J. Shi, P. W. Kantoff, R. Wooster, and O. C. Farokhzad, Cancer nanomedicine: Progress, challenges and opportunities, Nat. Rev. Cancer, vol.17, pp.20-37, 2017.
DOI : 10.1038/nrc.2016.108

URL : http://europepmc.org/articles/pmc5575742?pdf=render

A. Nori and J. Kope?ek, Intracellular targeting of polymer-bound drugs for cancer chemotherapy, Adv. Drug Deliv. Rev, vol.57, pp.609-636, 2005.

B. Demir, M. M. Lemberger, M. Panagiotopoulou, P. X. Medina-rangel, S. Timur et al., Tracking hyaluronan: Molecularly imprinted polymer coated carbon dots for cancer cell targeting and imaging, ACS Appl. Mater. Interfaces, vol.10, pp.3305-3313, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01988830

N. Kamaly, B. Yameen, J. Wu, and O. C. Farokhzad, Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release, Chem. Rev, vol.116, pp.2602-2663, 2016.

Z. Zhang, J. Wang, X. Nie, T. Wen, Y. Ji et al., Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods, J. Am. Chem. Soc, vol.136, pp.7317-7326, 2014.

K. Ulbrich, K. Holá, V. ?ubr, A. Bakandritsos, J. Tu?ek et al., Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies, Chem. Rev, vol.116, pp.5338-5431, 2016.

H. Mekaru, J. Lu, and F. Tamanoi, Development of mesoporous silica-based nanoparticles with controlled release capability for cancer therapy, Adv. Drug Deliv. Rev, vol.95, pp.40-49, 2015.

T. H. Shin, Y. Choi, S. Kim, and J. Cheon, Recent advances in magnetic nanoparticle-based multi-modal imaging, Chem. Soc. Rev, vol.44, pp.4501-4516, 2015.

J. P. Fortin, C. Wilhelm, J. Servais, C. Ménager, J. C. Bacri et al., Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia, J. Am. Chem. Soc, vol.129, pp.2628-2635, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00162284

M. Yu, Y. Jeong, J. Park, S. Park, J. Kim et al., Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo, Angew. Chem. Int. Ed, vol.47, pp.5362-5365, 2008.

C. S. Brazel, Magnetothermally-responsive nanomaterials: Combining magnetic nanostructures and thermally-sensitive polymers for triggered drug release, Pharm. Res, vol.26, pp.644-656, 2009.

B. Thiesen and A. Jordan, Clinical applications of magnetic nanoparticles for hyperthermia, Int. J. Hyperth, vol.24, pp.467-474, 2008.

D. Corato, R. Espinosa, A. Lartigue, L. Tharaud, M. Chat et al., Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs, Biomaterials, vol.35, pp.6400-6411, 2014.

J. T. Dias, M. Moros, P. Pino, S. Rivera, V. Grazú et al., DNA as a molecular local thermal probe for the analysis of magnetic hyperthermia, Angew. Chem. Int. Ed, vol.52, 2013.

L. Du, J. Zhou, X. Wang, L. Sheng, G. Wang et al., Effect of local hyperthermia induced by nanometer magnetic fluid on the rabbit VX2 liver tumor model, Prog. Nat. Sci, vol.19, pp.1705-1712, 2009.

, Nanomaterials, vol.8, pp.850-861, 2018.

G. Hemery, E. Garanger, S. Lecommandoux, A. D. Wong, E. R. Gillies et al., Thermosensitive polymer-grafted iron oxide nanoparticles studied by in situ dynamic light backscattering under magnetic hyperthermia, J. Phys. Appl. Phys, vol.48, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01361281

H. Huang, S. Delikanli, H. Zeng, D. M. Ferkey, and A. Pralle, Remote control of ion channels and neurons through magnetic-field heating of nanoparticles, Nat. Nanotechnol, vol.5, pp.602-606, 2010.

L. Polo-corrales and C. Rinaldi, Monitoring iron oxide nanoparticle surface temperature in an alternating magnetic field using thermoresponsive fluorescent polymers, J. Appl. Phys, vol.111, 2012.

D. Mertz, O. Sandre, and S. Bégin-colin, Drug releasing nanoplatforms activated by alternating magnetic fields, Biochim. Biophys. Acta BBA-Gen. Subj, pp.1617-1641, 1861.
DOI : 10.1016/j.bbagen.2017.02.025

URL : https://hal.archives-ouvertes.fr/hal-01476632

T. T. Nguyen, H. T. Duong, J. Basuki, V. Montembault, S. Pascual et al., Functional iron oxide magnetic nanoparticles with hyperthermia-induced drug release ability by using a combination of orthogonal click reactions, Angew. Chem. Int. Ed, vol.52, pp.14152-14156, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01526098

N. Griffete, J. Fresnais, A. Espinosa, D. Taverna, and C. C. Wilhelm, Meénager thermal polymerization on the surface of iron oxide nanoparticles mediated by magnetic hyperthermia: Implications for multishell grafting and environmental applications, ACS Appl. Nano Mater, vol.1, pp.547-555, 2018.

R. Massart, Preparation of aqueous magnetic liquids in alkaline and acidic media, IEEE Trans. Magn, vol.17, pp.1247-1248, 1981.

S. Lefebure, E. Dubois, V. Cabuil, S. Neveu, and R. Massart, Monodisperse magnetic nanoparticles: Preparation and dispersion in water and oils, J. Mater. Res, vol.13, pp.2975-2981, 1998.
DOI : 10.1557/jmr.1998.0407

URL : https://hal.archives-ouvertes.fr/hal-00170358

E. Cazares-cortes, A. Espinosa, J. Guigner, A. Michel, N. Griffete et al., Doxorubicin intracellular remote release from biocompatible oligo(ethylene glycol) methyl ether methacrylate-based magnetic nanogels triggered by magnetic hyperthermia, ACS Appl. Mater. Interfaces, vol.9, pp.25775-25788, 2017.
DOI : 10.1021/acsami.7b06553

URL : https://hal.archives-ouvertes.fr/hal-01586118

N. Griffete, J. Fresnais, A. Espinosa, C. Wilhelm, A. Bée et al., Design of magnetic molecularly imprinted polymer nanoparticles for controlled release of doxorubicin under an alternative magnetic field in athermal conditions, Nanoscale, vol.7, pp.18891-18896, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01229896