
HAL Id: hal-01958870
https://hal.sorbonne-universite.fr/hal-01958870v1

Submitted on 19 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multimorbidity Is Associated with Preclinical
Alzheimer’s Disease Neuroimaging Biomarkers

Aline Mendes, Sophie Tézenas Du Montcel, Marcel Levy, Anne Bertrand,
Marie-Odile Habert, Hugo Bertin, Bruno Dubois, Stéphane Epelbaum

To cite this version:
Aline Mendes, Sophie Tézenas Du Montcel, Marcel Levy, Anne Bertrand, Marie-Odile Habert, et
al.. Multimorbidity Is Associated with Preclinical Alzheimer’s Disease Neuroimaging Biomarkers.
Dementia and Geriatric Cognitive Disorders, 2018, 45 (5-6), pp.272-281. �10.1159/000489007�. �hal-
01958870�

https://hal.sorbonne-universite.fr/hal-01958870v1
https://hal.archives-ouvertes.fr


 1 

Multimorbidity is associated with preclinical Alzheimer’s disease 1 

neuroimaging biomarkers  2 

 3 

Running Head 4 

Multimorbidity and cognition in older adults 5 

 6 

Aline Mendes1, 2, MD, Sophie Tezenas du Montcel3, 4, MD, PhD, Marcel Levy2 7 

MD, Anne Bertrand MD5,6,7, PhD, Marie Odile Habert MD8, Hugo Bertin8, 8 

Bruno Dubois MD2, Stéphane Epelbaum2,5,7 MD, PhD. 9 

 10 

INSIGHT-PreAD study group 11 

1 Department of internal medicine, rehabilitation and geriatrics 12 

Geneva University Hospitals, Switzerland. 13 

2 Institut de la mémoire et de la maladie d’Alzheimer, Département de 14 

neurologie, Hôpital de la Pitié Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, 15 

