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To a large extent, osteoarthritis (OA) is a 
disease of old age, so its prevalence might 
be expected to be higher today than in 
the past simply because more people are 
living longer, especially in Europe, the 
United States and other developed nations1,2. 
However, evidence exists that increased 
longevity is probably not the sole reason for 
the high prevalence of OA. Wallace et al.3 
traced long-​term trends in the prevalence of 
knee OA in the United States using skeletal 
remains from 2,576 adults over the age of 50, 
spanning from prehistoric hunter–gatherers 
to 21st century city-​dwellers. The results 
show that people who died since the 
mid-20th century were approximately 
twice as likely to have OA as those who 
died during earlier times, confirming 
expectations that the disease has become 
more common4–6. However, this spike in 
prevalence is apparent even after controlling 
for age in a generalized linear model, 
indicating the presence of additional major 
risk factors that have become ubiquitous 
only within the past half-​century.

OA pathogenesis, like all disease 
aetiologies, involves interactions 
between genes and the environment7, 
but the increase in OA prevalence in 
just the past few generations indicates 
that environmental changes are a major 
contributor to the current high prevalence 

survive and reproduce under particular 
environmental conditions. As a result, all 
organisms are adapted in varying degrees to 
aspects of the environment in which their 
ancestors existed, including associated diets 
and patterns of physical activity. When 
environments change, as they inevitably do, 
ancestral alleles once favoured by natural 
selection can become mismatched to 
features of the new environment. Ultimately, 
as a result of such mismatches, individuals 
have an increased susceptibility to illnesses 
that were once rare or nonexistent among 
earlier generations.

Mismatches between inherited genetic 
variants and changing environments are 
a fundamental engine of evolution10, but 
an abundance of evidence indicates that 
such mismatches are becoming more 
common and severe in humans owing to 
rapid environmental changes related 
to the cultural evolution of our species 
(reviewed elsewhere9).

Although humans have been hunter–
gatherers for almost all of our >200,000-year 
evolutionary history, in just the past 
~12,000 years, a large proportion of the 
global population has transitioned from 
being physically active hunter–gatherers, 
mainly consuming wild plants and animals, 
to being farmers settled in agricultural 
communities reliant on cereals and other 
domesticated foods to being post-​industrial 
workers engaged in low levels of physical 
activity and eating highly processed foods. 
Although these changes in the environment, 
which have occurred in a blink of the eye 
in evolutionary time, have brought many 
benefits and comforts, they are also thought 
to be responsible for the emergence of a 
variety of mismatch diseases. For example, 
owing to the long evolutionary history 
of humans as physically active hunter–
gatherers and consuming a diet rich in fibre 
but low in sugar9, the rising prevalence 
of type 2 diabetes is widely considered 
to be related to recent shifts towards 
physical inactivity and overconsumption 
of foods high in sugar but low in fibre, 
resulting in persistent positive energy 
balance, increased adiposity and chronic 
low-​grade inflammation, which can lead to 
insulin insensitivity11.

When considering whether conditions 
such as OA are examples of mismatch 

of OA. On this basis, OA seems to fit the 
definition of what evolutionary biologists 
refer to as a ‘mismatch disease’, that is, a 
condition that is more common today than 
in the past because the human body is not 
well adapted to certain features common 
to modern environments8,9. As there is 
no cure for OA, classification of it (at 
least partly) as a mismatch disease is of 
clinical consequence, as environmental 
factors are potentially modifiable targets 
for prevention.

Here, we discuss the effect of the 
environment on OA pathogenesis, focusing 
on factors that have become ubiquitous since 
the mid-20th century. To contextualize this 
evidence, we begin with an overview of the 
concept of mismatch diseases and conclude 
with a discussion of how understanding 
modern-​day environmental factors is 
relevant to disease prevention.

