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Chapter 1

Automatic Application of Software
Countermeasures Against Physical
Attacks

Nicolas Belleville, Karine Heydemann, Damien Couroussé, Thierno Barry,
Bruno Robisson, Abderrahmane Seriai, and Henri-Pierre Charles

Abstract While the number of embedded systems is continuously increasing,
securing software against physical attacks is costly and error-prone. Several
works proposed solutions that automatically insert protections against these
attacks in order to reduce this cost and this risk of error. In this paper, we
present a survey of existing approaches, and classify them by the level at
which they apply the countermeasure. We consider three different levels: the
source code level, the compilation level and the assembly/binary level. We
explain the advantages and disadvantages of each level considering different
criteria. Finally, we encourage future works to take compilation into account
when designing tools, to consider the problem of combining countermeasures,
as well as the interactions between countermeasures and compiler optimisa-
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tions. Going one step further, we encourage future works to imagine how
compilation could be modified or redesigned to optimize both performance
and security.

1.1 Introduction

Nowadays, embedded systems have become integral part of our daily life
and are of the largest consumer electronics market segment. The number
of embedded systems a person manipulates every day is expected to rise
massively due to the Internet of Things. Back in 2008, this number was
already huge as a person used about 230 embedded chips every day [73].

These embedded systems often manipulate sensitive data. For instance,
privacy-critical data are handled every day by payment cards, transport
cards, as well as smartphones, GPS, etc. Therefore, the security of these
systems reveals itself as a major concern for both industrials and state orga-
nizations.

Secure devices rely on cryptography to protect sensitive data. While they
use cryptographic algorithms that are robust against cryptanalysis, attack-
ers can exploit a physical access to a device either to extract sensitive data
such as a cryptographic key, or to bypass authentication, or in certain cases
to reverse engineer intellectual properties. These attacks, known as physical
attacks, are of two categories. (1) Side channel attacks, introduced in 1996 by
Kocher et al. [48], exploit the correlation between the data being processed
inside the device and a set of physical quantities that can be measured from
outside the device. These physical quantities can be the power consump-
tion of the device [23, 49, 54, 78, 63], the electromagnetic radiation [6, 42],
the acoustic emissions [43], execution time [36, 48], etc. (2) Fault injection
attacks, introduced in 1997 by Boneh et al. [21], exploit the effect of a de-
liberate disturbance of a system during its operation. Fault injection attacks
can be carried out by means of laser/light beam [39, 75], electromagnetic
injection [65, 62, 35], variation of the supply voltage [12, 24], clock glitch [5],
temperature [74, 46], etc.

Several protections to thwart physical attacks have been proposed at soft-
ware and hardware levels. There are also some mixed hardware-software ap-
proaches [31, 19, 9]. In practice, secure elements rely both on hardware and
software countermeasures. Moreover, hardware-based solutions are consid-
ered as to expensive for IoT devices that face strong cost requirements. The
current software hardening process is most often manual, and so costly as well
as error prone and tedious. Automating the deployment of software counter-
measures is becoming paramount in order to reduce the overall cost and also
to offer code hardening solutions for IoT devices.

In this survey, we present how automatic application of software counter-
measures has been carried out in the literature by categorising approaches
by the level where the countermeasure is applied; either on source code, or
on assembly, or within the compilation process. We begin by a brief back-
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ground (Section 1.2) about side-channel attacks, fault injection attacks, their
countermeasures and the issues related to the compilation of secured code
as well as usual ways to circumvent them. Then, we present the approaches
that propose an automated application of a countermeasure (Section 1.3) at
source code level, compilation level, and assembly level, and we point out
their pros and cons. Then we take a step back to compare the different lev-
els (Section 1.4.1). Finally we discuss the important remaining challenges
(Section 1.4.2) before concluding.

1.2 Background

1.2.1 Side-channel attacks

Instructions and data manipulated by a processor during a program exe-
cution affect the processor’s power consumption, electromagnetic emissions,
and execution time. Side-channel attacks exploit this correlation. Many side-
channel attacks where proposed in the literature: [23, 49, 54, 78, 63] exploit
the power consumption of a chip, [36, 48] the execution time of the imple-
mentation, [6, 42] the electromagnetic radiation of a chip.