France.   16 

3 Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Univ Paris 17 

06, UMR S 1136, INSERM U 1136, Institut Pierre Louis d’Epidémiologie et de 18 

Santé Publique, F-75013, Paris, France. 19 

4 AP-HP, Biostatistics Unit, Groupe Hospitalier Pitié-Salpêtrière, F-75013, 20 

Paris, France. 21 

5 Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Institut du 22 

cerveau et la moelle (ICM), AP-HP - Hôpital Pitié-Salpêtrière, Boulevard de 23 

l’hôpital, F-75013, Paris, France.  24 

 25 



 2 

6 AP-HP, Hôpital de la Pitié-Salpêtrière, Department of Neuroradiology, F-26 

75013, Paris, France 27 

7 Inria Paris, Aramis project-team, 75013, Paris, France. 28 

8 Nuclear Medicine Department, University Hospital Pitié Salpêtrière, 75013 29 

Paris, France. 30 

Title character count: 89  31 

Number of references: 35  32 

Number of tables: 3 33 

Number of figures: 1 34 

Word count abstract: 200 35 

Word count paper: 2396 36 

 37 

Corresponding author: Aline Mendes, aline.mendes@hcuge.ch 38 

Geneva University Hospitals 39 

Departement of Internal Medicine, Rehabilitation and Geriatrics 40 

Chemin du Pont-Bochet 3, 1226 Thônex 41 

tel: +41 793144344 42 

 43 

Key-words: Alzheimer’s disease, multimorbidity, neuroimaging biomarkers, 44 

amyloid, neurodegeneration.  45 

 46 

 47 

 48 

 49 

 50 



 3 

Abstract  51 

Background: Identifying comorbidities that influence preclinical Alzheimer's 52 

disease (AD) can give some insight about the AD early stages trajectories to 53 

allow new treatment venues and to guide public health systems to prevent 54 

subsequent dementia. 55 

Objective: To examine the association of multimorbidity with AD 56 

neuroimaging markers in cognitively normal older adults. 57 

Methods: Cross-sectional design. Data regarding 14 comorbidities were 58 

obtained for all 318 adults aged 70 to 85 years, recruited from the community 59 

to an ongoing prospective monocentric cohort. They underwent standardized 60 

neuropsychological and neuroimaging assessment with automated methods 61 

that measured hippocampal volumes, WMH volumes, FDG-PET SUV in AD 62 

signature regions and amyloid PET SUV ratios. Linear regression was used to 63 

assess the association of multimorbidity with AD neuroimaging biomarkers. 64 

Results: Multimorbidity is significantly associated to lower hippocampal 65 

volumes (-0.03 ±0.01; P = .012; R2 = .017) and lower FDG-PET SUV (-0.027 66 

±0.009; P = .005; R2 = .022), with no association with amyloid deposition 67 

(0.001 ±0.007; P = .884; R2 = .0001). Taken individually, obesity and 68 

excessive alcohol use are associated with lower FDG-PET values. 69 

Surprisingly, obstructive sleep apnea and mood disorders are related to lower 70 

Amyloid-PET SUVr.  71 

Conclusions: Multimorbidity is associated with preclinical AD imaging 72 

markers of neurodegeneration, but not with amyloid. 73 

  74 
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Introduction  75 

Several acquired comorbidities have been described to increase the risk of 76 

developing dementia or Alzheimer’s disease (AD).1 Most of them are 77 

conditions that are modifiable with treatment, such as hypertension, 78 

dyslipidemia or diabetes.2 The co-occurrence of multiple chronic conditions 79 

(≥2 diseases) characterizes multimorbidity, an entity which prevalence rises 80 

with age3,  affecting more than a half of the older adults population. 81 

Multimorbidity has been associated with adverse health outcomes as mild 82 

cognitive impairment,4 diminished quality of life, functional limitation, frailty 83 

and mortality.5 Many of these chronic conditions commonly observed in 84 

multimorbidity are also the same established risk factors of AD. Moreover, 85 

they can directly impact brain neurogenesis by different underlying 86 

mechanisms, influencing for example the size of hippocampus towards lower 87 

volumes throughout life. 6 88 

This study aims to examine whether different AD neuroimaging biomarkers of 89 

neurodegeneration and amyloid burden relate to comorbidities individually, as 90 

well as to their accumulation termed “multimorbidity” in cognitively normal 91 

older adults. In the scope of recent failures of targeted drug trials against AD,7 92 

the identification of treatable conditions that raise the risk of preclinical AD 93 

might 1) play a role in future trials as enrichment factors at inclusion; 2) give 94 

some mechanistic insight about the early stage of AD to allow new treatment 95 

venues and; 3) guide public health systems to prevent subsequent dementia. 96 

Methods 97 

Study population 98 
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The INSIGHT-PreAD is an ongoing prospective monocentric cohort with the 99 

objective to determine factors that increase the risk of progression of 100 

cognitively normal older adults to clinical AD. INSIGHT-PreAD enrolled 101 

participants aged 70 to 85 years, with a subjective cognitive decline (SCD) 102 

and no objective cognitive disorders defined by a mini-mental state 103 

examination score (MMSE) ≥ 27 and total recall score in the free and cued 104 

selective reminding test (FCSRT) ≥ 41.8 Exclusion criteria included clinical 105 

dementia rating scale (CDR) > 0,9 visual and auditory functions insufficient for 106 

neuropsychological testing, the existence of a known neurological disease, 107 

recent stroke and illiteracy.  108 

The study was approved by the local ethical committee (ANSM 130134B-31) 109 

and all participants signed a written informed consent.  110 

Clinical data 111 

Demographic data were obtained at baseline and a comorbidity profile was 112 

established based on self-reported diagnosis during the standardized clinical 113 

follow-up. The presence of fourteen chronic conditions was assessed: 114 

hypertension, dyslipidemia, diabetes mellitus, atrial fibrillation, heart failure, 115 

chronic kidney disease, obstructive sleep apnea (OSA), active or past 116 

smoking, unhealthy alcohol consumption, prior head trauma, obesity, vitamin 117 

B12 deficiency, depression and post-traumatic stress disorder (PTSD). 118 

Diagnoses were validated by a physician (AM), according to standardized 119 

criteria from the international classification of diseases (ICD-10). Data 120 

regarding chronic kidney failure was not available for 23 subjects. 121 

Regarding mood disorders, we considered the diagnosis present for both 122 

early and late-onset episodes, as well as recurrent disorder. All head trauma 123 
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episodes were recorded, independent of severity. Excessive alcohol 124 

