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The first-passage time (FPT), i.e., the moment when a stochastic process reaches a given threshold
value for the first time, is a fundamental mathematical concept with immediate applications. In
particular, it quantifies the statistics of instances when biomolecules in a biological cell reach their
specific binding sites and trigger cellular regulation. Typically, the first-passage properties are given
in terms of mean first-passage times. However, modern experiments now monitor single-molecular
binding-processes in living cells and thus provide access to the full statistics of the underlying first-
passage events, in particular, inherent cell-to-cell fluctuations. We here present a robust explicit
approach for obtaining the distribution of FPTs to a small partially-reactive target in cylindrical-
annulus domains, which represent typical bacterial and neuronal cell shapes. We investigate various
asymptotic behaviours of this FPT distribution and show that it typically is very broad in many
biological situations: thus, the mean FPT can differ from the most probable FPT by orders of
magnitude. The most probable FPT is shown to strongly depend only on the starting position
within the geometry and to be almost independent of the target size and reactivity. These findings
demonstrate the dramatic relevance of knowing the full distribution of FPTs and thus open new
perspectives for a more reliable description of many intracellular processes initiated by the arrival
of one or few biomolecules to a small, spatially localised region inside the cell.

Keywords: First passage time distribution — Mean and most probable first passage times — Reactive
boundary condition — Self-consistent approximation

I. INTRODUCTION

Many intracellular processes of signalling, regulation,
infection, immune reactions, metabolism, or transmit-
ter release in neurons are triggered by the arrival of one
or few biomolecules to a small spatially localised region
[1, 2]. Such processes determine the cellular function and
are controlled by the statistics of the first-passage time
(FPT) to a reaction event (also called the reaction time),
i.e., the instant in time when the respective molecules hit
their target site for the first time and initiate biochem-
ical responses [3–8]. With modern techniques such as
superresolution microscopy, it is possible to monitor indi-
vidual, single-molecular biochemical regulation and pro-
duction processes in living cells, revealing, for instance,
pronounced fluctuations of production events of individ-
ual messenger RNA or proteins within a single cell as well
as striking differences of production patterns between ge-
netically identical cells [9–11].

Most available analytical results to quantify the first-
passage dynamics were obtained for the mean first-
passage time (MFPT) [12–30], corresponding to the in-
verse of the mean rate constant conventionally used in
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biochemistry. For a bounded domain the MFPT is typi-
cally proportional to the domain volume, and it diverges
as the target region shrinks. In particular, for the so-
called narrow escape problem, which pertains to a va-
riety of situations when a diffusive particle has to leave
a bounded domain through a very small window on its
boundary [30, 31], the MFPT determines the character-
istic decay time of the exponential right tail of the dis-
tribution of the FPT, likewise, for the case of a small
target inside bounded circular domains [32, 33]. This
signifies that the MFPT is dominated by rather rare,
anomalously long searching trajectories, and thus can be
non-representative of the actual behaviour, or, at least
be not the only important characteristic time-scale. In-
deed, if a particle with diffusion coefficient D is released
within a short distance δ to the target, the relevant time
scale would be δ2/D, whereas the MFPT would be of
the order of L2/D, where L is the size of the domain. As
a consequence, in this case the kinetics of the aforemen-
tioned biological processes will most likely be determined
by the most probable FPT, which can be orders of magni-
tude smaller than the MFPT, a scenario recently called
the few-encounter limit [32]. Moreover, it was shown
that two FPT events in the same system may be dra-
matically disparate [34–36]. In these common and bio-
logically relevant situations, the whole FPT distribution
is needed to adequately quantify the molecular process
and to meaningfully extract the kinetic parameters from
measurements.
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However, the exact FPT distribution is known only for
few elementary cases such as the FPT to a perfectly re-
active target placed at the centre of a spherical region or
to its boundary, starting from a fixed location [3]. At the
same time, already finding the distribution of FPTs to a
small target region on the otherwise reflecting boundary
of a sphere remains an open problem. To our knowledge,
the only nontrivial case, for which an exact FPT distribu-
tion was recently derived, is that of an arc-shaped target
on the boundary of a disk [39]. To study the FPT in more
complicated realistic geometries, some approximate tech-
niques have been developed, such as the uniform approx-
imation [40] and the asymptotically exact Newton-series
approach [32]. Otherwise, one resorts to the numerical
analysis of the full FPT distribution [41]. We emphasise
that an impact of a finite reactivity on the form of the
FPT distribution remains a completely open question.

We here report the approximate, but explicit and very
accurate expression for the distribution of the FPT to
a partially-reactive annular target on a cylinder, sur-
rounded by a larger impermeable cylinder and capped
by two parallel planes (Fig. 1), which is the relevant ge-
ometry to describe the first passage of molecules to the
nucleoid region of bacteria cells or to a central filament
trail in the axon of a neuronal cell. Another example
of such a geometry is provided by a usual experimental
set-up for the analysis of a diffusive search by a transcrip-
tion factor protein for a specific binding site on a single
strand of elongated DNA (inner cylinder), with the outer
cylinder being the wall of the container. We also note
that from a mathematical point of view, the method un-
derlying the derivation of this FPT distribution can be
formally generalised to arbitrary bounded domains with
a small target region, and thus become applicable to the
narrow escape problem in presence of a barrier at the
escape window.

Our solution relies on the self-consistent approxima-
tion (SCA) technique originally devised by Shoup, Li-
pari, and Szabo [37] for the analysis of reaction rates
between particles with inhomogeneous reactivity, and re-
cently applied to the MFPT in spherical [28] and cylin-
drical geometries [38]. Within this approximation, the
exact mixed boundary condition is replaced by an effec-
tive one, reducing the problem to finding self-consistent
solutions. We adapt this approximation to the modified
Helmholtz equation governing the survival probability in
Laplace domain and thus the FPT distribution, which is
subsequently checked against the numerical solution of
the original problem, and is shown to be in a remarkable
agreement with the latter. We note that the symmetries
of the geometry under study permit us to express the
FPT distribution in a compact form under rather gen-
eral conditions: for arbitrary radii of the inner and the
outer cylinders, for arbitrary starting points, fixed or av-
eraged over the volume or over the cylindrical surface of
a given radius, and for an arbitrary chemical reactivity
κ defining the probability of a reaction with the target
upon encounter.

0
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L

FIG. 1: Schematic presentation of the cylindrical-annulus do-
main Ω between two concentric cylinders of radii ρ and R and
capped by planes at z = 0 and z = L. The target region is
the red annulus of radius ρ and height ε.

We illustrate various features of this distribution, e.g.,
its progressive broadening as the outer cylinder is be-
coming larger, or the size of the target region is getting
smaller, and highlight the relevance of the most probable
FPT. In addition, our analysis unveils remarkable effects
of the chemical reactivity κ on the functional shape of
the FPT distribution which were not studied systemati-
cally before (Fig. 2). In particular, we proceed to show
that upon lowering κ, a plateau-like region develops be-
yond the most probable FPT, such that, interestingly,
the values of the FPT in an interval ranging over several
decades turn out to be almost equally probable (see Fig.
5). Moreover, the chosen shape of a capped cylindrical
annulus allows us to explore various features of effectively
one- (semi-infinite cylindrical annulus), two- (exterior of
a capped cylinder), and three-dimensional (exterior of a
semi-infinite cylinder) search in unbounded domains, for
which the MFPT is infinite. In particular, we recover the
characteristic right tails t−3/2 and 1/(t ln2 t) of the FPT
distribution in effectively one- and two-dimensional ge-
ometries [3]. Therefore, our analysis also provides a sem-
inal unifying framework in which the behaviour specific
to one-, two- and three-dimensional unbounded systems
appears in particular limits. Overall, our results empha-
sise an absolute necessity of studying the first passage
phenomena in biologically relevant systems beyond the
MFPT and mean rates, and show that the knowledge of
the full FPT distribution is indeed indispensable for get-
ting a complete understanding of the wealth of kinetic
behaviour in such systems.