During an attack, the attacker makes measurements of a physical quantity
while the processor executes the targeted program. She then retrieves the
data manipulated by the processor from these measurements, by statistically
comparing the measurements with a behavioural model. In this survey, we
focus on side-channel attacks that exploit the power consumption or the
electromagnetic emissions.

In the case of a correlation power analysis (CPA), the attacker chooses
the data she provides as an input to the program. To find the encryption
key of an AES, she proceeds byte by byte. Each byte is found as follows:
the attacker places an electromagnetic probe on the processor, or directly
measures its electrical consumption with an oscilloscope. She carries out elec-
trical consumption measurements during several AES executions. For each
new run, she gives a random clear text to the program. She calculates the-
oretical consumptions for each value of the key byte that she is attacking
using a consumption model (e. g. the Hamming weight of the value returned
by the SBox of the first round). She compares the measurements obtained
on several executions with the theoretical consumptions using a statistical
operator, here the Pearson correlation. The byte hypothesis that gives the
strongest correlation between theoretical and measured consumptions corre-
sponds to the true value of the key byte if enough measurements have been
taken.
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1.2.2 Fault injection attacks

Processors are designed to work under certain conditions. By using a pro-
cessor outside these conditions, for example at a high temperature, faults
appear in the calculations [74, 46]. Fault injection attacks exploit this prin-
ciple. They can use various physical means to provoke faults: light [39, 75],
electromagnetic injection [65, 62, 35], temperature [74, 46], etc.

The effects of faults are manifold:

• bit flips in a register or a memory cell [20, 22, 14, 61, 38, 60],
• random modification of a value in a register,
• random modification of a value while it is transferred between the CPU

and dynamic or non-volatile memory [56, 37],
• instruction replacement when the instruction fetch gets corrupted [56].

Fault injection attacks can then be used to hijack the execution flow of
a program (e.g. to bypass a password verification of a VerifyPIN), or to
retrieve information about data manipulated by the program (e.g. finding
a cryptographic key). To retrieve a secret data, the attacker analyses the
erroneous output that result from these faults, or even the absence of an
error on the output, and compares this information using a fault attack model
that makes the link between the expected output and the possible outputs
in presence of faults.

1.2.3 Combined attacks

Combined attacks are physical attacks that combine side-channel analysis
and fault injection.

Currently, all fault attacks are combined with a side channel observation
in practice, in order to monitor the injection of the fault, i.e. to (1) find a
suitable moment for the fault injection and (2) precisely control the moment
when the fault is injected [77].

Second, some attacks use side-channel analysis and fault injection attack
as steps of a wider attack [10]. Several approaches showed that these attacks
can break implementations that were protected against both side-channel
attacks and fault injection attacks, for example on an AES [71, 32] or ECC
implementation [41].

1.2.4 Countermeasures

This section presents the main categories of countermeasures against side-
channel attacks and fault injection attacks.
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For side-channel attacks, we focus on side-channels related to power con-
sumption or electromagnetic emissions, and on approaches that were evalu-
ated on these side-channels.

Software countermeasures against side-channel attacks can be of 2 different
natures: hiding and masking.

A hiding countermeasure is designed to make attacker’s measurements too
noisy to be exploitable [26]. For example, one can use dummy rounds or ran-
dom delays, so that the measurements gathered in 2 different executions are
no more aligned. The link between the measurements and the targetted in-
formation is not removed, but the exploitation of the measurements becomes
more complicated. There are several types of hiding countermeasures: dummy
rounds, random delays, static multiversionning, dynamic polymorphism, dual
rail, etc [26, 27, 28, 8]. Static multiversionning consists in generating stati-
cally several different equivalent execution paths and choosing between them
randomly at runtime. Runtime polymorphism consists in dynamically chang-
ing the binary code in memory, so that the code is renewed regularly. It was
introduced by Amarilli et al. who indicated that it was possible to auto-
matically implement such countermeasure [8]. Both static multiversionning
and runtime polymorphism can use random delay insertion or instruction
shuffling for example to make the code vary. As complementary approaches,
the dual-rail and random precharging countermeasures are sometimes used.
Dual rail with precharge logic consists in changing the value encoding so that
the Hamming weight of manipulated values becomes a constant value, and
precharging destination registers at the value 0 so that the Hamming distance
becomes constant too. Random precharging consist in putting a random value
in a register before loading a sensitive value into it in order to prevent transi-
tion based leakages. Note that hiding has been also used outside the scope of
power consumption and electromagnetic emission side channels [30, 66, 45].