consumption was defined according to the diagnostic and statistical manual of 125 

mental disorders (DSM-5) criteria.  126 

Neuroimaging assessment 127 

Hippocampal volumetry  128 

All participants underwent an MRI at baseline in the same Siemens 129 

Magnetom Verio 3-T scan. The MRI acquisition protocol is described in the 130 

supplementary material. 131 

The hippocampal segmentation was performed using a fully automated in-132 

house developed method, based on simultaneous region deformation driven 133 

by both anatomical and probabilistic priors.10 Anatomical information was 134 

derived from local anatomical patterns that are stable in controls and AD 135 

patients, around landmarks automatically detected during the deformation. 136 

Probabilistic information was derived from an atlas built from the registration 137 

of manually segmented hippocampus from 16 young healthy subjects. 138 

Initialization was obtained from global information and deformation is 139 

constrained by local anatomical and probabilistic information. 140 

Volumes were normalized by the total intracranial volume (TIV).11 141 

White Matter Hyperintensities (WMH) volumetry 142 

Automated volumetry of WMH was obtained from all participants using the 143 

WMH Automated Segmentation Algorithm (WHASA) method and expressed 144 

in cm3. WHASA relies on increased contrast between WMH and surrounding 145 

tissues by extracting tissue information from T1 images, registering it to the 146 

FLAIR image and correcting for intensity inhomogeneities.12 Non-linear 147 

diffusion framework enables then to enhance the contrast of WMH on the 148 
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FLAIR image and obtain a piecewise constant image.  149 

Positron Emission Tomography studies with 18 Fluoro Deoxyglucose 150 

(FDG-PET) and with amyloid ligand 18F-Florbetapir 151 

- FDG-PET and florbetapir images acquisition - Brain amyloid PET scans 152 

were acquired 50 minutes after injection of 370 MBq (10 mCi) of 18F-153 

Florbetapir. Brain FDG-PET scans were obtained 30 minutes after injection of 154 

2 MBq/kg of 2-deoxy-2-(18F)fluoro-D-glucose. All acquisitions were performed 155 

in a single session on a Philips Gemini GXL scanner and consisted of 3 x 5 156 

minutes frames with a voxel size of 2 x 2 x 2 mm³. Images were then 157 

reconstructed using iterative LOR-RAMLA algorithm. Lastly, frames were 158 

realigned, averaged and quality-checked by a dedicated neuroimaging 159 

specialist team (CATI for “Centre pour l'Acquisition et le Traitement des 160 

Images”, http://cati-neuroimaging.com/). 161 

- PET images processing - The CATI developed a pipeline allowing 162 

quantifying radiotracer uptake in the grey matter of untransformed PET 163 

images, with high throughput and a step-by-step quality check. The aim was 164 

to reduce quantification biases related to spatial normalization, co-registration 165 

and partial volume effect (PVE). MRI 3D T1-weighted images were 166 

segmented and spatially normalized into the MNI space using the VBM8 167 

package implemented in SPM8.13 Deformation fields, grey and white matter 168 

masks were generated and further used to define ROIs. Structural MRI 169 

images were co-registered to PET images using SPM8 with visual inspection 170 

to detect any co-registration errors. Using inverse deformation fields and 171 

matrix transformation, composite cortical ROIs and a reference region were 172 

placed in the individual native PET space. After correcting for PVE with the 173 
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RBV-sGTM method,14 parametric PET images were created for each 174 

individual, by dividing each voxel with the mean activity extracted from the 175 

reference region. 176 

- PET variables - Metabolic indexes were calculated in ROIs involving AD 177 

specific regions such as right and left precuneus, posterior cingulate cortex, 178 

associative parietal and temporal cortex, hippocampus, as well as ROIs in the 179 

frontal and occipital cortex.15 The reference region was the pons. For amyloid 180 

