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ABSTRACT1

Stabilizing selection around a fixed phenotypic optimum is expected to disfavor2

sexual reproduction, since asexually reproducing organisms can maintain a higher fit-3

ness at equilibrium, while sex disrupts combinations of compensatory mutations. This4

conclusion rests on the assumption that mutational effects on phenotypic traits are5

unbiased, that is, mutation does not tend to push phenotypes in any particular direc-6

tion. In this paper, we consider a model of stabilizing selection acting on an arbitrary7

number of polygenic traits coded by bialellic loci, and show that mutational bias may8

greatly reduce the mean fitness of asexual populations compared with sexual ones in9

regimes where mutations have weak to moderate fitness effects. Indeed, mutation and10

drift tend to push the population mean phenotype away from the optimum, this effect11

being enhanced by the low effective population size of asexual populations. In a sec-12

ond part, we present results from individual-based simulations showing that positive13

rates of sex are favored when mutational bias is present, while the population evolves14

towards complete asexuality in the absence of bias. We also present analytical (QLE)15

approximations for the selective forces acting on sex in terms of the effect of sex on16

the mean and variance in fitness among offspring.17

2



INTRODUCTION18

Various possible evolutionary benefits of sexual reproduction have been pro-19

posed in order to explain the widespread occurrence of this reproductive mode among20

eukaryotes (e.g., Agrawal, 2006; Otto, 2009; Hartfield and Keightley, 2012). These21

broadly fall into two categories: direct selective advantages of meiotic recombination,22

in particular in terms of DNA repair (e.g., Bernstein et al., 1985, 1988), or indirect ben-23

efits stemming from the disruption of linkage disequilibria and other forms of genetic24

associations through recombination and segregation. Breaking genetic associations25

affects the mean fitness of offspring when the fitness effect of alleles depends on the26

genetic background (dominance, epistasis); it may also affect the variance in fitness27

among offspring, and thus the response to selection. In the absence of dominance or28

epistasis and under random mating, stochastic events occurring in finite populations29

tend to generate negative genetic associations — negative linkage disequilibrium be-30

tween selected loci (Hill and Robertson, 1966; Felsenstein, 1974) and excess heterozy-31

gosity in diploids (e.g., Balloux et al., 2003). Breaking these negative associations32

increases the variance in fitness among offspring and the efficiency of natural selection,33

favouring higher rates of sex or recombination (Otto and Barton, 1997, 2001; Barton34

and Otto, 2005; Roze and Barton, 2006; Martin et al., 2006; Roze and Michod, 2010).35

Multilocus simulation programs showed that selection for recombination generated by36

such stochastic effects may be strong when sex is rare, but decreases rapidly as the37

baseline rate of sex in the population increases (Keightley and Otto, 2006; Hartfield38

et al., 2010; Roze, 2014).39

Genetic associations may also be produced by deterministic forces: in particular,40
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dominance and epistatic interactions between alleles affecting fitness are known to be41

widespread (e.g., de Visser and Elena, 2007; Martin et al., 2007; Halligan and Keight-42

ley, 2009; Manna et al., 2012), and represent another source of linkage disequilibria or43

deviations from Hardy-Weinberg equilibrium. In randomly mating populations living44

in a constant environment, breaking associations generated by dominance or epistasis45

decreases the mean fitness of offspring (segregation or recombination load), generating46

a short-term cost for sex and recombination (Barton, 1995; Charlesworth and Barton,47

1996; Otto, 2003) — this short-term cost may turn into a short-term benefit when48

mating is non-random or when the environment changes in space or time (Lenormand49

and Otto, 2000; Otto, 2003; Roze and Lenormand, 2005; Gandon and Otto, 2007;50

Agrawal, 2009). In a longer term, sex is generally beneficial when interactions cause51

a negative curvature of the fitness function (e.g., negative epistasis, partially recessive52

deleterious alleles), generating negative genetic associations that limit the efficiency53

of selection (Barton, 1995; Otto, 2003). Multilocus simulations including fixed epista-54

sis between loci have suggested that epistatic interactions may only play a secondary55

role in the evolution of recombination, however, stochastic (Hill-Robertson) effects be-56

ing often stronger (Otto and Barton, 2001; Keightley and Otto, 2006). Nevertheless,57

epistatic interactions are known to vary across pairs of loci (e.g., Phillips et al., 2000;58

de Visser and Elena, 2007; Martin et al., 2007), and this variation (which should gen-59

erally disfavor recombination, Otto and Feldman, 1997) has not been considered in60

recent multilocus simulation studies on the evolution of sex and recombination.61

Models of stabilizing selection acting on quantitative phenotypic traits represent62

a simple way of introducing distributions on epistatic interactions (on fitness), includ-63

ing possible compensatory effects between mutations (indeed, a mutation displacing64
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a phenotypic trait away from the optimum can be compensated by another mutation65

having the opposite effect on the trait). Interestingly, the predicted distribution of fit-66

ness effects and epistatic interactions among mutations obtained from classical models67

such as Fisher’s geometric model of adaptation with a Gaussian shaped fitness function68

have been shown to accurately describe empirical distributions of epistasis in bacteria69

and viruses (Martin et al., 2007), justifying the use of such models to explore the effects70

of the variance in epistasis. Selection for recombination under stabilizing, directional71

or fluctuating selection acting on one or several polygenic traits has been explored72

by previous simulation models (Maynard Smith, 1980, 1988; Kondrashov and Yam-73

polsky, 1996). They showed that while recombination is disfavored under stabilizing74

selection around a fixed optimum, environmental change may favor recombination. A75

mathematical analysis based on the infinitesimal model was proposed by Charlesworth76

(1993) (see also Appendix 2 in Barton, 1995), showing that recombination increases the77

phenotypic variance by breaking negative genetic associations generated by epistatic78

interactions among loci, thereby increasing the speed of adaptation.79

As in most evolutionary quantitative genetics models, the studies just men-80

tioned assume unbiased mutational effects on phenotypic traits: mutations are always81

as likely to increase as to decrease the value of a given trait. Several authors explored82

the effect of mutational bias on quantitative traits (e.g., Waxman and Peck, 2003;83

Zhang and Hill, 2008; Charlesworth, 2013a,b), and showed that such a bias may sig-84

nificantly reduce the mean fitness of populations in regimes where drift has substantial85

effects at loci coding for the traits, by displacing mean phenotypes away from their86

optimal values (thereby introducing a component of directional selection). Although87

the effect of mutational bias has only been explored in sexual populations, it should in88
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principle be stronger in asexual populations, due to their reduced effective population89

size caused by interference effects between loci. This may generate selection for sex90

and recombination in the absence of environmental change.91

In this paper, we explore the effect of mutational bias in a simple, isotropic92

model of stabilizing selection acting on an arbitrary number of phenotypic traits, in93

a haploid, facultatively sexual population. We first assume a fixed rate of sex in the94

population, and show that mutational bias may strongly reduce the mean fitness of95

populations in which sex is rare or absent, provided that mutations affecting phenotypic96

traits have weak to moderate fitness effects. We then introduce genetic variation for97

the rate of sex, and show that the equilibrium rate of sex is an increasing function98

of the degree of mutational bias. Finally, we use the methods of Barton (1995) and99

Charlesworth and Barton (1996) to express different components of selection for sex100

in terms of the effect of sex on the mean fitness and additive variance in fitness among101

offspring, and show that these expressions provide correct predictions when selection102

is sufficiently weak.103

METHODS104

Life cycle. The different parameters and variables of the model are summarized in105

Table 1. We consider a population of N haploid organisms with discrete generations.106

Each individual may generate a fraction of its offspring asexually (by mitosis), the107

remaining fraction being produced sexually. In the last case, gametes are produced108

by mitosis and fuse at random in the population to form zygotes, which immediately109

undergo meiosis to produce haploid juveniles. We will first consider that all individuals110
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invest equally into sexual reproduction, the parameter σ representing the rate of sex111

in the population (proportion of sexually produced offspring): σ = 0 corresponds to112

obligate asexual reproduction, and σ = 1 to obligate sex. In a second step (described113

below), we will introduce genetic variation for the rate of sex. We assume that individ-114

uals are hermaphroditic (generating both male and female gametes) and produce very115

large (effectively infinite) numbers of juveniles, among which N are sampled randomly116

to form the next adult generation (note that hermaphroditic haploid individuals occur117

in some species of mosses, ferns and algae).118

Throughout the paper, fitness W denotes the overall fecundity of an individ-119

ual and depends on the values of n quantitative phenotypic traits under stabilizing120

selection, represented by the vector z = (z1, z2, . . . zn). In the following, we use greek121

letters α, β, γ... to denote phenotypic traits, while latin letters i, j, k... will denote122

loci. We assume that each phenotypic trait can be decomposed into a genetic and an123

environmental component:124

zα = gα + eα (1)

where gα is the individual’s genetic contribution to trait α (“breeding value”), and125

where the environmental effect eα is independent of the genotype of the individual and126

is sampled from a Gaussian distribution with mean 0 and variance Ve (the same for all127

traits). Average phenotypes and breeding values in the population are denoted zα and128

gα (with zα ≈ gα when the population is sufficiently large). As we assume no genotype129

× environment interaction, the variance of trait α is given by:130

Vα = Vg,α + Ve (2)

where Vg,α is the genetic variance for trait α (variance of gα). The genetic covariance131
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between traits α and β (covariance between gα and gβ) will be denoted Cg,αβ. Finally,132

〈X〉 will denote the expected value of the quantity X at mutation-selection-drift equi-133

librium: for example, 〈Vg,α〉 is the average genetic variance for trait α at equilibrium.134

As we will see, some of our analytical results on the selective forces acting on the135

rate of sex do not depend on the specific shape of the fitness function. However, our136

simulation programs and some of our approximations assume an isotropic, Gaussian-137

shaped fitness function around the phenotypic optimum, located at z = (0, 0, . . . 0):138

W = exp

[
−
∑n

α=1 z
2
α

2ω2

]
, (3)

where ω2 represents the strength of selection. The mean fitness associated with a given139

genotype (obtained by averaging over the distribution of environmental effects eα) is140

given by:141

Wg = Wg,max exp

[
−
∑n

α=1 g
2
α

2Vs

]
(4)

where Vs = ω2 + Ve, and where Wg,max = (ω2/Vs)
n/2

is the mean fitness of an optimal142

genotype (e.g., Lande, 1976a).143

144

Genetic architecture of traits and mutational bias. We assume that selected145

traits are coded by ` loci with additive effects, so that146

gα =
∑̀
j=1

gαj (5)

where gαj is the contribution of the allele at locus j on trait α. Loci are assumed147

biallelic (although some of our results on the selective forces acting on sex are valid148

under more general architectures), the alleles at each locus being denoted 0 and 1.149

Assuming that an individual carrying allele 0 at all loci is at the phenotypic optimum,150
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the contribution of locus j on trait α can be written as:151

gαj = rαj Xj, (6)

where Xj is an indicator variable equal to 1 if the individual carries allele 1 at locus152

j (while Xj = 0 otherwise), and rαj is the effect of allele 1 at locus j on trait α (note153

that rαj may be negative). The frequency of allele 1 at locus j is denoted pj, while154

qj = 1 − pj. At each locus, we assume that mutation occurs at the same rate u in155

both directions (from 0 to 1 and from 1 to 0), while U = u` denotes the mutation rate156

on the whole set of loci affecting selected traits. As in previous works (Chevin et al.,157

2010; Lourenço et al., 2011; Roze and Blanckaert, 2014), we introduce a parameter m158

measuring the degree of pleiotropy of mutations: each locus only affects a subset m159

(sampled randomly and independently for each locus) of the n traits under selection.160

We assume that the distribution of rαj over all loci affecting trait α has average b161

and standard deviation a — the same for all traits — without any covariance between162

mutational effects on the different traits. From equation 4, the average deleterious163

effect of mutations on logWg (in an optimal genotype) is given by:164

sd =
1

`

∑̀
j=1

n∑
α=1

r2αj
2Vs

=
m (a2 + b2)

2Vs
. (7)

The parameter b represents the degree of mutational bias, since mutation tends to165

displace mean phenotypes away from the optimum when b 6= 0. In the following, mu-166

tational bias will be measured using a scaled parameter θ, defined as θ = b2/ (a2 + b2)167

and varying between 0 and 1. For a given value of sd (mean fitness effect of mutations),168

θ will thus allow us to explore a continuum between two extreme situations correspond-169

ing to two classical models: θ = 0 corresponds to Fisher’s geometrical model without170

mutational bias, with a variance a2 of mutational effects and possible compensatory171
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effects among different mutations, while θ = 1 corresponds to a situation where all172

mutations have the same fitness effect (a2 = 0) and selection thus becomes directional173

(alleles 1 are disfavored), without any possible compensatory effect among mutations.174

Note that a2 and b2 are simply expressed in terms of sd and θ, as a2 = 2Vs (1− θ) sd/m175

and b2 = 2Vs θ sd/m. Furthermore, equation 4 indicates that the parameters a, b, ω2
176

and Ve should only affect changes in genotype frequencies through the scaled parame-177

ters ã = a/
√

2Vs and b̃ = b/
√

2Vs, since genotypic fitnesses become independent of Vs178

when expressed in terms of the scaled phenotypic traits g̃α = gα/
√

2Vs. For a given179

choice of sd and θ, the results should thus not depend on ω2 and Ve.180

Using the parameters sd and θ (instead of ã and b̃) will allow us to change181

the degree of mutational bias θ (between 0 and 1) while keeping the average fitness182

effect of mutations sd constant. This is equivalent to the approach used by Zhang183

and Hill (2008), in which the variance of mutational effects decreases as the degree184

of mutational bias increases in order to maintain a constant mutational variance VM,185

defined as the per generation increase in phenotypic variance due to mutation (in our186

model, VM = m
n
U (a2 + b2) = 2Vs sd U/n). Finally, we can note that while the average187

coefficient of epistasis (on fitness) between mutations is zero in the absence of bias188

(e.g., Martin et al., 2007), it becomes negative when θ > 0. Indeed, defining epistasis189

e as a deviation from additivity of mutational effects on logWg, we have (assuming190

that the number of loci ` is large):191

e = − 2

` (`− 1)

∑
j 6=k

n∑
α=1

rαj rαk
2Vs

= −2ρ θ sd (8)

with ρ = m/n. In the extreme case when θ = 1 and ρ = 1 (all mutations have exactly192

the same phenotypic effect), epistasis becomes constant for all pairs of mutations and193
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equals −2sd.194

195

Change in phenotypic basis. Due to the symmetry of our model, average trait196

values and genetic variances at equilibrium should be the same for all traits, while197

mutational bias (θ > 0) will tend to displace the mean phenotype of the population in198

the direction of the (1, 1, . . . 1) vector. Although the effects of mutations on the dif-199

ferent traits are not correlated, mutation generates genetic covariances Cg,αβ between200

traits in the population (of the same magnitude for all pairs of traits), since individu-201

als carrying more 1 alleles in their genomes tend to lie further in the direction of the202

(1, 1, . . . 1) vector. For analytical derivations, it is useful to define a new phenotypic203

basis in which the average mutational bias lies along the first axis and in which the204

genetic variance-covariance matrix is diagonal, thus eliminating covariances between205

traits (see Figure 1). This can be done by defining new breeding values gα
′ as:206

g1
′ =

1√
n

n∑
β=1

gβ (9)

207

gα
′ =

1√
(α− 1)α

[
(α− 1) gα −

α−1∑
β=1

gβ

]
, α > 1 (10)

