkable
especially as it takes place for persistence lengths λ significantly
larger than the global mean interparticle distance d= (πN/V)−1/2.
Our massive computations give no indications of a direct
transition from the solid into the liquid state, even at the highest
densities.

Motility-induced phase separation as liquid–gas coexistence.
MIPS2 has been frequently reported in 2D active systems but
agreement on the nature of the coexisting phases was not
reached14–17. Recent work14 in an active dumbbell system pro-
posed that MIPS continuously extends from the equilibrium
liquid–hexatic transition region and that one of the separated
phases preserves some degree of order. This is not the case in our
system: We clearly observe MIPS as a U-shaped region of
liquid–gas coexistence (Fig. 3a) with an onset at high activity and
at relatively low density. Both competing phases in the phase-
separated state feature exponential decay of orientational and
positional correlation functions. They are thus both disordered
(see the configuration snapshots in Fig. 3a that are colour-coded
by local orientational order). MIPS is therefore clearly separated
from the melting (Fig. 2a). During an MC simulation, a coar-
sening process generally precedes macroscopic phase separation
in the time evolution towards the steady state. In the active 1/r6

system, the transient coarsening leading up to MIPS is likely to be
overcome at earlier times than for hard disks. This makes it easier
for us to distinguish MIPS from the formation of a steady-state
gel18, although we do not expect the nature of the coexisting
phases participating in MIPS to depend on the softness of the
potential.

Further characterisation of MIPS. The analogy with the
liquid–gas coexistence in equilibrium simple fluids suggests the
interpretation of the onset of MIPS as a critical point. Indeed,
below the onset, the system remains homogeneous at large length
scales with a single-peaked local density distribution (see point H
in Fig. 3b). Above the onset of MIPS, the local densities develop a
bimodal distribution. The peak positions separate further as λ
increases, quantifying the above-mentioned U-shape. Moreover,
at a given λ, the peak local densities in the coexistence region are
independent of the global density ϕ (Fig. 3c). This is further
substantiated by a finite-size scaling analysis at constant λ (Fig. 4).
The phenomenology thus agrees with that of an equilibrium
phase coexistence where the relative proportions of the liquid and
gas adapt to the global density, but where the degree of order of
each of the phases and their densities remain unchanged. Inside
the coexistence region, at small densities, we observe an
approximately circular bubble of liquid inside the gas, followed by
a stripe-shaped form that winds around the periodic simulation
box, and then followed by a bubble of gas inside the liquid. In
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finite (N, V, T) equilibrium systems, this complex behaviour is
brought about by the interface free energy19,20 which vanishes at
the critical point. A detailed analysis of the homogeneous phases,
but also of the phase-separated systems, reveals the origin of the
phase separation in the kinetic MC model. In the bulk of the
coexisting liquid and gas phases, the directions of motion of
individual particles are uncorrelated beyond a very small length
scale (Fig. 4b). At the liquid–gas interface, however, a majority of
the increment vectors point inwards towards the liquid phase.
Even though a theoretical framework as reliable as statistical
mechanics is currently lacking, the effective cohesion in non-

equilibrium is often attributed to the so-called swim pressure due
to active motion21–23.

Discussion
In this work, we have first demonstrated, by numerical simulation
for the considered model of active-particle systems, that the two-
step melting from a solid to a hexatic to a liquid phase is pre-
served away from equilibrium (where the scenario is well estab-
lished) even up to quite high activities. There is reason to believe
that in the limit of small activities, active-particle systems can
retain an effective equilibrium description at a coarse-grained
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level13,23–26. Our work considerably extends this finding, as we
positively identify the continuation of the equilibrium phases at
large activities. In our opinion, the stability of the hexatic phase
(which we explicitly identify in this paper through the orienta-
tional and positional correlation functions) is particularly note-
worthy. Its presence illustrates that the dissociation of the
ordering between the orientational and positional degrees of
freedom is preserved even at large activities. We conjecture that
for all activities, the hexatic phase is stable in a finite density
interval and that, in the limit of infinite activities, the
liquid–hexatic phase transition shifts to infinite densities.

Most importantly, our analysis conclusively identifies the
hexatic steady state through the defining exponential decay of its
positional correlation functions and algebraic decay of orienta-
tional correlation functions. Even though the existence of the
hexatic far from equilibrium was suggested earlier in dri-
ven granular experiments27, the correlation functions could not
be evaluated precisely in these experiments, because the system
sizes were very small.