Mismatch diseases
The concept of mismatch diseases derives 
from two basic principles of evolutionary 
biology: the theory of adaptation and the 
fact that interactions between genes and 
the environment are in constant flux8,9. 
Each individual inherits genes that interact 
with the environment, and most of these 
genes were favoured by natural selection 
because they improved the ability to 
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Abstract | The prevalence of osteoarthritis (OA) is rising for reasons that are not 
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diseases, however, caution is required, as 
the mismatch concept is often applied to 
a wide range of health disorders, in both 
the scientific literature and popular press, 
as more a matter of assumption than a 
hypothesis to be carefully tested. As with 
the so-​called ‘Paleo diet’, overly simplistic 
claims are sometimes made about the 
potential health benefits associated with 
living more like our ancient ancestors and 
are based on misleading caricatures of past 
environments12 and the false assumption 
that humans evolved to be healthy9. 
Clearly, not all features specific to modern 
environments interact negatively with the 
genes we inherit, and many environmental 
alterations can be beneficial, such as 
antibiotics, refrigeration or the use of casts 
for bone fractures. With this caveat in 
mind, we suggest two principal criteria for 
rigorously testing the mismatch hypothesis 
for diseases such as OA: first, that the 
disease is more prevalent today than 
among past populations after accounting 
for variation in lifespan and, second, that 
preventable contributors to the disease are 
more common in modern environments. 
Although OA is not a new disease and 
has been documented among Palaeolithic 
hunter–gatherers13 and Neolithic farmers14, 
the study by Wallace et al.3 and prior studies 
of smaller archaeological samples15,16 
provide compelling evidence that OA 
meets the first criterion of a mismatch 
disease as being more prevalent today 
than in the past. Such studies, however, 
are retrospective and cannot identify 
all the causes of recent increases in OA. 
Nevertheless, evidence that the prevalence 
of OA in developed nations has spiked in 
the past half-​century provides important 
clues about which preventable contributors 
to OA might be responsible, the most 
conspicuous candidates being obesity, 
metabolic syndrome, dietary changes and 
physical inactivity (Fig. 1).

Mismatch factors
Obesity. Obesity is commonly attributed 
as a source of mismatch diseases, as until 
modern times, most human bodies were 
rarely, if ever, exposed to long-​term high 
levels of positive energy balance and hence 
rarely evolved adaptations to cope with 
the consequences of excess adipose tissue, 
especially visceral stores17. Unsurprisingly, 
obesity is a strong and well-​established 
risk factor for OA18, especially knee OA19. 
Incidence of knee OA among adults aged 
≥40 years is reported to be approximately 
three times as frequent among obese 
individuals (BMI ≥ 30) and five times as 
frequent among morbidly obese individuals 
(BMI ≥ 35) compared with individuals of a 
healthy weight (BMI < 25)18. Given such a 

strong association, the rising prevalence of 
OA in developed nations is in some measure 
clearly attributable to the recent burgeoning 
obesity epidemic20 (Box 1).

The link between obesity and knee OA 
is especially pernicious because it creates 
a vicious cycle in which pain from OA can 
greatly limit a person’s physical activity, 
thus promoting further weight gain and 
weakening of muscles that stabilize and 
protect joints, which in turn can exacerbate 
pain and OA progression21. A negative 
feedback loop of this kind could just as 
easily be triggered by joint pain as by obesity, 
but evidence indicates that in the majority 
of cases, obesity precedes the onset of 
OA22,23. The driving, causal role of obesity 
in OA pathogenesis is further highlighted 
by evidence that most individuals with 
OA who have undergone bariatric 
surgery to induce weight loss experience 
a substantial reduction in joint pain and 
other symptoms24,25. Evidence suggests 
that cartilage loss can be slowed if an obese 
person loses 10% or more of their original 
weight26. Weight loss may also reduce 
pain sensitivity and thereby contribute 
to pain relief27.

Although the precise mechanisms by 
which obesity affects OA incidence are not 
completely understood, the longest-​standing 
and perhaps most intuitive explanation is 
that obesity creates an abnormal loading 
environment for weight-​bearing joints28. 

