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A formally exact Bethe-Salpeter equation (BSE) for the linear-response function is introduced
with a kernel which depends only on the one frequency of the applied field. This is in contrast with
the usual BSE which involves multiple-frequency integrals over the kernel and response functions.
From the one-frequency kernel, known approximations are straightforwardly recovered. However,
the present formalism lends itself to more powerful approximations. This is demonstrated with the
exact analytical solution of the Hubbard molecule. Similarities and differences of the GW+BSE
approach with the self-consistent random-phase approximation (RPA) is also discussed.

I. INTRODUCTION

The development of efficient many-body approaches is
an active research field in quantum chemistry and var-
ious branches of physics, such as solid-state and con-
densed matter, cold-atom, atomic, molecular, and nu-
clear physics. Originally developed in the framework of
subnuclear and nuclear physics to describe bound states
of systems of two interacting particles like the deuteron,
the Bethe-Salpeter equation (BSE) [1] has become an ap-
proach commonly used also in solid-state and condensed-
matter physics [2–10], atomic physics [11], and quantum
chemistry [12–14].

The fact that the standard BSE can be demonstrated
[15] to be equivalent to the Ward identities and the Hedin
integral equation for the vertex [16] enables a natural
transfer of approximations, i.e. the Hedin GW approx-
imation [16] on the self-energy toward the BSE kernel.
The idea behind the GW approach to tackle correlations
simply by the introduction of only screening, i.e. the sim-
ple replacement of the bare two-body interaction v by a
screened interaction W , can be directly transferred to
an approximation to the irreducible BSE kernel, which
is hence written as W instead of the time-dependent
Hartree-Fock (TDHF) exchange kernel. In contrast with
the TDHF exchange kernel, which for electronic sys-
tems is the opposite of the static Coulomb interaction
v(r, r′) = 1/|r − r′|, a BSE kernel at the same level of
the GW approximation should in principle be frequency
dependent since it relies on the dynamically screened
Coulomb interaction W (r, r′, ω). This frequency depen-
dence, which can be worked out, though with some diffi-
culties, when calculating the GW self-energy, and which
is an important ingredient to have quasiparticle energies
more in agreement with experiment, implies multiple-
frequency integrals in the BSE and represented so far
an insurmountable obstacle to the resolution of the full
BSE. For this reason almost all BSE calculations were

obliged to neglect the dynamical dependence of the BSE
kernel and solve a static BSE. This approach often called
GW+BSE [17] which uses a dynamical W (r, r′, ω) in the
self-energy and a static W (r, r′, ω = 0) in the BSE kernel
has nevertheless provided good results in agreement with
experiment and exact solutions [6–11].

It is difficult to estimate how important can be dy-
namical effects beyond the static BSE. Nevertheless, it
is often conjectured that deviations of the static BSE
solution from experiment can be solely due to dynam-
ical BSE effects. A tentative list might include effects
associated to double excitations in quantum chemistry
[18] or to electron-hole screened interaction in metals
[19]. Efforts to study dynamical BSE effects and in-
troduce a real frequency dependence into the BSE have
recently been attempted [20–23]. The standard BSE is
an equation over two-body Green/correlation functions
(kernel and response functions), i.e. functions of four
space-time points. In systems with time-translation in-
variance, there is one-time degree-of-freedom less, which
means always functions of three time differences, or their
three Fourier transformed frequencies. The full dynam-
ical BSE involves a so far numerically intractable in-
tegration over frequencies in the kernel and in the re-
sponse function. Recent efforts [20, 21] have tried to re-
define a kernel which incorporates frequency integration,
to finally arrive at a more easily solvable one-frequency
equation. Another approach [22, 23] has considered the
coupling of the linear-response function to uncorrelated
two-particle-two-hole (2p-2h) states. The coupling of
the linear-response function to collective states plus free
particle-hole (p-h) states to account for double excita-
tions has been discussed in Ref. [20].

