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We introduce a notion of contextuality for transformations in sequential contexts, distinct from
the Bell-Kochen-Specker and Spekkens notions of contextuality. Within a transformation-based
model for quantum computation we show that strong sequential-transformation contextuality is
necessary and sufficient for deterministic computation of non-linear functions if classical components
are restricted to mod2-linearity and matching constraints apply to any underlying ontology. For
probabilistic computation, sequential-transformation contextuality is necessary and sufficient for
advantage in this task and the degree of advantage quantifiably relates to the degree of contextuality.

Contextuality is a key non-classical phenomenon ex-
hibited by quantum systems, which was first considered
by Bell [1] and by Kochen and Specker [2]. It has been
the subject of renewed interest recently as a range of re-
sults have established it to be the essential ingredient for
enabling quantum advantages over classical implementa-
tions of a variety of informatic tasks [3–5], simulation of
quantum processes [6], and for enabling universal quan-
tum computing [7–11][70]. A broader notion of contextu-
ality due to Spekkens [12] has also been shown to be es-
sential to quantum advantages relating to state discrim-
ination and one-way communication protocols [13–17].
However, questions remain over which forms of contextu-
ality provide advantage in which precise settings [18] and
whether existing notions of contextuality are sufficient to
account for all instances of quantum advantage. For ex-
ample, there exist a variety of advantages achievable with
a single qubit [19–21], where Bell-Kochen-Specker (BKS)
contextuality cannot arise [2, 22] and to which there is
no apparent link to the Spekkens version. This raises the
important question of which non-classical feature could
be at play if not contextuality of these kinds.

We introduce a notion of contextuality for transforma-
tions performed in sequential contexts that is inequiva-
lent to the notion of transformation contextuality intro-
duced by Spekkens [23]. It is necessarily present in a re-
cently discovered form of quantum advantage in shallow
circuits [24]. We will show, via a Mermin-style [25, 26]
parity argument, that it is also crucial in enabling in-
creased computational power in the single qubit example
of [21]. The setting for that example is a transformation-
based model of quantum computing, which we call here
l2-TBQC, that was shown to be useful in achieving se-
cure delegated computing. In the model, a classical con-
trol computer, whose power is limited to mod2-linear
computation, may interact with a quantum resource, by
which its computational power may be enhanced. As
with the analogous measurement-based model, l2-MBQC
[4], which was the setting for the results of [3–5], it can
provide a useful tool for probing the roots of quantum
advantage. In this setting, we show more generally that
sequential-transformation contextuality is necessary and

sufficient to enable advantage in the task of probabilisti-
cally computing any non-linear function whenever classi-
cal ontologies are required to respect the computational
assumptions. Moreover, the degree of contextuality can
be related to the probability of success, and in particu-
lar, strong (i.e., maximal) contextuality is necessary for
deterministic computation of any non-linear function.

Our results trace an arc that parallels developments
relating BKS contextuality to quantum advantage in l2-
MBQC: Anders and Browne provided an example in
which a contextual resource is sufficient for the computa-
tion of a particular non-linear function [3]; Raussendorf
then proved that strong contextuality is necessary for any
deterministic non-linear computation [4], as initially ob-
served by Hoban et al. for non-adaptive l2-MBQC [27]
based on an early version of [4]; he also showed that
contextuality is necessary for quantum advantage in the
task of probabilistically computing any non-linear func-
tion; this latter result was later sharpened to show more
precisely how the degree of contextuality as measured by
the contextual fraction relates to probability of success
in [5]. Our results set the stage for further investigation
of how sequential-transformation contextuality may re-
late to quantum advantages, speedups and the onset of
universality in other settings, as the results of [7–10] do
for BKS contextuality.

Ontological models.— Quantum theory exhibits a num-
ber of apparently non-intuitive features. Crucially, in
many cases there exist no-go theorems that establish that
there is no way these features can be explained away
by recourse to any deeper or more complete theory that
would obey certain classical intuitions [28]. Some such
non-classical features are non-locality [29] (BKS) con-
textuality [1, 2] [71], forms of preparation and transfor-
mation contextuality [23], while others relate to macro-
realism [30–33] and the ontic nature of the quantum state
[34–41]. A convenient formalism for treating such theo-
rems is that of ontological models, which we briefly set
out next. Note that in this work when we speak of on-
tological models we will not be assuming any additional
features beyond what is explicitly set out below (e.g., of
the kind present in [23]).