PET images, standard uptake value ratios (SUVr) were calculated by 181 

averaging the mean activity of cortical ROIs: both left and right precuneus, 182 

cingulum posterior, cingulum anterior, parietal, temporal and orbitofrontal 183 

cortex. The reference region was a combination of whole cerebellum and 184 

pons regions.16  185 

Statistical analysis 186 

Descriptive data of the population is expressed as number of cases and 187 

proportions for categorical variables and as means and standard deviations 188 

for continuous variables. Differences between men and women were 189 

assessed by Fisher’s exact test or t-test if variables were categorical or 190 

continuous, respectively.  191 

The associations among the accumulation of comorbidities and their effect as 192 

individual conditions with the AD neuroimaging biomarkers were assessed by 193 

linear regression methods. For this purpose, hippocampal volumes, metabolic 194 

indexes and amyloid-PET SUVr were analyzed as continuous variables in our 195 

models.  196 

We predetermined five possible confounding factors for adjustments in the 197 

multivariate analysis: age, sex, educational level, ApoE4 status and WMH 198 
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volumes. We performed linear regression univariate analysis to evaluate their 199 

association to neuroimaging variables Variables presenting statistically 200 

significant associations were used as adjustment factors in the multivariate 201 

linear regression model for comorbidity, applied to their respective 202 

neuroimaging biomarker.  203 

Results were considered significant at P<0.05 and all statistical analyses were 204 

performed using SAS software (version 9.4; SAS Institute, Cary). 205 

Results 206 

Population characteristics 207 

The cohort of 318 cognitively normal subjects was composed by 204 (64.2%) 208 

women, with a global mean age of 76 years (SD: 3). They have a high mean 209 

sociocultural level (6, SD: 2), on a scale from 1 (no formal education) to 8 (at 210 

least two years post high school graduation). Hypertension, dyslipidemia, 211 

mood disorders and chronic kidney failure were the most common observed 212 

comorbidities and 70% of participants had at least 2 chronic conditions (table 213 

1). Mood disorders were more prevalent in women, whereas hypertension, 214 

heart failure, obstructive sleep apnea and tobacco use were significantly more 215 

prevalent in men. There were no differences regarding APOE4 allele 216 

prevalence.  217 

Adjustment factors and neuroimaging biomarkers 218 

Age influenced the 3 biomarkers studied, while female gender was associated 219 

with higher normalized hippocampal volumes and FDG PET, with no 220 

differences in amyloid-PET SUVr (table 2). Higher comorbidity burden 221 

observed in men can partly explain these differences.  222 
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While ApoE4 status was not associated with FDG-PET indexes, a trend 223 

toward significance was observed in the association of positive ApoE4 status 224 

and lower hippocampal volumes. Interestingly, WMH was not associated with 225 

hippocampal volumes or FDG-PET indexes, however higher WMH volumes 226 

were significantly associated to higher SUVr in amyloid-PET (figure 1).  227 

Multimorbidity and neuroimaging biomarkers 228 

The increasing number of comorbidities was significantly associated with 229 

lower hippocampal volumes (-0.03 ±0.01; P = .012; R2 = .017) as well as with 230 

lower SUV (-0.027 ±0.009; P = .005; R2 = .022) in FDG-PET. In the other 231 

hand, we did not observe any association between comorbidities 232 

accumulation and SUVr in amyloid PET (0.001 ±0.007; P =0.884; R2 = .0001). 233 

After adjustment for possible confounding factors, the association remained 234 

statistically significant only for FDG-PET SUV (-0.02 ±0.01; P = .038; R2 = .07). 235 

Both obesity and excessive alcohol use were associated with lower 236 

metabolism in FDG-PET, in univariate and multivariate models. Moreover, 237 

smoking presented a statically significant association with lower hippocampal 238 

volumes, but no significant association was observed after adjustment for 239 

possible confounding factors (table 3). 240 

Increased amyloid-PET SUVr was associated with the presence of 241 

dyslipidemia in the univariate linear regression model (0.048 ±0.022; P = .029; 242 