Box 1 | effect of the obesity epidemic on osteoarthritis prevalence

although it is difficult to quantify precisely how much of the current prevalence of osteoarthritis 
(OA) is attributable to any given environmental change, data from Wallace et al.3 provide a rough 
indication of the influence of the obesity epidemic on knee OA levels in the United States. Among 
individuals in their skeletal sample for which BMi at the time of death was documented, 25% of 
people who died in the past few decades were obese, compared with only 1% from earlier times, 
and individuals with obesity had a 2.2 times higher (95% CI 1.6–3.0) prevalence of knee OA than 
non-​obese individuals. These data suggest that today obesity doubles the risk of knee OA in roughly 
1 in 4 people over the age of 50, whereas only 1 in 100 people were at a similarly heightened risk of 
knee OA roughly a half-​century ago. Although Wallace et al.3 were limited in their ability to assess 
the full effect of obesity on knee Oa prevalence because BMi is a fairly inaccurate measure of excess 
adiposity and BMi was known only from individuals’ time of death and not at the time they 
developed Oa, these data provide strong evidence that the recent steep rise in obesity levels has 
led to substantially more people being at greater risk of developing knee OA.
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Fig. 1 | model of osteoarthritis as a mismatch disease. In all populations, the prevalence of osteoar-
thritis (OA) rises with age, but the hypothesis of mismatch predicts that prevalence at any given age is 
higher in modern environments because of high levels of obesity , chronic metaflammation and  
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Loading per se is not bad for joints, as it is 
necessary for normal joint development 
and maintenance29,30, but some loads clearly 
have the potential to damage cartilage 
and other joint tissues and thus increase 
OA susceptibility, a fact highlighted 
by the strong link between traumatic 
injuries and OA31. The added body weight 
associated with obesity increases the 
magnitude of axial loads sustained by 
weight-​bearing joints, which may impart 
some of the risk of OA caused by obesity. 
Among people with varus malalignment 
of the knee, such high-​magnitude loads 
could be especially harmful, as they 
can magnify knee adduction moments32. 
Furthermore, low muscle strength relative 
to body weight may reduce the capacity 
of transarticular muscles to absorb shock 
and increase the rate and variability of 
joint loading33. A compromised ability to 
stabilize joints could cause forces to become 
concentrated in joint regions that are 
inadequately adapted for such loads and thus 
vulnerable to damage.

The primary result of aberrant loading 
of cartilage is damage to the structure of 
the cartilage matrix of collagen fibrils and 
proteoglycans34,35. Cartilage degradation 
caused by abnormal loads may occur to 
some extent through wear and tear, but 
evidence suggests that the primary effect of 
such loads is to stimulate the production 

of metalloproteinases by chondrocytes and 
to activate these proteins in the matrix36. 
Abnormal loads trigger mechanoreceptors 
on the chondrocyte surface, which, in turn, 
trigger intracellular signalling pathways  
(for example, mitogen-​activated protein 
kinase (MAPK) or nuclear factor-​κB 
(NF-​κB)) and the production of pro-​
inflammatory and catabolic mediators37,38. 
Matrix fragments released into the joint 
cavity can then provoke synoviocyte and 
macrophage responses and further release 
these pro-​inflammatory and catabolic  
mediators, a process we refer to as  
mechaflammation39 (Fig. 2).