http://arxiv.org/abs/1801.08150v3
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The central component is an ontic state space Λ, com-
prising the states of a hypothetical underlying theory.
Preparation of a quantum state ρ results in an ontic state
sampled according to a probability distribution dρ on Λ
[72]. In the simplest case, a quantum transformation U

corresponds to a measurable function fU : Λ → Λ. For
consistency we require that fU∗dρ = dUρU† , where the
left-hand side is the push forward of dρ along fU , defined
by fU∗dρ(λ) = dρ[f

−1
U (λ)]. We also require that the func-

tion corresponding to the identity operator simply maps
each ontic state to the δ function centered on that state,
ensuring that f

1∗dρ = dρ for all preparations ρ. In par-
ticular, the requirements entail that unitaries correspond
to invertible functions. A quantum measurement M cor-
responds to a function ξM : Λ → P (O) which assigns
to each ontic state a probability distribution over the
set of outcomes O. For any combination of preparation,
transformation, and measurement, the ontological theory
predicts that the empirical statistics, eρ,U,M ∈ P (O), are
given by

eρ,U,M =
∑

λ∈Λ

dρ(λ) ξM (fU (λ)) . (1)

In fact, our results apply more generally to ontologi-
cal models in which transformations may correspond to
stochastic mixtures of measurable functions. However,
we will see shortly that, for our present purposes, since
such an ontological model can always be expressed as a
convex decomposition of ones in which transformations
are deterministic, it will suffice to establish no-go proper-
ties for those with deterministic transformations. No-go
theorems arise when it is found that ontological models
satisfying some additional, perhaps “classical”, assump-
tions are unable to realise the empirical predictions of
quantum theory.

(Non-)contextuality.— In the BKS sense, non-
contextuality is an assumption of classicality that applies
when certain finite sets of compatible measurements may
be performed jointly in contexts. It requires that for each
valid context C compatibility is reflected at the ontologi-
cal level through factorisability of the joint measurement
function ξC : Λ → P (O|C|); i.e.,

ξC =
∏

M∈C

ξM . (2)

Implicit in this is the crucial requirement that, for any
measurement M occurring in contexts C and C′, its on-
tological representation ξM is context independent; i.e.,

ξM(C) = ξM(C′) .

This description of non-contextuality via factorisability is
equivalent to the description in terms of global valuations
that may be more familiar to some readers [42].

Next, we mention some specific instances arising from
Spekkens’ general notion of non-contextuality [23]. Mea-
surement non-contextuality in the explicit sense treated

in the no-go results of [23] relaxes (2) to the weaker re-
quirement that

ξC |M = ξM ,

for all M and C such that M ∈ C, where ξC |M denotes
the marginalisation of ξC to M .

Transformation and preparation non-contextuality in
the explicit sense treated in the no-go results of [23] takes
as context any convex decomposition of a given transfor-
mation or preparation. This has an operational motiva-
tion. Suppose, as a concrete example, that some transfor-
mation T admits the following unitary decompositions:

T =
1

2
Ua +

1

2
UA , (C)

T =
1

3
Ua +

1

3
Ub +

1

3
Uc . (C′)

Operationally, context C is “apply Ua or UA uniformly
at random”, and context C′ is “apply Ua, Ub or Uc uni-
formly at random”; quantum mechanically the contexts
are equivalent. Non-contextuality requires that con-
vex decompositions are reflected at the ontological level;
i.e., in this instance,

fT =
1

2
fUa

+
1

2
fUA

=
1

3
fUa

+
1

3
fUb

+
1

3
fUc

.

Again, it is implicit that ontological representations of
transformations and preparations are independent of op-
erational context; e.g.,

f
U

(C)
a

= f
U

(C′)
a

.

Sequential transformations.— With the preceding ver-
sions for comparison, we now introduce a version of non-
contextuality for transformations in sequential contexts.
It requires that for each finite sequence of transforma-
tions, C = {Ui}

t
i=1, sequential composition is reflected

at the ontological level; i.e.,

fUt···U1 = fUt
◦ · · · ◦ fU1 .

It is assumed that the ontological representations of
transformations are independent of sequential context;
i.e., whenever a transformation U occurs in contexts C

and C′, it holds that

fU(C) = fU(C′) .

When a set of empirical data or predictions cannot be
reproduced by an ontological model satisfying this prop-
erty, it is said to be contextual.

Contextuality in our sense implies that the system of
study cannot have an ontology in which transformations
correspond to modular, composable operations on ontic
states, such that they are well defined independently of
which transformations may have been performed previ-
ously or will be performed subsequently. Either we must
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reject the ontological picture entirely or give up on these
highly intuitive, classical properties. Note that one plau-
sible, if conspiratorial, mechanism for introducing some
contextuality might be through causal dependence on
transformations having appeared earlier in the sequence,
but even this kind of mechanism is precluded when the
transformations being modelled commute.