A masking countermeasure is designed to remove the direct link between
the measurements and sensitive data manipulated by the processor [44]. For
this purpose, the algorithm of the target program is modified so that all
intermediate results that depend on the secret data are separated into sev-
eral shares, where all the shares are needed to reconstruct the results. For
example, Boolean masking consists in performing an ”exclusive or” between
the secret data and a random number and then carrying out all calculations
with this masked data. The masked data and the random number are the
two shares here. The random number is changed at each execution, so that
the values of the shares change randomly from one execution to another.
In practice, hiding and masking countermeasures are (and need to be) com-
bined [70]. Indeed, masking need a certain amount of noise to be effective
[47], and hiding can increase the noise.

Software countermeasures against fault attacks can be of 3 different types:
fault tolerance, fault detection, or infective.
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A fault tolerance countermeasure aims to ensure that a fault does not
alter the output of a program. For example, an instruction duplication coun-
termeasure can be used to tolerate a fault of the type ”replacement of an
instruction by a nop” [57]. A fault detection countermeasure is intended to
detect an attack, and then allows to adapt the response to produce (e.g.
destroying the system). Control flow integrity countermeasures are fault de-
tection countermeasures that detect a change in control flow [33]. One can
also duplicate instructions in order to compare the results to detect a fault.
An infective countermeasure aims to make the result of a fault more difficult
for an attacker to exploit [67]. The goal is that the attacker does not derive
information from the program result when a fault occurred. It can be used
as a reaction to a fault detection.

1.2.5 Compilation of secured code

In this section, we give a brief background about compilation and the problem
that can arise when compiling secured applications.

Compilation is the process of translating a source code into a binary pro-
gram for a target architecture [76, 59, 11]. Compilers are usually divided in
3 parts.

• The front-end is in charge of parsing the source code and generating an
intermediate representation (IR).

• The middle-end is responsible of target-independent optimisations. It is
composed of a sequence of analysis and transformation passes that opti-
mise the IR code.

• The back-end is responsible of target-dependant optimisations, as well as
instruction selection and register allocation, and finally emits the binary
program.

Several works have shown that the compiler can alter countermeasures
against both side channel and fault injection attacks when these countermea-
sures are applied on the source code [13, 15, 72].

Countermeasures can be threatened by various passes. In the case of mask-
ing, the passes that simplify arithmetic operations, the instruction scheduling
and register allocation passes may alter the countermeasure. For example, the
compiler could invert the order of two xors, revelling a secret data. In the case
of addition of noise instructions or of instruction redundancy, all the passes
that suppress dead code may threaten the countermeasure. In the case of
instruction shuffling, the instruction scheduling pass may also alter the coun-
termeasure. Please note that this list is not an extensive list of passes that
could threaten the countermeasures. Such a list depends on the compiler, its
version, the target architecture, etc.

In order to circumvent this problem, one can use various ways:
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• One can compile code using the -O0 optimisation flag so that few opti-
misations remain enabled. Yet, the compilation process remains risky: the
code still go through instruction selection, register allocation, and instruc-
tion scheduling for example, each of these passes being able to alter some
countermeasures. In addition, it increases the code surface available for an
attack, and there are a lot of register spilling and filling, which increase
the information available via side-channel.

• One can use the volatile keyword in C/C++ source code to force the
compiler to not perform memory-access optimisations on some selected
variable.

• One can disable some specific passes by using the compiler command line
options.

• One can inline assembly code in its source code. However, this solution
leads to complex implementations, as developers have to make the link
between the C/C++ variables and physical registers. Moreover, the source
code is no more portable, and becomes harder to maintain.

• One can apply directly the countermeasure on assembly, so that the com-
pilation problem is bypassed. We will see later however that this solution
has drawbacks too.

1.3 Automatic application of software countermeasures

This section presents several state-of-the-art approaches proposed for auto-
matic application of software protection. Table 1.1 shows an overview of the
approaches presented in this section. We present the different approaches,
both in this section and in the Table 1.1, gathered according to the code
level on which the automatic application is carried out.

The different levels of application for automated approaches will be mainly
compared on both their ease of use and the complexity of their implementa-
tion. The pros and cons of each level of application will also be presented.