II. RESULTS

We study the distribution of the FPT to an annular
reactive region Γ (the target site) on a cylinder of ra-
dius ρ when diffusion is restricted by an outer, concentric
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FIG. 2: Impact of the finite reactivity onto the FPT probabil-
ity density (shown as a “heatmap”, in which the value of the
FPT density is determined by the colour code). When the
reactivity decreases, the distribution becomes much broader
and extends toward longer reaction times. Blue and white
curves show respectively the mean and the most probable
FPTs versus the reactivity, and differ by orders of magnitude.
The FPT probability density was obtained via a numerical
Laplace inversion of the solution (7).

and impermeable cylinder of radius R (Fig. 1). In other
words, diffusion occurs within the confining cylindrical-
annulus domain Ω spanned by the interval z ∈ (0, L)

along the cylinder axis and the radius r =
√
x2 + y2 in

the interval r ∈ (ρ,R). The target consists of the an-
nular domain Γ on the inner cylinder, specified by the
interval z ∈ (0, ε) along the cylinder axis and the radius
r = ρ. Note that the cylindrical domain is capped by
reflecting planes at z = 0 and z = L so that the scenario
is in fact equivalent to diffusion in an infinite cylinder
with a periodic arrangement of targets. For a particle
seeded at some point x ∈ Ω, the survival probability
S(x, t) =

∫
Ω
P (x,x′, t)dx′ is calculated as the volume in-

tegral of the (non-normalised) density function P (x,x′, t)
to find the particle at position x′ at time t. The deriva-
tive of the survival probability with respect to time, taken
with sign minus, then produces the probability density
of first passage time, H(x, t) = −∂S(x, t)/∂t. In Laplace

domain, defined in terms of f̃(p) =
∫∞

0
exp(−pt)f(t)dt,

this relation can be rewritten as H̃(x, p) = 1− pS̃(x, p),
where we used the initial condition S(x, t = 0) = 1, that
is, initially the particle is present in the domain Ω with
unit probability.

The survival probability, written in cylindrical coor-
dinates (r, z, ϕ), satisfies the backward Fokker-Planck
equation ∂S(x, t)/∂t = D∆S, where D is the bulk dif-
fusion coefficient, and ∆ = ∂2

r + r−1∂r + ∂2
z + r−2∂2

ϕ is
the Laplace operator. In Laplace domain, this equation
reduces to the modified Helmholtz equation

(p−D∆)S̃(x, p) = 1. (1)

Due to the axial symmetry of the problem, there is no

dependence on the polar angle ϕ. The reflecting bound-
ary conditions at the outer boundaries are taken into
account by setting the derivatives ∂S/∂r = 0 at r = R
and ∂S/∂z = 0 at z = 0, L, respectively. To simplify no-
tations, we replace the axial coordinate z by θ = πz/L,
and introduce ε = πε/L. The mixed boundary condition
on the inner cylinder then reads

D(∂S̃/∂r)r=ρ =

{
κS̃r=ρ (0 < θ < ε)

0 (ε < θ < π)
(2)

in Laplace domain. The reactivity coefficient κ in the
Robin boundary condition determines the degree of stick-
iness of the reactive boundary Γ and is associated with
the probability of the reaction with the target upon an
encounter [42–44]. In standard terms, κ (in units m/s) is
defined as the rate describing the number of reaction acts
per unit of time within the volume of the reaction zone
around Γ, times the reaction radius and hence, is a mate-
rial property independent of ε (see [45] for more details).
For a non-reactive target one has κ = 0, while κ = ∞
corresponds to the case of a perfect reaction which, on
encounter, occurs with probability 1. We note that the
effect of κ on the shape of the full distribution of the FPT
is a novel feature here. The only available previous anal-
ysis concerned solely its effect on the MFPT, and showed
that in related settings it can indeed be decisive [28, 38].
This naturally raises the question of the effects of a finite
reactivity beyond the MFPT.

We apply a SCA by replacing the mixed boundary con-
dition (2) by the inhomogeneous Neumann condition [37]

D(∂S̃/∂r)r=ρ = QΘ(ε− θ), (3)

in which Θ(z) is the Heaviside step function and the ef-
fective flux Q remains to be determined by imposing an
appropriate self-consistent closure relation [37], i.e., by
requiring that the first line in (2) holds on average, i.e.,

D
∫ ε

0
dθ(∂S̃/∂r)r=ρ = κ

∫ ε
0
dθS̃r=ρ.

We search a solution in the generic form

S̃(r, θ; p) =
R2

D

(
u0(r) +

∞∑
n=0

angn(r) cosnθ

)
, (4)

where the first term is the solution of the inhomogeneous
problem with Dirichlet boundary condition at r = ρ, an
are unknown coefficients to be determined, and gn(r) are
radial functions satisfying the ordinary differential equa-
tion

g′′n +
1

r
g′n −

(
π2n2

L2
+

s

R2

)
gn = 0, (5)

where the prime denotes radial derivative and s = pR2/D
is the dimensionless Laplace variable. We emphasise the
dependence of u0(r), an and gn(r) on the Laplace vari-
able, although we do not write it explicitly for the sake
of brevity.
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The solution of (5) satisfying the boundary condition
(∂gn/∂r)r=R = 0 is a linear combination of modified
Bessel functions In(z) and Kn(z) of first and second kind,

gn(r) = I0(αnr/L)K1(αnR/L) +K0(αnr/L)I1(αnR/L),
(6)

with αn =
√
π2n2 + sL2/R2. The solution of the inho-

mogeneous problem with Dirichlet boundary condition
at r = ρ reads u0(r) = [1 − g0(r)/g0(ρ)]/s [3, 46]. The
coefficients an are determined in the Supplemental Infor-
mation (SI), section I, and we obtain the final result for
the FPT density

H̃(r, θ; p) = η
g0(r)

g0(ρ)
+ 2η

g′0(ρ)

g0(ρ)

∞∑
n=1

gn(r)

g′n(ρ)

sinnε

nε
cos(nθ),(7)

in Laplace domain, where

η =

(
1−

(
πD

κε
+
L

π
Rε
)
g′0(ρ)

g0(ρ)

)−1

(8)

and

Rε = −2π

L

∞∑
n=1

gn(ρ)

g′n(ρ)

(
sinnε

nε

)2

. (9)

This approximate representation of the FPT density
in the cylindrical-annulus domain is one of the main re-
sults of this paper. This result hinges on the SCA, which
has already been applied for the analysis of the MFPT
in spherical [28] and cylindrical-annulus [38] geometries,
and verified against the numerical solution of the mixed
boundary problem. Moreover, a similar SCA approach
has been used in [45] to calculate the self-propulsion ve-
locity of catalytically-active colloids and was shown to
be in very good agreement with already known results,
only slightly underestimating some insignificant numeri-
cal factors. In Sec. II of the SI we show that it is a re-
markably accurate approximation for the problem under
study, checking it for different initial conditions against
the numerical solution of the original mixed boundary
value problem.

The moments of this FPT distribution can
be obtained from H̃(r, θ; p) in the form Tn =

(−1)n limp→0(∂n/∂pn)H̃(r, θ; p). The first moment
T1 is the mean FPT that we also denote as T for
brevity. The explicit solution in (7) fully determines

the statistics of the FPT. Since S̃(r, θ; p) and the

FPT density H̃(r, θ; p) are trivially related in Laplace
domain, we focus on the latter quantity, bearing in mind
that all properties of the Laplace-transformed survival
probability follow immediately from those of H̃(r, θ; p).
The inverse Laplace transform can be performed either
by determining the poles of H̃(r, θ; p) and using the
residue theorem, or by numerical inversion using the
Talbot algorithm. In Sec. III of the SI, we discuss in
more detail the former approach, whereas the numerical
inversion is used throughout the paper. The solutions in

the limiting cases R → ∞ and L → ∞ are presented in
the SI (Sections VI and VII).

As already remarked, we will consider different situa-
tions with respect to the starting point of the particle.
If the starting point is distributed uniformly in the bulk,
the volume average of H̃(r, θ; p) can be evaluated exactly,

H̃(p) = 2

∫ π

0

dθ

∫ R

ρ

drrH̃(r, θ; p)

π(R2 − ρ2)
=

−2ρg′0(ρ)η

s(1− ρ2/R2)g0(ρ)
,

(10)

where we used the identity
∫ R
ρ
drrgn(r) =

−ρL2g′n(ρ)/α2
n. If in turn the average is taken over

uniformly distributed starting points on a cylindrical
surface of radius r, we find

H̃(p)r =
1

π

π∫
0

dθH̃(r, θ; p) = η
g0(r)

g0(ρ)
. (11)

Setting r = ρ (when a particle starts from the inner
boundary with uniform density), this relation turns out
to provide a natural interpretation for the coefficient η
defined in (8).