Second, in this work, we have given unambiguous evidence
that MIPS in our 2D active materials manifests itself as a
liquid–gas coexistence, that is, with phases that connect to
equilibrium phases, and that feature short-range order. This thus
excludes crystals, polycrystals, and gel phases. In our simulations,
the infinite-time steady state is effectively reached on the available
run-time scales because the hexatic phase in the 1/r6 potential is
considerably softer than, for example, in hard-disk systems11.
Moreover, the MIPS state is clearly observed, whereas for hard
disks, the dynamics appears sluggish and gel-like18, although we
do not expect this observation to reflect the steady state. Even
though the 1/r6 model could be relatively remote from the

experimental colloidal particles, it serves our purpose to describe
the steady state of the active-particle system in the t→∞ limit. In
the classic hard-disk melting problem, the access to the steady
state (for passive systems: the thermodynamic equilibrium) can
be very time-consuming. This bottleneck has prevented a con-
clusive resolution for decades. In hard disks, the steady state was
first found using specialised algorithms10 which cannot be
employed for active systems. The firm understanding of systems
with relatively weak potentials will in our opinion open the way
for the study of systems with stiffer potentials. It appears possible
that the reduction in the number of parameters that is proper to
the inverse-power-law potential also reduces the number of
effective parameters in the active system. The entire phase
behaviour could then be described through few parameters, in
essence through a suitably scaled interaction strength and activity.

The hexatic phase and the MIPS are separated by the homo-
geneous liquid phase, which is both the high-density end of MIPS
and the low-density end of the order–disorder transitions. Intri-
guingly, the subtle hexatic phase survives even at considerably
high activities. Our massive computations allow us to reach the
steady state even for strong activities and for high densities.
However, support for our conjecture of the stability of the
separating liquid phase and of the hexatic state in the λ, ϕ→∞
limit, would have to rely on deeper theoretical understanding
than is today available. This relates to the question of how the
KTHNY theory of 2D melting8,28,29, built for equilibrium sys-
tems, would extend to active systems. We find that the limiting
exponents (0.33 and 0.25) for the positional and orientational
correlations predicted in equilibrium by the KTHNY theory seem
to be robust even at high activity (e.g. Fig. 2c, d). This points
towards the possibility that a coarse-grained free-energy
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functional exists22,24,25,30, such that both MIPS and the two-step
melting are covered under one effective equilibrium theory.
Derivatives of the free energy would allow for the rigorous defi-
nition of state variables, such as pressure. Although pressure is
not a state variable in generic active systems, our model belongs
to the narrow class with torque-free dynamics where pressure
could be defined21,22. Computing pressure in our model is not
straightforward and is left for future work. The effect of activity
could be reflected as a change in the effective pressure. For
example in Fig. 2a, at sufficiently high activity, an increase of
density induces a gas–liquid coexistence, in striking analogy with
the van-der-Waals physics found in equilibrium fluids of attrac-
tive particles (e.g. the Lennard–Jones system). Comparing with
the phase diagram of Fig. 2a would suggest that the effective
pressure decreases with increasing activity. An even further
density increase finally induces the ordering transitions, which
again resembles the behaviour of an equilibrium Lennard–Jones
system. This only strengthens the analogy with an equilibrium
scenario.

In equilibrium, the nature of the two-step melting phase
transitions depends on the softness of the particles, which can be
tuned via the exponent n of the inverse-power-law pair potential
U(r)∝ 1/rn. The two-step melting scenario for very soft particles
(n≲ 6) comprises two continuous transitions, whereas for harder
particles with n≳ 6 the liquid–hexatic transition becomes first
order11. One may speculate that the activity plays a similar role as
the hardness of the particles and that at high activities the
liquid–hexatic transition becomes first order.

Although MIPS2 has been frequently reported in active sys-
tems, there are conflicting results on the precise nature of the
coexisting phases14–17. For example, it was reported as a coex-
istence between a “solid-like and gas state”16, referred to as a
coexistence between a “dense large cluster and a dilute gas
phase”17, diagnosed as the coexistence between a liquid state and
a polycrystal, with domains of different orientational order14, or
referred to a coexistence between a “dense and dilute phase”,
where the dense phase “exhibits structural properties consistent
with a 2D colloidal crystal near the crystal–hexatic transition

point”15. In addition to being specific to a particular physical
system, previous analyses of MIPS phases may also have suffered
from insufficient system sizes and warm-up times such that the
large-system steady states were often not attained (see Methods
for details on our checks of convergence from structurally dif-
ferent initial configurations).