(e.g., p. 380 in Anton, 2005). The fitnesses of genotypes in the new basis are still given208

by equation 4, replacing gα by gα
′. The average effect of mutations on g̃1

′ = g1
′/
√

2Vs209

is given by:210

b̃1
′ =

1

`

∑̀
j=1

r̃1j
′ =

1

`

∑̀
j=1

1√
n

n∑
β=1

rβj√
2Vs

, (11)

yielding:211

b̃1
′ =
√
ρ θ sd (12)

where again ρ = m/n (note that equation 8 may thus be written as e = −2b̃1
′2). Due212

to the mutational bias, z1′ will tend to be positive, while the genetic variance along213
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the first axis (Vg,1
′) will be larger than along the other axes (see Figure 1).214

215

Genetic control of the rate of sex. In order to explore the selective forces acting216

on reproductive mode, we will assume that a given individual may invest proportions217

s and 1 − s of its resources in sexual and asexual reproduction (respectively), and218

that genetic variation for s exists in the population. As in previous papers (Roze and219

Michod, 2010; Roze and Otto, 2012; Roze, 2014), we introduce a direct cost of sex220

c by assuming that the probabilities that an individual is the maternal parent of a221

juvenile through asexual and sexual reproduction are proportional to 1 − s and s/c,222

respectively (c = 1 in the absence of cost, while c = 2 corresponds to a twofold cost of223

sex). This cost may be caused by anisogamy (cost of males): for example c = 2 when224

half of the resources invested in sex are used to produce male gametes, assuming that225

the same amount of resources is needed to produce a female gamete and an asexual226

spore. Alternatively, the cost may result from the failure of gametes to find a partner227

(assuming that a proportion 1 − 1/c of gametes are lost), or to extra energetic costs228

associated with gamete production compared with asexual spore production. The rate229

of sex σ of an individual is defined as the proportion of sexually produced individuals230

among its maternally produced offspring, given by:231

σ =
s

c (1− s) + s
(13)

(σ = s in the absence of cost). We assume that, like the other traits, investment in232

sex can be decomposed into an additive genetic and an environmental component:233

s = s+ gs + es (14)

where s is the average investment in sex in the population, gs =
∑

i gsi (gsi being the234
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effect of the allele present at locus i on investment in sex) while es is sampled from a235

centered Gaussian distribution with variance Ve, s. These equations assume that the236

distribution of values of s in the population is not too close to 0 or 1 (otherwise the237

assumption of additivity may not hold, as s cannot be lower than 0 or higher than 1).238

As above, the variance in s in the population is given by Vg, s + Ve, s (where Vg, s is the239

variance in gs). Throughout the paper, we will assume that loci affecting investment240

in sex do not affect the traits under stabilizing selection.241

Assuming that the variance in s in the population is sufficiently small, the242

rate of sex σ may also be decomposed into an additive genetic and an environmental243

component:244

σ = σ + gσ + eσ (15)

where σ is the mean rate of sex. From equation 13 and 14 (and assuming that gs and245

es are small, of order ε), we have:246

σ ≈ s

c (1− s) + s
, Vg,σ ≈

c2

[c (1− s) + s]4
Vg, s (16)

(to leading order in ε) where Vg,σ is the genetic variance for the rate of sex (variance247

of gσ).248

249

Simulation programs. Our individual-based simulation programs (written in C++)250

are available from Dryad, and described in Supplementary File S1. The genome of251

each individual consists in a single linear chromosome with map length R (average252

number of cross-overs at meiosis). The ` biallelic loci affecting the n traits under sta-253

bilizing selection are equally spaced along the chromosome, each of these loci affecting254

a subset of m randomly sampled traits as described above. Investment in sexual re-255
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production s is coded by `s multiallelic loci (with an infinite number of possible alleles256

per locus), which are also equally spaced along the chromosome (see Figure 2); as-257

suming multiallelic loci ensures that all possible rates of sex between 0 and 1 may be258

achieved even when the number of loci affecting investment in sex is low. Mutational259

effects at these loci are sampled from a centered Gaussian distribution with variance260

a2s (the mutational effect being added to the value coded by the allele before muta-261

tion). Investment in sex s is obtained by summing allelic effects at all these `s loci,262

and adding an environmental component drawn from a centered Gaussian distribution263

with variance Ve, s (if the value obtained is lower than 0 or higher than 1, it is then set264

to 0 or 1). In a different version of the program the `s multiallelic loci do not affect265

investment in sex (which is fixed), but correspond to neutral loci which are used to266

estimate the effective population size Ne. For this, diversity at each of these neutral267

loci is computed as D = 1 −
∑

i p
2
i (where pi is the frequency of allele i), and the ef-268

fective population size is estimated by Ne ≈ D/
[
2µ
(
1−D

)]
, where D is the average269

diversity over neutral loci and generations, and µ the mutation rate at each neutral270

locus (generally fixed to 10−3). Simulations with a fixed rate of sex generally lasted271

105 generations, while simulations in which investment in sex was free to evolve lasted272

2 × 106 generations (however the rate of sex generally reached an equilibrium within273

the first 5× 105 generations).274
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EFFECT OF MUTATIONAL BIAS ON MEAN FITNESS275

In this section we assume that the rate of sex σ is fixed, and explore the effect276

of σ and of mutational bias on mean fitness. The mutation load L measures the277

reduction in mean fitness of the population due to the presence of deleterious alleles,278

and is defined as:279

L = 1− W

Wg,max

, (17)

where W is mean fitness and Wg,max the fitness of an optimal genotype. Throughout280

this section, we assume an isotropic, Gaussian-shaped fitness function (equation 3).281

Assuming that the variance in log-fitness in the population is small and that population282

size is large, we have (see Supplementary File S2):283

〈L〉 ≈ 1− exp

[
− 1

2Vs

n∑
α=1

(
〈Vg,α〉+

〈
gα

2
〉)]

. (18)

In the absence of mutational bias, the effect of deviations of mean phenotypes from284

their optimal values (the term in 〈gα2〉 in equation 18) is proportional to 1/Ne, and285

should thus remain small when Ne is sufficiently large (Lande, 1976b; Charlesworth,286

2013b). However, in the presence of mutational bias, drift may cause substantial287

deviations of mean phenotypes away from the optimum (Zhang and Hill, 2008). Simple288

approximations for the load can be obtained in the regime where selection is negligible289

relative to drift at all loci. Assuming that the variance of gα due to drift is small, we290

have 〈gα2〉 ≈ 〈gα〉2, while 〈gα〉 =
∑`

j=i rαj 〈pj〉 in our biallelic model. Using equation291

12, and the fact that 〈pj〉 = 1/2 under symmetric mutation when the effect of selection292

at locus j is neglected, one obtains:293

1

2Vs

n∑
α=1

〈
gα

2
〉
≈ 1

4

(
` b̃1
′
)2

(19)
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where b̃1
′ =
√
ρ θ sd is the (scaled) magnitude of mutational bias (along the z1

′ axis).294

Furthermore, linkage disequilibria between loci should be close to zero on average when295

selection is sufficiently weak, in which case the genetic variance for trait α is given by:296

〈Vg,α〉 ≈
∑̀
j=1

r2αj 〈pjqj〉 (20)

(e.g., Lynch and Walsh, 1998). Given that 〈pjqj〉 ≈ Nu/ (1 + 4Nu) at mutation-drift297

balance, one obtains from equation 20:298

1

2Vs

n∑
α=1

〈Vg,α〉 ≈ sd
NU

1 + 4Nu
, (21)

finally giving:299

〈L〉 ≈ 1− exp

[
−sd

NU

1 + 4Nu
− 1

4

(
` b̃1
′
)2]

(22)

Equation 22 is equivalent to equation 8 in Roze and Blanckaert (2014) in the absence300

of mutational bias (b̃1
′ = 0). It is expected to hold only when selection (measured by301

sd) is so weak that its effect on the distribution of trait values in the population is302

negligible. As sd increases, 〈gα〉 and 〈Vg,α〉 depart more and more from the expres-303

sions given above; however, simulations indicate that equation 21 stays valid over a304

wider range of values of sd than equation 19, in agreement with previous observations305

that selection may have significant effects on mean trait values even when 〈piqi〉 at306

each locus is mainly controlled by mutation and drift (Robertson, 1960; Campbell,307

1984; Barton, 1989; Charlesworth, 2013a). Based on this, it is possible to derive a308

better approximation for low sd by taking the effect of selection on 〈gα〉 into account,309

while still neglecting the effect of selection on genetic variance (and neglecting linkage310

disequilibria). This yields (see Supplementary File S2 for derivation):311

〈L〉 ≈ 1− exp

−sd NU

1 + 4Nu
−

(
` b̃1
′
)2

4
[
1 + sd

n
[1 + θ (m− 1)] N`

1+4Nu

]2
 . (23)
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Approximations for the regime where genetic variances are significantly affected312

by mutation, selection and drift are more difficult to obtain. Under very strong selec-313

tion against mutant alleles (so that the contribution to future generations of individuals314

deviating from the optimum can be neglected), the mutation load becomes (for both315

sexual and asexual populations):316

L ≈ 1− e−U (24)

(e.g., Kimura and Maruyama, 1966). Under sexual reproduction, equation 24 also317

holds under weaker selection in the absence of mutational bias (θ = 0), as long as drift318

and linkage disequilibria may be neglected (e.g., Bürger, 1998, Supplementary File S2).319

In the case of an asexual population, an expression for the load at mutation-selection320

balance (still in the absence of mutational bias, and neglecting drift) can be obtained321

assuming a Gaussian distribution of trait values in the population:322

L ≈ 1− exp

[
−
√
n

2
U sd

]
(25)

(Lande, 1980a; Roze and Blanckaert, 2014). Generalizing these expressions to intro-323

duce mutational bias is not straightforward in the context of our biallelic model, as324

the degree of mutational bias changes depending on the position of mean phenotypes;325

however, previous studies have shown that the effect of mutational bias is generally326

small in regimes where drift is negligible (Waxman and Peck, 2003; Zhang and Hill,327

2008). In Supplementary File S2, we show that a deterministic approximation for the328

load in a sexual population under the maximum level of bias (θ = 1) is given by:329

L ≈ 1− exp

[
−

4ρU − sd +
√
sd (8ρU + sd)

8ρ

]
(26)

(see Supplementary File S2 for the same expression in terms of b̃1
′, sd and U).330
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Figure 3 shows the equilibrium mutation load as a function of sd, for different331

rates of sex and levels of mutational bias. In the absence of mutational bias (θ = 0),332

the load is generally higher in sexual (σ = 1) than in asexual (σ = 0) populations,333

due to the fact that recombination breaks combinations of alleles with compensatory334

effects (recombination load). This pattern reverses for high values of sd (sd = 0.1 in335

Figure 3), as the frequency of deleterious alleles is increased by Hill-Robertson effects336

in asexual populations. While the effect of mutational bias (with θ = 0.1) on the mean337

fitness of sexual populations stays modest, it greatly increases the load of asexual338

populations for small values of sd (between 10−5 and 10−3) — see Supplementary339

Figure S1 for results under stronger bias (θ = 0.5). Supplementary Figure S2 shows340

that this increase in L is caused by deviations of mean phenotypes from the optimum,341

due to the combined effects of mutational bias and drift. Indeed, Figure 3 shows342

that the effective population size of asexual populations (estimated from the average343

diversity at neutral loci, see Methods) is greatly reduced by background selection344

effects.345

As shown by Figure 4, equation 22 correctly predicts the increase in load caused346

by mutational bias at very low values of sd, but rapidly overestimates L as sd increases,347

as it neglects the effects of selection (see Supplementary Figure S3 for the relative348

effects of genetic variance and of deviations of mean phenotypes from the optimum).349

In the case of sexual populations, equation 23 provides better predictions (dotted350

curves in Figure 4) but still fails when sd is not very small, as it neglects the effect351

of selection on genetic variances. In agreement with previous results (Waxman and352

Peck, 2003; Zhang and Hill, 2008), we find that in sexual populations, the effect of353

mutational bias stays rather small in the deterministic regime (Nsd � 1). Very strong354
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levels of bias (θ = 0.5, 1) decrease the load in this regime, this effect being correctly355

predicted by our deterministic approximation for θ = 1 (equation 26): this is due to the356

fact that mutational bias generates negative epistasis (on average) between deleterious357

alleles (equation 8), reducing the mutation load of sexual populations (e.g., Kimura358

and Maruyama, 1966; Kondrashov and Crow, 1988). Figure 5 shows that the effect of359

mutational bias increases as the number of loci ` increases (allowing stronger deviations360

from the fitness optimum) and as population size decreases (see Supplementary Figures361

S4 – S6 for results under stronger bias and for the relative effects of genetic variance362

and of deviations of mean phenotypes from the optimum on the load). The effects363

of the degree of pleiotropy of mutations m and of the total number of selected traits364

n are shown on Figure 6. The mutation load increases with the degree of pleiotropy365

(Figure 6, top panels): indeed, the magnitude of mutational bias b̃1
′ increases with366

ρ θ (with ρ = m/n, equation 12). Increasing m while keeping ρ θ constant has only367

little effect on the load (Figure 6, middle panels), confirming that m mostly affects368

the load through its effect on b̃1
′. Finally, Figure 6 shows that increasing n while369

keeping m/n (and thus b̃1
′) constant has little effect on the load in sexual populations,370

while it increases the load of asexual populations due to stronger deviations of mean371

phenotypes from the optimum (see Supplementary Figures S7). Indeed, increasing372

the dimensionality n of the fitness landscape reduces the chances that a deleterious373

allele can be compensated by mutations at other loci, and thus enhances the effect of374

mutational bias in asexuals.375

Overall, these results show that the combined action of mutational bias and376

genetic drift may greatly reduce the mean fitness of asexual populations when the377

average fitness effect of mutations is small to moderate, this increase in load being378
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maximized for intermediate strengths of selection against deleterious alleles sd, higher379

values of pleiotropy m/n, number of selected traits n and number of loci `, and for380

lower values of population size N . In the next section, we will see how this translates381

into selection on modifier genes affecting the rate of sex of individuals.382

EVOLUTION OF SEX383

Analytical approximations. Expressions for the effect of selection on the rate384

of sex are derived in Supplementary File S3, assuming weak selection, a Gaussian385

distribution of traits affecting fecundity (the zα’s) and a low variance for the rate of386

sex in the population. Under these assumptions, the change in the mean rate of sex387

over one generation (∆σ) can be decomposed into two terms, representing the effect388

of the cost of sex (direct selection), and indirect selection caused by the effect of sex389

on genetic associations between loci affecting fecundity:390

∆σ = ∆costgσ + ∆indgσ . (27)

As shown in Supplementary File S3, ∆costgσ ≈ βcost Vg,σ, where391

βcost ≈ −
c− 1

1 + (c− 1)σ
(28)

represents the direct selection gradient (selecting against sex when c > 1). Indirect392

selection in turn decomposes into two terms, sometimes called the “short-term” and393

“long-term” effect of breaking genetic associations (e.g., Agrawal, 2006):394

∆indgσ = ∆shortgσ + ∆longgσ . (29)

The short-term effect is due to the fact that, in the presence of epistatic interactions,395

breaking genetic associations between loci affects the mean fitness of offspring. Under396