Mechanical factors are probably not the 
only contributors to obesity-​induced OA, as 
obesity increases OA risk in not only weight-​
bearing joints but also non-weight-bearing 
regions, such as hands40. The association 
between obesity and OA is generally stronger 
for weight-​bearing than non-​weight-bearing 
joints, but this difference in susceptibility 
across joints is evidence that the effect of 
obesity on OA involves complex interactions 
between mechanical and systemic factors41. 
Although much remains to be learned about 
these systemic factors, evidence indicates that 
a predominant source is adipose tissue, which 
produces and releases cytokines (including 
adipokines) into the bloodstream, many of 
which (such as IL-1, IL-6, IL-8, IFNγ, TNF, 
leptin and resistin) promote chronic low-​grade 

inflammation, also termed metaflammation,  
for which the body is not well adapted42 (Fig. 2). 
Several of these cytokines have been shown 
experimentally to have an important function 
in initiating OA43. The adipokine leptin 
seems to be especially important in initiating 
OA, as age-related knee OA does not occur 
in leptin-​deficient obese mice44. The most 
direct pathway by which high levels of leptin 
and other cytokines in the bloodstream 
affect OA is by diffusing into the synovial 
fluid and locally activating proteolytic 
enzymes, such as matrix metalloproteinase 1 
(MMP1), MMP3 and MMP13 (ref.45), which 
can trigger matrix degradation in cartilage 
and other joint tissues46. However, obesity-​
induced metaflammation may also affect 
OA more indirectly by modulating other 
critical metabolic factors, as discussed in the 
next section.

Metabolic syndrome. Another common 
source of mismatch diseases that also 
stems from excessive and long-​term 
positive energy balance is metabolic 
syndrome, which is defined by a cluster of 
cardiometabolic factors that commonly 
accompany obesity, including central 
adiposity, dyslipidaemia, impaired fasting 
glucose levels and hypertension. Individuals 
with metabolic syndrome are at increased 
risk of a variety of health disorders, 
especially cardiovascular disease, type 2 
diabetes and some cancers47. An abundance 
of evidence indicates that metabolic 
syndrome was once a rare (almost 
nonexistent) disease in nonindustrial 
populations48–50. Given the increase in 
prevalence of metabolic syndrome in 
developed nations, and an association with 
obesity, it is unsurprising that metabolic 
syndrome has been hypothesized to be a 
major risk factor for OA40,51.

Adipose-​induced metaflammation is 
almost always associated with metabolic 
syndrome42 and strongly affects the 
metabolic dysregulation underlying 
multiple metabolic components52. In turn, 
these individual components of metabolic 
syndrome might affect the initiation 
or progression of OA53,54. For example, 
experimental evidence suggests that 
hyperglycaemia can have adverse effects 
on chondrocyte metabolism55–58, and 
type 2 diabetes can alter the structure of 
extracellular matrices, causing enrichment 
of advanced glycation endproducts 
(AGEs). In cartilage, AGEs stiffen the 
matrix, preventing optimal cushioning 
of the joints under a mechanical load59. 
Moreover, AGEs can signal chondrocytes 
through specific AGE receptors to increase 
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Fig. 2 | mechaflammation versus metaflammation. Both osteoarthritis (OA) and obesity begin with 
activation of the innate immune system, which occurs by a local stimulus from joint tissues experienc-
ing abnormal loading or a systemic stimulus from the adipose tissue. Triggering of innate immune 
responses can result in two types of low-​grade inflammation, mechaflammation and metaflammation. 
Low-​grade inflammation, in turn, weakens joint tissues, increasing their vulnerability to damage 
by subsequent loading and the initiation of OA.



synthesis of metalloproteinases60 and 
thus should eventually lead to increased 
cartilage matrix degradation. Oxidized 
LDL, a pro-​inflammatory peroxidized lipid 
detected at high concentration in plasma 
from patients with metabolic syndrome, 
can stimulate the production of reactive 
oxygen species by chondrocytes, propelling 
matrix degradation61. Hypertension might 
also be implicated in OA pathogenesis 
owing to induction of downstream 
tissue ischaemia. If ischaemia affects the 
blood vessels of the subchondral bone, 
the nutritional exchange between the 
subchondral bone and the cartilage might 
be compromised, resulting in altered 
metabolism of cells in the joints62.