The constant-depth quantum circuits of [24] provide a
concrete example of sequential-transformation contextu-
ality as they can at best be simulated by classical circuits
whose depth grows logarithmically in the size of the in-
put. If a modular, non-contextual ontological description
of gate transformations at each step in the circuit were
possible, then it would give rise to classical circuits for
the same task, which would also have constant depth.
Connections to quantum advantage in this setting will
be investigated in future work; here we focus on exam-
ples in a more restricted setting.

Quantification.— An empirical model e = {eC}, asso-
ciates with each context C a distribution over observed
outcomes [42]. Similar to [5], given any empirical model
and appropriate version of contextuality, we may consider
convex decompositions of the form

e = ωeNC + (1− ω)e′ , (3)

where eNC and e′ are also empirical models, and eNC is
non-contextual. The maximum value of ω over all such
decompositions is the non-contextual fraction of e, writ-
ten NCF(e), and correspondingly, the contextual fraction
of e is CF(e) := 1 − NCF(e) [73]. For BKS contextual-
ity, the contextual fraction corresponds to the maximum
achievable normalised violation by e of any generalised
Bell inequality [5]. Here, however, we use it to quan-
tify sequential-transformation contextuality. Using the
terminology of the hierarchy of BKS contextuality intro-
duced in [42], an empirical model is said to be strongly
contextual when CF(e) = 1.

For a given experimental scenario, the set of all the pos-
sible eNC is convex, and any extremal point corresponds
simply to fixing a deterministic function fU : Λ → Λ for
each transformation U featuring in the scenario. Strong
contextuality thus arises in the extreme case that no
global assignment of deterministic functions to transfor-
mations is consistent with even a fraction of the empirical
behaviour.
l2-TBQC.— We consider a classical control computer

restricted to mod2-linear computation that can interact
with a resource, which may be quantum, as follows. The
resource is prepared in a fixed state, the control computer
may interact with it by means of controlled transforma-
tions, then a fixed measurement is performed on the re-
source and its outcome returned to the control computer.
This captures, for example, the single qubit protocols of
[21], which were considered for their security features in
a setting in which a client delegates certain operations

Figure 1: The basic single qubit AND protocol from [21].

|+〉 U(a) V (b) W (a⊕ b) ✌
✌ σX

making up an l2-TBQC, such as state preparation and
measurement, to a server.

Note that, independent of the l2 restriction, any
measurement-based quantum computation [43] can
equivalently be expressed as a TBQC, since choice of a
measurement setting is equivalent to choice of a transfor-
mation prior to a fixed measurement.

An example of an l2-TBQC that performs a basic non-
linear function, the AND gate on classical input bits a

and b,

g(a, b) = (a⊕ 1)⊗ (b⊕ 1)⊕ 1 ,

is the following (Fig. 1) [74]. The control computer re-
ceives inputs a and b. For the resource, the fixed state
is the qubit state |+〉, the fixed measurement is given by
the Pauli operator σX , and the controlled transforma-
tions are U(a), then V (b), then W (a⊕ b), where

U(0) = V (0) = W (0) = I ,

U(1) = V (1) = W (1) =

(

1 0

0 ei
π/2

)

.

Notice that all transformations commute. The output
of the computation is the measurement outcome inter-
preted in Z2, with eigenvalues +1 and −1 mapped to 0
and 1, respectively. In terms of complexity classes, access
to a qubit quantum resource promotes the computational
power from the class ⊕L [44, 45] to P , as with the exam-
ple in [3] in the setting of l2-MBQC.
⊕L-ontology.— Of course, classical computers can per-

fectly well compute non-linear functions and they also
constitute valid non-contextual ontologies. To pose a
meaningful computational question about whether a re-
source may be used to boost power from ⊕L to P , there-
fore, we will restrict attention to ⊕L-ontologies, which
we define as follows. Recalling that ⊕L circuits are built
entirely of NOT and controlled-NOT (CNOT) gates [45],
we will suppose that available transformations are built
from these and act on an ontic state space Z

s
2, for some

s ∈ N. In what follows, we will be interested in protocols
in which transformations commute. These can already
permit efficient solutions to problems for which it is be-
lieved there can be no efficient classical solution [46]. For
transformations in commutative ⊕L ontologies it holds
that, for any transformation U ,

fU (λ) = (I ⊕AU )λ⊕ u , (4)

where AU is an s× s matrix over Z2 containing only off-
diagonal entries and u ∈ Z

s
2 [see Appendix]. For compo-
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sition of transformations {Ui}
t
i=1 with ontological repre-

sentations determined by {Ai,ui} it holds that

fUt
◦ · · · ◦ fU1(λ) = λ⊕

t
⊕

i=1

Aiλ⊕

t
⊕

i=1

ui .