20



our isotropic fitness function (equation 3), and assuming that phenotypes are measured397

in a basis that eliminates covariances between traits (the basis defined by equations 9398

and 10), ∆shortgσ is given by:399

∆shortgσ ≈
n∑

α=1

∂ lnW

∂Vg,α
Mg,σαα (30)

where Mg,σαα is the third moment E
[
(gσ − gσ) (gα − gα)2

]
(where E stands for the400

average over all individuals). A more general expression for arbitrary fitness function401

is given in the Appendix (see Supplementary File S3 for derivation). Under stabilizing402

selection, ∂ lnW/∂Vg,α is negative (mean fitness decreases as the genetic variance403

for selected traits increases). Furthermore, selection tends to generate associations404

(linkage disequilibria) between alleles at different loci with compensatory effects on405

selected traits, thereby reducing Vg,α. By breaking these associations, sex increases406

the genetic variance among offspring: therefore, the genetic variance tends to be higher407

among individuals that engage more in sex (i.e., with higher values of gσ) than among408

individuals that engage less in sex, translating into a positive value of Mg,σαα. The409

term representing the short-term effect (∆shortgσ) is thus negative, corresponding to the410

short-term cost of breaking genetic associations that have been generated by selection411

— one can show that this term is equivalent to the term in δVg in Charlesworth’s412

(1993) recombination modifier model, see also Appendix 2 of Barton (1995).413

The long-term effect stems from the fact that increasing the genetic variance414

among offspring allows a better response to directional selection, and can be written415

as:416

∆longgσ ≈
n∑

α=1

∂ lnW

∂zα
Cg,σα (31)

where Cg,σα = E [(gσ − gσ) (gα − gα)] is the genetic covariance between the rate of sex417
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σ and trait α. Equation 31 corresponds to the classical expression describing the effect418

of selection on correlated characters (Lande, 1979): if selection favors higher values of419

trait α (∂ lnW/∂zα > 0), a positive genetic covariance between traits α and σ will lead420

to the evolution of higher values of σ. In our model, directional selection is caused by421

mutational bias displacing mean phenotypes from the optimum, and thus occurs along422

the first phenotypic axis of the basis defined by equations 9 and 10 (∂ lnW/∂zα = 0423

along all other axes). Because sex increases the response to directional selection by424

increasing the genetic variance among offspring, trait values tend to be closer to the425

optimum in individuals that engage more in sex: Cg,σα has the same sign as ∂ lnW/∂zα,426

and ∆longgσ is thus positive — this term is equivalent to the term in δz in Charlesworth427

(1993).428

Charlesworth (1993) and Barton (1995) showed how the short-term and long-429

term effect can be expressed in terms of mean trait values and genetic variances for430

selected traits in a recombination modifier model, neglecting the effects of genetic drift431

on genetic associations and using a quasi linkage equilibrium (QLE) approximation.432

An equivalent derivation for the case of the present model is given in Supplementary433

File S3, the main results being summarized in the Appendix. For this, we assume an434

infinite population size, large number of loci affecting fecundity, weak selection and low435

variance for the rate of sex in the population; we also assume that the rate of sex is not436

too low (for the QLE approximation to hold). One obtains that ∆shortgσ ≈ βshort Vg,σ,437

∆longgσ ≈ βlong Vg,σ, where the short and long-term selection gradients are given by:438

βshort ≈ −
1

2Vs2 rh,1 σ
2

(
n∑

α=1

Vg,α
2 − z1

2 Vg,1
2

Vs

)
, (32)

439

βlong ≈
(

1

rh,2 σ
− 1

rh,1

)
1

σ2

z1
2 Vg,1

2

Vs3
. (33)
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Equations 32 and 33 assume that traits are measured in the phenotypic basis given by440

equations 9 and 10, so that only the first phenotypic trait (with average z1 and genetic441

variance Vg,1
2) is under directional selection. The terms rh,1 and rh,2 that appear442

in the denominators of βshort and βlong correspond to harmonic mean recombination443

rates among loci. Defining rijk as the probability that at least one recombination event444

occurs at meiosis between a locus i affecting investment in sex and loci j and k affecting445

selected traits, rh,1 is the harmonic average of rijk over all possible triplets of loci i, j446

and k, while rh,2 is the harmonic average of rij rijk, where rij is the recombination rate447

between loci i and j. The maximum possible values of rh,1 and rh,2 (obtained for the448

case of freely recombining loci) are thus 3/4 and 3/8, respectively.449

Equations 32 and 33 indicate that both the short-term and long-term selection450

gradients increase as the mean rate of sex in the population σ decreases, βlong increasing451

more rapidly (due to the term in 1/σ3). However, both expressions diverge as σ tends452

to zero, due to the QLE approximation. Equation 33 also shows that the long-term453

effect vanishes in the absence of mutational bias (z1 = 0). The genetic architecture454

of investment in sex affects βlong and βlong through rh,1 and rh,2. Provided that the455

number of loci affecting fecundity is large and that their distribution over the genome456

is relatively uniform, the harmonic averages of rijk and rij rijk over all j and k should457

be similar for all loci i affecting investment in sex, and the indirect selection gradient458

should thus be little affected by the number of loci coding for the rate of sex.459

As we have seen in the previous section, it is difficult to obtain general analyt-460

ical expressions for mean trait values (z1) and genetic variances (Vg,α) at mutation-461

selection-drift equilibrium under mutational bias, for arbitrary values of sd and σ, and462

we were thus not able to express the mean rate of sex in the population at equilibrium463
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in terms of the different parameters of the model. One can note, however, that the464

approximations above for the short and long term selection gradients can be expressed465

in terms of the effect of sex on the average and variance in fitness among offspring, that466

could (at least in principle) be measured from an experimental population (Barton,467

1995; Charlesworth and Barton, 1996). Indeed, denoting W sex and W asex the mean468

fitness of sexually and asexually produced offspring (respectively), and VarA, sex(lnW ),469

VarA, asex(lnW ) the additive variance in log fitness among sexually and asexually pro-470

duced offspring, we have (see Supplementary File S3):471

βshort ≈
∆1

rh,1 σ
, βlong ≈

(
1

rh,2 σ
− 1

rh,1

)
∆2

σ
(34)

with:472

∆1 = lnW sex − lnW asex, (35)
473

∆2 = VarA, sex(lnW )− VarA, asex(lnW ) . (36)

Equations 34 – 36 are valid in principle for any shape of the fitness function (not nec-474

essarily Gaussian), as long as selection is sufficiently weak and the number of selected475

loci is sufficiently large. However, as the previous results, they assume that genetic476

associations remain small (QLE approximation), causing them to diverge as the mean477

rate of sex in the population tends to zero.478

479

Simulation results. Figure 7 shows that, in agreement with the discussion above,480

the number of loci affecting investment in sex has very little effect on the mean rate481

of sex in the population (σ) at equilibrium (the numbers 9, 99 and 999 were chosen482

so that the number of loci affecting fecundity between two loci affecting sex is 1000,483

100 and 10, respectively — see Figure 2). As shown by Figures 7 – 9, the population484
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evolves towards asexuality in the absence of mutational bias (θ = 0), while increasing485

the magnitude of mutational bias b̃1
′ (by increasing either θ or m/n, see equation 12)486

increases the equilibrium rate of sex. Higher rates of sex evolve under higher values of487

the mutation rate U , larger numbers of selected loci ` and lower values of population488

size N , due to stronger effects of mutational bias (Figures 8 – 9). Similarly, increas-489

ing the dimensionality of the fitness landscape n while keeping m/n constant (so that490

b̃1
′ stays constant) enhances the effect of mutational bias in asexuals (Figures 6, S7),491

favoring higher rates of sex (Figure 8). The mean fitness effect of deleterious alleles492

has a non-monotonic effect on selection for sex, the equilibrium rate of sex being max-493

imized for intermediate values of sd (Figure 9). The genome map length R also has a494

non-monotonic effect on the equilibrium rate of sex (Figure 9): up to a certain point,495

increasing linkage favors sex since the long-term benefit of sex increases faster than496

the short-term cost as linkage becomes tighter (as can be seen from equations 32 and497

33, and the fact that rh,2 decreases faster than rh,1 as recombination rates decrease).498

However, indirect selection vanishes when R tends to zero (since sex becomes geneti-499

cally equivalent to asexual reproduction), in which case the rate of sex evolves towards500

zero when sex is costly — Figure 9 shows that low rates of sex may be maintained in501

the population, probably due to hitchhiking effects between loci affecting investment502

into sex and loci affecting selected traits. Finally, Figure 8 shows that higher rates of503

sex are maintained in the absence of a direct cost of sex (c = 1), although the rate of504

sex still evolves towards zero when mutational bias is absent (θ = 0).505

Our simulation program was modified in order to test the validity of the QLE506

approximations shown above (equations 32 – 34) for different values of σ. In this507

modified version, we introduce genetic variation for investment in sex but constrain508
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σ to stay in a given range by sampling the value of alleles at loci affecting sex after509

mutation from a uniform distribution with variance a2s, without adding the value of510

the allele before mutation. The short and long-term selection gradients were estimated511

from equations 30 and 31 (divided by Vg,σ), using equations A2 and A3 and measuring512

the moments zα, Vg,α, Mg,σαα and Cg,σα for all traits α. For this, the value of gσ was513

estimated for each individual from the average rate of sex σ of 100 clonally produced514

offspring (all with different environmental components of investment in sex es), given515

by equation 13. The terms ∆1 and ∆2 of equation 34 were also measured every516

100 generations by producing a pool of offspring by sexual reproduction and another517

pool by asexual reproduction, and measuring the mean fitness and additive variance518

in log fitness within each pool of offspring. The additive variance in log fitness was519

estimated from the covariance in log fitness Cov(lnW ) between sexually (or asexually)520

produced offspring and their own sexually produced offspring, using VarA(lnW ) =521

4Cov(lnW ) − Var(lnW ) (Lynch and Walsh, 1998, Supplementary File S3). Figure522

10 shows that the QLE approximation provides correct predictions of the indirect523

selection gradients when selection is sufficiently weak (sd = 10−4, for the parameter524

values used in Figure 10) and for intermediate rates of sex (while the QLE expressions525

diverge as σ approaches zero). Discrepancies appear for sd = 10−3, however, and526

become more important for sd = 10−2. These discrepancies are probably due to a527

breakdown of the different assumptions used to derive equations 32 – 36 (e.g., weak528

genetic associations, negligible effect of associations involving more than 2 or 3 loci,529

distribution of breeding values close to a Gaussian distribution), and possibly also to530

the effect of drift on genetic associations (through the Hill-Robertson effect), which is531

not taken into account in our analysis.532
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DISCUSSION533

Epistasis and drift are the two major sources of genetic associations that have534

been considered in theoretical studies on the benefits of sex and recombination. Epis-535

tasis may favor recombination when it is negative on average, that is, when the fitness536

effect of a deleterious allele is increased by the presence of other deleterious alleles at537

other loci, or conversely when the fitness effect of a beneficial allele is decreased by the538

presence of other beneficial alleles in the genome. However, epistatic interactions also539

generate a short-term cost for recombination (since recombinant offspring tend to have540

a lower mean fitness than their parents in a constant environment), so that high rates541

of recombination can only be favored when epistasis is weak relative to the strength542

of selection, and not too variable across loci (Barton, 1995; Otto and Feldman, 1997).543

Epistatic interactions (on fitness) arise naturally in models of selection acting on quan-544

titative phenotypic traits. In agreement with the results mentioned above, Gaussian545

(or quadratic) stabilizing selection around a fixed optimum in an infinite population is546

expected to disfavor recombination in the absence of mutational bias (Charlesworth,547

1993). Indeed, at equilibrium the mean phenotype of the population is centered on the548

optimum, in which case epistasis between deleterious alleles is zero on average, with549

a given variance (Martin et al., 2007) — epistasis between two alleles displacing the550

phenotype in the same direction is negative (due to the negative curvature of the fit-551

ness function), while epistasis between alleles having opposite (compensatory) effects552

on the phenotype is positive. Away from the optimum, epistasis between deleterious553

alleles is negative on average (while epistasis between beneficial alleles is also nega-554

tive, e.g., Martin et al., 2007), generating a deterministic advantage for recombination555
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(Charlesworth, 1993).556

Our simulation results confirm that, in the absence of mutational bias on phe-557

notypic traits, populations evolve towards obligate asexuality when the phenotypic558

optimum remains constant over time, even when population size is finite. This stands559

in contrast with previous simulation results assuming fixed epistasis across loci (al-560

ways negative or always positive), that found only minor effects of epistasis compared561

with the stochastic (Hill-Robertson) effects that favor recombination in initially asex-562

ual (or non recombining) populations (Keightley and Otto, 2006). When mutational563

bias is included in the model, however, positive rates of sex are maintained in the564

population at equilibrium. Indeed, mutational bias tends to displace mean pheno-565

types away from the optimum (thereby increasing the mutation load), this effect being566

stronger in asexual populations in which the variance in fitness may be greatly lowered567

by negative associations between loci, reducing their ability to respond to directional568

selection. Extending Barton’s (1995) QLE analysis to our model, we obtained deter-569

ministic approximations for the short and long-term indirect selection gradients acting570

on sex in terms of mean trait values and genetic variances, and showed that these571

approximations provide reasonable predictions when selection acting at the different572

loci is sufficiently weak and when the rate of sex is not too low (Figure 10). This573

implies that, in this parameter range, selection for sex is mainly driven by negative574

linkage disequilibria caused by epistasis (although drift may play a significant role by575

increasing the distance between the mean phenotype and the optimum, and therefore576

the magnitude of directional selection). The Hill-Robertson effect may become more577

important in parameter ranges where the QLE approximation fails (strong selection578

and/or low rate of sex); however, the lack of suitable analytical method to cover such579
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regimes makes it difficult to assess its relative effect.580

Recent experimental evolution studies showed that higher rates of sex or out-581

crossing may evolve in populations adapting to a new environment or coevolving with582

a pathogen, possibly through the generation of advantageous genotypes by recombina-583

tion and segregation (Becks and Agrawal, 2010, 2012; Morran et al., 2011; Luijckx et584

al., 2017). In adapting populations of monogonont rotifers, Becks and Agrawal (2012)585

showed that sexually produced offspring tend to have a lower mean fitness and a higher586

variance in fitness than asexually produced offspring, in agreement with predictions587

from models with concave fitness functions such as the one used in this paper. How-588

ever, how to relate the effect of sex on the mean and variance in fitness of offspring589

with the strength of indirect selection for sex is not immediately obvious. Transposing590

Barton’s (1995) and Charlesworth and Barton’s (1996) analysis of recombination mod-591

ifier models to our sex modifier model, we showed that simple relations exist between592

the short and long-term selection gradients for sex and the effect of sex on the fitness593

of offspring (equations 34 – 36). However, several important caveats must be noted:594

(i) these relations only hold in the QLE regime, and thus break down when the rate of595

sex in the population is low; (ii) they depend on average recombination rates between596

loci affecting fitness and loci affecting the rate of sex (through rh,1 and rh,2 in equa-597

tion 34), which are generally unknown (although lower bounds for selection gradients598

can be obtained by replacing these terms by their values under free recombination,599

i.e. rh,1 = 3/4 and rh,2 = 3/8); (iii) the long-term selection gradient is expressed in600

terms of the effect of sex on the additive variance in fitness among offspring, which601

will generally be more difficult to measure than the variance in fitness. Nevertheless,602

estimations of the effect of sex on the mean and variance in fitness among offspring603
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still convey important information on the existence and sign of short and long-term604

selection gradients on sex (e.g., Peters and Otto, 2003; Sharp and Otto, 2016).605