Earlier models for active matter showing MIPS were primarily
based on Brownian and molecular dynamics
simulations15,16,24,31,32. We show that MIPS can be reproduced
within kinetic MC dynamics, without added equilibrium-like
mixing steps as in ref.18 Indeed, the direction of the individual
persistent particle motion suffices to produce the effect: Particles
may be kinetically arrested for persistence lengths larger than the
mean free path, leading to density inhomogeneities, where par-
ticles in denser parts of the system are walled in by particles at the
interface. However, this does not unhinge the coarsening
mechanism: The size of homogeneous domains increases with
time, and the infinite-time steady state in a finite system is
characterised by only two coexisting domains so that, for the
studied 1/r6 potential, a gel phase is clearly absent. MIPS appears
naturally in the kinetic MC approach, and we support the idea
that it is a generic feature of active matter in 2D. Our inverse-
power-law interactions provide a tunable set of active-matter
models to study phase transitions and phase coexistence. A par-
ticular pressing question concerns the stability of the two-step
melting scenario, especially of the hexatic phase, under the
influence of additional alignment interactions33,34. We expect a
modified version of our kinetic MC approach to permit access to
large enough systems for this question to be resolved.

Methods
Kinetic MC dynamics for active particles. We use a modified Metropolis algo-
rithm that breaks detailed balance. In each Monte Carlo step, a displacement by an
amount єi is proposed for a single randomly chosen particle i. The move is
accepted with the Metropolis probability P=min[1, e−βΔE], where ΔE is the
change in the total energy E caused by the displacement and β= (kBT)−1 is the
inverse temperature in the passive dynamics. The total energy is

P
i<j U ri � rj

� �
,

where we choose the pair-potential U(r)= u0 × (γ/r)6, with γ playing the role of the
particle diameter. Writing βU(r)= Γ × (d/r)6 with the global mean interparticle
distance d ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V=ðπNÞp
, dimensionless interaction strength Γ= βu0 × (πϕ)3 and

dimensionless density ϕ= γ2N/V, it can be easily seen that Γ plays the role of an
effective reciprocal temperature that scales as ϕ3 in equilibrium. Without losing
generality, we fix the energy and length scales in our system to be βu0= 1 and γ=
1, leaving only ϕ as a parameter. Our simulations are performed in a 7 : 4

ffiffiffi
3

p� �
simulation box with periodic boundary conditions and the soft-sphere potential is
truncated as ~UðrÞ ¼ U min r; 1:8ð Þð Þ11.

We introduce activity into the dynamics by choosing the proposed
displacement є′i of particle i based on the previously proposed displacement єi of
the same particle. The correlation is introduced in two stages. First, a random
vector η is sampled from a bivariate normal distribution ∝exp[−(η− єi)2/2σ2],
where σ is the standard deviation. In the second stage, є′i is generated from η using
the folding scheme

ϵ′i;z !
qi;z � δ if qi;z<2δ

3δ � qi;z if qi;z � 2δ;

(
ð1Þ

with z∈ {x, y} and qi,z= (ηz+ δ) mod 4δ, with amod b ¼ a� b a
b

� �
, i. e., 0 ≤ qi,z <

4δ, where ab c is the floor function. The folding scheme limits the size of the
proposed displacements and keeps the dynamics local. The folding scheme is
equivalent to a random walk of the displacement variables єi in a [−δ, δ]2 box with
reflecting boundary conditions, see Fig. 1b. Note that the random walk of the
displacements is independent of the positions of the particles, as the new increment
persists whether the displacement was accepted or not.

The square-shaped displacement box introduces a small degree of anisotropy
into the dynamics for λ > 0. However, we explicitly verify that the resulting steady
state is unaffected with respect to the properties concerning this letter. At small
densities in the gaseous state, where λ is much smaller than the mean free path, the
kinetic MC dynamics effectively reverts to detailed-balance dynamics as
interactions between particles are rare. At higher densities, all large proposed
displacements have vanishing Metropolis probabilities, thus leading to effectively
isotropic dynamics. In our numerical observation anisotropic effects are
undetectable within other sources of noise.
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Fig. 5 Convergence from two different initial conditions as a function of
run-time t. Data at ϕ= 2.4 with λ= 1.0333 and δ= 0.1. a Positional
correlation function g(x,y) along the x axis, in units of the global mean
interparticle distance d. b Orientational correlation function g6(r). Both
panels show the evolution with run-time t (see colour code for run-time
ordering in a) starting from a random initial configuration (dashed lines)
and from an initial configuration with particles arranged in a perfect
hexagonal lattice (solid lines). Both initial configurations approach the same
hexatic steady state (black solid line)
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Probability of increments and persistence length. In continuous time, the
increment variable є evolves according to a diffusion equation ∂tP(є, t)= σ2