As discussed in Ref. [46], H̃(r, θ; p) can also be inter-
preted as the probability that a mortal walker with bulk
killing rate p reaches the target. For p = 0 the classical
immortal walker reaches the target with unit probability
because of the recurrent character of restricted Brown-
ian motion in a bounded domain. In turn, when p > 0,
the random walker can be killed during its search for the
target, and H̃(r, θ; p) is the fraction of walkers that reach
the target before being killed.

III. DISCUSSION

The explicit form of the Laplace-transformed FPT dis-
tribution H̃(r, θ; p) in (7) provides unprecedented oppor-
tunities for studying the details of the first passage dy-
namics in a cylindrical-annulus domain. The major chal-
lenge here is the relatively large number of relevant pa-
rameters of this problem. In fact, the short-time and the
long-time behaviours of the FPT distribution (i.e., its
left and right tails) strongly depend on the four geomet-
ric parameters R, L, ρ, and ε, as well as on the reactivity
κ, and on the starting point (in particular, whether it is
fixed or randomly distributed over some subspace). For
instance, the behaviour in the small-target limit ε → 0
is expected to be different from that in the thin cylinder
limit ρ→ 0. Moreover, one can also investigate the limit-
ing cases of the unbounded exterior of a capped cylinder
(R → ∞), and of an infinitely long cylinder (L → ∞).
In these two limits, the distribution of the FPTs remains
well defined, although the MFPT is infinite, as shown in
Sections VI and VII of the SI. We discuss below the vari-
ous facets of the FPT distribution in different parameter
ranges as well as some direct applications.
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A. General qualitative behaviour

The form of the left tail of the FPT distribution (corre-
sponding to short FPTs) strongly depends on the start-
ing point of the particle. If the starting point is fixed (or
surface-averaged with r > ρ), the FPTs are dominated
by very rare trajectories from x to the closest points of
the target (called direct trajectories in Refs. [32, 33]).
As t → 0, we thus expect the behaviour H(x, t) ∝
exp(−|x− Γ|/[4Dt]), where |x− Γ| is the Euclidean dis-
tance between the starting point x and the target domain
Γ. In this limit, the FPT density vanishes very rapidly,
meaning that very short FPTs are extremely unlikely. In
turn, if the starting point is averaged over the volume or
over the inner surface at r = ρ, such that some particles
are initially released right at the surface of the target,
one can expect that the FPT density is peaked at t = 0
and then monotonically decreases with t. In this case,
an intermediate power law decay of the FPT distribu-
tion is expected. In particular, the general asymptotic
behaviour derived in Ref. [46] for the perfectly reactive

target implies H̃(p) ' (|Γ|/|Ω|) (p/D)−1/2, thus

H(t) ' (2ρεD)π−3/2(R2 − ρ2)−1(Dt)−1/2 (12)

as t → 0. In the partially reactive case κ < ∞ the
intermediate power-law decay has a different form, see
Sec. III C.

The form of the right tail of the FPT distribution es-
sentially depends on whether the domain Ω is bounded or
not. For any bounded domain, the spectrum of the gov-
erning Laplace operator is discrete, and the FPT density
exhibits an exponential decay whose rate is determined
by the smallest non-trivial eigenvalue λ0: H(x, t) ∝
exp(−Dtλ0) as t→∞. In Sec. III B we relate the decay
rate to the surface-averaged MFPT T ρ, which is finite.
The behaviour is different in the limits R→∞ or L→∞
when the domain Ω becomes unbounded. In this case,
the MFPT is infinite, and the FPT density exhibits a
power law decay (possibly with logarithmic corrections).
We discuss this behaviour in detail in the SI (see Sec-
tions VI and VII). It is important to stress that the
related power law behaviour can also be relevant even
for bounded domains as an intermediate regime, before
the ultimate exponential cut-off, see also the findings for
spherical domains in Ref. [32–36]. As we will illustrate
below, such an intermediate power law regime can spread
over a quite broad range of times and thus be the most
interesting feature of the underlying FPT phenomenon.
In this situation, the most probable FPT can differ from
the MFPT by many orders of magnitude.

B. The right-tail of the FPT distribution

In the limit p → 0 the Laplace transform H̃(r, θ; p)
of the FPT density determines both the moments Tn of
the FPT and the long-time behaviour of H(r, θ; t) itself.

Taking the respective limits of the radial function dis-
cussed in Sec. IV of the SI, we obtain H(t)ρ as the inverse
Laplace transformation of η, namely,

H(t)ρ ' exp
(
−t/T ρ

)
/T ρ, (13)

valid for t→∞. The characteristic time is given by

T ρ =
R2 − ρ2

2Dρ

(
πD

κε
+
L

π
Rε(p = 0)

)
, (14)

which corresponds to the surface-averaged MFPT inves-
tigated in Ref. [38]. This result is expected for diffusion
in a bounded domain. The asymptotic behaviour of other
quantities can be obtained in a similar way. For instance,

H(t)r ' exp
(
−t/T r

)
/T r, (15)

with the characteristic time

T r = T ρ +

(
ρ2 − r2

4D
+
R2 ln(r/R)

2D

)
, (16)

where the second term in the parentheses is the MFPT
to the inner cylinder from a uniformly distributed point
at the cylindrical surface at r. The additivity of two
MFPTs reflects the fact that any trajectory from such
a point to the target can be split into two independent
parts: the path from the cylinder at r to the cylinder
at ρ, and the path from the cylinder at ρ to the target,
similar to the results for inhomogeneous diffusion in a
cylindrical domain [57].

C. The left tail of the FPT distribution

The form of the left tail of the FPT distribution stems
from the asymptotic behaviour of H̃(r, θ; p) in the limit
p → ∞. After the transformations detailed in the SI
(see Section IV), we obtain the Laplace-transformed FPT

density H̃(r, θ; p) along with its volume and surface av-

erages, H̃(p) and H̃(p)r. Here one needs to distinguish
the cases of perfect (κ = ∞) and imperfect (κ < ∞)
reactivity at the target. Note that the difference in
the asymptotic behaviours for perfectly or only partially
reactive targets was discussed for other geometries in
Refs. [58, 59].

1. Perfect reactions

According to (11) the inverse Laplace transform of
asymptotic (S34) in the SI yields the asymptotic be-

haviour of the surface-averaged FPT density H(t)ρ at
small t, namely,

H(t)ρ ' (ε/π)δ(t) + (D/[8π])1/2L−1t−1/2 +O(1). (17)

The first term represents the fraction ε/π of particles,
that started right at the target, for which the first pas-
sage time is zero. The next term accounts for the FPTs of
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FIG. 3: Surface-averaged (a) and volume-averaged (b) FPT

densities H(t)r and H(t) as functions of t for perfect reactions
(κ = ∞) with L/R = π, ρ/R = 0.1, r/R = 0.2, and ε = 0.2
(solid line) and ε = π (dashed line). Both curves are obtained
by the numerical Laplace inversion of (7). The two arrows
indicate the MFPT DT r/R

2 for both cases: 10.82 (ε = 0.2)
and 0.34 (ε = π) for surface-averaged quantity, and 11.27
(ε = 0.2) and 0.79 (ε = π) for volume-averaged quantity.
Dash-dotted lines indicate the short-time asymptotic (18) and
(19), and agree very well with the general result in (7) well
beyond the most probable FPT. Length and time scales are
fixed by setting R = 1 and R2/D = 1.

particles with non-zero initial separations from the tar-
get. Since (S33) was derived for ε ≤ π/2, the above
asymptotic behaviour is not applicable for the case ε = π,
for which H(t)ρ = δ(t) without correction terms.

When the particles start from a cylindrical surface at
r, (11) has an extra factor g0(r)/g0(ρ). With the large-p
asymptotic (S36) we find the short-time behaviour

H(t)r '
ε

π
(ρ/[4πrDt3])1/2 exp(−(r − ρ)2/[4Dt])

×
(
r − ρ+Dt

(
π√
2Lε

+

√
1/ρ−

√
1/r

4
√
R

)
+O(t2)

)
.(18)

Figure 3(a) shows the surface-averaged probability den-

sity H(t)r for two choices of the target height: ε = 0.2
and ε = π. The latter case describes the whole inner
cylinder as reactive, while the former value of ε is chosen

arbitrarily and meant to illustrate a moderately small
target. In both cases shown in the figure the short-time
asymptotic (18) is very accurate up to Dt/R2 . 0.1.
When the target is the entire inner cylinder (ε = π) this
time scale is of the order of the corresponding MFPT
DT r/R

2 ≈ 0.34. For times of that order the FPT den-
sity has an exponential cut-off. For the case of a partially
reactive inner cylinder (ε = 0.2) the MFPT is, notably,
around four decades longer than the most likely FPT.