For a given genomic mutation rate U , our model predicts that increasing the606

dimensionality of the fitness landscape n increases selection for sex (Figure 8). Indeed,607

the variance of epistasis between mutations decreases as n increases (Martin et al.,608

2007), epistasis vanishing as n tends to infinity, since mutations become orthogonal in609

this limit (without any possible compensatory effect). In other words, strong epistatic610

interactions (in particular, compensatory effects between deleterious alleles) are more611

likely to occur when the dimensionality of the fitness landscape is low, and these612

strong interactions tend to favor asexual reproduction (that can maintain coadapted613

multilocus genotypes). However, we can note that our model assumes that all loci have614

the same probability of affecting any trait: under a more modular genetic architecture615

where different sets of loci affect different sets of traits (modular pleiotropy, e.g., Welch616

and Waxman, 2003; Chevin et al., 2010; Chebib and Guillaume, 2017), the magnitude617

of epistatic interactions may be more dependent on the average number of traits coded618

by a given module than on the total number of selected traits, which may lead to619

different results. In general, the range of realistic values for the dimensionality of fitness620

landscapes remains difficult to assess: while a large number of traits in an organism621

may be under selection, many of those traits are probably correlated, reducing the622

effective dimensionality of the landscape (Martin and Lenormand, 2006). In VSV and623

φX174 viruses, the effective number of selected traits was estimated to be around624

10 and 45 (respectively) based on predictions from Fisher’s geometric model on the625

relation between Ne and population mean fitness (Tenaillon et al., 2007; Lourenço et626

al., 2011), but this number may be much higher in multicellular eukaryotes.627
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As we have seen, mutational bias is required for sex to be favored in a constant628

environment. Some evidence for mutational bias on quantitative traits has been ob-629

tained from Drosophila and Caenorhabditis elegans (e.g., Santiago et al., 1992; Lyman630

et al., 1996; Keightley and Ohnishi, 1998; Ostrow et al., 1997; Garćıa-Dorado et al.,631

1999); however, how to relate these data with the parameter θ measuring bias in our632

model is not immediately obvious. In particular, a downward mutational bias is often633

observed on traits that may be seen as fitness components, but such a bias is expected634

in our model at the optimum even when θ = 0 (since fitness can only decrease at an635

optimum). Traits that have a less direct relation with fitness sometimes show muta-636

tional bias (e.g., metabolite pool size, Davies et al., 2016), sometimes not (e.g., mitotic637

spindle traits, Farhadifar et al., 2016) but it is again difficult to relate such measures638

to θ, since the relation between these traits and fitness is generally poorly known.639

Information on θ may rather be obtained from the distribution of fitness effects of640

mutations. Indeed, bias causes mutation to push phenotypic traits in a given direction641

away from the optimum, so that the proportion of beneficial mutations should always642

stay below 0.5, even for small-effect mutations occurring in a non-optimal genotype.643

By contrast, in the absence of bias the proportion of beneficial mutations tends to 0.5644

as one moves away from the optimum, the convergence to 0.5 being faster for smaller-645

effect mutations. As a consequence of this high rate of compensatory mutations, drift646

load generally stays mild in the absence of bias unless population size is very small (the647

load being roughly proportional to n/N , e.g., Lande, 1980b; Hartl and Taubes, 1998;648

Poon and Otto, 2000), while it may reach much higher values when mutational bias is649

present, as shown in the present paper. Compensatory mutations has been best stud-650

ied in model organisms such as bacteriophages, bacteria, nematodes and yeasts where651
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they were shown to be common (e.g., Levin et al., 2000; Poon and Chao, 2005; Estes652

et al., 2011; Szamecz et al., 2014). However, more work is needed to better understand653

how the rate of compensatory mutations changes with the degree of maladaptation654

of individuals, in order to gain more insights on realistic levels of mutational bias (as655

modeled here).656

Finally, we can note that the equilibrium rate of sex in the population generally657

stays small when the cost of sex is moderate to strong (Figures 8, 9), the highest rates658

of sex being always achieved under complete bias (θ = 1), that is, when compensatory659

mutations are not possible. Similarly, low levels of costly sex are also maintained in660

most cases in models on the evolution of sex due to deleterious mutations without661

epistasis (Roze and Michod, 2010; Roze and Otto, 2012; Roze, 2014). Exploring to662

what extent higher levels of sex may be maintained in models including environmental663

change would thus be of interest, and will be the subject of future work.664
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APPENDIX: GENERAL QLE RESULTS837

Assuming that the distribution of phenotypic traits affecting fecundity in the838

population is approximately Gaussian and that selection is weak, a general expression839

for indirect selection on the rate of sex is given by (see Supplementary File S3 for840

derivation):841

∆indgσ ≈
n∑

α=1

∂ lnW

∂zα
Cg,σα +

∑
α≤β

∂ lnW

∂Cg,αβ

Mg,σαβ (A1)

where the second sum is over all possible pairs of selected traits, including α = β. Equa-842

tion A1 is equivalent to Charlesworth’s (1993) decomposition of the selection gradient843

for a recombination modifier allele into two terms (equation A10 in Charlesworth, 1993,844

see also Appendix 2 of Barton, 1995). The first term of equation A1 (equivalent to the845

term in δz in Charlesworth, 1993) represents indirect selection caused by the effect of846

sex on mean phenotypes. With our Gaussian, isotropic fitness function (equation 3),847

we have:848

∂ lnW

∂zα
= − zα

Vg,α + Vs
, (A2)

which is approximately −zα/Vs when selection is weak (Vg,α � Vs). In our model,849

directional selection occurs along the axis corresponding to the direction of the mu-850

tational bias, and therefore only the first term of the sum (for α = 1) will contribute851

when phenotypes are measured in the basis defined by equations 9 and 10. The second852

term of equation A1 (equivalent to the term in δVg in Charlesworth, 1993) represents853

indirect selection caused by the effect of sex on the genetic variance-covariance matrix:854

∂ lnW/∂Cg,αβ describes how mean fitness is affected by the genetic covariance between855

traits α and β, while the third moment Mg,σαβ = E [(gσ − gσ) (gα − gα) (gβ − gβ)]856

(where E stands for the average over all individuals) describes to what extent the857
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genetic covariance between traits α and β differs between subsets of the populations858

with different rates of sex. As shown in Supplementary File S3, under an isotropic,859

Gaussian fitness function and measuring phenotypes in the basis defined by equations860

9 and 10, only the terms with α = β differ from zero, and the second term of equation861

A1 thus becomes
∑n

α=1

(
∂ lnW/∂Vg,α

)
Mg,σαα. The selection gradient ∂ lnW/∂Vg,α862

measures the strength of stabilizing selection on trait α, and is given by:863

∂ lnW/∂Vg,α = − 1

2 (Vg,α + Vs)
+

1

2

(
∂ lnW

∂zα

)2

≈ − 1

2Vs

(
1− zα

2

Vs

) (A3)

where again the term zα
2 will differ from zero only for the first phenotypic trait in the864

basis defined by equations 9 and 10. Note that the second term of equation A1 does not865

appear in classic expressions describing the effect of selection on correlated characters866

(Lande, 1979), as these assume a multivariate Gaussian distribution of phenotypic867

traits. Here we cannot assume that the joint distribution of the rate of sex σ and of the868

traits affecting fecundity is multivariate Gaussian: in particular, sex tends to increase869

Vg,α by breaking negative genetic associations (linkage disequilibria between alleles870

with compensatory effects on trait α), generating a positive third moment Mg,σαα.871

Following Charlesworth (1993) and Barton (1995), the moments Cg,σα and872

Mg,σαβ that appear in equation A1 may be expressed in terms of the genetic vari-873

ance for the rate of sex Vg,σ and genetic variances (and covariances) for selected traits874

using a QLE argument. The derivation (shown in Supplementary File S3) supposes875

that selection is weak relative to effective recombination rates between loci (and thus876

that the rate of sex is not too low), so that linkage disequilibria remain small. Fur-877

thermore, it neglects the effects of genetic associations involving more than three loci.878
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Under these assumptions, one obtains for Mg,σαβ:879

Mg,σαβ ≈ −
∆selDαβ
rh,1 σ

2 Vg,σ (A4)

where rh,1 is defined in the main text. The term ∆selDαβ in the numerator of equation880

A4 measures the change in Dαβ (per generation) due to selection, where Dαβ is the881

contribution of linkage disequilibria to the genetic covariance between traits α and882

β. As shown in Supplementary File S3, when phenotypes are measured in a basis883

that eliminates covariances between traits, we have (assuming that the number of loci884

affecting selected traits is large):885

∆selDαβ ≈
[
(1 + Iαβ)

∂ lnW

∂Cg,αβ

− ∂ lnW

∂zα

∂ lnW

∂zβ

]
Vg,αVg,β (A5)

where Iαβ equals 1 if α = β, and 0 otherwise. Under an isotropic, Gaussian fitness886

function, it is possible to show that the term between brackets in equation A5 equals887

0 when α 6= β, while it is approximately −1/Vs when α = β (Supplementary File S3,888

equation A3). In this case, equations A3 – A5 yield equation 32 in the main text.889

The QLE expression for the genetic covariance Cg,σα that appears in the first890

term of equation A1 writes (see Supplementary File S3 for derivation):891

Cg,σα ≈ −
(

1

rh,2 σ
− 1

rh,1

)
1

σ2

n∑
β=1

∂ lnW

∂zβ
(∆selDαβ)Vg,σ (A6)

where rh,2 is defined in the main text. Under an isotropic, Gaussian fitness function,892

equations A2 – A5 yield equation 33 in the main text.893
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Table 1: Parameters and variables of the model.894

895

N Population size

n Number of selected traits

m Degree of pleiotropy of mutations

ρ = m/n Scaled pleiotropy

Ve Environmental variance (on selected traits)

ω2 Strength of stabilizing selection on phenotypic traits

Vs = ω2 + Ve Strength of stabilizing selection on breeding values gα

Wg,max = (ω2/Vs)
n/2

Mean fitness of an optimal genotype

` Number of loci affecting selected traits

u Mutation rate per locus per generation

U = u ` Overall mutation rate on loci affecting selected traits

R Genome map length

a2 Variance of mutational effects on selected traits

b Mutational bias on selected traits

θ = b2/ (a2 + b2) Scaled mutational bias

〈X〉 Expected value of X at mutation-selection-drift equilibrium

sd

Average deleterious effect of mutations on log fitness (in an

optimal genotype)

zα Value of phenotypic trait α (in a given individual)

gα, eα Genetic and environmental components of trait α

896
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897

gαj Effect of the allele present at locus j on trait α

zα Average value of trait α (in the population)

Vg,α Genetic variance for trait α (variance of gα)

Cg,αβ Genetic covariance between traits α and β

Dαα, Dαβ Effect of linkage disequilibria on Vg,α and Cg,αβ

rαj Effect of allele 1 at locus j on trait α

pj, qj Frequencies of allele 1 and allele 0 at locus j

s Investment into sexual reproduction

c Cost of sex

σ = s
c(1−s)+s

Rate of sex (proportion of sexually produced offspring

among maternally produced offspring)

σ Mean rate of sex in the population

Vg,σ Genetic variance for the rate of sex σ

`s Number of loci affecting s

Us Mutation rate per generation on loci affecting s

a2s Variance of mutational effects on s

Ve, s Environmental variance on s

898
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g1

g2 g1'

g2'

899

Figure 1. Effect of mutational bias, illustrated for n = 2 (the fitness optimum900

corresponds to the axes’ origin). The black curves show the shape of the frequency901

distribution of individuals with different values of traits g1 and g2 (blue axes). Due902

to the symmetry of our model, mutational bias tends to displace g1 and g2 from their903

optimal values by the same amount, and generates a positive covariance among traits.904

Traits g1
′ and g2

′ are defined by rotating the phenotypic basis (equations 9 and 10, red905

axes) so that the covariance between g1
′ and g2

′ is zero, while mutational bias displaces906

phenotypes along the g1
′ axis.907
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……….	

map	length	R	

locus	affec2ng	phenotypic	traits	
zα	(biallelic)	

locus	affec2ng	investment	in	sex	s	
(mul2allelic)	

908

Figure 2. Simulated genetic architecture. Traits affecting fecundity are coded by `909

biallelic loci uniformly distributed along a chromosome with map length R Morgans.910

Investment in sex is coded by `s multiallelic loci, which are also regularly spaced along911

the chromosome. When `s = 1, the locus affecting investment in sex is located at the912

mid-point of the chromosome.913
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914

Figure 3. Top: average mutation load as a function of the mean fitness effect of915

mutations sd, for different rates of sex σ and different degrees of mutational bias θ.916

Dots: simulation results (note that all points are superposed for sd = 1). In this917

and the following figures, error bars (computed by splitting the last generations of the918

simulation into 6 batches of 104 generations and calculating the standard error over919

batches) are smaller than the size of symbols in most cases. The horizontal dashed line920

correspond to equation 24 (1 − e−U), the green dashed curve to equation 22 and the921

solid blue curve to equation 25. Bottom: estimated effective population size Ne (see922

Methods) for the same parameter values. Parameter values are N = 5000, U = 0.5,923

` = 104, n = 50, m = 5, R = 10.924
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Figure 4. Average mutation load in asexual (left) and sexual (right) populations as a926

function of the mean fitness effect of mutations sd, for different degrees of mutational927

bias θ. The horizontal dashed lines correspond to equation 24 (1 − e−U). Left: the928

colored dashed curves correspond to equation 22, and the solid blue curve to equation929

25. Right: the dotted curves correspond to equation 23, and the solid curve to equation930

26. Parameter values are as in Figure 3.931
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Figure 5. Average mutation load in asexual (left) and sexual (right) populations as933

a function of the mean fitness effect of mutations sd, for different numbers of loci `934

affecting selected traits (top) and different values of population size N (bottom). The935

horizontal dashed lines correspond to equation 24 (1 − e−U), the dashed curves to936

equation 22, and the dotted curves to equation 23. Parameter values are as in Figure937

3, with θ = 0.1.938
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Figure 6. Average mutation load in asexual (left) and sexual (right) populations as940

a function of the mean fitness effect of mutations sd, for different degrees of pleiotropy941

of mutations m and numbers of selected traits n. In the middle panels, mθ is kept942
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constant by decreasing θ as m increases, while m/n is kept constant in the bottom943

panels by increasing m as n increases (i.e., m = 4, 6 and 10 when n = 40, 60 and 100,944

respectively). The horizontal dashed lines correspond to equation 24 (1 − e−U), the945

dashed curves to equation 22, and the dotted curves to equation 23. Parameter values946

are as in Figure 3 with θ = 0.1 and n = 50 unless specified otherwise.947
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Figure 7. Mean rate of sex in the population at equilibrium as a function of the949

degree of mutational bias θ, for different values of the number of loci `s affecting950

investment in sex. Parameter values: N = 5000, sd = 10−3, n = 50, m = 5, ` = 104,951

U = 0.5, R = 10, c = 1.2, Us = 10−3, a2s = Ve, s = 5 × 10−5, initial investment in sex:952

sinit = 0.05. In this and the following figures, error bars were computed by splitting the953

last generations of the simulation into 15 batches of 105 generations and calculating954

the standard error over batches.955
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Figure 8. Mean rate of sex at equilibrium as a function of the degree of mutational957

bias θ, for different values of population size N , number of selected traits n, degree958

of pleiotropy m and cost of sex c. Parameter values are as in Figure 7 with `s = 9959

unless specified otherwise. The m/n ratio is kept constant (and equal to 0.1) in the960

panel showing results for different values of n (top right panel), i.e., m = 1, 2 and 5961

for n = 10, 20 and 50, respectively.962
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Figure 9. Mean rate of sex at equilibrium as a function of the degree of mutational964

bias θ, for different values of the number of selected loci `, average deleterious effect965

of mutations sd, genome map length R and overall mutation rate on selected traits U .966

Parameter values are as in Figure 7 with `s = 9 unless specified otherwise.967
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Figure 10. Short and long-term selection gradients for sex as a function of the mean969

rate of sex in the population, for different values of sd. The dots show βshort and βlong970

estimated using equations 30 – 31 (divided by Vg,σ) and equations A2 – A3. Solid971

curves correspond to equations 32 – 33 (using the values of σ, zα and Vg,α measured972

in the simulations), and dashed curves to equations 34 – 36 (where ∆1 and ∆2 are973

measured in the simulations as explained in the main text). Parameter values are as974

in Figure 7 with `s = 9 and θ = 0.1, leading to rh,1 ≈ 0.66 and rh,2 ≈ 0.13.975
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Figure S1. Same as Figure 3 in the main text, comparing θ = 0 and θ = 0.5.
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Figure S2. TermsWg = exp [−
∑n

α=1 〈gα2〉 / (2Vs)], WVg = exp [−
∑n

α=1 〈Vg,α〉 / (2Vs)]

representing the effect of departures of mean phenotypes from the optimum (Wg,

circles, solid lines) and the effect of genetic variance (WVg , squares, dashed lines)

on the mutation load (L ≈ 1 − WgWVg , see Supplementary File S2), for different

values of sd and θ. Parameter values are as in Figures 3 and S1. Note that the lines

simply connect simulation results and do not correspond to analytical approximations.