We consider as a usage constraint either the replacement of programming
language or the replacement of tools in the developer’s usual production
chain, such as the compiler. Indeed, changing the programming language can
prevent from reusing reference implementations. Also, replacing one of the
tools in a production toolchain may not be possible: as an example, closed-
source software components do not offer the ability to modify the source code
or some components may have been certified and any modification would
require a new certification process.

While comparing the security level achieved for a specific approach as
well as the impact of a protection on performance and code size would be
of high interest, it is quite impossible to achieve. Evaluations carried out
in the literature vary with the target platform, the considered benchmarks
and the attacks or tests performed. To fairly compare all the approaches, it
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would then require to dispose of all approaches, to choose a common target
of evaluation and to mount realistic security evaluation scenarios. Hence,
we only report fair performance comparison of approaches available in the
literature (between approaches [57] and [16]).

1.3.1 At source code level

Several approaches proposed to automatically apply countermeasures at
source code level.

1.3.1.1 Side channel attack countermeasures

Luo et al. proposed an automated hiding countermeasure where independent
C operations are shuffled [52]. The associated tool takes C code as input.
It gathers statements by group of independent statements, and shuffling is
performed at runtime inside each group. It adds dummy statements when too
few independent statements have been found for a group in order to increase
shuffling effect. It assumes that the code does not contain any loop or branch.

Couroussé et al. proposed an approach to deploy a hiding countermeasure
based on runtime polymorphic code generation [29]. Their approach requires
to use a dedicated language (DSL). The written code is translated by a tool
that produces the C code of a specialized polymorphic code generator. The
generator regularly produces new versions of the machine code at runtime us-
ing semantic variants at machine instruction level, instructions and registers
shuffling, and insertion of noise instructions.

Eldib et al. proposed an approach to automatically find and apply a mask-
ing countermeasure, with the help of a SMT solver [40]. They assume that the
program has an input-independent control flow. The program is parsed and
transformed into LLVM’s intermediate representation (LLVM IR) by clang.
The code in LLVM IR format is then transformed into a Boolean program.
Then, each operation of the program is masked, directly if it is a linear opera-
tion, or by finding a sequence of equivalent masked instructions found out by
a SMT solver. Then, the secured code is emitted as C++ code and compiled
in -O0 (this information comes from a discussion with authors).

1.3.1.2 Fault injection countermeasures

Lalande et al. proposed to apply a control flow integrity countermeasure
based on counters and additional variables at the source code level [50]. The
countermeasure is applied in 2 phases; first, all vulnerabilities of the original
code are searched for by simulating control flow hijacking faults at the source
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Table 1.1 Overview of existing automated approaches for side channel attacks or fault

injection attacks gathered by the code level at which they are deployed. Few approaches
consider several different countermeasures, and none of them considers countermeasures

for both families of attacks simultaneously.

Countermeasure principle
Approach Side channel attacks Fault injection attacks Requirements or con-

straints

S
o
u

rc
e

le
v
el

[52] static multiversionning
(hiding)

none Straight-line code

[29] polymorphism with

runtime code generation
(hiding)

none Domain specific lan-

guage

[40] masking none No input-dependent
control flow

[50] none control flow integrity -

[7] none control flow integrity -

C
o
m

p
il
er

le
v
el

[53] static multiversionning

(hiding)

none -

[2] polymorphism with run-
time code modification

(hiding)

none -

[4] static multiversionning
(hiding) and partial

masking

none -

[3] other none -
[58] masking none Domain specific lan-

guage

[1] masking none -
[18] random precharging and

masking

none Measurements (op-

tional)
[51] threshold implementa-

tion (masking)

none -

[16] none instruction duplication
(fault tolerance)

-

[69] none instruction duplication

(fault detection) and
control flow integrity

-

[64] none instruction duplication

on loop exits (fault
detection)

-

[25] none instruction and data re-
dundancy (fault detec-

tion)

Availability of SIMD
instructions

A
ss

em
b

ly
le

v
el

[17] random precharging none Measurements to set

up the protection
[68] dual-rail with precharge

logic

none Bitsliced input code

[57] none instruction duplication

(fault tolerance)

-

[34] none various fault detection
and fault tolerance coun-

termeasures

-
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code level, then the countermeasure is applied to vulnerable points. Jump
attacks larger than two C statements are systematically detected. However,
smaller faults, e.g. that only affect one assembly instruction, are not always
detected.