A dichotomic measurement in an ⊕L ontology can most
generally be described by a transformation followed by
output of the bit value of a fixed entry j of the final ontic
state vector; i.e. λ′ · δ where λ′, δ ∈ Z

s
2 are the post-

transformation ontic state and the vector with jth entry
1 and 0’s elsewhere, respectively.

RESULTS

Proposition 1. Any commutative ⊕L-ontological reali-
sation of the AND l2-TBQC is transformation contextual.

Proof. Suppose that preparation results in an initial ontic
state λ ∈ (Z2)

s. From (1), non-contextual realisation of
the protocol requires Eqs (5–8) to be satisfied. These de-
scribe evaluation of the computation for the four possible
sequential contexts, where ontological representations of
U(k), V (k), and W (k), with k ∈ {0, 1}, are determined
through Eq. (4) by {AU (k),u(k)}, {AV (k),v(k)}, and
{AW (k),w(k)}, respectively, and of the transformation
component of the measurement by {AM ,m},

[λ⊕AU (0)λ ⊕AV (0)λ ⊕AW (0)λ⊕AMλ⊕ u(0)⊕ v(0)⊕w(0)⊕m] · δ = 0 , (5)

[λ⊕AU (0)λ ⊕AV (1)λ ⊕AW (1)λ⊕AMλ⊕ u(0)⊕ v(1)⊕w(1)⊕m] · δ = 0 , (6)

[λ⊕AU (1)λ ⊕AV (0)λ ⊕AW (1)λ⊕AMλ⊕ u(1)⊕ v(0)⊕w(1)⊕m] · δ = 0 , (7)

[λ⊕AU (1)λ ⊕AV (1)λ ⊕AW (0)λ⊕AMλ⊕ u(1)⊕ v(1)⊕w(0)⊕m] · δ = 1 . (8)

Under the assumption of non-contextuality, the equations
are not jointly satisfiable. This can be deduced from the
fact that the sum modulo 2 of the right-hand sides is
one, whereas the sum of the left-hand sides is zero, since
each vector appears an even number of times leading to
cancellations. Note that a contextual realisation would
permit ontological representations to vary according to
context; e.g., u(0)(4) 6= u(0)(5). Contextually, we can al-
ways satisfy the equations. The conclusion is that, while
⊕L-ontological descriptions are possible, they are neces-
sarily transformation contextual.

The above proof is similar to Mermin’s parity ver-
sion [25, 26] of the Greenberger-Horne-Shimony-Zeilinger
inquality-free argument for non-locality [47, 48], and is an
instance of an all-versus-nothing proof of strong contex-
tuality [49], albeit for transformation rather than BKS
contextuality.

Proposition 2. Strong transformation contextuality is
necessary for ⊕L-ontological realisation of any non-linear
commutative l2-TBQC.

Proof. Let i ∈ (Z2)
r be the input of the computation and

λ ∈ (Z2)
s be the initial ontic state resulting from the

fixed preparation. The control bits k = {ki}
t
i=1 for the

transformations to be performed are linearly determined

from the inputs:

k = Bi⊕ c . (9)

for some n × r matrix B and vector c of length r over
Z2. The transformations to be performed in sequence are
{Ui(ki)}

t
i=1. In a non-contextual model, these will have

ontological representations determined through Eq. (11)
by {Ai(ki),ui(ki)}. These are necessarily linear in ki for
each i, since entries in Ai and ui take values in Z2 and
are functionally determined from ki, but all functions of
type Z2 → Z2 are linear. Deterministic realisation of a
function g : (Z2)

r → Z2 by a non-contextual ontological
model requires that, for all inputs i,

g(i) =
[(

I ⊕
t
⊕

i=1

AUi
(ki)⊕AM

)

λ⊕
n
⊕

i=1

ui(ki)⊕ uM

]

· δ .

This is a linear function since right-hand side expression
is linear in k, and in turn k is linear in i, by Eq. (9).

In a contextual model we could allow the onto-
logical representations to have context dependence;
i.e., {Ai(k),ui(k)}. In this case the entries of the re-
spective matrices and vectors are determined by func-
tions Z

n
2 → Z2, which can introduce non-linearity.
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Moreover, if any fraction p of the empirical behaviour
can be described non-contextually, then with an aver-
age probability over all possible inputs of at least p, the
l2-TBQC computes some linear function. Therefore de-
terministic computation of a non-linear function requires
strong contextuality.

Given two functions g, h : Zr
2 → Z2, we can define an

average distance between these functions as

d(g, h) := 2−r |{i | g(i) 6= h(i)}| .