R2 = .047). Surprisingly, OSA and mood disorders were inversely associated 243 

with amyloid-PET SUVr, remaining statistically significant after adjustment for 244 

possible confounding factors (table 3).  245 

Discussion 246 
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In this study with 318 cognitively normal older adults, we observed that the 247 

accumulation of multiple chronic conditions, i.e. multimorbidity, is associated 248 

with neuroimaging markers of AD neurodegeneration, but not with amyloid 249 

deposition. 250 

Some of the multiple chronic conditions explored in our study were singularly 251 

associated to lower hippocampal volumes and lower metabolism in AD-252 

specific brain regions. The lower metabolism in FDG-PET AD signature 253 

regions was independent of ApoE4 status. These results are in agreement 254 

with a previous study regarding 1449 cognitively normal subjects, in which 255 

investigators observed an association of multimorbidity with FDG-PET 256 

hypometabolism and abnormal AD signature cortical thickness, whereas 257 

these were unrelated to amyloid.17 Our study demonstrates comparable 258 

results with a different spectrum of comorbidities, adding information 259 

regarding the association with hippocampal atrophy, not yet assessed. 260 

Besides that, by using a linear regression statistical approach, we could 261 

establish associations without determining normal/abnormal cut-off values in 262 

neuroimaging variables, showing that the association of comorbidities with 263 

neurodegeneration may be part of a continuum.18,19 Interactions among 264 

vascular risk factors, frequently observed as comorbidities in older adults are 265 

probably implicated in this pathophysiology.20,21 Multimorbidity has been 266 

recognized as an entity by itself, exceeding the simple co-existence of 267 

multiple chronic conditions.22 It has been demonstrated that their interactions 268 

transcend a merely additive effect, presenting a more complex synergism 269 

regarding vascular burden for example, but also other pathophysiological 270 

processes such as inflammation and oxidative stress.23 Our hypothesis is that 271 



 12 

different diseases clusters create different illness burden and may impact in a 272 

unique manner neurodegeneration.24 Therefore, the type, number and 273 

severity of comorbidities may modulate the rate of atrophy and metabolism 274 

decline, being at least one important variable in a complex model of factors 275 

determining the extent of preclinical AD stage. 276 

Surprisingly, we did not observe a relation between lower hippocampal 277 

volumes and vascular risk factors, classically related to a negative impact on 278 

hippocampus neurogenesis. This may be explained by our small sample size.  279 

We observed that active or past smoking was associated with lower 280 

hippocampal volumes. It has been demonstrated that chronic cigarette 281 

smoking may negatively impact cognition, including memory, due to oxidative 282 

stress-induced lesions.25 We found that a chronic excessive alcohol use was 283 

associated with lower metabolism in FDG-PET. Alcohol consumption seems 284 

to influence hippocampal neurogenesis as well as brain metabolism.26 285 

Intoxication states are associated with a switch in metabolism patterns, 286 

increasing acetate metabolism and reducing glucose use, as it was 287 

demonstrated in FDG-PET studies.27 It is not clear whether these effects may 288 

be transitory or permanent in the path towards neurodegeneration. 289 

In this study, obesity was related to lower metabolism in FDG-PET, but not to 290 

hippocampal atrophy. Obesity seems to be implicated in neurodegeneration, 291 

increasing the risk of cognitive impairment in late life and has been shown to 292 

be associated with decreased brain volumes.28,29  293 

In this study, OSA and mood disorders were associated with lower amyloid-294 

PET SUVr. However, there is evidence that both comorbidities may be 295 

actually associated with increased amyloid deposition. OSA leads to recurrent 296 
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sleep fragmentation and hypoxia, which upregulates the expression of the 297 

amyloid precursor protein (APP), diminishing Aβ clearance from the brain.30 In 298 

animal models, chronic hypoxia enhanced amyloid plaques generation with a 299 

significant decline in memory.31 Depression is not only an AD risk factor, but it 300 

can also be an initial phenotype of AD.32 There is evidence relating mood 301 

disorders to amyloid deposition, mainly from cross-sectional studies, showing 302 

that subjects with major depression have lower CSF AB42 and higher amyloid 303 

deposition in PET studies.33,34 The discrepancies with our data may be a 304 

result of the lack of information available regarding the depression episode 305 

(early-life, late-late or recurrent), as well as the severity of the disease and 306 

possible treatments implemented for both comorbidities.  307 

As recent data from previous cross-sectional studies, we also found an 308 

association between higher WMH volumes and amyloid deposition.35 WMH 309 

are highly prevalent and clearly related to vascular risk factors in older adults, 310 