Akkar et al. also presented an automated application of a control flow in-
tegrity countermeasure [7]. The developer must annotate his code beforehand
using pragmas to indicate the areas to secure. The application is done by a
tool that comes in the form of a pre-processor.

1.3.1.3 Pros and cons of source code level

The source code level has the advantage of being compatible with the use
of proprietary compilers, and even of allowing the use of several different
toolchains without any compatibility concerns.

In addition, a substantial amount of information is available at this level,
such as variable typing information.

This level of application also enables to be independent of the target ar-
chitecture. Thus, the development of a tool may be easier at this level if a
lot of architectures have to be supported.

However, the countermeasures may be altered by compilation. This is not
always the case, for example in the COGITO approach [29], the counter-
measure is applied at runtime by a dedicated generator and therefore there
is no risk that it will be altered by the compilation. Approaches [50] and
[40] suggest to compile the secure parts without compiler optimizations to
circumvent this problem, which does not remove completely the risk as dis-
cussed in Section 1.2.5. Thus, developers will have to check for each hardened
application at source code level that the countermeasures are still present and
correct after compilation. This typically involves reviewing the assembly code
produced by the compiler, which is a tedious and error-prone task.

1.3.2 During compilation

Several approaches proposed to apply countermeasures during compilation.
Table 1.2 summarizes the level of application inside the compiler and the
passes that have been modified for each approach.

1.3.2.1 Side channel attack countermeasures

Malagón et al. proposed to deploy a hiding countermeasure based on static
generation of several variants of a function [53]. This countermeasure con-
sists in randomly choosing between different versions of the same code at
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Table 1.2 Level of application and modified passes within the compiler for compiler-level

approaches

Approach Level of application Modified passes

Malagón et

al. [53]

Middle-end Loop unwinding pass

Agosta et al. [2] Unknown -
Agosta et al. [4] Middle-end and back-end Several (unknown) passes in middle-end

and back-end
Agosta et al. [3] Middle-end and back-end Instruction selection
Moss et al. [58] Middle-end -

Agosta et al. [1] Middle-end -
Bayrak et al. [18] Middle-end and back-end -
Eldib et al. [40] Middle-end -

Barry et al. [16] Backend Instruction selection and register alloca-
tion

Reis et al. [69] Unknown -
Proy et al. [64] Middle-end and back-end Branch folding and register allocation

Chen et al. [25] Middle-end -
Luo et al. [51] Middle-end -

runtime. The source code must be annotated using pragmas by developers to
indicate functions where sensitive data are being manipulated. The compiler
then generates several different versions of the function code by changing
optimizations configuration parameters, for example using the loop unwind-
ing pass. It also inserts the code that is in charge of randomly selecting at
runtime the version of the code to be executed.

Agosta et al. proposed another hiding countermeasure based on dynamic
modification of code [2]. The code is modified at runtime using semantic
equivalence at instruction level, randomization of table accesses, mixed in-
structions. The countermeasure is automatically applied by a compiler: some
transformation passes have been added in LLVM in order to statically prepare
the transformations made at runtime.

Agosta et al. also proposed a hiding countermeasure based on static gen-
eration of several variants [4]. The authors propose to generate automatically
a code containing multiple execution paths, with choice between the different
paths at runtime, which is also a hiding countermeasure. This approach also
incorporates some masking elements, since the SBox accesses are masked. In
addition, the process of saving registers on the stack is modified: one register
is dedicated to hold a random value used to mask any register value stored
in the stack. When the content of the register is restored, it is also unmasked
so that it can be used again. All these transformations are handled by new
transformation passes in LLVM. Some existing passes have also been mod-
ified. Among other things, modifications to existing passes are intended to
ensure that an instruction that was in an area to be protected cannot leave
this area because of optimizations. The developer must provides a C file an-
notated so as to specify the code regions to protect and the SBox. In addition
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to the source file, the compiler takes an input file that specifies the equivalent
instructions to be used.

Agosta et al. also proposed a new countermeasure against side-channel
attacks that aims to bring out several key hypotheses instead of one during an
attack so that the attacker cannot know which one is the right hypothesis [3].
This countermeasure is entirely applied during compilation, in several steps.
Several passes have been added in the middle-end and back-end, also the
instruction selection pass has been changed. The compiler takes an input
file annotated by the developer that specifies the parts of the code to be
protected.