This can be used to measure the degree of non-linearity
of any function g : Zr

2 → Z2 as the distance to the closest
linear function of that type,

ν(g) := min {d(g, h) | h : Zr
2 → Z2 linear} .

Theorem 1. If a commutative l2-TBQC, with resource
empirical model e, probabilistically computes a function
g : Zr

2 → Z2 with an average failure probability ε over all
2r possible inputs, then

ε ≥ NCF(e) ν(g) .

Proof. The average probability of success is pS := 1 − ε.
From (3), we can decompose the resource empirical model
as

e = NCF(e) eNC + CF(e) e′ ,

where e′ is necessarily strongly contextual. This allows
us to similarly decompose the behaviour of the l2-TBQC,
so that

pS = NCF(e) pS,eNC + CF(e) pS,e′ ,

where pS,eNC and pS,e′ are the average probabilities of
success that would be associated with resource empirical
models eNC and e′, respectively. At best, e′ enables deter-
ministic computation of g. This leads to the inequalities

pS ≤ NCF(e) pS,eNC + CF(e) ,

ε ≥ NCF(e) εeNC , (10)

where εeNC = 1−pS,eNC is the average probability of failure
associated with eNC. From the proof of Propositon 2, we
know that for a non-contextual resource empirical model
any l2-TBQC can only compute convex mixtures of linear
functions. Thus εeNC ≤ ν̃(g), which combined with (10)
yields the desired inequality.

Theorem 1 extends Proposition 2, since, in particular
it implies that deterministic computation (ε = 0) of a
non-linear function [ν(g) > 0] requires strong contextu-
ality [NCF(e) = 0]. The proof here is similar to that of
Theorem 3 in [5].

DISCUSSION

The present results highlight the potential of sequen-
tial contextuality as a source of quantum advantage of
a single qubit over arbitrarily many classical bits for a
particular kind of computational task. While the ⊕L-
ontological assumptions are natural in the particular set-
ting of restricted classical computation that we consider,
a direction for future research will be to consider exam-
ples of sequential transformation contextuality in less re-
stricted settings, like that of [24], as well as to explore
other potential connections to quantum advantage, espe-
cially in single qubit systems [19, 20]. It also remains
to be seen how the present notion of contextuality can
be treated in resource-theoretic frameworks of the kind
developed in [5, 50–53]. A related analysis, in terms of
irreversibility, of transformation-based protocols is con-
tained in [54], and, in the future, it may be interesting
to consider advantages as arising from a combination of
these phenomena. From a foundational perspective, in
light of the present analysis, the experimental results of
[55, 56] could already be said to provide indirect exper-
imental evidence for a kind of sequential transformation
contextuality, but this leaves open the possibility for ex-
periments designed specifically to test for the feature,
which might also aim to minimise potential issues, such
as the detection loophole.

Acknowledgements.— The authors thank Samson
Abramsky, Rui Soares Barbosa, Dan Browne, Ulysse
Chabaud, Tom Douce, Pierre-Emmanuel Emeriau,
Ernesto Galvão, Frédéric Grosshans, Luciana Henaut,
Matty Hoban, Aleks Kissinger, Jan-Åke Larsson, Damian
Markham, and Anna Pappa for valuable discussions and
comments. Early ideas for this work were conceived while
S.M. was visiting the Simons Institute for the Theory
of Computing at the University of California, Berkeley,
as a participant of the Logical Structures in Computa-
tion program. This project has received funding from
the European Union’s Horizon 2020 Research and In-
novation Programme under the Marie Skłodowska-Curie
Grant Agreement No. 750523.

∗ Electronic address: shane.mansfield@lip6.fr
[1] J. S. Bell, Reviews of Modern Physics 38, 447 (1966).
[2] S. Kochen and E. P. Specker, in The Logico-Algebraic

Approach to Quantum Mechanics (Springer, 1975) pp.
263–276.

[3] J. Anders and D. E. Browne, Physical Review Letters
102, 050502 (2009).

[4] R. Raussendorf, Physical Review A 88, 022322 (2013).
[5] S. Abramsky, R. S. Barbosa, and S. Mansfield, Phys.

Rev. Lett. 119, 050504 (2017).
[6] A. Karanjai, J. J. Wallman, and S. D. Bartlett, arXiv

preprint arXiv:1802.07744 (2018).

mailto:shane.mansfield@lip6.fr


6

[7] M. Howard, J. Wallman, V. Veitch, and J. Emerson,
Nature 510, 351 (2014).

[8] N. Delfosse, P. A. Guerin, J. Bian, and R. Raussendorf,
Physical Review X 5, 021003 (2015).