Nevertheless, despite experimental 
evidence of multiple potential pathways 
linking metabolic syndrome and OA, data 
from human studies are conflicting, with 
most studies showing no association of 
metabolic syndrome with knee OA after 
taking into account BMI. For example, 
in a study of 991 individuals, metabolic 
syndrome was strongly associated with 
incident knee OA, but after controlling  
for body weight, the associations 

disappeared63. Other studies, however, 
have found that hand OA (but not knee 
OA) is strongly associated with metabolic 
syndrome even after adjusting for body 
weight41. Interestingly, people with 
hypertension have been shown to have 
an elevated risk of knee OA independent 
of obesity63, and OA prevalence was 
higher among people with type 2 diabetes 
than among people without diabetes, 
independent of weight differences64. 
Moreover, an MRI study indicates 
that patients with type 2 diabetes 
have accelerated knee cartilage matrix 
degeneration compared with individuals 
without diabetes, even after correcting 
for ethnicity, age, sex, baseline BMI and 
severity of OA as measured by baseline 
Kellgren−Lawrence score65. Although 
experimental research and some human 
studies provide evidence that individual 
components of metabolic syndrome 
(aside from adiposity) contribute to OA 
pathogenesis, more data are necessary 
to resolve the degree to which the 
current prevalence of OA is attributable 
to modern increases in metabolic 
syndrome prevalence.

Dietary changes. The increase in OA 
prevalence in developed nations raises 
the question of whether changes in diet 
cause mismatches that contribute to OA. 
Modern diets in many developed countries 
differ from those of earlier generations 
in being substantially more energy dense 
and processed, with added sugar, salt and 
saturated fats but less fibre, fresh fruits and 
vegetables9. These dietary shifts almost 
certainly affect OA risk by promoting 
prolonged positive energy balance and 
excess adiposity but also perhaps by 
increasing the probability of hyperglycaemia, 
dyslipidaemia and hypertension.

Aside from promoting metabolic 
dysregulation, however, modern dietary 
changes potentially affect OA risk in other 
ways. An additional dietary factor of 
particular relevance is a reduced intake 
of antioxidants66. Reactive oxygen species 
are involved in chondrocyte senescence, 
extracellular matrix degradation, synovial 
inflammation and subchondral bone 
alteration67. Diets in many developed nations 
are characterized by an increase in the ratio 
of pro-​inflammatory omega-6 fatty acids to 
anti-​inflammatory omega-3 polyunsaturated 
fatty acids68. However, evidence that this 
imbalance contributes to disease remains 
a contested point of debate. In one study, 
supplementing the diet with omega-3 
fatty acids reduced the severity of post-​
traumatic OA in mice and limited attendant 
synovitis69, whereas in another study, dietary 
enrichment of omega-3 fatty acids did not 
reduce the onset of knee OA in mice70. In 
humans, the effect of omega-3 fatty acid 
supplements in OA trials has not been 
reported to affect joint pain71,72. Moreover, 
sulforaphane, an isothiocyanate abundant 
in broccoli, decreased the severity of OA in 
mice, possibly by protecting against damage 
from reactive oxygen species73,74; plans now 
exist to test the consumption of broccoli in 
an OA clinical trial75. Conflicting evidence 
exists regarding the effect of the antioxidant 
vitamin C on OA in humans76–79, with 
experiments in mice, rats and guinea pigs 
showing that vitamin C may increase OA 
risk80. On the other hand, vitamin K, present 
in green leafy vegetables like spinach, kale 
and broccoli, is a necessary cofactor for the 
γ-​carboxylation of some calcium-​binding 
proteins, including matrix gla protein, 
a vitamin K-​dependent mineralization 
inhibitor expressed in human articular 
cartilage. Many human observational studies 
have reported that vitamin K deficiency 
increases the risk of OA81–83, but clinical 
trials testing vitamin K treatment have 
not yet been performed. Experimental 
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studies point to other dietary factors that 
are potentially implicated in OA but have 
not yet been carefully examined in human 
studies (Fig. 3). Some groups have shown that 
dietary high-​fat overload can increase the 
severity of post-​traumatic OA in mice and 
rats69,84,85. Interestingly, for the same quantity 
of calories, severity of OA was exacerbated 
by a diet rich in saturated as opposed to 
unsaturated fatty acids69.