For the volume average, (10), together with S34, yields
a different short-time behaviour, namely,

H(t) ' ρD

R2 − ρ2

(
2ε

π
√
πDt

+

(
1√
2L

+
ε

πρ

)
+O(t1/2)

)
.

(19)
The leading term agrees with the general behaviour in
(12). Figure 3(b) shows the FPT density obtained by

numerical inversion of H̃(p) from (7). In the particular
case ε = π (the entire inner cylinder is absorbing), one
has an = 0 and thus (7) is exact. One can see that both
distributions are broad. The asymptotic (19) is remark-
ably accurate for both cases ε = π and ε = 0.2.

2. Imperfect reactions

For imperfect reactions with finite reactivity κ the first
arrival onto the target does not necessarily imply a suc-
cessful reaction, so that the reaction times are increased.
Indeed, for κ < ∞, (S33) in the SI acquires the asymp-
totic (S37), from which we get the short-time behaviours

H(t)ρ '
ε

π

κ√
πDt

− ε

π

(
κ2

D
+

κ

2ρ

)
+O

(√
t
)
, (20a)

H(t)r '
ε

π

√
ρ/r

κ√
πDt

exp

(
− (r − ρ)2

4Dt

)
, (20b)

H(t) ' 2ρεκ

π(R2 − ρ2)

(
1− 2κ

√
Dt

D
√
π

+O(t)

)
. (20c)

Interestingly, for imperfect reactions the leading short-
time behaviour of the FPT distribution appears to be dis-
tinctly different, depending on the starting point: H(t)ρ
diverges as t→ 0, H(t)r tends to zero in this limit, while

H(t) approaches a constant value.
Figure 4(a) shows the surface-averaged FPT density

H(t)r at r/R = 0.2 and κR/D = 1. One can see that
the short-time asymptotic (20b) accurately reproduces
the behaviour of this density up to its maximum. As a
consequence, the position tm of this maximum can be
obtained by taking the derivative of (20b) with respect
to t and setting the resulting expression equal to zero.
This gives the following estimate for the most probable
FPT:

tm = (r − ρ)2/(2D). (21)
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FIG. 4: Surface-averaged (a) and volume-averaged (b) FPT

densities H(t)r and H(t) as functions of t for imperfect re-
actions (κR/D = 1, cf. Fig. 3), with L/R = π, ρ/R = 0.1,
r/R = 0.2, and ε = 0.2 (solid line) and ε = π (dashed line).
Both curves are obtained by numerical Laplace inversion of
(7). The two arrows indicate the MFPT DT r/R

2 for both
cases: 88.58 (ε = 0.2) and 5.29 (ε = π) for surface-averaged
quantity, and 89.03 (ε = 0.2) and 5.74 (ε = π) for volume-
averaged quantity. Dash-dotted lines show the short-time
asymptotic (20b) and (20c) (in which only the leading term
is kept). Length and time scales are fixed by setting R = 1
and R2/D = 1.

The estimated value of tm in (21) depends only on the
distance to the target but does not depend on either the
target size ε or the reactivity κ, nor on the inner radius of
the cylinder. In this example, Dtm/R

2 = 0.005, whereas
the MFPT is four orders of magnitude higher. Similar to
the findings in Ref. [32] the most likely FPT corresponds
to geometry-controlled, direct trajectories, in which the
initial distance from the target is decisive.

We also note that the probability density is broader
in the case ε = 0.2, with a flat intermediate region be-
tween the maximum hump and the exponential cut-off
(in the region 0.2 ≤ Dt/R2 ≤ 10). As the target size ε or
the reactivity κ decrease, the MFPT increases and thus
the exponential cut-off moves towards longer times. In
turn, the position and shape of the maximum remain ap-
proximately constant (dominated by the initial distance
and the diffusivity D) so that the intermediate region ex-
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FIG. 5: Surface-averaged FPT density H(t)r as function of t
for imperfect reactions, with L/R = π, ρ/R = 0.1, r/R = 0.2,
and ε = 0.2. All curves are obtained by numerical Laplace
inversion of (7). Arrows indicate the MFPT DT r/R

2: 10.82
(κ = ∞), 18.60 (κ = 10), 88.58 (κR/D = 1), and 788.36
(κR/D = 0.1). Note that (at fixed D) the MFPT grows
with decreasing κ. In this regime the MFPT becomes dom-
inated by chemical reactivity, T r ∼ 1/κ (see Refs. [28, 38]).
The most probable FPT exhibits a weak dependence on κ.
Note also the appearance of a pronounced plateau-like re-
gion, which stretches over progressively longer times scales
upon lowering the reactivity κ. Hence, there is a broad range
of times with equiprobable realisations of the FPT. Length
and time scales are fixed by setting R = 1 and R2/D = 1.

pands, as we checked for ε = 0.05 and for κR/D = 0.1
(not shown). This is a striking result: if the particle
does not manage to find the target and react within
short times comparable to tm (around the maximum),
it explores the entire confining domain with eventual re-
turns to the target. As a consequence, its reaction time
is distributed almost uniformly over a very broad range
of times, up to the exponential cut-off which is essen-
tially determined by the MFPT. The latter, in turn, is
dominated by the chemical reactivity, while the diffusive
search for the target provides only a sub-dominant con-
tribution [38] (see also [28] for a general discussion). One
can see that the low reactivity κ leads to an homogenisa-
tion of the search process, as evidenced in Fig. 5, and the
plateau-like region past the most probable FPT extends
over progressively longer scales when κ becomes smaller.
As a consequence, the values of FPTs ranging over sev-
eral orders of magnitude appear to be almost equally
probable.

Figure 4(b) shows that the volume-averaged FPT den-

sity H(t) remains almost constant at short times and
then has an exponential cut-off. This almost uniform be-
haviour at short times resembles that shown in Fig. 4(a).
The only difference is that there is no maximum at short
times as some particles start infinitely close to the target.
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D. Biological implications

The function of biological cells to large extent relies on
the passive diffusion of regulatory molecules. In particu-
lar, the expression level of any gene is controlled by the
binding of transcription factor proteins. Inside the chro-
mosome a transcription factor locates its specific bind-
ing site via facilitated diffusion combining volume search
with one-dimensional sliding along the DNA, as well as
intersegmental jumps [47–49]. As many bacteria cells
such as the well studied E.coli or bacilli have distinct
cylindrical shapes, the analysis here provides an answer
to the question how fast a given transcription factor can
reach the chromosome from the cytoplasm of the cell in
the first place. Our results demonstrate that for all con-
sidered scenarios the FPT to the nucleoid is broadly dis-
tributed and may deviate significantly from the respec-
tive MFPT. For reliable regulation it may thus be ad-
vantageous that transcription factors, which often occur
in very low copy numbers in a cell, are inhomogeneously
distributed in the cell [50, 51], and may thus be kept
close to their target site on the DNA. This reasoning is
in accord with results for the downstream gene regulation
model in [52] supporting the rapid search hypothesis [53]
as well as the geometry controlled few-encounter scenario
of [32].

We also mention another relevant system for the cylin-
drical geometry, namely, axons, the up to a meter long
protrusions of neuronal cells, whose diameter may span
from 0.1 µm up to 20 µm [54]. In the giant squid the
diameter may even reach the macroscopic size of 1 mm.
In such an axon motor proteins detach from the central
bundle of microtubules, along which the motors actively
transport cargo. The motors’ reattachment dynamics af-
ter unbinding, governed by the results derived herein for
imperfect reactions, have shown to be important for the
observed Lévy walk transport [55].

IV. CONCLUSION

Although the necessity of knowing the full FPT dis-
tribution, especially in situations when several length
scales are involved, has been emphasised earlier (e.g.,
in [7, 8, 32, 33]), not much progress has been achieved
in this direction. For the first time, we discuss here,
using an analytical solution, the forms of the full first-
passage time distribution for different initial conditions
in a cylindrical-annulus geometry relevant for bacteria
cells and neuronal axons. Due to the quite large num-
ber of parameters in the system, the full distribution of
the FPT has a complicated structure and appreciably
changes its shape when the parameters are changed. It
would therefore be naive to expect that the full complex-
ity of the behaviour in the system could be exhaustively

characterised by just the first moment of this distribution
– the mean first-passage time – on which the previous re-
search has concentrated almost exclusively.

