R. Abu-issa, G. Smyth, I. Smoak, K. Yamamura, and E. N. Meyers, Fgf8 is required for pharyngeal arch and cardiovascular development in the mouse, Development, vol.4625, pp.4613-4625, 2002.

I. Banerjee, K. Carrion, R. Serrano, J. Dyo, R. Sasik et al., Cyclic stretch of embryonic cardiomyocytes increases proliferation, growth, and expression while repressing Tgf-? signaling, J. Mol. Cell. Cardiol, vol.79, pp.133-144, 2015.

L. V. Beloussov, Mechanically based generative laws of morphogenesis, Phys. Biol, vol.5, p.15009, 2008.

K. N. Bharadwaj, C. Spitz, A. Shekhar, H. C. Yalcin, and J. T. Butcher, Computational fluid dynamics of developing avian outflow tract heart valves, Ann. Biomed. Eng, vol.40, pp.2212-2227, 2012.

R. D. Brownlee and B. L. Langille, Arterial adaptations to altered blood flow. Can, J. Physiol. Pharmacol, vol.69, pp.978-983, 1991.

B. S. De-bakker, K. H. De-jong, J. Hagoort, K. De-bree, C. T. Besselink et al., An interactive three-dimensional digital atlas and quantitative database of human development, Science, vol.354, p.53, 2016.

S. Durrleman, M. Prastawa, N. Charon, J. R. Korenberg, S. Joshi et al., Morphometry of anatomical shape complexes with dense deformations and sparse parameters, Neuroimage, vol.101, pp.35-49, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01015771

Y. Fung, Biomechanics Circulation. 2nd edn, 1997.

A. S. Go, D. Mozaffarian, V. L. Roger, E. J. Benjamin, J. D. Berry et al., Executive summary: heart disease and stroke statistics-2013 update: a report from the, American Heart Association. Circulation, vol.127, pp.143-152, 2013.

R. Guibert, K. Mcleod, A. Caiazzo, T. Mansi, M. A. Ferna?ndezferna?ndez et al., Group-wise construction of reduced models for understanding and characterization of pulmonary blood flows from medical images, Med. Image Anal, vol.18, pp.63-82, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00874545

T. Hiruma and R. Hirakow, Formation of the pharyngeal arch arteries in the chick embryo. Observations of corrosion casts by scanning electron microscopy, Anat. Embryol, vol.191, pp.415-423, 1995.

T. Hiruma, Y. Nakajima, and H. Nakamura, Development of pharyngeal arch arteries in early mouse embryo, J. Anat, vol.201, pp.15-29, 2002.

B. Hogers, M. C. Deruiter, A. C. Gittenberger-de-groot, and R. E. Poelmann, Unilateral vitelline vein ligation alters intracardiac blood flow patterns and morphogenesis in the chick embryo, Circ. Res, vol.80, pp.473-481, 1997.

B. Hogers, M. C. Deruiter, A. C. Gittenberger-de-groot, and R. E. Poelmann, Extraembryonic venous obstructions lead to cardiovascular malformations and can be embryolethal, Cardiovasc. Res, vol.41, pp.87-99, 1999.

N. Hu and E. B. Clark, Hemodynamics of the stage 12 to stage 29 chick embryo, Circ. Res, vol.65, pp.1665-1670, 1989.

N. Hu, D. A. Christensen, A. K. Agrawal, C. Beaumont, E. B. Clark et al., Dependence of aortic arch morphogenesis on intracardiac blood flow in the left atrial ligated chick embryo, Anat. Rec, vol.292, pp.652-660, 2009.

O. C. Jaffee, Hemodynamic factors in the development of the chick embryo heart, Anat. Rec, vol.151, pp.69-75, 1965.

A. Kamiya and T. Togawa, Adaptive regulation of wall shear stress to flow change in the canine carotid artery, Am. Physiol. Soc, vol.239, pp.14-21, 1980.