however the possible causal relationship between amyloid and WMH needs 311 

further exploration in longitudinal studies. WMH could accelerate amyloid 312 

deposition, but amyloid may also affect WMH burden, independently of 313 

vascular risk factors treatment.  314 

This study has strengths, but also some limitations. The cross-sectional 315 

analyses do not allow us to infer temporality associations between 316 

comorbidities and neuroimaging biomarkers. Also, there is a possible 317 

selection bias regarding the participants of INSIGHT PreAD who are mostly 318 

highly educated. This could influence the prevalence of comorbidities.  319 

The main strength of this study lies in its standardized multimodal clinical and 320 

neuroimaging acquisition protocols and its monocentric nature, allowing for 321 
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optimal homogeneity of the cohort. A future longitudinal analysis in 322 

multimorbidity may help to understand the progression of neurodegeneration 323 

and amyloid deposition along with possible causality associations. Various 324 

comorbidities may be targeted with adequate treatment, raising the question 325 

of how their multimodal assessment and therapies during the early and late 326 

adult lifespan could impact pre-clinical AD trajectories.  327 
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Table 1. Characteristics of the study population at baseline. 477 

 478 

Characteristics Women n=204 Men n=114 p value Total n=318 

Age, mean (SD) 76.0 (3.3) 76.2 (3.9) 0.654 76.1 (3.5) 

Education level, mean (SD) 5.9 (2.0) 6.7 (2.0) 0.001 6.2 (2.1) 

APOE4, n (%) 41 (20.1) 18 (15.8) 0.371 59 (18.6) 

HTA, n (%) 77 (37.8) 60 (52.6) 0.013 137 (43.1) 

Atrial Fibrillation, n (%) 18 (8.8) 11 (9.6) 0.84 29 (9.1) 

Heart Failure, n (%) 17 (8.3) 19 (16.7) 0.028 36 (11.3) 

Dyslipidemia, n (%) 82 (40.2) 54 (47.4) 0.238 136 (42.8) 

Diabetes, n (%) 10 (4.9) 6 (5.3) >0.99 16 (5) 

Obstructive sleep apnea, n (%) 7 (3.4) 13 (11.4) 0.007 20 (6.3) 

Head trauma, n (%) 20 (9.8) 6 (5.3) 0.201 26 (8.2) 

Mood disorders, n (%) 71 (34.8) 17 (14.9) <0.0001 88 (27.7) 

B12 deficiency, n (%) 3 (1.5) 2 (1.8) >0.99 5 (1.6) 

PTSD, n (%) 0 1 (0.9) 0.358 1 (0.3) 

Unhealthy alcohol use, n (%) 17 (8.3) 14 (12.3) 0.324 31 (9.7) 

Smoked ever, n (%) 55 (27) 69 (60.5) <0.0001 124 (39) 

Current smoking, n (%) 12 (5.9) 9 (7.9) 0.489 21 (6.6) 

BMI, mean (SD) 25.0 (3.8) 25.5 (2.9) 0.236 25.2 (3.5) 

Obesity, n (%) 20 (9.8) 6 (5.3) 0.201 26 (8.2) 

Chronic kidney disease, n (%) 41 (21.7) 23 (21.7) >0.99 64 (21.7) 

Comorbidities total, mean (SD) 2.2 (1.4) 2.7 (1.5) 0.004 2.4 (1.5) 

Number of comorbidities, n (%)   0.011  

0-1 71 (34.8) 24 (21.1) 
 

95 (29.9) 

≥2 133 (65.2) 90 (78.9) 
 

223 (70.1) 

 479 

Abbreviations: HTA = Arterial hypertension; PTSD = Post-traumatic stress 480 

disorder; BMI = Body mass index. 481 

Fisher’s exact test categorical variables or t-test for continuous variables. 482 