Moss et al. proposed to automatically apply a boolean masking counter-
measure during compilation [58]. The developer must write his program in a
domain specific language (DSL). This DSL allows to express with predefined
types the level of confidentiality of variables, for example to indicate that
a variable is secret. The compiler then uses this information to determine
which intermediate values are to be masked, and thus masks these values.

Agosta et al. also proposed an approach for the application of a mask-
ing countermeasure. Their approach allows to generate higher-order masked
code [1]. The compiler calculates for each key-dependent value the number
of key bits on which the value depends. This analysis enables to apply the
countermeasure only to intermediate values that depend on a small number
of key bits. For example, intermediate values dependent on all bits of the key
are not masked. This principle reduces the overhead of the countermeasure.

Bayrak et al. also proposed a compilation approach to apply boolean mask-
ing to a program [18]. An important difference with the other approaches is
that they use the compiler to decompile a binary program to a higher level
representation and then recompile the program while applying the protec-
tion. To find out where to apply the countermeasure, they suggest to start
by identifying instructions that may reveal sensitive data through a side-
channel. This analysis is either done using measurements provided by the
user or statically. The countermeasure is then applied to all instructions that
were found to be critical compared to a predefined threshold. This enables to
partially apply the countermeasure and to reduce the performance overheads.
In addition, the compiler can also apply a random precharging countermea-
sure.

Luo et al. proposed a similar approach to generate a threshold imple-
mentation automatically on LLVM IR [51]. Threshold implementation is a
countermeasure close to the masking countermeasure, as the secret is split
into shares. Yet, in threshold implementation, every function is independent
from at least one of the shares, which is not the case for masking. They use
a SAT solver along with a transformation step in order to find suitable solu-
tion. Every function is split into a succession of smaller functions so that the
SAT solver can find solutions effectively.
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1.3.2.2 Fault injection countermeasures

Barry et al. used the compiler to automatically apply a fault tolerance coun-
termeasure [16]. They duplicate assembly instructions to tolerate the skip
of one instruction. The use of the compiler is twofold compared to a lower
level approach: it favours the selection of instructions compliant with the
duplication scheme, increasing the number of idempotent instructions, and
takes advantage of optimisations to gain performance. To this end, several
passes have been added to LLVM and the instruction selection and register
allocation passes have been modified. The overheads obtained are lower than
those obtained by applying this countermeasure at the assembly level.

Reis et al. proposed to deploy a fault detection countermeasure during
compilation [69]. Instructions are duplicated so that their results are com-
pared in order to detect faults. In addition, additional checks are added to
ensure that the control flow is not hijacked. The authors indicate that the
approach could be easily extended to include fault tolerance.

Proy et al. proposed to use the compiler to apply a countermeasure to
secure loops against fault injection attacks [64]. The instructions involved
in the computation of conditions for exiting the loop are duplicated to add
checking blocks in charge of detecting an early exit or a extra iterations. This
transformation is applied at IR-level. They explain that some compiler passes
had to be modified to keep the countermeasure correctly applied until the
code is emitted.

Finally, Chen et al. proposed to achieve operation redundancy by us-
ing SIMD instructions [25]. Their compiler vectorises some instructions in
order to have instruction redundancy, and adds error checking codes. All
the code transformations are performed at the IR-level, and the approach
is architecture-independent. It only requires the target architecture to have
support for SIMD instructions. The use of SIMD instructions allows to obtain
a smaller performance overhead compared to classic instruction duplication
approaches.

1.3.2.3 Pros and cons of compiler level

The compiler level is interesting if several source languages need to be sup-
ported, as the front-end usually support various languages.

Moreover, the back-end must most often be modified and therefore the
approach depends on the architecture. However, some elements applied in
the middle-end are common for all architectures, so adding support for an
architecture is done without starting from scratch.

What is more, the application of countermeasures during the compilation
process makes it possible to finely control the transformations carried out in
the compiler, and to choose when to apply the countermeasure to avoid the
risk that it will be altered by the compilation. The compiler allows to have
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both high-level information such as the types of variables, as well as low-level
information that depends on the target architecture. Thus, countermeasure
can be applied in several transformation passes, strategically placed in the
compilation process. As an example, Reis et al. [69] and Barry et al. [16] ex-
ploit the scheduling instruction pass to reduce the countermeasure overhead
by creating parallelism at the instruction level (depending on the latency of
the instructions). In addition, several approaches modify compiler transfor-
mation passes such as instruction selection or register allocation to prepare
the countermeasure application in order to produce a more efficient code.