Within a self-consistent approach, proposed originally
in a completely different context in [37], we found ex-
plicit, approximate expressions for the full FPT distribu-
tion, which we validated by extensive numerical analy-
sis. One of the main features that we uncovered is that,
indeed, the full distribution has an important structure
and is rather sensitive to a slight variation of the system’s
parameters. Next, we showed that the MFPT turns out
to be several orders of magnitude longer than the most
likely FPT, the decisive quantity indicating when typ-
ically the first molecule arrives at the target and trig-
gers biochemical followup reactions. Therefore, while the
knowledge of the MFPT is certainly helpful and impor-
tant, it carries the danger of being misleading, given that
the MFPT largely overestimates the typical time scales
involved in cellular processes. In this context, former the-
oretical works devoted to the minimisation of the MFPT
do not necessarily reveal the optimal conditions for the
function of biological systems, because they do not affect
the most likely FPT.

Equally significant result of our analysis is the occur-
rence of an extended plateau of the FPT distribution for
lower reactivity constants κ, signifying that over more
than a decade all FPTs within this range become equally
probable and thus the triggering events even more un-
focused. Moreover, within the unique geometric setting,
we could unveil intriguing dimensionality features of the
diffusive search in unbounded domains, for which the
MFPT is infinite and thus useless. The derived asymp-
totic formulas correctly describe intermediate regimes of
the FPT distribution in the bounded case as well.

Having available expressions for the full FPT distri-
bution will allow a more faithful evaluation of measured
reaction dynamics but also the planning of new experi-
ments, in particular, when single molecule resolution is
accessible. We expect that our results will lead to a new
level of quantitative understanding of molecular regula-
tion processes on microscopic levels, for instance, a renor-
malisation of rate constants extracted from MFPT inter-
pretations.
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Supplemental Information for the article “Towards a full quantitative descrip-
tion of single-molecule reaction kinetics in biological cells”

I. DETERMINATION OF THE EXPANSION COEFFICIENTS

To compute the coefficients an within the self-consistent approximation (SCA), we first substitute S̃(r, θ; p) defined
in (4) into the modified boundary condition in (3), which gives

u′0(ρ) +

∞∑
n=0

an g
′
n(ρ) cos(nθ) =

Q

R2
Θ(ε− θ), (S1)

where

g′n(r) =
αn
L

[
I1(αnr/L)K1(αnR/L)−K1(αnr/L)I1(αnR/L)

]
. (S2)

Multiplying (S1) by cos(nθ) (with n = 0, 1, 2, . . .) and integrating over θ from 0 to π, one gets

Q =
πR2

ε

(
u′0(ρ) + a0g

′
0(ρ)

)
, (S3)

an =
2Q

πR2g′n(ρ)

sinnε

n
(n = 1, 2, . . .), (S4)

so that

an = 2
u′0(ρ) + a0g

′
0(ρ)

g′n(ρ)

sinnε

nε
(n = 1, 2, . . .). (S5)

Consequently, S̃(r, θ; p) writes

S̃(r, θ; p) =
R2

D

(
u0(r) + a0g0(r) + 2

(
u′0(ρ) + a0g

′
0(ρ)

) ∞∑
n=1

gn(r)

g′n(ρ)

sinnε

nε
cos(nθ)

)
. (S6)

The coefficient a0 (and hence, the trial current Q) remains a free parameter which is to be chosen in a self-consistent
way. Within the SCA proposed in [37] (see also [28, 38] for more details on the adaption of this scheme to the
first-passage phenomena) the closure relation is obtained by requiring that the mixed boundary condition in (2) holds
not locally but on average.

For this purpose, we substitute this expression into (2) and integrate the resulting expression over θ from 0 to ε to
get

a0 =
1− η
s g0(ρ)

, (S7)

with η defined by (8). Combining these results, we get an approximate but explicit solution

S̃(r, θ; p) =
1

p

(
1− η g0(r)

g0(ρ)
+ 2η

g′0(ρ)

g0(ρ)

∞∑
n=1

gn(r)

g′n(ρ)

sinnε

nε
cos(nθ)

)
, (S8)

from which (7) follows.

II. NUMERICAL VALIDATION OF THE RESULTS OBTAINED WITHIN THE SCA

The proposed SCA provides an exact solution of the modified boundary value problem, in which the mixed Robin-
Neumann boundary condition in (2) is substituted by the effective inhomogeneous Neumann condition in (3). To
check the accuracy of this approximation and hence, of the resulting FPT distribution, we solve the original modified
Helmholtz equation by a finite elements method (FEM) implemented in Matlab’s PDEtool. Setting H̃(r, θ; p) =
u(r/R, θ; pR2/D) we rewrite the modified Helmholtz equation in cylindrical coordinates as

(∂/∂r)r(∂/∂r)u+ rπ2(R2/L2)(∂2/∂θ2)u− rsu = 0, (S9)
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FIG. S1: Volume-averaged (a) and surface-averaged (b) Laplace-transformed FPT densities H̃(p) and H̃(p)r as function of
s = pR2/D for L/R = π, ρ/R = 0.1, r/R = 0.2, κ = ∞, and two values of ε indicated in the plot. Lines show (10) (a) and
(11) (b) of our self-consistent approximation, in which the series in (9) is truncated to N = 100 terms. Symbols present a
FEM numerical solution of the modified Helmholtz (S9), with mixed boundary condition (S10) with the maximal mesh size
h = 0.005. Length and time scales are fixed by setting R = 1 and R2/D = 1.

which has to be solved on the rectangular domain (ρ/R, 1) × (0, π) with Neumann boundary condition imposed
everywhere except for the segment (ρ)× (0, ε), for which (2) reads

(
u− D

Rκ

∂u

∂r

)
|r=ρ

= 1 (0 < θ < ε). (S10)

Once the solution u is found on mesh vertices, one can also compute its volume and surface averages. The volume-

averaged quantity H̃(p) is obtained by a numerical integration of the solution over the computation domain, whereas

the surface-averaged quantity H̃(p)r is evaluated by first a linear interpolation of the solution to the vertical line at
r and then by a numerical integration over this line.

The accuracy of the numerical solution of this problem and its averages is controlled by the maximal mesh size h,
i.e., the largest allowed diameter of triangles of the mesh used to discretise the computational domain. In particular,
the maximal mesh size should be much smaller than the length ε of the reactive segment. This condition limits
the accessible target heights ε. In our numerical analysis, we set h = 0.005 that results in meshes with more than
200 000 triangles. It should be noted that since the numerical solution should be repeated for many values of p (or s),
computations with even larger meshes (and thus smaller h and ε) become too time-consuming. Moreover, this long
computation also prohibits using the Talbot algorithm for the Laplace inversion. Alternatively, the probability density
H(r, θ; t) in time domain might be computed by solving directly the diffusion equation for the survival probability, but
this solution would be even more time-consuming and limited to a relatively narrow range of times. For these reasons,
we focus here on a numerical validation of the SCA only in the Laplace domain, i.e., checking the moment-generating
function over a wide range of variation of the parameter p of the Laplace transform, instead of the probability density
function itself. From a formal viewpoint, this is equivalent to validating the FPT distribution since both quantities
are uniquely linked by the Laplace transform.

Figure S1 shows excellent agreement between the result based on the SCA and the FEM solution of the original
mixed boundary value problem for ε = 0.2 and ε = 1 (we do not consider the case ε = π for which the SCA yields the
exact solution, see Section V of the SI). Moreover, the result of the SCA converges rapidly as the upper summation
truncation N of the series in (9) increases. In particular, the results for N = 50 (not shown) and N = 100 are
barely distinguishable. Small deviations at large p can be attributed to (i) inaccuracy of the FEM solution (and
the consequent numerical integrations for getting volume and surface averages), and (ii) intrinsic small differences
between the original and modified problems. Nevertheless, the quality of the SCA is quite impressive.