All previous works followed the route which starts from
the multi-frequency standard BSE and tries to reduce the
number of involved frequencies, so as to end up with an
equation with just only the one frequency of the external
field. The purpose of this work is to follow a different
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route: we introduce from the beginning a formally exact
one-frequency BSE, i.e. depending only on the frequency
of the external field, for a linear-response function. In
particular, this means that also the integral kernel K de-
pends only on the one frequency of the external field.
Explicit expressions for K will be elaborated in terms
of well defined correlation functions and higher Green
functions. For readers interested right away to see the
final result, they may consult Eqs. (19), (32), (33), (34),
and (37). Starting from these expressions we then red-
erive the approximate expressions given in the literature
mentioned above. However, since our expressions are
more general, they lend themselves to more far-reaching
approximations without loosing the advantage of a one-
frequency only approach. This is demonstrated with the
exact solution of the Hubbard molecule. But we also will
point out that the response function calculated in this
way keeps all desirable qualities of the standard random-
phase approximation (RPA), such as fulfillment of sum
rules and conservation laws. Our derivation is based
on the equation-of-motion (EOM) technique applied to
an appropriately defined four-point one-frequency linear-
response function.

The paper is organized as follows. We will use the ex-
ample of the EOM technique for establishing the Dyson
equation for the one-body Green function presented in
Sec. II to introduce the key points of the derivation of the
one-frequency-only BSE which will then be presented in
Sec. III. In Sec. IV we will establish the connection of the
present formalism to the previous approaches of Refs. [20,
21, 23] and with the standard GW+BSE approximation,
making parallels also with the self-consistent random-
phase approximation (SCRPA) [24–27]. We will present
in Sec. V a short application of our formalism to the Hub-
bard molecule which in this way can be solved exactly.
Finally, Sec. VI contains our conclusions and outlook.

Atomic units are used throughout this work.

II. REDERIVATION OF THE ONE-BODY

DYSON EQUATION

To set the stage, we first present a short deriva-
tion of the Dyson equation for the standard one-body
Green function by the EOM technique, highlighting the
points over which we will base the derivation of the one-
frequency-only BSE in the next section.

We consider the most generic Hamiltonian, H = H0 +
V , composed by the non-interacting (kinetic plus ex-
ternal potential) Hamiltonian H0 and the two-body in-
teraction operator V , which we write in terms of cre-

ation/annihilation operators c†k and ck on an arbitrary
orthonormal basis set of orbitals {φk(r)} as

H =
∑

k1k2

ǫk1k2
c†k1

ck2
+

1

4

∑

k1k2k3k4

v̄k1k2k3k4
c†k1

c†k2
ck4

ck3
,

(1)

where ǫk1k2
are the matrix elements of the non-

interacting Hamiltonian H0 over the orthonormal basis
set, and

v̄k1k2k3k4
= 〈k1k2|v|k3k4〉 − 〈k1k2|v|k4k3〉, (2)

are the antisymmetrized matrix elements of the Coulomb
interaction v(r, r′) = 1/|r− r′|, or more precisely, detail-
ing the notation,

〈k1k2|v|k3k4〉 =

∫
drdr′ φ∗

k1
(r)φ∗

k2
(r′)v(r, r′)φk3

(r)φk4
(r′).

(3)

We work in a three-dimensional space and r and k are
meant as 3D vectors, but we can generalize to 1D and
2D; the spin degree of freedom σ is always implied and
can be included for spin-polarized cases in k and in r and
summed over whenever r is integrated out.
We remind the definition of the one-body Green func-

tion

Gkk′ (t− t′) = −i〈0|T{ck(t)c
†
k′ (t

′)}|0〉, (4)

where T{o(t)o′(t′)} = θ(t−t′)o(t)o′(t′)−θ(t′−t)o′(t′)o(t)
is the time-ordering product between fermion operators
o, ck(t) = eiHtcke

−iHt is the time-dependent annihila-
tion operator in the Heisenberg formalism (and similarly

for the time-dependent creation operator c†k′(t′)), and |0〉
is the ground state. We can then introduce the non-
interacting Green function G0, associated to the non-
interacting Hamiltonian H0, and its inverse

G0−1

kk′ (t− t′) = δ(t− t′)(δkk′ i∂t − ǫkk′ ) , (5)

by which we can write out a first EOM for G

∑

k1

∫
dt1 G

0−1

kk1
(t− t1)Gk1k′(t1 − t′) =

δkk′δ(t− t′)− i〈0|T{jk(t)c
†
k′(t

′)}|0〉, (6)

where we have introduced the operator

jk = [ck, V ] =
1

2

∑

k2k3k4

v̄kk2k3k4
c†k2

ck4
ck3

. (7)

The term containing jk is a two-body Green function
with a particular time ordering.
For simplicity and without loss of generality, we will

henceforth write the equations for the case of homoge-
neous systems, where k stands for momentum (and spin)
and ǫk is the kinetic energy. This is very similar to work
in the natural spin-orbital basis, also called canonical ba-
sis, obtained from the diagonalization of the one-body
density matrix in the case of inhomogeneous or finite sys-
tems. Let us now write the well-known Dyson equation
[28]

(i∂t−ǫk)Gk(t−t′) = δ(t−t′)+

∫
dt1Σk(t− t1)Gk(t1 − t′).