Moreover, if developers manage to propagate the necessary information
throughout the compilation process, developers can add a check pass before
issuing instructions to confirm that the countermeasure has been correctly
applied and that it has not been altered by possible downstream optimiza-
tions.

The engineering effort deployed to implement such approaches is impor-
tant, nevertheless, the control offered by this level of application makes it
possible to obtain an important confidence in the produced code. In case a
checking pass is added before code emission, it is not necessary to manu-
ally check the presence and the effectiveness of the countermeasures in the
produced assembly code for each hardened application. In that case, the de-
veloper does not need to be an expert in security to be able to effectively
secure his applications.

This level of application requires to have access to the compiler source
code. If the developer uses a closed-source compiler, using a compiler ap-
proach would implies to use an open-source one to disassemble a file, recon-
struct an intermediate representation, apply the countermeasure to the code
and recompile it, which is a tough process.

1.3.3 At link time / at assembly level

This section presents approaches that apply countermeasures directly on an
assembly file, during or before the linking phase.

1.3.3.1 Side channel attack countermeasures

Bayrak et al. proposed to automatically apply a random precharging coun-
termeasure at assembly level [17]. The application of this countermeasure is
quite natural at this level, as register allocation has already been performed.
Empirical measurements made on unsecure code are used to determine the
instructions to be secured.

Rauzy et al. also implemented a side-channel countermeasure at assembly
level: dual-rail with precharge logic [68]. Their approach requires that the
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code has previously been bitsliced. Their approach also makes it possible to
prove that the transformation is correct and that the program obtained after
transformation remains semantically correct.

1.3.3.2 Fault attack countermeasures

Moro et al. proposed a countermeasure based on instruction duplication to
achieve fault tolerance [55]. This countermeasure is intended to tolerate the
jump of one instruction. For this purpose, each instruction is replaced by
a sequence of instructions, this sequence being semantically equivalent to
the original instruction and being tolerant to one instruction skip. As this
countermeasure requires additional registers, it is sometimes necessary to spill
some registers. In addition, some instructions (e.g. volatile loads) cannot be
replaced by a fault tolerant sequence. This is the same countermeasure as the
one automated by Barry et al. [16] afterwards at compilation level.

De Keulenaer et al. showed how to automatically deploy various counter-
measures against fault attacks at binary level using link-time rewriting [34].
Their tool combines both fault tolerance countermeasures and fault detec-
tion countermeasures: duplication of conditional jumps, call graph integrity,
verification of memory entries, duplication of loop counters.

1.3.3.3 Pros and cons of assembly level

This level is mostly used to apply countermeasures that are quite low level, as
applying higher level countermeasures at this level is complicated since it is
then necessary to reconstruct a certain amount of information that has been
lost. For example, variable typing information is no longer present. In addi-
tion, the application of countermeasures often requires the use of additional
registers, which requires either register spilling or a complete reallocation of
registers.

Thus, during the development of an automatic approach at this level, a
major engineering effort is necessary to obtain information that was available
at compilation, or to redo treatments that had been done by the compiler in
a way that was not optimal with respect to the countermeasure to be applied.

However, applying countermeasures at this level avoids having to check
manually if the countermeasure is still present in the final code, since the
compilation process takes place entirely before the countermeasures applica-
tion. This allows the use of such a tool by a non-security expert developer.
Moreover, this level of application allows to be independent of source code
language, which is interesting if several source languages need to be sup-
ported. In addition, it allows to secure code after link time optimisation, and
to potentially secure binary libraries.
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1.4 Discussion

1.4.1 Confrontation of pros and cons of the different
levels

This section discusses the advantages and disadvantages of the aforemen-
tioned levels of automatic application of countermeasures.

The first aspect to consider is the time taken for developing an automated
tool. This aspect depends on the countermeasure that has to be applied. A
masking countermeasure is easier to apply at source code level than at assem-
bly level because it requires a modification of the algorithm. The compiler
is a place where various countermeasures can be applied, as during compi-
lation the compiler manipulates both quite high level representations (e.g.
with typed variables) and low level representations (e.g. with assembly in-
structions).