The SCA becomes particularly robust for imperfect reactions on the target. Figure S2 compares the SCA to the
FEM solution for ε = 0.2 and several values of κ. The SCA predictions and FEM solutions are indistinguishable at the
logarithmic scale. Lastly, as discussed in Ref. [28], the SCA is generally getting more accurate for smaller target size
ε, smaller reactivity κ, and for starting points that are not too close to the target. Moreover, it was shown recently
in Ref. [45], in which the self-propulsion velocity of catalytically-active colloids was studied by a similar method, that
also for an arbitrary ε the SCA provides an accurate description and only slightly overestimates the numerical factors.
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FIG. S2: Volume-averaged (a) and surface-averaged (b) Laplace-transformed FPT densities H̃(p) and H̃(p)r as function of
s = pR2/D for L/R = π, ρ/R = 0.1, r/R = 0.2, ε = 0.2, and three values of κ, indicated in the plot. Lines show (10) (a)
and (11) (b) of our self-consistent approximation, in which the series in (9) is truncated to N = 100 terms. Symbols present
a FEM numerical solution of the modified Helmholtz (S9), with mixed boundary condition (S10) with the maximal mesh size
h = 0.005. Length and time scales are fixed by setting R = 1 and R2/D = 1.

III. THE PROBABILITY DENSITY IN TIME DOMAIN

The Laplace-transformed probability density H̃(r, θ; p) and the related surface and volume-averaged quantities can

be inverted by using the residue theorem. For this purpose, one searches for the poles of H̃(r, θ; p) in the complex
plane p ∈ C. In general, there are two groups of poles, which can be identified as (i) zeros of functions g′n(ρ) and (ii)
zeros of the function g0(ρ)/η.

(i) Introducing the auxiliary function

Ĝ(z) ≡ −iz
(
I1(−izρ/R)K1(−iz)−K1(−izρ/R)I1(−iz)

)
= −πi

2
z

(
Y1(zρ/R)J1(z)− J1(zρ/R)Y1(z)

)
, (S11)

one writes g′n(ρ) = Ĝ(iαnR/L)/R, where αn =
√
π2n2 + pL2/D. One can check that the function Ĝ(z) has infinitely

many zeros all lying on the real axis. Since the Bessel functions obey

Jn(−x) = (−1)nJn(x)
Yn(−x) = (−1)n

(
Yn(x) + 2iJn(x)

) (x > 0),

one deduces that Ĝ(−z) = −Ĝ(z). We can thus focus only on the positive zeros of Ĝ(z) denoted as ẑk (with
k = 1, 2, . . .). We relate them to the zeros of g′n(ρ):

pn,k = −D
(
ẑ2
k

R2
+
π2n2

L2

)
,

(
n = 1, 2, . . .
k = 1, 2, . . .

)
. (S12)

For each n, all the poles pn,1, pn,2, . . . are expected to be simple. In turn, it is possible to tune R and L to make some
poles with different n coincide and thus be of the order higher than 1. At such poles, the computation of the residue
would be more involved.

(ii) Similarly, we introduce the function

Gr(z) ≡ I0(−izr/R)K1(−iz) +K0(−izr/R)I1(−iz) =
πi

2

(
Y0(zr/R)J1(z)− J0(zr/R)Y1(z)

)
, (S13)

to write gn(r) = Gr(iαnR/L). Note that this function is also antisymmetric: Gr(−z) = −Gr(z). The poles of the
function

η

g0(ρ)
=

1

g0(ρ)−
(
πD
κε + L

πRε
)
g′0(ρ)

are related to the zeros of the function

F (z) ≡ Gρ(z)−
(
πD

Rκε
+

L

πR
Rε(z)

)
Ĝ(z), (S14)
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where

Rε(z) = −2πR

L

∞∑
n=1

(
sinnε

nε

)2 Gρ
(√

z2 − π2n2R2/L2
)

Ĝ
(√

z2 − π2n2R2/L2
) . (S15)

Denoting the positive zeros of F (z) as zk, we get the poles as

p0,k = − D

R2
z2
k (k = 1, 2, . . .). (S16)

Having identified all the poles, one can formally invert the Laplace transform by applying the residue theorem.

IV. LONG AND SHORT TIME ASYMPTOTICAL BEHAVIOUR OF THE FPT DENSITY

We here summarise the relations relevant for the calculation of the asymptotic behaviours of the FPT density.

Long-time behaviour

With p→ 0 we also have s→ 0, which then leads to αn = πn+O(s) for n > 0 and α0 =
√
sL/R. We get

g0(r) ' 1√
s

(
1 + s

(
r2

4R2
− 1

2
ln(r/R)

)
+O(s2)

)
, (S17)

so that

g0(r)

g0(ρ)
' 1−

(
ρ2 − r2

4R2
+

ln(r/ρ)

2

)
s+O(s2), (S18)

g′0(ρ)

g0(ρ)
' −s1− (ρ/R)2

2ρ
+O(s2), (S19)

Rε ' Rε(p = 0) +O(s), (S20)

η−1 ' 1 + pT ρ +O(p2), (S21)

where T ρ from (14) is the surface-averaged MFPT studied in Ref. [38].

Short-time behaviour

The short-time behaviour corresponds to the limit p→∞, in which we get

gn(ρ)

g′n(ρ)
' − L

αn

K0(αnρ/L)

K1(αnρ/L)
' − L

αn

(
1− 1

2αnρ/L
+

3

8(αnρ/L)2
+ . . .

)
(S22)

and

Rε ' 2π

∞∑
n=1

(
sinnε

nε

)2(
1

αn
− L

2ρα2
n

+ . . .

)
. (S23)

Setting z =
√
sL/R we identify the leading part in the first term by writing

Rε ' 2π

∞∑
n=1

(
sinnε

nε

)2(
1

z
− π2n2

zαn(αn + z)
− L

2ρα2
n

+ . . .

)
. (S24)

The first term yields the leading contribution equal to π(π−ε)
ε z−1, in virtue of the identity

∞∑
n=1

(
sinnε

nε

)2

=
π − ε

2ε
. (S25)
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The second sum in (S24) can be written as

R(2)
ε = − π3

zε2

∞∑
n=1

1− cos 2nε

π2n2 + z2 + αnz
' − π3

zε2

∞∑
n=1

1− cos 2nε

π2n2 + 2z2
, (S26)

where we substituted αn ' z (for large z) in the denominator of the last term. Using the identity

∞∑
n=1

cos(πnx)

π2n2 + z2
=

cosh(1− x)z

2z sinh z
− 1

2z2
, (S27)

which is valid for 0 ≤ x ≤ 1, we find

R(2)
ε ' −

π3

zε2

cosh(z
√

2)− cosh(z
√

2(1− 2ε/π))

2
√

2z sinh(z
√

2)
. (S28)

We emphasise that this relation is only valid for ε ≤ π/2. At large s (or z), one thus gets a very accurate approximation

R(2)
ε ' −

π3

2
√

2z2ε2

(
1− e−2

√
2zε/π

)
. (S29)

Finally, in the third term of (S24) we approximate again α2
n ≈ z2, which yields −π(π−ε)L

2ερ z−2. Combining these

results, we obtain

Rε '
π(π − ε)R

εL
s−1/2 −As−1 +O(s−

3
2 ), (S30)

with

A =
πR2

εL2

(
π2

2
√

2ε
+

(π − ε)L
2ρ

)
, (S31)

in which we neglected the exponential correction in (S29).
From (S22), we also get

−g
′
0(ρ)

g0(ρ)
'
√
s

R
+

1

2ρ
− R

8ρ2
s−1/2 +O(s−1). (S32)

Combining these results, we find the large s asymptotic behaviour of (8),

η ' ε

π

[
s1/2 D

κR
+

(
1 +

D

2κρ

)
−
(
DR

8κρ2
+

πR√
8εL

)
s−1/2 +O(s−1)

]−1

. (S33)

When κ =∞, (S33) becomes

η ' ε

π
+

√
D

2
√

2L
p−1/2 +O(p−1). (S34)

When the particles start from a cylindrical surface at r, to obtain (18) we need the large-s asymptotic relation

g0(r) '
cosh(

√
s(1− r

R ))
√
s
√
r/R

(
1−

tanh(
√
s(1− r

R ))

8
(3 +R/r)s−1/2 +O(s−1)

)
, (S35)

from which we find the Laplace-transformed FTP density

H̃(p)r ' η
√
ρ/r exp

(
−(r − ρ)

√
p/D

)(
1 +
√
D

√
R/ρ−

√
R/r

8R
p−1/2 +O(p−1)

)
(S36)

for r < R and p→∞.
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FIG. S3: Surface-averaged Laplace-transformed FPT density H̃(p)ρ as function of s = pR2/D for L/R = π, ρ/R = 0.1, κ =∞,

and the three values of ε indicated in the plot. Thin solid lines show the asymptotic (S21) and (S34) as s → 0 and s → ∞,
respectively. Dotted horizontal lines indicate the asymptotic limit ε/π of the FPT density as s→∞. Length and time scales
are fixed by setting R = 1 and R2/D = 1.