Obesity and ageing are associated 
with intestinal dysbiosis that may cause 
metabolic age-​related chronic diseases86,87. 
The function of the diet in modulating the 
composition and metabolic activity of the 
intestinal microbiome is now recognized88. 
Diffusion of biologically active metabolites 
(such as acetate, propionate and butyrate) 
and lipopolysaccharide, a microbial cell wall 
constituent, from the gut to bloodstream 
related to increased intestinal permeability 
and dysbiosis in patients with obesity 
is associated with low-​grade systemic 
inflammation89–91. Although evidence 
that these dysbiosis-​derived metabolites 
have a direct pathophysiological function 
in OA is lacking, the results of some 
experimental studies are consistent with 
this hypothesis92,93. One important dietary 
factor that modifies the gut microbiota is 
fibre; changes in the intestinal microbiome 
might be related to a paucity of fibre in the 
modern diet. In two cohorts, volunteers in 
the highest quartile of total fibre intake had 
lower rates of new-​onset symptomatic OA 
than those in the lowest quartile of total fibre 

intake94,95. In fact, the higher the fibre intake, 
the less knee pain experienced by patients 
with OA94. Fibre intake has not yet been 
tested as a treatment in human OA trials. 
Animal studies also suggest that the gut 
microbiota affects OA; for example, a 
reduction in Bifidobacterium spp. in obese 
mice has been associated with increased 
migration of macrophages into the synovial 
tissue, which accelerates OA, whereas 
dietary supplementation with oligofructose, 
a non-​digestible fibre, was associated with 
protection of joints in obese mice96.

Physical inactivity. Mechanical loading 
has a major function in nearly all cases of 
OA, and as physical activity is the most 
common source of joint loading and is 
an environmental factor that has changed 
in the modern world, any consideration 
of OA as a mismatch disease requires 
examining shifts in activity patterns31. 
As already noted, one important and 
well-​established risk factor for knee OA 
is joint trauma, especially meniscal and 
anterior cruciate ligament tears, which 
can lead to abnormal stress gradients and 
excess focal stress within cartilage. Thus, 
increased participation in sports and 
other athletic activities that frequently 
cause such injuries has been hypothesized 
to underlie current high levels of OA97. 
However, this hypothesis is conjectural, 
given that earlier generations, particularly 
prehistoric populations, almost certainly 
engaged in high levels of moderate and 

vigorous physical activity and yet had lower 
prevalence of OA98,99. Whether people today 
are, on average, more susceptible to injury 
and post-​traumatic OA than in the past is 
highly speculative.

Although trauma unquestionably 
increases OA risk, a more likely 
contributor to the increased prevalence 
of OA is physical inactivity, which 
has become epidemic in the past few 
decades, especially in many developed 
nations100. Pathways by which physical 
inactivity can increase OA risk include 
indirect promotion of obesity and 
metaflammation, depression101 or 
telomere shortening102 (Fig. 4). However, 
physical inactivity might also contribute 
to OA pathogenesis directly. Because 
the musculoskeletal system, like many 
physiological systems, evolved to require 
biophysical stimuli from the environment 
to adjust capacity to demand103, 
mechanical loads engendered by activity 
are critical to the development and 
maintenance of optimal structure and 
strength of joint tissues and their 
surrounding muscles29,104. Moreover, 
a reduction in loading as a result of a 
physically inactive lifestyle might cause 
formation of weaker and less stable joints 
that are more susceptible to damage and 
deterioration105,106. In other words, physical 
inactivity leads to an absence of normal 
demand, whereby individuals are unlikely 
to attain or maintain normal joint capacity.