Level of education is assessed by a scale from 1 (no formal education) to 8 483 

(at least two years post high school graduation). 484 

485 
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Table 2. Assessment of the association of potential adjustment factors for the 486 

multivariate comorbidity model with AD neuroimaging biomarkers. 487 

 488 

Adjustment 
factors 

Hippocampal 
volume P  

value 

FDG-PET SUV P 
value 

Amyloid-PET 
SUVr P  

value 
n=318 n=314 n=318 

Age -0.023 ±0.005 <.001 -0.01 ±0.004 0.013 0.006 ±0.003 0.043 

Women 0.169 ±0.035 <.001 0.112 ±0.03 <.001 -0.026 ±0.022 0.235 

Level of 
education 

0.001 ±0.008 0.927 -0.012 ±0.007 0.073 -0.001 ±0.005 0.793 

APOE4 
status 

-0.081 ±0.042 0.053 -0.007 ±0.036 0.837 0.123 ±0.026 <.001 

WMH 
volume 

-0.002 ±0.001 0.2 0.001 ±0.001 0.365 0.003 ±0.001 0.0002 

 489 
Abbreviations: WMH = white matter hyperintensities. 490 

Linear regression univariate analysis. 491 

Level of education is assessed by a scale from 1 (no formal education) to 8 492 

(at least two years post high school graduation).  493 
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Table 3. Associations of multimorbidity and comorbidities individually with AD 494 

neuroimaging biomarkers. 495 

 496 

 
Hippocampal volume FDG-PET SUV Amyloid-PET SUVr 

 
n=318 n=314 n=318 

Comorbidity 
number 

-0.03 ±0.01 -0.027 ±0.009 0.001 ±0.007 

P=0.012 P=0.005 P=0.884 

R
2
=0.017 R

2
=0.022 R

2
=0.0001 

Adjustment 
factors 

Age, Sex, APOE4 
status 

Age, Sex ApoE4, Age, WMH 

Comorbidity 
number after 
adjustment 

-0.017 ±0.01 -0.02 ±0.01 0.0004 ±0.007 

P=0.125 P=0.038 P=0.96 

R
2
=0.17 R

2
=0.07 R

2
=0.122 

Comorbidities 
individually 

n=295 n=292 n=295 

Tobbaco use Obesity Obstructive Sleep Apnea 

-0.081 ±0.035 -0.108 ±0.051 -0.095 ±0.043 

P=0.022 P=0.037 P=0.028 

R
2
=0.018 R

2
=0.041 R

2
=0.016 

   

 
Excessive alcohol use Mood disorders 

 
-0.138 ±0.049 -0.051 ±0.024 

 
P=0.005 P=0.035 

 
R

2
=0.027 R

2
=0.031 

   

  
Dyslipidemia 

  
0.048 ±0.022 

  
P=0.029 

  
R

2
=0.047 

Adjustment 
factors 

Age, Sex, APOE4 
status 

Age, Sex Age, APOE4 status, WMH 

Comorbidities 
individually 

after 
adjustments 

Tobbaco use Obesity Obstructive Sleep Apnea 

-0.059 ±0.035 -0.142 ±0.05 -0.084 ±0.04 

P=0.094 P=0.005 P=0.039 

R
2
=0.169 

  

 
Excessive alcohol use Mood disorders 

 
-0.112 ±0.045 -0.053 ±0.022 

 
P=0.014 P=0.018 

   

 
R

2
=0.094 

 

  
Dyslipidemia 

  
0.022 ±0.02 

  
P=0.29 

   

  
R

2
=0.148 
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Linear regression models in univariate and multivariate analysis; results 497 

expressed as Parameter Estimate ±Standard Error. As for the adjustment 498 

factors, significant associations in univariate analysis realized for 5 pre-499 

determined factors (age, sex, educational level, ApoE4 status and WMH 500 

volumes) were incorporated in each model of AD neuroimaging biomarker. 501 

Individual comorbidities not shown in the table did not have a statistically 502 

significant association (P<0.05) in the univariate model. Abbreviations: WMH 503 

= White matter hyperintensities. 504 

  505 
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Figure 1. Association of WMH volumes with amyloid-PET SUVR. 506 

  507 

a Linear regression model, 0.003 ±0.0008; P<0.001; R2= 0.12. 508 

b The association remains statistically significant after exclusion of this outlier 509 

participant from the analysis. 510 

Abbreviations: WMH = White matter hyperintensities. 511 