(8)
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Using Eq. (6), the self-energy is then formally given by

Σk(t− t′) = −i

∫
dt1〈0|T{jk(t)c

†
k(t1)}|0〉G

−1
k (t1 − t′),

(9)
where we introduced the inverse of the Green function
defined by G−1G = 1 in short-hand notation. From the
Dyson equation (8), this inverse can be expressed as

G−1
k (t− t′) = G0−1

k (t− t′)− Σk(t− t′). (10)

The self-energy can therefore be written as

Σk(t− t′) = −i

∫
dt1〈0|T{jk(t)c

†
k(t1)}|0〉

×
[
G0−1

k (t1 − t′)− Σk(t1 − t′)
]
. (11)

In this equation, G0−1

k (t1 − t′) can be applied on the left
using a second EOM (we should realize that ∂t1 contained

in G0−1

k (t1 − t′) normally acts to the right and, thus, one
has to perform an integration par parts over t1 to make
it act to the left, which changes i∂t1 into −i∂t1), we then
arrive at

Σk(t− t′) = Tk(t− t′)− Cred
k (t− t′), (12)

where

Tk(t− t′) = V MF
k δ(t− t′)− i〈0|T{jk(t)j

†
k(t

′)}|0〉, (13)

which is a kind of one-body T-matrix, and

Cred
k (t− t′) = (−i)2

∫
dt1dt

′
1 〈0|T{jk(t)c

†
k(t1)}|0〉

×G−1
k (t1 − t′1)〈0|T{ck(t

′
1)j

†
k(t

′)}|0〉.(14)

The usual mean-field potential is given by

V MF
k = 〈0|{[ck, V ], c†k}|0〉 =

∑

k′

v̄kk′kk′nk′ , (15)

where {..} stands for the anticommutator and

nk = 〈0|c†kck|0〉 (16)

are the occupation numbers. We should mention that
the mean-field potential in Eq. (15) is only diagonal in a
homogeneous system. In a finite system, this is not nec-
essarily the case in spite of the fact that in the natural
spin-orbital (canonical) basis the density matrix is diag-
onal. However, to avoid heavy formulas, we will always
from now on assume that the mean-field is also diagonal.
It is easily recognized that the second term of the expres-
sion for the above one-body T -matrix is expressed as a
three-body propagator of the two-particle-one-hole (2p-
1h) plus two-hole-one-particle (2h-1p) type. This 3-body
Green function contains the so-called one-line reducible
Feynman graphs, which is easily verified by perturbation
theory. By definition, a self-energy should not contain
such contributions which can be “cut” into two pieces

by cutting a single fermion line at a given time. It is
again easily verified by perturbation theory that the sec-
ond term on the right-hand side in Eq. (12) just does
nothing else than taking out of the T -matrix all reducible
terms. Therefore, in short, we can write the self-energy
as

Σk(t− t′) = V MF
k δ(t− t′)− i〈0|T{jk(t)j

†
k(t

′)}|0〉irr, (17)

where the index “irr” indicates that the corresponding
correlation function should be one-line irreducible. Ex-
pression (17) is therefore a formally exact and compact
expression for the self-energy. Please also note that the
expression is very symmetric, which is well suited for in-
troducing approximate forms of the self-energy. For com-
pleteness, let us also write an expression for the one-body

Green function in the following way (with G0−1

G0 = 1)

Gk = G0
k +G0

kTkG
0
k with Tk = Σk +ΣkG

0
kTk . (18)

Notice that in Eq. (17) we have an index “irr”, so that
the single particle T -matrix of Eq. (18) is different from
Σ. Here, we did not write out the time dependencies and
integrals. In frequency space there are no integrations
and it becomes an algebraic equation as, by the way, the
Dyson equation itself. Please note that Eq. (18) has the
usual form connecting a Green function to the scatter-
ing T -matrix. However, here the T -matrix is defined for
a many-body system. Taking out of T the one-line re-
ducible contributions changes TG0 into ΣG, that is we
also have the relation T = Σ + ΣG0T as indicated in
Eq. (18).
After this hopefully pedagogic and relatively elaborate

presentation of well-known many-body relations on the
one-body Green function, let us now turn to the two-
body case and response function.