[9] H. Pashayan, J. J. Wallman, and S. D. Bartlett, Physical
Review Letters 115, 070501 (2015).

[10] J. Bermejo-Vega, N. Delfosse, D. E. Browne, C. Okay,
and R. Raussendorf, Phys. Rev. Lett. 119, 120505 (2017).

[11] L. Catani and D. E. Browne, arXiv preprint
arXiv:1711.08676 (2017).

[12] R. W. Spekkens, D. H. Buzacott, A. J. Keehn, B. Toner,
and G. J. Pryde, Physical review letters 102, 010401
(2009).

[13] A. Chailloux, I. Kerenidis, S. Kundu, and J. Sikora, New
Journal of Physics 18, 045003 (2016).

[14] D. Saha, P. Horodecki, and M. Pawłowski, arXiv
preprint arXiv:1708.04751 (2017).

[15] D. Schmid and R. W. Spekkens, Physical Review X 8,
011015 (2018).

[16] D. Saha and A. Chaturvedi, arXiv preprint
arXiv:1802.07215 (2018).

[17] S. Ghorai and A. Pan, arXiv preprint arXiv:1806.01194
(2018).

[18] P. Lillystone, J. J. Wallman, and J. Emerson, arXiv
preprint arXiv:1802.06121 (2018).

[19] E. Knill and R. Laflamme, Physical Review Letters 81,
5672 (1998).

[20] E. F. Galvão and L. Hardy, Physical Review Letters 90,
087902 (2003).

[21] V. Dunjko, T. Kapourniotis, and E. Kashefi, Quantum
Information and Computation 16, 0061 (2016).

[22] A. M. Gleason, Journal of mathematics and mechanics
6, 885 (1957).

[23] R. W. Spekkens, Physical Review A 71, 052108 (2005).
[24] S. Bravyi, D. Gosset, and R. Koenig, Science 362, 308

(2018).
[25] N. D. Mermin, American Journal of Physics 58, 731

(1990).
[26] N. D. Mermin, Physical Review Letters 65, 3373 (1990).
[27] M. J. Hoban, E. T. Campbell, K. Loukopoulos, and D. E.

Browne, New Journal of Physics 13, 023014 (2011).
[28] A. Einstein, B. Podolsky, and N. Rosen, Physical review

47, 777 (1935).
[29] J. S. Bell, Physics 1, 195 (1964).
[30] A. J. Leggett and A. Garg, Physical Review Letters 54,

857 (1985).
[31] C. Brukner, S. Taylor, S. Cheung, and V. Vedral, arXiv

preprint quant-ph/0402127 (2004).
[32] C. Timpson and O. Maroney, The British Journal for the

Philosophy of Science (2013).
[33] J.-M. A. Allen, O. J. E. Maroney, and S. Gogioso, Quan-

tum 1, 13 (2017).
[34] Y.-C. Liang, R. W. Spekkens, and H. M. Wiseman,

Physics Reports 506, 1 (2011).
[35] M. F. Pusey, J. Barrett, and T. Rudolph, Nature Physics

8, 475 (2012).
[36] R. Colbeck and R. Renner, Physical Review Letters 108,

150402 (2012).
[37] R. Colbeck and R. Renner, New Journal of Physics 19,

013016 (2017).
[38] L. Hardy, International Journal of Modern Physics B 27

(2013).
[39] A. Montina, Modern Physics Letters A 30 (2015).
[40] S. Mansfield, Physical Review A 94, 042124 (2016).

[41] J.-M. A. Allen, Quantum Studies: Mathematics and
Foundations 3, 161 (2016).

[42] S. Abramsky and A. Brandenburger, New Journal of
Physics 13, 113036 (2011).

[43] R. Raussendorf and H. J. Briegel, Physical Review Let-
ters 86, 5188 (2001).

[44] C. Damm, Information Processing Letters 36, 247 (1990).
[45] S. Aaronson and D. Gottesman, Physical Review A 70,

052328 (2004).
[46] M. J. Bremner, R. Jozsa, and D. J. Shepherd, in Pro-

ceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences (The Royal Society,
2010) p. rspa20100301.

[47] D. M. Greenberger, M. A. Horne, and A. Zeilinger, in
Bell’s theorem, quantum theory and conceptions of the
universe (Springer, 1989) pp. 69–72.

[48] D. M. Greenberger, M. A. Horne, A. Shimony, and
A. Zeilinger, American Journal of Physics 58, 1131
(1990).

[49] S. Abramsky, R. S. Barbosa, K. Kishida, R. Lal, and
S. Mansfield, in 24th EACSL Annual Conference on
Computer Science Logic (CSL 2015), Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), Vol. 41,
edited by S. Kreutzer (2015) pp. 211–228.