Mutational bias causes an increase in load through Wg.
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Figure S3. Same as Figure 4 in the main text, showingWg = exp [−
∑n

α=1 〈gα2〉 / (2Vs)]

(circles, solid lines) and WVg = exp [−
∑n

α=1 〈Vg,α〉 / (2Vs)] (squares, dashed lines).

3



●●

●

●

●●●●●

●

●

●
●

●

●

●●●

●

●

●
●●

●

●

●

●

● ℓ = 100
● ℓ = 1000
● ℓ = 10000

110-210-410-6
sd

0.2

0.4

0.6

0.8

1.0
L

σ = 0

●
●

●

●

●●●●●

●
●

●
●

●

●
●●●

●●

●
●●●●

●

●

● ℓ = 100
● ℓ = 1000
● ℓ = 10000

110-210-410-6
sd

0.2

0.4

0.6

0.8

1.0
L

σ = 1

●

●●●●●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●●

●

●

●

●

● N = 100
● N = 1000
● N = 5000

110-210-410-6
sd

0.2

0.4

0.6

0.8

1.0
L

σ = 0

●

●

●

●
●●

●

●

●

●●

●●

●

●
●

●

●

●●

●
●●●●

●

●

● N = 100
● N = 1000
● N = 5000

110-210-410-6
sd

0.2

0.4

0.6

0.8

1.0
L

σ = 1

Figure S4. Same as Figure 5 in the main text, with θ = 0.5.
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Figure S5. Same as Figure 5 in the main text, showingWg = exp [−
∑n
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(circles, solid lines) and WVg = exp [−
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Figure S6. Same as Figure S4, showing Wg = exp [−
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Figure S7. Same as Figure 6 in the main text, showingWg = exp [−
∑n

α=1 〈gα2〉 / (2Vs)]

(circles, solid lines) and WVg = exp [−
∑n

α=1 〈Vg,α〉 / (2Vs)] (squares, dashed lines).
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FILE S1: DESCRIPTION OF SIMULATION PROGRAMS

The genome of each individual consists in a single linear chromosome with map

length R (average number of cross-overs at meiosis). The ` loci affecting the n traits

under stabilizing selection are biallelic and equally spaced along the chromosome, the

genome of an individual at these loci being represented by a set of bits (0 or 1). At

the beginning of the simulation, the effects of allele 1 at each locus on the different

phenotypes are drawn and stored in a table: as explained above, each locus only

affects a subset of m randomly sampled traits, the effect on each of these traits being

drawn from a Gaussian distribution with standard deviation a =
√

2Vs (1 − θ) sd/m

and average b =
√

2Vs θ sd/m. At the start of each generation, genetic components gα

are computed for each individual given its genotype, and environmental components

eα are drawn from a Gaussian distribution with mean 0 and variance Ve, fixed to 1/n

to avoid that fitness reaches very low values when the number of selected traits is large.

The fitness of each individual is then computed according to equation 3 in the main

text, where ω2 is fixed to 10; however, as noted above, the values of ω2 and Ve should

have little effect on the results (for given values of sd and θ), since Vs = ω2 + Ve may

be considered as a scaling factor.

Investment in sexual reproduction s is coded by `s loci, which are also equally

spaced along the chromosome. These loci are multiallelic, investment in sex being

given by:

s = sinit +
`s∑
i=1

gsi + es (1)

where sinit is the initial investment in sex, gsi the effect of locus i on s, and es an

environmental component drawn from a centered Gaussian distribution with variance

1



Ve, s. If the value of s obtained from equation 1 is lower than 0 or higher than 1, it

is then set to 0 or 1 (respectively). During a number of preliminary generations, gsi

is fixed to zero for all loci affecting the rate of sex. Then, mutation occurs at a rate

Us per generation on the whole set of `s loci. When a mutation occurs at locus i, a

quantity drawn from a centered Gaussian distribution with variance a2s is added to gsi.

For each of the N individuals of the next generation, a maternal parent is

sampled with a probability proportional to W
(
1 − s+ s

c

)
, where W is its fitness and

s its investment into sex. With probability 1−σ (where σ is given by equation 13 in the

main text), the new individual is produced asexually and carries the same genotype

as its mother, except for new mutations (the number of mutations on biallelic loci

affecting the traits under stabilizing selection is drawn from a Poisson distribution with

parameter U). With the complementary probability, the new individual is produced

sexually; in this case a paternal parent is sampled with a probability proportional to

Ws, and a recombinant offspring is produced (the number of cross-overs occurring at

meiosis is sampled from a Poisson distribution with parameter R, and the position of

each cross-over is drawn from a uniform distribution along the chromosome). Every

100 generations, the mean investment in sex, mean rate of sex, mean fitness, mean

trait values, genetic variances and covariances among traits and some higher moments

of phenotypic distributions are recorded by the program.
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FILE S2: APPROXIMATIONS FOR THE EFFECT OF MUTATIONAL BIAS ON

MEAN FITNESS

We explain here the derivation of the approximations given in the main text

for the effect of mutational bias on the load, assuming a Gaussian fitness function

and biallelic loci. Throughout the following, the notation X (also denoted E [X])

stands for the average of the quantity X over all individuals of the population, while

the notation 〈Y 〉 stands for the expected value of quantity Y in the population at

mutation-selection-drift equilibrium. In particular,
〈
W
〉

is the expected value of the

population mean fitness. Assuming that the variance in log-fitness among individuals

remains small, we have W ≈ elnW ; furthermore, assuming that the variance in lnW

due to drift is small yields:

〈
W
〉
≈
〈
elnW

〉
≈ e〈lnW〉. (1)

From equations 4 and 18 in the main text, this yields:

〈L〉 ≈ 1− exp

[
− 1

2Vs

n∑
α=1

〈
gα2
〉]

= 1− exp

[
− 1

2Vs

n∑
α=1

(
〈Vg,α〉+

〈
gα

2
〉)]

(2)

Equation 1 shows that the load can be decomposed into the two terms, WVg =

exp [−
∑n

α=1 〈Vg,α〉 / (2Vs)] and Wg = exp [−
∑n

α=1 〈gα2〉 / (2Vs)] representing the de-

crease in mean fitness due to genetic variance maintained in the population, and to

deviations of the mean phenotype from the optimum, respectively. If population size

is sufficiently large, the variance of mean phenotypes due to drift should remain small

(Lande, 1976; Charlesworth, 2013b), so that 〈gα2〉 ≈ 〈gα〉2; this is confirmed by sim-

ulations (results not shown). In the following, we thus derive approximations for 〈L〉

by computing expressions for 〈gα〉 and 〈Vg,α〉 in different limit cases.
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Genetic associations and decomposition of the genetic variance. Using the

notation of Barton and Turelli (1991) and Kirkpatrick et al. (2002), we denote pi =

E [Xi] the frequency of allele 1 at locus i and define ζi as:

ζi = Xi − pi. (3)

Furthermore, products of ζi variables are denoted:

ζU =
∏
i∈U

ζi (4)

where U represents a set of loci. For example, for U = {i, j}, we have:

ζij = (Xi − pi) (Xj − pj) . (5)

Finally, genetic associations DU are defined as averages of ζU variables over all indi-

viduals:

DU = E [ζU] (6)

In particular, Dij is the linkage disequilibrium between loci i and j. As we will see,

associations involving repeated indices (such as Diij = E
[
(Xi − pi)2 (Xj − pj)

]
) some-

times appear in the computations. Using the fact that Xi
2 = Xi (since Xi equals 0 or

1), repeated indices can be eliminated using the relation:

DUii = piqiDU + (1− 2pi)DUi (7)

with qi = 1 − pi (e.g., equation 5 in Kirkpatrick et al., 2002). In particular (and

because Dj = E [Xj − pj] = 0), we have Diij = (1− 2pi)Dij. Similarly, Diijj =

piqipjqj + (1− 2pi) (1− 2pj)Dij, while Dii = piqi.

The genetic variance for trait α in the population is given by:

Vg,α = E
[
(gα − gα)2

]
(8)
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From equations 5 and 6 in the main text:

gα = E

[∑̀
i=1

rαiXi

]
=
∑̀
i=1

rαi pi (9)

so that 〈gα〉 =
∑

i rαi 〈pi〉. Using the definitions above, we have:

Vg,α = E

(∑̀
i=1

rαi (Xi − pi)

)2


= E

(∑̀
i=1

rαi ζi

)2
 = E

[∑
i,j

rαi rαj ζi ζj

] (10)

where the last sum is over all i and j (including i = j). Using equations 4 and 6, one

obtains:

Vg,α =
∑̀
i=1

rαi
2 piqi +

∑
i 6=j

rαi rαj Dij. (11)

In the following, we assume that linkage disequilibria remain negligible, so that 〈Vg,α〉 ≈∑`
i=1 rαi

2 〈piqi〉.

Neglecting the effects of selection on mean trait values and genetic variance.

Simple approximations for 〈gα〉 and 〈Vg,α〉 are obtained for the regime where sd is so

low that selection has negligible effects on 〈pi〉 and 〈piqi〉, compared with the effects

of mutation and drift. Because drift does not change expected allele frequencies, the

change in 〈pi〉 over one generation is given by (neglecting the effect of selection):

〈pi〉t+1 = u+ (1− 2u) 〈pi〉t . (12)

yielding 〈pi〉 = 1/2 at equilibrium. Using the change in phenotypic basis given by

equations 9 and 10 in the main text, we have:

1

2Vs

n∑
α=1

〈gα〉2 =
1

2Vs

〈
g1′
〉2

(13)
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since only the first trait in the new basis (along which the mutational bias occurs)

should differ from zero, on average, at equilibrium. Equation 9 and equation 11 in the

main text then yield:

1

2Vs

n∑
α=1

〈gα〉2 =
1

4

(
` b̃1
′
)2

(14)

where b̃1
′ is the scaled magnitude of mutational bias.

Neglecting the effects of selection yields the following recursion for 〈piqi〉:

〈piqi〉t+1 ≈
(

1− 1

N

)
[u+ (1− 4u) 〈piqi〉t] (15)

so that 〈piqi〉 ≈ Nu/ (1 + 4Nu) at equilibrium (assuming large N and small u). Noting

that
∑

α

∑
i rαi

2 = 2Vs sd ` (see equation 7 in the main text), one obtains:

1

2Vs

n∑
α=1

〈Vg,α〉 ≈ sd
NU

1 + 4Nu
. (16)

Equations 2, 14 and 16 yield the following approximation for the load (assuming

〈gα2〉 ≈ 〈gα〉2):

〈L〉 ≈ 1− exp

[
−sd

NU

1 + 4Nu
− 1

4

(
` b̃1
′
)2]

, (17)

equivalent to equation 8 in Roze and Blanckaert (2014) in the absence of mutational

bias (b̃1
′ = 0). Comparisons with individual-based simulations show that equation 17

does indeed provide correct predictions when sd is very low (see Figures 2-4 in the

main text). As sd increases, 〈gα〉 and 〈Vg,α〉 depart more and more from equations 14

and 16; however, simulations indicate that equation 16 stays valid over a wider range

of values of s than equation 14, in agreement with previous observations that selec-

tion may have significant effects on mean trait values even when 〈piqi〉 at each locus is

mainly controlled by mutation and drift (Campbell, 1984; Barton, 1989; Charlesworth,

2013a). Based on this, we can derive a better approximation for low sd by taking the

4



effect of selection on 〈gα〉 into account, but still neglect the effect of selection on 〈Vg,α〉,

as shown in the next subsection.

Effect of selection on mean trait values in the low sd regime. From equa-

tion 12, we have:

〈gα〉t+1 = u
∑
i

rαi + (1− 2u) (〈gα〉t + 〈∆selgα〉t) (18)

where 〈∆selgα〉 is the change in 〈gα〉 due to selection, given by:

〈∆selgα〉 =

〈
E

[
Wg

W
gα

]〉
− 〈gα〉 =

〈
E

[
Wg

W
(gα − gα)

]〉
. (19)

Assuming weak selection (Vg,α/Vs small, of order ε), we have from equation 4 in the

main text (to the first order in ε):

Wg

Wg,max

≈ 1− 1

2Vs

n∑
α=1

gα
2 = 1− 1

2Vs

n∑
α=1

[
gα

2 + 2 (gα − gα) gα + (gα − gα)2
]
, (20)

yielding:

W

Wg,max

≈ 1− 1

2Vs

n∑
α=1

[
gα

2 + Vg,α
]
, (21)

and thus:

Wg

W
≈ 1− 1

Vs

n∑
α=1

gα (gα − gα)− 1

2Vs

n∑
α=1

[
(gα − gα)2 − Vg,α

]
. (22)

From equations 19 and 22, one obtains:

〈∆selgα〉 ≈ −
1

Vs

n∑
β=1

〈gβ Cg,αβ〉 −
1

2Vs

n∑
β=1

〈Mg,αββ〉 (23)

where Mg,αββ is the third moment E
[
(gα − gα) (gβ − gβ)2

]
. Assuming that the distri-

bution of phenotypes in the population stays close to a Gaussian distribution, Mg,αββ

should be close to zero. Furthermore, assuming that fluctuations in gβ and Cg,αβ due
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to drift remain small, 〈gβ Cg,αβ〉 ≈ 〈gβ〉 〈Cg,αβ〉. Measuring traits in the phenotypic

basis defined by equations 9 and 10 in the main text (so that Cg,αβ = 0 for α 6= β),

one obtains the following expression for
〈
g1′
〉

at equilibrium (from equations 18 and

23): 〈
g1′
〉
≈ U b1

′

1− (1− 2u)
(

1− 〈Vg,1
′〉

Vs

) . (24)

Neglecting the effects of selection on 〈Vg,1′〉 ≈
∑`

i=1 (r1i
′)2 〈piqi〉 and noting that∑`

i=1 (r1i
′)2 = m

n
(a2 +mb2) ` = 2Vs sd `

1
n

[1 + θ (m− 1)] (using equation 9 in the main

text), we have:

〈Vg,1′〉 ≈ 2Vs sd
1

n
[1 + θ (m− 1)]

NU

1 + 4Nu
. (25)

From equations 24 and 25, one obtains (assuming u and sd are small):

〈
g1′
〉
≈ ` b1

′

2
[
1 + sd

n
[1 + θ (m− 1)] N`

1+4Nu

] (26)

Equations 2, 16 and 26 yield (assuming 〈gα2〉 ≈ 〈gα〉2):

〈L〉 ≈ 1− exp

−sd NU

1 + 4Nu
−

(
` b̃1
′
)2

4
[
1 + sd

n
[1 + θ (m− 1)] N`

1+4Nu

]2
 . (27)

Comparisons with individual-based simulations confirm that equation 27 provides bet-

ter predictions than equation 17 in the case of sexual populations, as long as sd is suf-

ficiently small (see Figures 3-5 in the main text). Equation 27 fails when sd is not very

small, however, as selection affects genetic variances at equilibrium. Unfortunately, we

could not obtain any simple expression for the genetic variance (and mean fitness) in

this regime for arbitrary θ, although an approximation can be obtained for θ = 1, as

shown in the next subsection.