W. J. Kowalski, N. C. Teslovich, O. Dur, B. B. Keller, and K. Pekkan, Computational hemodynamic optimization predicts dominant aortic arch selection is driven by embryonic outflow tract orientation in the chick embryo, Biomech. Model. Mechanobiol, vol.11, pp.1057-1073, 2012.

W. J. Kowalski, O. Dur, Y. Wang, M. J. Patrick, J. P. Tinney et al., Critical transitions in early embryonic aortic arch patterning and hemodynamics, PLoS ONE, vol.8, p.60271, 2013.

W. J. Kowalski, K. Pekkan, J. P. Tinney, and B. B. Keller, Investigating developmental cardiovascular biomechanics and the origins of congenital heart defects, Front. Physiol, vol.5, p.408, 2014.

B. Langille and F. Donnell, Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent, Science, vol.231, pp.405-407, 1986.

L. Leatherbury, D. S. Braden, H. Tomita, H. E. Gauldin, and W. F. Jackson, Hemodynamic changes. Wall stresses and pressure gradients in neural crest-ablated chick embryos, Ann. N. Y. Acad. Sci, vol.588, pp.305-313, 1990.

L. Leatherbury, H. E. Gauldin, K. Waldo, and M. L. Kirby, Microcinephotography of the developing heart in neural crest-ablated chick embryos, Circulation, vol.81, pp.1047-1057, 1990.

Z. Li, W. Huang, Z. L. Jiang, H. Gregersen, and Y. Fung, Tissue remodeling of rat pulmonary arteries in recovery from hypoxic hypertension, Proc. Natl. Acad. Sci. USA, vol.101, pp.11488-11493, 2004.

I. Lin and L. A. Taber, A model for stress-induced growth in the developing heart, J. Biomech. Eng, vol.117, pp.343-349, 1995.

S. E. Lindsey, P. G. Menon, W. J. Kowalski, A. Shekhar, H. C. Yalcin et al., Growth and hemodynamics after early embryonic aortic arch occlusion, Biomech. Model. Mechanobiol, vol.14, pp.735-751, 2015.

A. Loseille and R. Lo-?-hner, Anisotropic adaptive simulations in aerodynamics, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00935369

J. Manner, Cardiac looping in the chick embryo: a morphological review with special reference to terminological and biomechanical aspects of the looping process, Anat. Rec, vol.259, pp.248-262, 2000.

D. G. Molin, M. C. Deruiter, L. J. Wisse, M. Azhar, T. Doetschman et al., Altered apoptosis pattern during pharyngeal arch artery remodelling is associated with aortic arch malformations in Tgfbeta2 knock-out mice, Cardiovasc. Res, vol.56, pp.312-322, 2002.

D. Mozaffarian, E. J. Benjamin, A. S. Go, D. K. Arnett, M. J. Blaha et al., AHA statistical update heart disease and stroke statistics-2016 update a report from the, American Heart Association. Circulation, vol.133, pp.38-360, 2016.

C. D. Murray, The physiological principle of minimum work. I. The vascular system and the cost of blood volume, Physiology, vol.12, pp.207-214, 1926.

S. Pant, B. Fabre?-ges, J. Gerbeau, and I. E. Vignon-clementel, A multiscale filtering-based parameter estimation method for patient-specific coarctation simulations in rest and exercise, Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges: 4th International Workshop, STACOM 2013, Held in Conjunction with MICCAI 2013, pp.102-109, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00911339

S. Pant, B. Fabre?-ges, J. Gerbeau, and I. E. Vignon-clementel, A methodological paradigm for patient-specific multi-scale CFD simulations: from clinical measurements to parameter estimates for individual analysis, Int. J. Numer. Methods Biomed. Eng, vol.30, pp.1614-1648, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01093879

M. Piccinelli, A. Veneziani, D. A. Steinman, A. Remuzzi, and L. Antiga, A framework for geometric analysis of vascular structures: application to cerebral aneurysms, IEEE Trans. Med. Imaging, vol.28, pp.1141-1155, 2009.