[50] A. Grudka, K. Horodecki, M. Horodecki, P. Horodecki,
R. Horodecki, P. Joshi, W. Kłobus, and A. Wójcik, Phys-
ical Review Letters 112, 120401 (2014).

[51] K. Horodecki, A. Grudka, P. Joshi, W. Kłobus, and
J. Łodyga, Physical Review A 92, 032104 (2015).

[52] B. Amaral, A. Cabello, M. T. Cunha, and L. Aolita,
arXiv preprint arXiv:1705.07911 (2017).

[53] C. Duarte and B. Amaral, arXiv preprint
arXiv:1711.10465 (2017).

[54] L. Henaut, L. Catani, D. E. Browne, S. Mansfield, and
A. Pappa, arXiv preprint arXiv:1806.05624 (2018).

[55] S. Barz, V. Dunjko, F. Schlederer, M. Moore, E. Kashefi,
and I. A. Walmsley, Physical Review A 93, 032339
(2016).

[56] M. Clementi, A. Pappa, A. Eckstein, I. A. Walmsley,
E. Kashefi, and S. Barz, arXiv preprint arXiv:1708.06144
(2017).

[57] E. F. Galvão, Physical Review A 71, 042302 (2005).
[58] V. Veitch, C. Ferrie, D. Gross, and J. Emerson, New

Journal of Physics 14, 113011 (2012).
[59] R. W. Spekkens, Physical Review Letters 101, 020401

(2008).
[60] A. Acín, T. Fritz, A. Leverrier, and A. B. Sainz, Com-

munications in Mathematical Physics 334, 533 (2015).
[61] A. Cabello, S. Severini, and A. Winter, Physical Review

Letters 112, 040401 (2014).
[62] E. N. Dzhafarov, J. V. Kujala, and V. H. Cervantes,

in International Symposium on Quantum Interaction
(Springer, 2015) pp. 12–23.

[63] N. de Silva, Physical Review A 95, 032108 (2017).
[64] J. V. Kujala, E. N. Dzhafarov, and J.-Å. Larsson, Phys-

ical Review Letters 115, 150401 (2015).
[65] L. Wester, in Proceedings 14th International Conference

on Quantum Physics and Logic, Nijmegen, The Nether-
lands, 3-7 July 2017, Electronic Proceedings in Theoreti-
cal Computer Science, Vol. 266, edited by B. Coecke and
A. Kissinger (Open Publishing Association, 2018) pp. 1–
22.

[66] R. Kunjwal, arXiv preprint arXiv:1709.01098 (2017).
[67] E. Amselem, L. E. Danielsen, A. J. López-Tarrida, J. R.



7

Portillo, M. Bourennane, and A. Cabello, Physical Re-
view Letters 108, 200405 (2012).

[68] S. Mansfield, “The mathematical structure of non-
locality & contextuality,” D.Phil. thesis, Oxford Univer-
sity (2013).

[69] S. Abramsky, R. S. Barbosa, and S. Mansfield, Informal
Proceedings of Quantum Physics & Logic (2016).

[70] Some of these references build on earlier work relating
quantum advantage to Wigner function negativity [57,
58], known to be an equivalent notion of non-classicality
to contextuality [59].

[71] There now exist a number of unified treatments of non-
locality and (BKS) contextuality [42, 60–62], which are
closely interrelated [60, 63], and whose relations to the
other kinds of non-cassicality have also been explored
elsewhere [64–66].

[72] Ontological theories can be defined more generally with
measures, but this will not be necessary for our present
purposes.

[73] BKS contextuality has also been quantified in such a
manner in [42, 50, 67–69].

[74] This is a slightly simplified version of the implementation
from [21]. Note that in the homomorphism from Z2 to the
booleans which one would perform in order to interpret
the function as the logical AND gate, the roles of 0 and
1 are exchanged, i.e., 0 7→ 1 and 1 7→ 0.

APPENDIX

Comparison with Spekkens’ contextuality

Within the ontological models framework as used by
Spekkens [23], in addition to the basic ingredients of on-
tological models that we have set out in the main text,
a number of further features are imposed or implicitly
assumed motivated by the intended interpretation of on-
tological models. Here, we have chosen to set out a more
minimal definition of what we intend to mean by ontolog-
ical models, and to explicitly state any such additional
assumptions as they become relevant, preferring to see
these as crucial to considerations and definitions of con-
textuality.