For κ <∞, (S33) becomes

η ' ε

π

κ√
D
p−1/2 − ε

π

(
κ2

D
+

κ

2ρ

)
p−1 +O(p−

3
2 ), (S37)

which leads to (20).

Figure S3 illustrates the behaviour of the surface-averaged probability density H̃(p)ρ for three target heights ε in

the case of perfect reactions (κ = ∞). We observe that H̃(p)ρ linearly approaches unity as p → 0 (see (S21)) and

reaches a constant ε/π, that is, the fraction of the target area, as p→∞. This is a consequence of the uniform surface
average: particles that start from the target are immediately absorbed and thus not affected by diffusion-reaction

processes. The case ε = π corresponds to the fully absorbing inner cylinder, with H̃(p)ρ = η = 1.

V. TARGET ON THE WHOLE INNER CYLINDER

We consider the special case of the target extended to the whole inner cylinder (i.e., ε = π), for which an = 0
(n > 0), Rπ = 0, and thus the SCA yields

S̃(r, θ; p) =
1

p

(
1− η g0(r)

g0(ρ)

)
, (S38)

with

η =

(
1− g′0(ρ)

g0(ρ)

D

κ

)−1

. (S39)

One can easily check that this is the exact solution of the original problem with a partially absorbing inner cylinder,
i.e., this function satisfies the Robin boundary condition at r = ρ:(

D∂nS̃ + κS̃
)
r=ρ

= 0. (S40)

In other words, our approximation becomes exact in the case ε = π.
From (S38), we also get the MFPT to the inner cylinder:

T =
R2 − ρ2

2ρκ
+
ρ2 − r2

4D
+
R2 ln(r/ρ)

2D
, (S41)

whereas its volume average reads

T =
R2 − ρ2

2ρκ
+
R2

8D

(
4 ln(R/ρ)

1− (ρ/R)2
− 3 + (ρ/R)2

)
. (S42)
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The above exact solution suggests an interesting interpretation of the coefficient Rε for the general case of an
arbitrary ε. In fact, when the reactive region is only a part of the inner cylinder (i.e., ε < π), a diffusing particle
will undergo multiple reflections by the remaining part of the inner cylinder until it reaches the target. If the target
was composed of many small regions uniformly distributed over the inner cylinder, such a partially reactive boundary
could be described by the Robin boundary condition over the whole inner cylinder, with an effective reactivity κeff .
In our case, the target is a single absorbing region, so that this homogenisation argument is a priori not applicable.
Nevertheless, one can still introduce an effective, apparent reactivity by looking at the form of η in (8):

π

κε
+

L

πD
Rε =

1

κeff
. (S43)

This relation can be thought of as an extension of the celebrated Collins-Kimball relations for the system under study
(see [28, 38] for more details).

When the target is perfectly reactive, κ = ∞ and thus the effective reactivity represents the effect of the mixed
Dirichlet-Neumann boundary condition: κeff = Dπ

LRε
. If in addition the target is partially reactive, the overall reactivity

is further reduced, as the particle has to reach the reactive part and then overcome the energy barrier. Interpreting
the inverse of the reactivity as a “resistance”, (S43) implies that the respective resistances enter additively, precisely
as it happens in the classic analysis of Collins and Kimball.

VI. THE LIMIT R→∞

The distribution of the FPT remains well defined in the limit R → ∞ when the outer cylinder moves to infinity.
However, the MFPT diverges in this limit.

We get αn =
√
π2n2 + pL2/D, and gn(r) ' K0(αnr/L)I1(αnR/L), with an exponentially large factor I1(αnR/L).

In particular, one finds

S̃0(r; p) =
1

p

(
1−

K0(r
√
p/D)

K0(ρ
√
p/D)

)
(S44)

and

gn(r)

g′n(ρ)
= − L

αn

K0(αnr/L)

K1(αnρ/L)
. (S45)

As a consequence, the Laplace-transformed pdf from (7) becomes

H̃(r, θ; p) = η
K0(r

√
p/D)

K0(ρ
√
p/D)

+ 2η L
√
p/D

K1(ρ
√
p/D)

K0(ρ
√
p/D)

∞∑
n=1

K0(αnr/L)

αnK1(αnρ/L)

sinnε

nε
cos(nθ), (S46)

where

η−1 = 1 +

(
πD

κ ε
+
L

π
Rε
)√

p/DK1(ρ
√
p/D)

K0(ρ
√
p/D)

(S47)

and

Rε = 2π

∞∑
n=1

K0(αnρ/L)

αnK1(αnρ/L)

(
sinnε

nε

)2

. (S48)

In particular, the surface average of (S46) yields

H̃(p)r = η
K0(r

√
p/D)

K0(ρ
√
p/D)

, (S49)

whereas the volume average in (10) diverges as R→∞.
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The particular case ε = π

The distribution of the FPT has already been studied in the particular case of a perfectly absorbing inner cylinder
(i.e., ε = π and κ =∞). In this case, η = 1, and one retrieves the Laplace-transformed pdf of the FPT to a cylinder
of radius ρ [61]. In particular, the distribution of the FPT in this particular case is known to be characterised by a
power-law tail, Hπ(r; t) ∝ 1/(t ln2(t)) as t→∞, where subscript π signifies that this solution corresponds to ε = π, in
which the vertical coordinate z (or θ) is irrelevant and thus the surface average does not change the solution. Levitz
et al. [56] derived an approximation to Hπ(r; t) over the whole range of times (see below)

Hπ(r; t) '


r − ρ√
4πDt3

exp
(
− (r − ρ)2

4Dt

)
(t < ρ2/(2D)),

r/ρ− 1

2t
(
1 + ρ/

√
2Dt

)
ln2
(
(r +

√
2Dt)/ρ

) (t > ρ2/(2D)).
(S50)

This approximation is only valid for r close to ρ, i.e., when the particle starts in a vicinity of the inner cylinder.
We consider the more general case of a partially reactive inner cylinder (i.e., ε = π and κ < ∞), for which (S46)

becomes

H̃π(r; p) =
K0(r

√
p/D)

K0(ρ
√
p/D) + D

κ

√
p/DK1(ρ

√
p/D)

. (S51)

Using the solution of an appropriate heat problem (see Ref. [60], p. 337), we can write the inverse Laplace transform
as

Hπ(r; t) =
2κ

π

∞∫
0

dq q e−Dtq
2 Y0(qr)(qJ1(qρ) + hJ0(qρ))− J0(qr)(qY1(qρ) + hY0(qρ))

(qJ1(qρ) + hJ0(qρ))2 + (qY1(qρ) + hY0(qρ))2
, (S52)

where h = κ/D. In the long-time limit, the main contribution to the integral comes from q ≈ 0. The asymptotic
behaviour of the integrand function at q → 0 yields

Hπ(r; t) '
2
(
D
ρκ + ln(r/ρ)

)
t

∞∫
0

dz e−z

π2 +
(
− 2D
ρκ + ln(zρ2/(4Dt)) + 2γ

)2 , (S53)

where γ ≈ 0.5772 . . . is the Euler constant. Discarding a slowly varying function ln(z) in the denominator, we find
the following long-time asymptotic form

Hπ(r; t) '
2
(
D
ρκ + ln(r/ρ)

)
t
[
π2 +

(
ln(ρ2/(4Dt)) + 2γ − 2D

ρκ

)2] , (S54)

which exhibits a very slow decrease 1/(t ln2(t)) as t→∞.
In the short-time limit, one uses the asymptotic behaviour of the integrand function as q →∞ to get

Hπ(r; t) '
2κ
√
ρ/r

π

∞∫
0

dq q e−Dtq
2 q cos(q(r − ρ)) + h sin(q(r − ρ))

q2 + h2
.