A. R. Pries, T. W. Secomb, and P. Gaehtgens, Design of vascular beds, Circ. Res, vol.77, pp.1017-1023, 1995.

A. R. Pries, T. W. Secomb, and P. Gaehtgens, Structural adaptation and stability of microvascular networks: theory and simulations, Am. J. Physiol, vol.275, pp.349-360, 1998.

M. S. Rana, A. Sizarov, V. M. Christoffels, A. F. Moorman, and R. E. Al, Development of the human aortic arch system captured in an interactive three-dimensional reference model, Am. J. Med. Genet, vol.164, pp.1372-1383, 2014.

Z. Rychter, Experimental morphology of the aortic arches and the heart loop in chick embryos, Adv. Morphog, vol.2, pp.333-371, 1962.

Z. Rychter, M. Kopecky, and L. Lemez, A micromethod for determination of the circulating blood volume in chick embryos, Nature, vol.175, pp.1126-1127, 1955.

D. Sedmera, T. Pexieder, V. Rychterova, N. Hu, and E. B. Clark, Remodeling of chick embryonic ventricular myoarchitecture under experimentally changed loading conditions, Anat. Rec, vol.254, pp.238-252, 1999.

G. Sinibaldi and G. P. Romano, Flow configurations in a Y splitting-junction microchannel, vol.2, p.18, 2017.

L. A. Taber, Biomechanics of growth, remodeling, and morphogenesis, Appl. Mech. Rev, vol.48, p.487, 1995.

L. A. Taber, An optimization principle for vascular radius including the effects of smooth muscle tone, Biophys. J, vol.74, pp.109-114, 1998.

L. A. Taber, Towards a unified theory for morphomechanics, Philos. Trans. R. Soc. A, vol.367, pp.3555-3583, 2009.

L. A. Taber and D. W. Eggers, Theoretical study of stress-modulated growth in the aorta, J. Theor. Biol, vol.180, pp.343-357, 1996.

K. Waldo, S. Miyagawa-tomita, D. Kumiski, and M. L. Kirby, , 1998.

, Cardiac neural crest cells provide new insight into septation of the cardiac outflow tract: aortic sac to ventricular septal closure, Dev. Biol, vol.196, pp.129-144

Y. Wang, O. Dur, M. J. Patrick, J. P. Tinney, K. Tobita et al., Aortic arch morphogenesis and flow modeling in the chick embryo, Ann. Biomed. Eng, vol.37, pp.1069-1081, 2009.

O. Wendling, C. Dennefeld, P. Chambon, and M. Mark, Retinoid signaling is essential for patterning the endoderm of the third and fourth pharyngeal arches, Development, vol.1562, pp.1553-1562, 2000.

H. C. Yalcin, A. Shekhar, N. Nishimura, A. A. Rane, C. B. Schaffer et al., Two-photon microscopy-guided femtosecond-laser photoablation of avian cardiogenesis: noninvasive creation of localized heart defects, Am. J. Physiol. Heart Circ. Physiol, vol.299, pp.1728-1735, 2010.

K. Yashiro, H. Shiratori, and H. Hamada, Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch, Nature, vol.450, pp.285-288, 2007.

M. Yoshigi, G. D. Knott, and B. B. Keller, Lumped parameter estimation for the embryonic chick vascular system: a time-domain approach using MLAB, Comput. Methods Programs Biomed, vol.63, pp.29-41, 2000.

K. G. Zahka, N. Hu, K. P. Brin, F. C. Yin, and E. B. Clark, Aortic impedance and hydraulic power in the chick embryo from stages 18 to 29, Circ. Res, vol.64, pp.1091-1095, 1989.

M. Zamir, Shear Forces and Blood Vessel Radii in the Cardiovascular System, J. Gen. Physiol, vol.69, pp.449-461, 1977.