6



Effect of selection on genetic variance and approximations for the mutation-

selection regime. Neglecting linkage disequilibria, genetic variances can be expressed

in terms of the genetic diversities piqi at the different loci (equation 11). Extending

equation 15 to include selection yields:

〈piqi〉t+1 ≈
(

1− 1

N

)[
u+ (1− 4u)

〈
pseli q

sel
i

〉
t

]
. (28)

Furthermore, noting that piqi = Dii = E [ζii], we have, to the first order in ε:

〈
pseli q

sel
i

〉
=

〈
E

[
W

W
ζii

]〉
. (29)

Decomposing gα, gα and Vg,α as sums over loci (using equations 9 and 11) and intro-

ducing the centered variables ζi = Xi − pi, we have from equation 22:

Wg

W
= 1 +

∑̀
i=1

aiζi +
∑
i,j

aij (ζij −Dij) (30)

with ai = − 1
Vs

∑n
α=1 gα rαi and aij = −

∑n
α=1 (rαi rαj) / (2Vs), both of order ε (Barton

and Turelli, 1991). Using equations 29 and 30, and neglecting linkage disequilibria,

one obtains:

〈
pseli q

sel
i

〉
= 〈piqi〉 −

1

Vs

n∑
α=1

rαi 〈zα (1− 2pi) piqi〉 −
1

2Vs

n∑
α=1

rαi
2
〈
(1− 2pi)

2 piqi
〉
. (31)

Equations 28 and 31 lead to the following recursion for the genetic variance:

〈Vg,α〉t+1 ≈
(

1− 1

N

)[
2Vs sd

U

n
+ (1− 4u)

(
〈Vg,α〉t −

1

Vs

n∑
β=1

〈zβ Cααβ〉t

− 1

2Vs

∑̀
i=1

rαi
2

n∑
β=1

rβi
2
〈
(1− 2pi)

2 piqi
〉
t

)]
.

(32)

It is not possible to derive an expression for 〈Vg,α〉 at equilibrium under mutation,

selection and drift from equation 32 — one may assume that 〈zβ Cααβ〉 ≈ 〈zβ〉 〈Cααβ〉

and that 〈Cααβ〉 ≈ 0, and assume that piqi is small at each locus so that (1− 2pi)
2 ≈ 1
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(and the second sum on the second line of equation 32 becomes
∑

β 〈Vg,β〉), but the

resulting approximation does not work well when sd is small (as piqi may not be small),

nor when sd is large and in the presence of mutational bias (as 〈Cααβ〉 6= 0, results not

shown). Neglecting drift, and in the absence of mutational bias (θ = 0), the change in

piqi over one generation is (from equations 28 and 31):

∆ (piqi) ≈ u (1− 2pi)
2 − 1

2Vs

n∑
α=1

rαi
2 (1− 2pi)

2 piqi (33)

so that either pi = 1/2 or piqi = 2Vs u/ (
∑n

α=1 rαi
2) at equilibrium. When sd � u,

most loci should be at the second equilibrium, in which case Vg,α ≈ 2Vs U/n, and

L ≈ 1− e−U .

Another approximation can be obtained for the case where θ = 1 (no variance

of mutational effects) and when drift is negligible. Indeed, in this case alleles 1 are

deleterious, and pi should thus be small at equilibrium. To the first order in pi,

equations 28 and 31 give for the change in pi over one generation:

∆pi ≈ u− 1

Vs

n∑
α=1

rαi gα pi −
1

2Vs

n∑
α=1

rαi
2pi (34)

which may also be written as (using the change in phenotypic basis given by equations

9 and 10 in the main text):

∆pi ≈ u− 1

Vs
b1
′ g1′ pi − sd pi . (35)

From this, the change in g1′ ≈
∑

i r1i
′ pi is:

∆g1′ ≈ U b1
′ − 1

Vs
b1
′ (g1′)2 − sd g1′ (36)

yielding, at equilibrium:

g1′√
2Vs
≈
√

8b̃1′2U + sd2 − sd
4b̃1′

. (37)
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Finally, we have
∑

α Vg,α ≈
∑

i

∑
α rαi

2pi, which is also 2Vs sd ` pi (as pi should be the

same at all loci when θ = 1). Noting that g1′ ≈ b1
′ ` pi, we thus have:

∑n
α=1 Vg,α
2Vs

≈ sd

b̃1′

(
g1′√
2Vs

)
. (38)

Equations 2, 37 and 38 finally lead to:

L ≈ 1− exp

−4b̃1
′2U + sd

(√
8b̃1′2U + sd2 − sd

)
8b̃1′2

 (39)

or, in terms of sd, ρ and U :

L ≈ 1− exp

[
−

4ρU − sd +
√
sd (8ρU + sd)

8ρ

]
. (40)

Simulations confirm that equation 40 provides accurate predictions for θ = 1 (in sexual

populations), when sd is sufficiently high (see Figure 4 in the main text).

9



LITERATURE CITED

Barton, N. H. 1989. The divergence of a polygenic system subject to stabilizing selec-

tion, mutation and drift. Genet. Res. 54:59–77.

Barton, N. H. and M. Turelli. 1991. Natural and sexual selection on many loci. Genetics

127:229–255.

Campbell, R. B. 1984. The manifestation of phenotypic selection at constituent loci.

I. Stabilizing selection. Evolution 38:1033–1038.

Charlesworth, B. 2013a. Stabilizing selection, purifying selection, and mutational bias

in finite populations. Genetics 194:955–971.

———. 2013b. Why we are not dead one hundred times over. Evolution 67:3354–3361.

Kirkpatrick, M., T. Johnson, and N. H. Barton. 2002. General models of multilocus

evolution. Genetics 161:1727–1750.

Lande, R. 1976. Natural selection and random genetic drift in phenotypic evolution.

Evolution 30:314–334.

Roze, D. and A. Blanckaert. 2014. Epistasis, pleiotropy and the mutation load in

sexual and asexual populations. Evolution 68:137–149.

10



FILE S3: QLE MODEL FOR THE EVOLUTION OF SEX

We derive here expressions for the change in mean rate of sex in the limit of an

infinite population, using a quasi-linkage equilibrium (QLE) argument. For this, we

use Turelli and Barton’s (1990) method (see also Barton, 1995) to express the effect of

selection on genetic associations in terms of partial derivatives of lnW with respect to

mean trait values and genetic variances/covariances. Note that the derivations given

below are in principle valid for any number of possible alleles at each locus (not neces-

sarily biallelic loci) and any fitness function (not necessarily Gaussian), as long as the

distribution of phenotypes affecting fecundity stays approximately Gaussian.

Definitions. Extending the notation of Turelli and Barton (1990) to multiple traits,

we define the centered variable ζαj as:

ζαj = gαj − gαj (1)

(where again gαj is the effect of the allele present at locus j on trait α in a given

individual, and gαj its average over all individuals). Genetic associations are defined

as

CU = E [ζU] (2)

where E stands for the average over all individuals, and with ζU =
∏

x ζx, each x bearing

two elements, the trait α and the locus j. For example, Cαjαj = E
[
(gαj − gαj)2

]
while

Cαjαkβk = E [(gαj − gαj) (gαk − gαk) (gβk − gβk)]. Using these definitions, the genetic

1



variance for trait α can be written as:

Vg,α = E

(∑
j

ζαj

)2
 =

∑̀
j=1

Cαjαj +
∑
j 6=k

Cαjαk

= V 0
g,α +Dαα

(3)

where V 0
g,α =

∑
j Cαjαj is the “genic variance” for trait α (genetic variance in a popula-

tion with the same allele frequencies, at linkage equilibrium), and Dαα =
∑

j 6=k Cαjαk

is the effect of linkage disequilibria on the variance. Similarly, the genetic covariance

between traits α and β can be decomposed as:

Cg,αβ =
∑̀
j=1

Cαj βj +
∑
j 6=k

Cαj βk

= C0
g,αβ +Dαβ .

(4)

As explained in the main text, we assume that investment in sexual reproduction

s is also a polygenic trait with independent genetic and environmental contributions:

s = s+ gs + es (5)

where es is sampled in a Gaussian distribution with mean 0 and variance Ve, s, and

assuming additive effects of loci affecting s:

gs =
∑
j

gsj (6)

where gsj is the effect of the allele at locus j on investment in sex (we assume that loci

affecting the rate of sex do not affect the other traits). Assuming that the variance

in s in the population is sufficiently small (gs, ge small, of order η), the rate of sex

σ = s/ [c (1− s) + s] of an individual can also be decomposed into an additive genetic

and an environmental component:

σ = σ + gσ + eσ (7)
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with (to leading order in η):

σ ≈ s

c (1− s) + s
, gσ ≈

c

[c (1− s) + s]2
gs, Vg,σ ≈

c2

[c (1− s) + s]4
Vg, s . (8)

The expected change in σ over one generation (denoted ∆σ) corresponds to the change

in gσ in the parental generation due to differences in fecundities among individuals and

to the cost of sex. In the following, we derive deterministic approximations for ∆σ,

assuming that phenotypic traits affecting fecundity are normally distributed (this im-

plies that the number of loci affecting each of these traits is sufficiently large, each

locus having a sufficiently small effect on the trait). We will also use a quasi-linkage

equilibrium approximation, assuming that rates of sex and recombination are not too

small, so that genetic associations between loci are small and equilibrate fast relative

to change in allele frequencies. Finally, we will assume that the genetic variance in the

rate of sex in the population (Vg,σ) is small (however, we do not make any assumption

on the number of loci affecting the rate of sex). For this, we will decompose a genera-

tion into two steps: the first (“selection”) corresponds to the differential reproduction

of individuals due to differences in fecundity (according to the values of their pheno-

types z1, . . . zn), while the second (“reproduction”) corresponds to the effect of the cost

of sex and of sexual recombination (strictly, this second step also involves selection

when c > 1, since individuals investing more in sex are disfavored). In the next sec-

tions, we derive expressions for changes in mean breeding values during these two steps.

Effect of selection on mean breeding values. The effect of selection on gα can

be written as:

∆selgα = E

[
Wg

W
(gα − gα)

]
(9)
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where Wg is the mean fecundity of individuals with breeding values g = (g1, g2, . . .)

and W the mean fecundity of the whole population. Following Barton (1995), we

assume that selection is weak and approximate Wg/W by:

Wg

W
≈ 1 +

∑
α

(gα − gα)
∂ lnW

∂zα

+
∑
α≤β

[(gα − gα) (gβ − gβ)− Cg,αβ]
∂ lnW

∂Cg,αβ

.

(10)

(see Appendix A), where the last sum includes the terms for α = β, which involve

partial derivatives of lnW with respect to Vg,α. From equations 9 and 10, and assuming

a Gaussian distribution of breeding values, we recover the classic expression:

∆selgα =
∑
β

∂ lnW

∂zβ
Cg,αβ (11)

(Lande, 1979). The change in gσ is obtained similarly:

∆selgσ = E

[
Wg

W
(gσ − gσ)

]
. (12)

However, we can no longer assume that the joint distribution of investment into sex σ

and of traits affecting fecundity is multivariate normal (indeed, genetic variances and

covariances may differ between subgroups of individuals differing in their values of gσ,

due to the effect of sexual recombination on genetic associations). From equations 10

and 12, one obtains:

∆selgσ ≈
∑
α

∂ lnW

∂zα
Cg,σα +

∑
α≤β

∂ lnW

∂Cg,αβ

Mg,σαβ (13)

where Mg,σαβ is the moment E [(gσ − gσ) (gα − gα) (gβ − gβ)]. Equation 13 is equiva-

lent to Charlesworth (1993)’s decomposition of the selection gradient for a recombi-

nation modifier allele into two terms (equation A10 in Charlesworth, 1993, see also

Appendix 2 of Barton, 1995). The first part of equation 13 shows that under direc-

tional selection acting on trait α, a covariance between gα and gσ generates indirect
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selection on σ (this is equivalent to the term in δz in Charlesworth, 1993). The second

part of equation 13 (equivalent to the term in δVg in Charlesworth, 1993) corresponds

to indirect selection on σ due to different genetic variances and covariances for se-

lected traits among subgroups of individuals with different rates of sex. For example,

∂ lnW/∂Vg,α < 0 under stabilizing selection acting on a single trait α (the immediate

effect of increasing genetic variance is to decrease mean fitness) and in this situa-

tion we also expect that higher rates of sex tend to increase genetic variance, so that

E
[
(gσ − gσ) (gα − gα)2

]
> 0, and the second term of equation 13 selects against sex.

This term is equivalent to the “short-term effect” in models for the evolution of sex

(or recombination) with epistasis (e.g., Agrawal, 2006). Now, if the population mean

phenotype z = (z1, . . . zn) is displaced from the optimum, the higher genetic variance

associated with sex will increase the efficiency of selection, generating associations be-

tween higher values of gσ and values of gα closer to the optimum, that in turn favor

sex. This effect is represented by the first term of equation 13 and corresponds to the

“long term effect” (favoring sex due to an increased efficiency of selection).

Selection gradients ∂ lnW/∂zα and ∂ lnW/∂Cg,αβ take simple forms in the case

of a fully isotropic model with Gaussian stabilizing selection:

W = exp

[
−
∑

α (zα − θα)2

2ω2

]
(14)

where ω2 represents the strength of selection (the same for all traits), and where the

phenotypic optimum is located at θ = (θ1, θ2, . . . θn). A general expression for mean

fitness under Gaussian stabilizing selection (and when the maximal possible fitness is

1, as implied by equation 14) is given by:

W =
√

det
(
(S + P)−1 S

)
exp

[
−1

2
(z− θ)T (S + P)−1 (z− θ)

]
(15)
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(Gomulkiewicz and Houle, 2009), where det(A) is the determinant of matrix A, T

stands for matrix/vector transpose, S is a matrix determining the pattern of mul-

tivariate stabilizing selection, and P is the phenotypic variance-covariance matrix.