2ΔєP(є,
t), with vanishing probability flux through the boundary of the displacement box.
The steady-state distribution in the infinite-time limit is the uniform distribution
P= (2δ)−2. By a Fourier ansatz, one readily finds that the autocorrelation time τ of
increments is dominated by the first harmonic of the displacement box, and that
for large t, the autocorrelation function decays as

CðtÞ � ϵ t0 þ tð Þ � ϵ t0ð Þh i / e�t=τ ;where τ ¼ 8δ2

π2σ2
: ð2Þ

The position of a free particle evolves as rðtÞ � r t0ð Þ þ R t
t0
ds є(s). For times

shorter than the autocorrelation time, t≲ τ, its mean displacement is essentially
given by the increment at time t0,

r t0 þ tð Þ � r t0ð Þj jh i ¼ v t þO ffiffi
t

p� �
; ð3Þ

where the drift velocity v≡ |є(t0)| is given by the initial condition of the increment,
and the subleading term contains contributions by diffusion of є, including
reflections, in the displacement box. Averaging over all initial conditions є(t0) with
the steady-state uniform distribution, we obtain the mean drift velocity

v ¼ δ

3

ffiffiffi
2

p
þ arsinhð1Þ

h i
: ð4Þ

From Eqs. (2) and (3), we may identify the persistence length λ � τ v ’ 0:62δ3σ�2,
which provides a length scale separating ballistic motion from diffusive motion.
The persistence length defined in this way allows to collapse data for the increment
autocorrelations C rh i ¼ λxð Þ / e� xþc1x

2þc2x
3ð Þ at widely different activities

(Fig. 1a). The prefactors of the superexponential terms c1,c2 are obtained from a
numerical fit.

Measurements. The orientational order is quantified by the correlation function
g6ðrÞ∝

PN
i;j ψ

�
6 rið Þψ6 rj

� �
δ r � rij
� �D E

of the complex bond-orientational order
parameter ψ6(ri) calculated with Voronoi weights35. g6(r) is a measure of the
correlation of the local sixfold orientational order at distance r. Positional order is
studied with the direction-dependent pair correlation function g(x, y). Before
averaging this two-dimensional histogram over configurations, each configuration
is realigned10 such that the Δx axis points in the direction of the global orientation
parameter Ψ6 ¼

PN
i ψ6 rið Þ.

The data in Fig. 2 were obtained from systems of ~4.4 × 104 particles.
Configurations were recorded in time intervals of 2.7 × 104 MC sweeps, with each
sweep containing N MC steps. Correlation functions in Fig. 2c and d at ϕ= 2.4 are
ensemble-averaged over 200 configurations, recorded after a warm-up time of
8.2 × 106 MC sweeps. The black solid curves in Fig. 5 show the result for one of the
hexatic state points. To ensure that the steady state is reached, we start time
evolutions from two structurally different initial particle configurations, one is a
random distribution, and the other has particles arranged on a perfect hexagonal
lattice (Fig. 5), obtaining equivalent results for positional and orientational
correlation functions. This clearly establishes the existence of the hexatic phase in
the active system. The melting lines in Fig. 2a and b were obtained from
configurations recorded after a warm-up time of at least 5.5 × 106 MC sweeps. The
error bars were obtained from the behaviour of 10 short-time ensemble-averages,
with each average containing 20 configurations. The lower-activity error bar of the
solid–hexatic transition is determined by a state point with all short-time averages
of g(x, 0) having a clear power-law dependence. The high-activity error bar is
determined by state points with short-time averages decaying exponentially. The
same criterion applied to g6(r) was used for the error bars of the liquid–hexatic
transitions.

MIPS is quantified by histograms of local densities, which we compute by
covering the system with randomly placed test circles of radius 7.5. The local
dimensionless density of each test circle is ϕloc= γ2Nloc/Vloc, where Nloc are the
number of particle centres located within a circle of area Vloc. The detailed analysis
(Figs. 3 and 4) of MIPS uses δ= 0.7. The larger δ shifts the liquid–gas coexistence
phase boundaries, in particular the critical point, to smaller densities and
persistence lengths, which drastically shortens the time to reach the steady state.
Configuration snapshots in Fig. 3a were taken after 1.1 × 107 MC sweeps. Data in
Fig. 3b consist of ensemble-averages over 100 configurations recorded in time
intervals of 3 × 104 sweeps. The N ~ 4.4 × 104 (N ~ 1.1 × 104, N ~ 2.7 × 103) data in
Fig. 4 were recorded after a warm-up of 1.2 × 107 (2.2 × 107, 1.4 × 107) sweeps. The
average consists of 400 (500, 500) configurations recorded in time intervals of
1.09 × 104 (8.7 × 103, 1.7 × 104) sweeps.

Data availability
All data and code are available on request to the corresponding author.
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