Ignoring the second term in the numerator, one gets the short-time asymptotic behaviour

Hπ(r; t) '
κ
√
ρ/r√
πDt

exp

(
− (r − ρ)2

4Dt

)
(t→ 0). (S55)

In the limit κ→∞ (perfect reactions), the exact solution in (S52) and its approximations (S54) and (S55) become
respectively

Hπ(r; t) =
2D

π

∞∫
0

dq q e−Dtq
2 Y0(qr)J0(qρ)− J0(qr)Y0(qρ)

J2
0 (qρ) + Y 2

0 (qρ)
, (S56)

Hπ(r; t) ' 2 ln(r/ρ)

t
[
π2 + (ln(ρ2/(4Dt)) + 2γ)2

] (t→∞) , (S57)

Hπ(r; t) '
(r − ρ)

√
ρ/r√

4πDt3
exp

(
− (r − ρ)2

4Dt

)
(t→ 0). (S58)
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FIG. S4: The probability density Hπ(r; t) as function of t for R =∞, L/` = ε = π, ρ/` = 0.1, κ =∞ (a) and κ`/D = 1 (b).
The exact integral representation in (S52) (solid line) is compared to the numerical Laplace inversion of (S51) (circles) and to
the long-time and short-time approximations (S54) and (S55). Length and time scales are fixed by setting ` = 1 and `2/D = 1,
with an auxiliary length ` = L/π.

As in Ref. [56], one can combine the short-time and long-time approximations to cover the whole range of times. If
the maximum of Hπ(r; t) occurs in the validity range of (S58), one can easily get the most probable FPT by finding
the zero of ∂Hπ(r; t)/∂t: tm = (r − ρ)2/(6D). This value is three times smaller than that from (21) for a partially
reactive target. The difference in the prefactor comes from different power law corrections to the common exponential
function (cf. (S55) and (S58)): t−3/2 for the perfectly reactive case and t−1/2 for the partially reactive case.

Figure S4 illustrates the behaviour of the probability density Hπ(r; t). The exact integral representation in (S52)
agrees perfectly with the numerical Laplace inversion of (S51) over a very broad range of times, confirming the high
accuracy of the inversion procedure. When the inner cylinder is perfectly absorbing (κ =∞), the long-time and short-
time approximations ((S54) and (S55)) are very accurate and can be used to approximate the probability density over
the whole range of times. For a partially reactive cylinder (κ = 1), these approximations are less accurate but still
good.

Comment on the approximation in (S50)

We briefly comment on the approximation in (S50) derived in Ref. [56]:
(i) we note that Eq. (1) in Ref. [56] is incorrect: the numerator and the denominator should be inter-changed.

This typing error does not impact the consequent results.
(ii) the approximate Eq. (6) in Ref. [56] was derived under the simplifying assumption that the distance from the

cylinder, δ = r − ρ, is much smaller than the radius of the cylinder ρ. The same derivation without this assumption
yields

Hπ(r; t) =
ln(r/ρ)

2t
(
1 + r/

√
2Dt

)
ln2
(
(r +

√
2Dt)/ρ

) . (S59)

When δ � ρ, one has ln(r/ρ) = ln(1 + δ/ρ) ' r/ρ − 1, and thus retrieves (S50), with r replaced by ρ in the
denominator. As pointed out in Ref. [56], the approximation Hπ(r; t) has the correct normalisation by construction:

∞∫
0

dtHπ(r; t) = 1. (S60)

Since this approximation is only valid for long times, it can be completed by the short-time behaviour.
(iii) the approximation in (S50) and its extension in (S59) are slightly different from our asymptotic (S57) but they

become identical in the long-time limit.

VII. THE LIMIT L→∞

In the limit L → ∞, the capped annular domain transforms into an unbounded semi-infinite circular annulus:

Ω = {x ∈ R3 : ρ <
√
x2 + y2 < R, z > 0}. In this case, the discrete summation variable ξ = πn/L becomes
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continuous, and one can replace sums by integrals. In particular, we get αn/L =
√
ξ2 + p/D, and (9) becomes

Rε =

∞∫
0

dξΥ
(
ρ,
√
ξ2 + p/D

)( sin ξε

ξε

)2

, (S61)

with

Υ(r, α) = −2
I0(αr)K1(αR) +K0(αr)I1(αR)

α
(
I1(αρ)K1(αR)−K1(αρ)I1(αR)

) . (S62)

Since (8) yields

η ' −π
L

g0(ρ)

g′0(ρ)

(
πD

κε
+Rε

)−1

, (S63)

the first term in (7) vanishes, whereas the second term transforms into

H̃(r, z; p) =

(
πD

κε
+Rε

)−1
∞∫

0

dξΥ
(
r,
√
ξ2 + p/D

) sin ξε

ξε
cos ξz. (S64)

Due to the symmetry, this solution is also valid for an infinite circular annulus with the target region (−ε, ε) on the
inner cylinder. Note also that in the second limit R→∞, the function Υ reads

Υ(r, α) =
2K0(αr)

αK1(αρ)
. (S65)

It is instructive to evaluate H̃(r, z; p = 0), which corresponds to the normalisation of the FPT. For a finite R, the

integrals in (S61) and (S64) diverge as p → 0, implying H̃(r, z; p = 0) = 1, as expected. In contrast, when R = ∞,

both integrals are finite, and thus H̃(r, z; p = 0) < 1, i.e., the density H(r, z; t) is not normalised to 1. This is the
consequence of the transient character of the search process in three dimensions (when L = R =∞). In this setting,

H̃(r, z; p = 0) is the probability of finding the target.
In the limit p→∞, we have

Υ(r, α) '
2
√
ρ/r

α
e−α(r−ρ) (S66)

so that

Rε '
π

ε
√
p/D

. (S67)

For 0 < z < ε, we evaluate the leading contribution to the integral in (S64) and get

H̃(r, z; p) '
√
ρ/r

e−(r−ρ)
√
p/D

1 +
√
pD/κ

, (S68)

which does not depend on ε and R in the leading order. Inverting this relation, we get the short-time asymptotic
behaviour

H(r, z; t) '
√
ρ/r e−(r−ρ)2/(4Dt)

{
κ√
πDt

− κ2

D
erfcx

((
r − ρ√

4Dt
+
κ
√
t√
D

)2)}
, (S69)

where erfcx(x) = ex
2

erfc(x) is the scaled complementary error function. In the perfectly reactive case κ = ∞, this
expression is reduced to

H(r, z; t) '
√
ρ/r

r − ρ√
4πDt3

e−(r−ρ)2/(4Dt) . (S70)

In the case z ≥ ε, the integral in (S64) requires a more subtle evaluation that we do not discuss here.
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FIG. S5: The probability density H(r, z; t) as function of t for L = ∞, ε/R = 0.2, z/R = 0.1, ρ/R = 0.1, r/R = 0.2, κ = ∞
(a) and κR/D = 1 (b). The numerical Laplace inversion of the integral representation in (S64) (solid line) is compared to its
short-time behaviour (dashed line) in (S69) (for κR/D = 1) and (S70) (for κ =∞) and long-time asymptotic relation in (S76)
(dash-dotted line). Length and time scales are fixed by setting R = 1 and R2/D = 1.

In the opposite limit p→ 0, the major contribution to integrals comes from ξ ≈ 0. Since

Υ(r, α) ' 4ρ

α2(R2 − ρ2)
+

2ρ

R2 − ρ2
Yr (α→ 0), (S71)

with

Yr =
r2 −R2

2
− R2 + ρ2

4
+R2 ln(R/r) +

R2ρ2 ln(R/ρ)

R2 − ρ2
, (S72)

we deduce the leading contribution to Rε

Rε '
2πρ

(R2 − ρ2)
√
p/D

+
πρYρ

ε(R2 − ρ2)
. (S73)

Similarly, we get for 0 < z < ε

∞∫
0

dξΥ
(
r,
√
ξ2 + p/D

) sin ξε

ξε
cos ξz ' 2πρ

(R2 − ρ2)
√
p/D

+
πρYr

ε(R2 − ρ2)
, (S74)

from which

H̃(r, z; p) ' 1−
√
p/D

1

2ε

(
D

κρ
(R2 − ρ2) +

ρ2 − r2

2
+R2 ln(r/ρ)

)
, (S75)

from which we deduce the long-time asymptotic behaviour

H(r, z; t) ' 1√
4πDt3

1

2ε

(
D

κρ
(R2 − ρ2) +

ρ2 − r2

2
+R2 ln(r/ρ)

)
. (S76)

We retrieved the characteristic t−3/2 decay of the FPT density for one-dimensional Brownian motion, which is sup-
plemented by the geometric information on the target and the annular domain.

Figure S5 illustrates the probability density H(r, z; t) as function of t for a semi-infinite circular annulus. One can
see that both short-time and long-time asymptotic relations accurately capture this behaviour at small and large t,
respectively.