To illustrate this ‘use it or lose it’ principle 
in cartilage, patients with paralysed limbs 
exhibit marked knee cartilage thinning106,107, 
whereas MRI studies have shown that people 
who regularly engage in weight-​bearing 
exercise maintain thicker cartilage, and 
in one study, these individuals were even 
noted to have fewer cartilage defects, than 
people who are physically inactive108–110. 
Animal experiments have yielded similar 
findings: disuse experiments (for example, 
rodent limb immobilization or unloading) 
consistently demonstrate multiple catabolic 
effects on joint tissues, including thinning 
of all cartilage layers, decreased cartilage 
proteoglycan content by increased 
expression of metalloproteinases and 
demineralization of subchondral bone by 
osteoclast activation111–114. By contrast, a 
meta-​analysis of exercise in various animal 
species showed that, compared with animals 
on a moderate daily exercise regimen, non-​
exercising control animals had thinner knee 
cartilage with lower aggrecan content115. 
Thinner cartilage with lower aggrecan 
content is not necessarily osteoarthritic 
cartilage (for example, paralysed limbs 
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initiate and aggravate osteoarthritis (OA) and its symptoms via a variety of pathways.



rarely get OA), but it is biomechanically 
vulnerable cartilage116.

Even if physical inactivity is detrimental to 
joint health, this does not mean that all forms 
of physical activity are beneficial for joints. 
As already discussed, some types of loading 
can threaten the integrity of joint tissues, and 
loads that are extreme or otherwise abnormal, 
either in terms of magnitude, frequency or 
some other parameter, which are produced 
by active lifestyles through occupation 
(for example, jobs requiring frequent knee 
bending) or recreation (for example, sports 
injuries) can culminate in damaged joints that 
are more prone to OA. Thus, risk of OA is 
probably increased by both extreme physical 
inactivity and activity35,117. However, although 
considerable research and clinical attention 
has been paid to the potential negative 
consequences of some types of physical 
activity for joint health, greater attention 
ought to be devoted to understanding  
the degree to which decreases in  
physical activity underlie high levels  
of OA today.

Conclusions
Although the causes of the high and rising 
prevalence of OA are still not entirely 
understood, one important conclusion of 
this article is that OA fits the criteria of a 
mismatch disease in that the current OA 
prevalence seems to be partly attributable 
to environmental risk factors that have 

become amplified in the modern world. 
These factors probably include obesity, 
metabolic syndrome, dietary changes and 
physical inactivity. A second and even more 
important conclusion is that, although 
OA risk is influenced by intrinsic factors 
such as age and genetics, OA is partly a 
mismatch disease affected by modifiable 
factors, indicating substantial potential for 
prevention. This is a critical insight given 
that available nonsurgical treatments for 
OA provide relief from symptoms only, 
and no disease-​modifying drugs exist. In 
short, although OA may seem to be mainly 
a disease of old age, from an evolutionary 
perspective, it is not age per se that causes 
the disease but an accumulation of joint 
tissue deterioration arising from interactions 
between the genes we inherited from our 
ancestors and the environments — many 
of them novel yet modifiable — that we 
encounter as we grow older.

Because of human evolutionary origins 
as physically active hunter–gatherers on 
the margin of energy balance, human 
joints probably evolved to require routine 
mechanical loading in the absence of 
adiposity-​induced metaflammation to 
grow and function optimally with age. 
However, even if OA is partly a mismatch 
disease, the disease would not cease to 
occur even if everyone on the planet 
adjusted their lifestyles to more closely 
match the conditions for which the human 
musculoskeletal system is adapted. As the 
incidence of OA in prehistoric populations 
testifies, trauma and other risk factors have 
always predisposed some people to OA. 
Nevertheless, on the basis of the available 
evidence reviewed here, it seems unlikely 
that the OA epidemic will be curbed  
without at least beginning to reverse  
declines in physical activity levels and 
the quality of our diets, along with 
attendant effects on obesity and metabolic 
dysregulation. How to promote such lifestyle 
changes is a major challenge.
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