When fitness is given by equation 14, S = ω2 I (where I is the identity matrix). Fur-

thermore, our assumption of independent, identically distributed environmental effects

yields P = G + Ve I, where G is the genetic variance-covariance matrix (whose diago-

nal elements are genetic variances Vg,α, and off-diagonal elements genetic covariances

Cg,αβ). It is always possible to find an orthonormal basis in which the G matrix is

diagonal, that is, to define new phenotypic traits as linear combinations of the “true”

phenotypic traits so that the new traits are independent, and fitness is still given by

equation 14. Assuming that phenotypes are measured in this new basis, we show in

Appendix B that:

∂ lnW

∂zα
= − zα − θα

Vg,α + Vs
(16)

where Vs = ω2 + Ve, while:

∂ lnW

∂Vg,α
= − 1

2 (Vg,α + Vs)
+

1

2

(
∂ lnW

∂zα

)2

(17)

∂ lnW

∂Cg,αβ

=

(
∂ lnW

∂zα

)(
∂ lnW

∂zβ

)
, (18)

for α 6= β.

Change in mean rate of sex during reproduction. To compute the change

in gσ during reproduction (due to the cost of sex), we first compute the change in gs.

We have:

∆repgs = E′
[

c (1− s)
c (1− s′) + s′

(gs − gs′)
]

+ E′
[

s♀ s♂

s′ [c (1− s′) + s′]

(gs,♀ − gs′) + (gs,♂ − gs′)
2

] (19)

6



where the primes denote averages among individuals after selection (that is, weight-

ing each individual by its relative fecundity), and where the average on the second

line is over all possible pairs of female and male parents, s♀ and s♂ being the invest-

ments in sex of these parents, and gs,♀, gs,♂ their value of gs. Equation 19 can be

understood as follows. The term on the first line is the proportion of asexually pro-

duced offspring — which is (1− s′) /
(
1− s′ + s′

c

)
— multiplied by the change in the

mean value of gs among those offspring relative to the parents: for this, each parent is

weighted by its relative contribution to the pool of asexually produced offspring, which

is (1− s) / (1− s′). The term on the second line is the proportion of sexually produced

offspring — which is s′

c
/
(
1− s′ + s′

c

)
— multiplied by the change in the mean value

of gs among those offspring. On average, the mean value of gs among the offspring

of a given female and male is (gs,♀ + gs,♂) /2, where gs,♀ and gs,♂ are the values of gs

in the parents. Furthermore, the relative contributions of these parents to the pool of

sexually produced offspring are s♀/s
′ and s♂/s

′. Replacing s by s+ gs − gs′ + gs
′ + es

(and similarly for gs,♀, gs,♂) in equation 19, and using s′ = s+ gs
′ finally yields:

∆repgs = − c− 1

c (1− s′) + s′
Vg, s

′ . (20)

Equation 20 represents the effect of direct selection against sex (whenever c > 1), and

is equivalent to the expression derived in Roze (2014) in the case of a single biallelic

sex modifier locus. Strictly, s′ and Vg, s
′ in equation 20 are the mean and genetic

variance for investment in sex after selection (weighting each individual by its relative

fecundity). However, taking into account the change in s and Vg, s due to selection

would introduce terms in Vg, s
2 in equation 20; neglecting those terms, s′ and Vg, s

′

in equation 20 can thus be replaced by their values s and Vg, s at the start of the
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generation (before selection). From equations 8 and 20, one then obtains:

∆repgσ ≈ −
c− 1

1 + (c− 1)σ
Vg,σ . (21)

Assuming no mutational bias on σ, the change in the mean rate of sex over one

generation is given by:

∆σ = ∆selgσ + ∆repgσ . (22)

In the following, we derive approximate expressions for the moments Cg, sα and Mg, sαβ

that appear in the expression of ∆selgσ (equation 13). However before that, we will

compute an expression for the contribution of linkage disequilibria to the genetic vari-

ances and covariances between traits affecting fecundity (Dαβ =
∑

j 6=k Cαj βk, equations

3 and 4), at quasi-linkage equilibrium.

Genetic associations between selected loci. Neglecting genetic variance in the

rate of sex, Cαj βk at the next generation is given by:

C ′′αj βk = (1− σ)C ′αj βk + σ (1− rjk)C ′αj βk (23)

where the double prime denotes variables measured at the next generation (after re-

production), and rjk is the recombination rate between loci j and k. The first term of

equation 23 is the proportion of asexually produced offspring, multiplied by the genetic

association among those offspring, which is the same as among parents. The second

term is the proportion of sexually produced offspring, in which Cαj βk is decreased by

a factor 1− rjk due to recombination. Equation 23 can be written under the simpler

form:

C ′′αj βk = (1− ρjk)C ′αj βk (24)

8



where ρjk = σ rjk is the “effective” recombination rate between loci j and k.

The effect of selection on Cαj βk can be computed as follows (Turelli and Barton,

1990; Barton, 1995). We have:

C ′αj βk = E′ [(gαj − gαj ′) (gβk − gβk ′)] (25)

where again the prime denotes averages after selection (weighting each individual by

its relative fecundity). Equation 25 can also be written:

C ′αj βk = E′ [(gαj − gαj −∆selgαj) (gβk − gβk −∆selgβk)] . (26)

In the following, we use the notation C sel
U for genetic associations measured after

selection, but using as “reference values” (the gαj in equation 1) allelic averages before

selection: in particular, C sel
αj βk = E′ [(gαj − gαj) (gβk − gβk)]. Expanding equation 26

and noting that C sel
αj = E′ [gαj − gαj] = ∆selgαj, one obtains:

C ′αj βk = C sel
αj βk − (∆selgαj) (∆selgβk) . (27)

Furthermore, we have:

C sel
αj βk = E

[
Wg

W
ζαj βk

]
, ∆selgαj = E

[
Wg

W
ζαj

]
. (28)

From equation 10, and noting that gα−gα =
∑

j ζαj, while (gα − gα) (gβ − gβ)−Cg,αβ =∑
j,k (ζαj βk − Cαj βk) (where the last sum is over all pairs of loci j and k including

j = k), we have:

Wg

W
≈ 1 +

∑
α

∂ lnW

∂zα

∑
j

ζαj +
∑
α≤β

∂ lnW

∂Cg,αβ

∑
j,k

(ζαj βk − Cαj βk) . (29)

Equations 28 and 29 yield:

C sel
αj βk = Cαj βk +

∑
γ

∂ lnW

∂zγ

∑
i

Cγiαj βk

+
∑
γ≤δ

∂ lnW

∂Cg,γδ

∑
h,i

(Cγhδiαj βk − CγhδiCαj βk) .
(30)
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Equation 30 shows that Cαjαk is affected by higher-order associations (involving 3 or 4

loci). These associations are in turn generated by the effect of selection, and eroded by

recombination. In the following we assume that selection is sufficiently weak relative

to recombination, so that between-locus associations remain small (Turelli and Barton,

1990). Ignoring terms involving between-locus associations in the sums on the right-

hand-side of equation 30, only the terms for h = j, i = k and h = k, i = j in the last

sum remain, giving:

C sel
αjαk ≈ Cαjαk +

∑
γ≤δ

∂ lnW

∂Cg,γδ

(Cαj γj Cβkδk + Cαj δj Cβkγk) . (31)

Equations 28 and 29 also yield (neglecting between-locus associations):

∆selgαj =
∑
γ

∂ lnW

∂zγ

∑
i

Cαj γj +
∑
γ≤δ

∂ lnW

∂Cg,γδ

∑
h,i

Cαj γj δj . (32)

Cαj βk at QLE is obtained by solving C ′′αj βk = Cαj βk. From equations 24, 27, 31 and

32, this yields:

Cαj βk =

(
1

ρjk
− 1

)
∆selCαj βk (33)

with

∆selCαj βk =
∑
γ,δ

(1 + Iγδ)
∂ lnW

∂Cg,γδ

Cαj γj Cβkδk − (∆selgαj) (∆selgαk) . (34)

where Iγδ equals 1 if γ = δ, and 0 otherwise. Summing over all loci, one obtains for

Dαβ =
∑

j 6=k Cαj βk:

Dαβ ≈
(

1

ρh
− 1

)
∆selDαβ (35)

where ρh is the harmonic mean of ρjk over all pairs of loci affecting fecundity, and with

∆selDαβ ≈
∑
γ,δ

[
(1 + Iγδ)

∂ lnW

∂Cg,γδ

− ∂ lnW

∂zγ

∂ lnW

∂zδ

]
C0

g,αγ C
0
g,βδ . (36)

Because C0
g,αβ ≈ Cg,αβ in the QLE regime (weak linkage disequilibria), we may replace

C0
g,αγ and C0

g,βδ in equation 35 by Cg,αγ and Cg,βδ. If phenotypes are measured in a
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basis that eliminates genetic covariances among traits, one obtains from equations 35

and 36:

Dαα =
∑
j 6=k

Cαjαk ≈
(

1

ρh
− 1

)[
2
∂ lnW

∂Vg,α
−
(
∂ lnW

∂zα

)2
]
Vg,α

2 . (37)

When the fitness function is given by equation 14, this simplifies to (using equations

16 and 17):

Dαα ≈ −
(

1

ρh
− 1

)
Vg,α

2

Vg,α + Vs
(38)

corresponding to the result obtained by Bulmer (1985) under the assumption of ex-

changeable loci (equations A3c and A6a in Charlesworth, 1993).

Indirect selection for sex: “short-term effect”. As discussed earlier, the “short-

term effect” is represented by the term on the second line of equation 13, which depends

on moments Mg,σαβ = E [(gσ − gσ) (gα − gα) (gβ − gβ)] (for all traits α, β affecting fe-

cundity). From equation 8, we have:

Mg,σαβ ≈
c

[c (1− s) + s]2
Mg, sαβ (39)

with Mg, sαβ = E [(gs − gs) (gα − gα) (gβ − gβ)]. Furthermore, using our definition of

genetic associations, Mg, sαβ can be decomposed as:

Mg, sαβ =
∑
i,j,k

Csiαj βk (40)

where the sum is over all loci i affecting investment sex, and over all pairs of loci j and

k affecting traits α, β. A QLE approximation for Csiαj βk can be obtained as follows.

At the next generation, we have:

C ′′siαj βk = E′′ [(gsi − gsi′′) (gαj − gαj ′′) (gβk − gβk ′′)] (41)
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where again the double primes denote averages over individuals of the next generation

(after reproduction). Equation 41 can also be written:

C ′′siαj βk = E′′
[
(gsi − gsi′ −∆repgsi) (gαj − gαj ′ −∆repgαj)

× (gβk − gβk ′ −∆repgβk)
] (42)

where gsi
′, gαj

′, gβk
′ are the averages of gsi, gαj, gβk among selected parents (weighting

each parent by its relative fecundity), and ∆repgsi = gsi
′′ − gsi

′ the change in gsi

during reproduction, due to the cost of sex (and similarly for ∆repgαj and ∆repgβk).

In the following, we use the notation C rep
U for genetic associations measured after

reproduction, but using as “reference values” (the gαj in equation 1) allelic averages

after selection (gαj
′): for example, C rep

αj βk = E′′ [(gαj − gαj ′) (gβk − gβk ′)]. Expanding

equation 42 and noting that E′′ [gsi − gsi′] = ∆repgsi, one obtains:

C ′′siαj βk = C rep
siαj βk − (∆repgsi)C

rep
αj βk − (∆repgαj)C

rep
siβk

− (∆repgβk)C
rep
siαj + 2 (∆repgsi) (∆repgαj) (∆repgβk) .

(43)

The change in gαj during reproduction is generated by the cost of sex and by genetic

associations between locus j and loci affecting investment in sex, and is thus propor-

tional to Vg, s (the same is true for ∆repgβk). Furthermore, the sum over all i and j

of Csiβk is the genetic covariance between trait β and investment in sex s, which is

also proportional to Vg, s. As a consequence, the last three terms of equation 43 will

generate terms in O(Vg, s
2), and will thus be ignored, so that:

C ′′siαj βk ≈ C rep
siαj βk − (∆repgsi)C

rep
αj βk . (44)

Using a similar reasoning as when deriving equation 19, an expression for C rep
siαj βk is
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given by (using s′ ≈ s, and for j 6= k):

C rep
siαj βk = E′

[
c (1− s)

c (1− s) + s
ζsiαj βk

]
+ E′

[
s♀ s♂

s [c (1− s) + s]

(
rijk,∅ ζsiαj βk,♀ + r∅,ijk ζsiαj βk,♂

+ ri,jk ζsi,♀ ζαj βk,♂ + rjk,i ζαj βk,♀ ζsi,♂

+ rij,k ζsiαj,♀ ζβk,♂ + rk,ij ζβk,♀ ζsiαj,♂

+ rik,j ζsiβk,♀ ζαj,♂ + rj,ik ζαj,♀ ζsiβk,♂

)]
.

(45)

In equation 45, rS,T is the probability that a meiotic product inherits the set S of loci

from the maternal genome, and the set T of loci from the paternal genome, while ζS,♀,

ζS,♂ variables are measured in the maternal and paternal parent, respectively. Writing

s on the first line of equation 45 under the form s +
∑

h ζsh + es, and s♀, s♂ on the

second line as s+
∑

h ζsh,♀ + es,♀ and s+
∑

h ζsh,♂ + es,♂, one arrives at:

C rep
siαj βk =

[
1− s

c (1− s) + s
(1− rijk,∅ − r∅,ijk)

]
C ′siαj βk

+
1

c (1− s) + s

[
− (c− rijk,∅ − r∅,ijk)

∑
h

C ′shsiαj βk

+ (ri,jk + rjk,i)

(
C ′αj βk

∑
h

C ′shsi +
∑
l

C ′slαj βk
∑
h

C ′shsi

)

+ (rij,k + rk,ij)

(
C ′siαj

∑
h

C ′shβk +
∑
l

C ′sl siαj
∑
h

C ′shβk

)

+ (rik,j + rj,ik)

(
C ′siβk

∑
h

C ′shαj +
∑
l

C ′sl siβk
∑
h

C ′shαj

)]
.