Two such features are that sequential composition
should be respected at the ontological level,

fUt···U1 = fUt
◦ · · · ◦ fU1 ;

and that fU(C) = fU(C′) for sequential contexts (C) and
(C′). Since these are the components of our definition of
sequential transformation non-contextuality, then non-
contextuality in our sense could be thought of as being
implicitly baked-in to the more loaded version of the on-
tological models framework from the outset. From our
perspective, however, this would be undesirable since it
would fail to pick up on sequential transformation con-
textuality, a non-classical phenomenon that on the basis
of our results we believe to be worthy of consideration.

Spekkens’ generalised approach to non-contextuality is
that ontological identifications such as fU(C) = fU(C′)

should be imposed whenever there is an operational
equivalence. Here, U (C) and U (C′) would be said to
be operationally equivalent if, for all choices of prepa-
ration and measurement, the outcome statistics for the
prepare-transform-measure experiments with transfor-
mation U (C) and with transformation U (C′) were equal.
However, since U (C) designates the transformation U

when it appears in the sequence of transformations (C),
and similarly for U (C′), such statistics are operationally
inaccessible. Without broadening what it means to be
operationally equivalent, our notion of non-contextuality
is not captured by the Spekkens approach.

Our approach to non-contextuality, on the other hand,
is to assume that operational compositions are respected
at the ontological level, and that ontological represen-
tations are independent of operational context. Non-
contextuality in the BKS and Spekkens senses are cap-
tured by this perspective as well, where now composition
does not refer exclusively to sequential transformation
of transformations, but also to composition of compati-
ble measurements into a joint measurement, or composi-
tion of transformations or preparations through stochas-
tic mixtures, etc. The presentation of the various notions
of non-contextuality in the main text aims to facilitate
this perspective, which will be more fully developed in a
future article.

Commutativity in ⊕L-ontologies

In a ⊕L-ontology, transformations are built from
CNOT and NOT gates. The action of the CNOT(i, j)
gate with control bit i and target bit j on an ontic state
λ ∈ Z

s
2 is a linear operation

CNOT(i, j)λ = (I ⊕A(j, i))λ ,

where I and A(j, i) are s×s matrices over Z2, the former
being the identity matrix and the latter the matrix whose
only non-zero entry is at position (j, i). For composition
of CNOT gates we have

CNOT(k, l) ◦ CNOT(i, j) = (I ⊕A(l, k)) (I ⊕A(j, i))

= I ⊕A(l, k)⊕A(j, i)⊕ δkjA(l, i) ,

and similarly

CNOT(i, j) ◦ CNOT(k, l) = (I ⊕A(j, i)) (I ⊕A(l, k))

= I ⊕A(j, i)⊕A(l, k)⊕ δilA(j, k) .

The gates commute when k 6= j, i 6= l; i.e. the control bit
for one gate cannot be the target bit for the other and
vice versa.

The other basic building blocks for transformations are
NOT gates. As a linear operation, the action of a NOT

gate on the ith bit is simply addition by the vector δ(i)
whose only non-zero entry is in the ith position,

NOT(i)(λ) = λ⊕ δ(i) .
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NOT gates commute amongst themselves, while a NOT

gate commutes with a CNOT gate if and only if it does
not act on the control bit. With NOT acting on the target
bit, it holds that

CNOT(i, j) ◦ NOT(j)(λ) = (I ⊕A(j, i)) (λ⊕ δ(j))

= (I ⊕A(j, i))λ⊕ δ(j)

= NOT(j) ◦ CNOT(i, j)(λ) ,

where the second equality follows from the fact that i 6= j

since there exists a CNOT between the respective bits.
With NOT acting on the control bit,

CNOT(i, j) ◦ NOT(i)(λ) = (I ⊕A(j, i)) (λ⊕ δ(i))

= (I ⊕A(j, i))λ⊕ δ(i)⊕ δ(j) ,

whereas

NOT(i) ◦ CNOT(i, j)(λ) = (I ⊕A(j, i))λ⊕ δ(i) .

In commutative ⊕L-ontologies we will therefore as-
sume that the ontic state space Z

s
2 can be partitioned

into control and target bits and that NOT gates act only
on target bits. This is an obvious sufficient condition
for commutativity of all transformations, though weaker
conditions that ensure commutativity only for subsets of
the possible transformations may be interesting to con-
sider in future work. As a linear operation, the onto-
logical representation of any transformation U is given
by

fU (λ) = (I ⊕AU )λ⊕ u , (11)

where AU is some s × s matrix over Z2 containing only
off-diagonal entries, u ∈ Z

s
2 gives the combined action of

any NOT gates, and for composition we have

fUt
◦ · · · ◦ fU1(λ) =

(

I ⊕

t
⊕

i=1

AUi

)

λ⊕

t
⊕

i=1

ui

= λ⊕
t
⊕

i=1

AUi
λ⊕

t
⊕

i=1

ui .