Developing an automated tool implies parsing and emitting code in the
targetted formats. Compilers already have the necessary code for that, and
usually the developer only has to add a pragma support to delimit the code
zones to be secured. For source code and assembly levels approaches, the
developers often have to implement or reuse a parser and/or an emitter for
the targetted codes.

The engineering cost taken at using the tools must be considered too. As
these tools are automatic, the cost of producing secured code is close to zero,
yet the development of the tools requires a lot of work. When the tool applies
the countermeasure at source code level, code-review is facilitated, but the
user has to check that the countermeasure is still valid at the assembly level.
This time consuming task is one of the main drawback of the source code level
approach. The assembly approach does not suffer from this drawback: apply-
ing a countermeasure at the assembly level prevent from alteration during
compilation. Applying a countermeasure during compilation allows to check
that the countermeasure is still valid just before assembly/binary code emis-
sion if the developer manage to propagate the necessary information through-
out the compiler. If checking the countermeasure before code emission is not
possible, a step of assembly code review is still needed.

Considering performance in terms of code size and of execution time, the
compiler level allows fine tuning. When a countermeasure is applied within
the compiler, it can benefit from optimisations, whereas if it is applied out-
side the compilation process, it requires to redevelop some optimisations af-
terwards. Several approaches that use compilers modify some passes of the
compiler to reduce the cost of the countermeasures. The passes that apply
the countermeasure can be carefully interleaved with compilers passes to take
advantage of these passes without risking the countermeasure to get altered
by optimisations [16]. At other levels, tuning transformations for performance
may be harder. For example, at assembly level, the need for additional reg-
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isters either require to do register spilling, or to perform again the register
allocation. As a comparison, Moro et al. and Barry et al. implemented the
same countermeasure at assembly level and compiler level respectively. Barry
et al. obtained execution time overheads and size overheads lower than Moro
et al.

1.4.2 Future works

All of these approaches target either side-channel attacks or fault injection
attacks, and few of them consider the application of several different counter-
measures. Yet, programs have to be secured against both families of attacks,
and within each family of attack, have to be secured against a large number
of variants. Thus, countermeasures have to be combined so that the programs
meet the security requirements.

The problem of automatic application of combined countermeasure has not
been investigated yet to the best of our knowledge. It raises important ques-
tions in order to be able to guarantee that every countermeasure is correctly
applied on the produced code.

Similarly to the conflicts that can appear between countermeasures and
some optimisations passes of a compiler, conflicts can appear between differ-
ent countermeasures. The order of application of the countermeasures should
be well thought: which countermeasure must be applied first? Must the coun-
termeasures be applied in a combined way? Several compiler approaches pro-
posed to apply a countermeasure in several steps, interleaved with compiler
passes. How should one interleave all the different steps to apply two very
different countermeasures? This issue is present whatever the level at which
countermeasures are applied, and refrains the simple approach that would
consist in simply combining several different tools one after the other as they
would not be aware of the countermeasures that are applied by the others.

In addition, when the compiler level is chosen to apply the countermea-
sures, strategies for the modification of compiler passes have to be made
with all countermeasures in mind. For example, register allocation should be
compliant with several countermeasures that may have different objectives:
one may want to constrain register spilling to prevent distance-based leak-
age in presence of a masking countermeasure, while needing new registers to
implement a fault detection countermeasure.

We encourage future works to consider the problem of compilation for
security, to study the interaction between the different countermeasures and
performance optimisations, and to rethink the compilation process so that it
can optimize at the same time the performance and security goals.
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1.5 Conclusion

The automatic application of countermeasures against physical attacks is
a crucial research problem as a lot of platforms are concerned by these
threats while securing them manually is costly. We presented the different
approaches to automatically deploy software countermeasures against these
attacks. Some of them directly modify the source code, others modify the
assembly code, while others propose to modify the compiler so that the
countermeasure is applied during the compilation process. While develop-
ing solutions at the compilation level is not always possible, we encourage
this practice as it allows to tune performance while providing confidence that
the countermeasure remains correctly applied in the assembly file. We also
encourage future research to consider the problem of automatic application
of combined countermeasures that as not yet been addressed, their interac-
tion with compiler optimisations, and to try to create compilers that optimise
both security and performance. These issues are interesting and challenging
issues to solve to be able to offer security automatically.
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