(46)

Many of the terms of equation 46 may be neglected when Vg, s is small, using the

fact that sums over all loci of associations involving one or several “s” indices are

proportional to Vg, s: therefore, the terms on the last two lines of equation 46 and the

last term of the third line will generate terms in Vg, s
2. Furthermore, we will neglect

linkage disequilibria between loci affecting investment in sex, so that only the terms
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for h = i remain in the sums above, and equation 46 simplifies to:

C rep
siαj βk ≈ (1− ρijk)C ′siαj βk −

c− rijk,∅ − r∅,ijk
c (1− s) + s

C ′sisiαj βk

+
ri,jk + rjk,i
c (1− s) + s

C ′sisiC
′
αj βk

(47)

with ρijk = σ rijk, rijk = 1 − rijk,∅ − r∅,ijk being the probability that at least one

recombination event occurs between loci i, j and k. Because C ′sisiαj βk ≈ C ′sisiC
′
αj βk

to leading order, equation 47 further simplifies to:

C rep
siαj βk ≈ (1− ρijk)C ′siαj βk −

c− 1 + rjk
c (1− s) + s

C ′sisiC
′
αj βk (48)

The term ∆repgsi in equation 44 is given by:

∆repgsi = E′
[

c (1− s)
c (1− s) + s

ζsi

]
+ E′

[
s♀ s♂

s [c (1− s) + s]

(
ζsi,♀ + ζsi,♂

2

)]
. (49)

Neglecting linkage disequilibria between loci affecting the rate of sex, this yields:

∆repgsi ≈ −
c− 1

c (1− s) + s
C ′sisi. (50)

From equation 24, C rep
αj βk = (1− ρjk)C ′αj βk to leading order (that is, neglecting genetic

variation for the rate of sex), so that:

(∆repgsi)C
rep
αj βk ≈ −

c− 1

c (1− s) + s
(1− ρjk)C ′sisiC ′αj βk . (51)

Putting everything together, one obtains from equations 44, 48 and 51:

C ′′siαj βk ≈ (1− ρijk)C ′siαj βk −
c rjk

[c (1− s) + s]2
C ′sisiC

′
αj βk . (52)

The change in Csisi due to selection may be neglected under our assumption that Vg, s

is small (as it would generate terms in Vg, s
2). Furthermore, the effect of selection on

Csiαj βk can be neglected when selection is weak, as it involves higher-order associations
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between loci i, j, k and other loci, which are themselves generated by the effect of

selection at these loci. Using these approximations, equation 52 becomes:

C ′′siαj βk ≈ (1− ρijk)Csiαj βk −
c rjk

[c (1− s) + s]2
CsisiC

′
αj βk (53)

giving at QLE:

Csiαj βk ≈ −
1

ρijk

c rjk C
′
αj βk

[c (1− s) + s]2
Csisi . (54)

From the results of the preceding subsection, C ′αj βk ≈ (∆selCαj βk) /ρjk (where ∆selCαj βk

is given by equation 34), so that rjk C
′
αj βk ≈ ∆selCαj βk/σ. Equation 54 thus simplifies

to:

Csiαj βk ≈ −
1

rijk

c

s2
(∆selCαj βk)Csisi . (55)

The same reasoning as above can be used to compute Csiαj βj, which is found to be

negligible. Summing over all loci, one thus obtains:

Mg, sαβ ≈ −
1

rh,1

c

s2
(∆selDαβ)Vg, s (56)

where rh,1 is the harmonic mean of rijk over all triplets of loci involving one locus

affecting sex and two loci affecting fecundity. From this, we have (using equations 8

and 39):

Mg,σαβ ≈ −
∆selDαβ
rh,1 σ

2 Vg,σ . (57)

Indirect selection for sex due to the short-term effect (the second term of equation 13)

can thus be written approximately as:

− 1

rh,1 σ
2

(∑
α≤β

∂ lnW

∂Cg,αβ

∆selDαβ

)
Vg,σ . (58)

We will see later that the term between parentheses can be expressed in terms of the

effect of sex on the mean fitness of offspring.
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Indirect selection for sex: “long-term effect”. The long-term effect depends on

genetic covariances between the rate of sex and traits affecting fecundity (Cg,σα). From

equation 8, we have:

Cg,σα ≈
c

[c (1− s) + s]2
Cg, sα (59)

with Cg, sα = E [(gs − gs) (gα − gα)], which can be decomposed as:

Cg, sα =
∑
i,j

Csi αj . (60)

Using the same approach as above, one obtains for the effect of reproduction on Csi αj:

C ′′si αj = Crep
si αj − (∆repgsi) (∆repgαj) ≈ Crep

si αj (61)

since the term (∆repgsi) (∆repgαj) will generate terms in Vg, s
2. Neglecting linkage

disequilibria between loci affecting the rate of sex and other terms of order Vg, s
2,

we have:

Crep
si αj ≈ (1− ρij)C ′si αj −

c− 1 + rij
c (1− s) + s

C ′si si αj. (62)

To the first order in Vg, s,

C ′si si αj ≈ Csel
si si αj − (∆selgαj)Csi si (63)

while from equation 29:

Csel
si si αj ≈ Csi si αj +

∑
β

∂ lnW

∂zβ

∑
k

Csi si αj βk

+
∑
β≤γ

∂ lnW

∂Cg,βγ

∑
k,l

(Csi si αj βk γl − Csi si αjCβk γl)
(64)

∆selgαj ≈
∑
β

∂ lnW

∂zβ

∑
k

Cαj βk +
∑
β≤γ

∂ lnW

∂Cg,βγ

∑
k,l

Cαj βk γl . (65)

From equations 63 – 65, and using the fact that Csi si αj βk ≈ Csi siCαj βk, Csi si αj βk γl ≈

Csi siCαj βk γl to the first order in Vg, s, one obtains that the effect of selection on Csi si αj

is negligible, which finally leads to Csi si αj ≈ C ′si si αj ≈ 0 at QLE.
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The effect of selection on Csi αj is given by:

C ′si αj ≈ Csel
si αj − (∆selgsi) (∆selgαj) , (66)

where

Csel
si αj ≈ Csi αj +

∑
β

∂ lnW

∂zβ

∑
k

Csi αj βk

+
∑
β≤γ

∂ lnW

∂Cg,βγ

∑
k,l

(Csi αj βk γl − Csi αjCβk γl) ,
(67)

while the term (∆selgsi) (∆selgαj) is of higher order in the strength of selection, and

may thus be neglected. Finally, using the same method as in the previous subsection

shows that associations Csi αj βk γl (that appear on the second line of equation 67)

are proportional to Csi siCαj βk γl. However, 3-locus associations Cαj βk γl are of higher

order in the strength of selection than 2-locus associations, and we will assume that

the sum over all loci of these associations is negligible relative to the sum of pairwise

associations Cαj βk. This leaves us with the following recursion for Csi αj:

C ′′si αj ≈ (1− ρij)

[
Csi αj +

∑
β

∂ lnW

∂zβ

∑
k

Csi αj βk

]
. (68)

At QLE, and using equation 55, we thus have:

Csiαj ≈ −
(

1

ρij
− 1

)
c

s2

∑
k

1

rijk

∑
β

∂ lnW

∂zβ
(∆selCαj βk)Csisi, (69)

and summing over all loci:

Cg, sα ≈ −
(

1

rh,2 σ
− 1

rh,1

)
c

s2

∑
β

∂ lnW

∂zβ
(∆selDαβ)Vg, s (70)

where rh,2 is the harmonic mean of rij rijk over all triplets of loci i, j and k, where i

affects investment in sex while j and k affect fecundity. Equations 8 and 59 then yield:

Cg,σα ≈ −
(

1

rh,2 σ
− 1

rh,1

)
1

σ2

∑
β

∂ lnW

∂zβ
(∆selDαβ)Vg,σ (71)
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and indirect selection for sex due to the long term effect (first term of equation 13) is

thus approximately:

−
(

1

rh,2 σ
− 1

rh,1

)
1

σ2

(∑
α,β

∂ lnW

∂zα

∂ lnW

∂zβ
∆selDαβ

)
Vg,σ . (72)

Note that the term in the first parenthesis of equation 72 is positive, 1/rh,1 becoming

negligible compared with 1/ (rh,2 σ) as the rate of sex decreases.

Expressing indirect selection in terms of the effect of sex on the fitness of

offspring. The terms between parentheses in equation 58 and 72 (involving ∆selDαβ)

provide intuitive understanding of the mechanisms generating indirect selection for

sex, but would be difficult to measure in a real population. However, using our hy-

pothesis of weak selection and Gaussian distribution of traits affecting fecundity, these

can be expressed in terms of the effect of sex on the fecundity of offspring, that could

(at least in principle) be measured in an experimental population. Indeed, a Taylor

series on lnW provides the following approximation for the effect of a change in mean

breeding values and/or in the genetic variance-covariance matrix on lnW :

∆ lnW ≈
∑
α

∆zα
∂ lnW

∂zα
+
∑
α≤β

∆Cg,αβ
∂ lnW

∂Cg,αβ

. (73)

If we now imagine an experiment where we sample a sufficiently large number of indi-

viduals from the population (so that genetic associations within this pool of individuals

are representative of associations in the whole population) and let them produce a pool

of offspring by sexual reproduction and another pool by asexual reproduction, both

pools should have the same mean breeding values (on average), while genetic variances

and covariances (measured separately within each pool of offspring) should differ by
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an amount:

∆sex/asexCg,αβ = Csex
g,αβ − Casex

g,αβ = −
∑
j 6=k

rjk C
′
αj βk (74)

due to the effect of sexual recombination. From equation 33, we have ∆selDαβ ≈∑
j 6=k ρjk C

′
αj βk, so that:

∆sex/asexCg,αβ ≈ −
1

σ
∆selDαβ. (75)

Therefore, from equation 73, the difference in lnW between sexually and asexually

produced offspring is given by:

∆1 = lnW sex − lnW asex ≈ −
1

σ

∑
α≤β

∂ lnW

∂Cg,αβ

∆selDαβ (76)

and indirect selection for sex due to the short-term effect (equation 58) thus becomes:

∆1

rh,1 σ
Vg,σ . (77)

Following Barton (1995) and Charlesworth and Barton (1996), selection for sex

due to the long-term effect can be expressed in terms of the effect of sex on the variance

in log-fitness among offspring. From equation 10 we have, to leading order in selection

gradients:

lnWg − lnW ≈
∑
α

(gα − gα)
∂ lnW

∂zα

+
∑
α≤β

[(gα − gα) (gβ − gβ)− Cg,αβ]
∂ lnW

∂Cg,αβ

(78)

so that the variance in lnWg among individuals is:

Var [lnWg] ≈
∑
α,β

Cg,αβ
∂ lnW

∂zα

∂ lnW

∂zβ

+
∑
α≤β

∑
γ≤δ

(Cg,αγ Cg,βδ + Cg,αδ Cg,βγ)
∂ lnW

∂Cg,αβ

∂ lnW

∂Cg,γδ

.

(79)
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Equation 79 is approximately equivalent to the first two lines of equation A3b in

Charlesworth and Barton (1996), corresponding to the additive and epistatic compo-

nents of the variance in log fitness (denoted hereafter VA and VAA). Using equations

75 and 79, the sum appearing in the expression for the strength of selection for sex due

to the long term effect (equation 72) can be expressed as −σ (VA,sex − VA,asex), where

VA,sex and VA,asex are the additive components of the variance in log fitness (first term

of equation 79) among offspring produced by sexual and asexual reproduction, respec-

tively. Selection for sex due to the long term effect thus becomes:

(
1

rh,2 σ
− 1

rh,1

)
∆2

σ
Vg,σ (80)

with ∆2 = VA,sex − VA,asex. Assuming that epistasis is weak relative to directional

selection, Charlesworth and Barton (1996) show that the effect of recombination on

VAA may be neglected, in which case the long term effect can be expressed in terms

of the effect of recombination on Var [lnWg]. However, in situations where epistatic

interactions may be of the same order of magnitude as directional selection (as in the

present model), the additive component of Var [lnWg] should be estimated, for example

from the covariance between parents and offspring (e.g., Lynch and Walsh, 1998).

Indeed, under the assumption of a sufficiently large number of loci with weak effects

so that the joint distribution of trait values in parents and offspring is approximately

multivariate Gaussian, the covariance in log fitness between parents and offspring is:

CovPO [lnWg] ≈
∑
α,β

CPO
g,αβ

∂ lnW

∂zα

∂ lnW

∂zβ

+
∑
α≤β

∑
γ≤δ

(
CPO

g,αγ C
PO
g,βδ + CPO

g,αδ C
PO
g,βγ

) ∂ lnW

∂Cg,αβ

∂ lnW

∂Cg,γδ

(81)

where CPO
g,αβ is the covariance between gα in the parents and gβ in their offspring. Using
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CPO
g,αβ = Cg,αβ/2, equation 81 becomes:

CovPO [lnWg] ≈ VA
2

+
VAA

4
(82)

yielding

VA ≈ 4CovPO [lnWg]− Var [lnWg] . (83)
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APPENDIX A: APPROXIMATION FOR Wg/W

Assuming that selection is weak (meaning that the variance in Wg is small), we

can approximate Wg by a Taylor series around g = (g1, g2, . . .):

Wg ≈ Wg(g) +
∑
α

(gα − gα)
∂Wg

∂gα

+
1

2

∑
α,β

(gα − gα) (gβ − gβ)
∂2Wg

∂gα∂gβ

(A1)

where the partial derivatives are taken in g, and the last sum includes α = β. Aver-

aging over all individuals yields W ≈ Wg(g) + 1
2

∑
α,β Cg,αβ ∂

2Wg/ (∂gα∂gβ), so that

equation A1 can also be written as:

Wg ≈ W +
∑
α

(gα − gα)
∂Wg

∂gα

+
1

2

∑
α,β

[(gα − gα) (gβ − gβ)− Cg,αβ]
∂2Wg

∂gα∂gβ
.

(A2)

The derivatives of Wg in equation can be expressed in terms of derivatives of W

(Barton and Turelli, 1991; Turelli and Barton, 1994). Consider the effect of a slight

change in the distribution of breeding values g on mean fitness: gα and Cg,αβ change

to gα
∗ and C∗g,αβ, causing mean fitness to change from W to W

∗
. Replacing gα−gα by

gα− gα∗+ gα
∗− gα in equation A2 and averaging over the new state of the population

yields:

W
∗ ≈ W +

∑
α

(gα
∗ − gα)

∂Wg

∂gα
+

1

2

∑
α,β

(
C∗g,αβ − Cg,αβ

) ∂2Wg

∂gα∂gβ
. (A3)

Note that terms (gα
∗ − gα) (gβ

∗ − gβ) appearing in the second sum have been neglected,

as we assume that gα
∗−gα is small for all α. Another expression for W

∗
can be obtained

by developing W (which is a function of gα = zα and Cg,αβ for all α, β) as a Taylor
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series:

W
∗ ≈ W +

∑
α

(gα
∗ − gα)

∂W

∂zα
+
∑
α≤β

(
C∗g,αβ − Cg,αβ

) ∂W

∂Cg,αβ

(A4)

(note that each (α, β) pair is counted only once in the last sum). From equations A3

and A4, we have

∂Wg

∂gα
≈ ∂W

∂zα
,

∂2Wg

∂gα2
≈ 2

∂W

∂Vg,α
,

∂2Wg

∂gα∂gβ
≈ ∂W

∂Cg,αβ

(α 6= β) (A5)

and equation A2 and A5 yield (after dividing both sides by W ):

Wg

W
≈ 1 +

∑
α

(gα − gα)
∂ lnW

∂zα

+
∑
α≤β

[(gα − gα) (gβ − gβ)− Cg,αβ]
∂ lnW

∂Cg,αβ

.

(A6)
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APPENDIX B: SELECTION GRADIENTS WITH ISOTROPIC, GAUSSIAN

FITNESS FUNCTION

From equation 15, we have:

lnW =
1

2
ln
[
det
(
(S + P)−1 S

)]
− 1

2
(z− θ)T (S + P)−1 (z− θ)

=
1

2
ln [det(S)]− 1

2
ln [det(S + P)]− 1

2
(z− θ)T (S + P)−1 (z− θ)

(B1)

so that:

∂ lnW

∂z
= − (S + P)−1 (z− θ) (B2)

and

∂ lnW

∂G
= −1

2

∂ ln [det(S + P)]

∂G
− 1

2
(z− θ)T

∂ (S + P)−1

∂G
(z− θ)

= −1

2
Tr

(
(S + P)−1

∂ (S + P)

∂G

)
+

1

2
(z− θ)T (S + P)−1

∂ (S + P)

∂G
(S + P)−1 (z− θ)

(B3)

where Tr stands for the trace of a matrix. If phenotypes are measured in a basis that

eliminates covariances among traits, (S + P)−1 is a diagonal matrix, with elements

1/ (Vg,α + Vs) on its diagonal (with Vs = ω2 + Ve). In that case, equations B2 and B3

yield equations 16 – 18.
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