III. RESPONSE FUNCTION AND THE

BETHE-SALPETER EQUATION

A. Derivation of the one-frequency Bethe-Salpeter

equation

We will derive for the two-time response function de-
fined by, with k1 6= k2 and k′1 6= k′2,

Rk1k2k
′
1
k′
2
(t− t′) = −i〈0|T{c†k2

(t)ck1
(t)c†

k′
1

(t′)ck′
2
(t′)}|0〉

(19)
an exact equation which has the same structure as the
Dyson equation for the one-body Green function derived
above. The inequalities k1 6= k2 and k′1 6= k′2 are not inde-
pendent of the one-body basis: for homogeneous matter
the indices stand for momenta and spin and then the in-
equalities concern the momenta. For finite systems the
indices correspond to the canonical basis. With this def-

inition, we have 〈0|c†k2
ck1

|0〉 = 0 and 〈0|c†
k′
1

ck′
2
|0〉 = 0, so

that the quantity R is the same as the linear-response
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function often denoted by χ in condensed-matter physics
or quantum chemistry [18]. Let us further note that in
Eq. (19) we have chosen a definite ordering of the fermion
operators. This stems from the fact that we are consider-
ing a one-body-density-matrix/one-body-density-matrix
correlation function. Notably there will appear an inte-
gral kernel which also depends on only one time difference
or on one frequency. For people used to multi-time Green
functions, this may seem surprising. However, this is not
unknown in the literature [29]. There also exists, e.g., the
Mori-Zwanzig formalism for correlation functions of sta-
tistical physics [30, 31]. Furthermore, in nuclear physics,
the EOM formalism developed by Rowe [32], and further
developed in Refs. [24–27, 29] (with more references in
there), is closely related to what we will present here.
However, these facts seem to be very little known in
the condensed-matter and chemical physics communities
where one often struggles to get rid of eventually super-
fluous frequency dependencies of the integral kernel of
the response function which are inherent to the so-called
Hedin equations [16]. Introducing a single frequency in-
tegral kernel from the start and not a posteriori will turn
out to have several advantages. For example, though we
will recover, e.g., certain aspects of the W kernel of the
BSE as used in the GW approach, we will also see more
clearly what kind of approximations are involved with
the use of static and dynamic forms of W in the BSE
and how eventually to go beyond in a systematic way.
So, let us start as before by writing down the first EOM

for the response function
∫
dt1 R̃

0−1

k1k2
(t− t1)Rk1k2k

′
1
k′
2
(t1 − t′) = Nk1k2k

′
1
k′
2
δ(t− t′)

−i〈0|T{Jk1k2
(t)c†

k′
1

(t′)ck′
2
(t′)}|0〉, (20)

where

R̃0−1

k1k2
(t− t′) = δ(t− t′)(i∂t − ǫk1

+ ǫk2
), (21)

which is a straightforward extension of the one-body case.
We have also introduced

Jk1k2
= [c†k2

ck1
, V ]

=
1

2

∑

k′
2
k′
3
k′
4

v̄k1k
′
2
k′
3
k′
4
c†k2

c†
k′
2

ck′
4
ck′

3

+
1

2

∑

k′
1
k′
2
k′
3

v̄k′
1
k′
2
k′
3
k2
c†
k′
1

c†
k′
2

ck′
3
ck1

, (22)

and the so-called norm kernel

Nk1k2k
′
1
k′
2
= 〈0|[c†k2

ck1
, c†

k′
1

ck′
2
]|0〉

= δk1k
′
1
δk2k

′
2
Nk1k2

, (23)

with

Nk1k2
= nk2

− nk1
= |nk2

− nk1
|N0

k1k2
, (24)

where the sign factor N0 is given by

N0
k1k2

= 1 for k1 > k2 and − 1 for k1 < k2, (25)

and therefore N0
k1k2

N0
k1k2

= 1. Please note that the one-

body density matrix 〈0|c†k2
ck1

|0〉 is diagonal for our as-

sumed homogeneous system (or in the canonical basis)
and we suppose that it is also diagonal in spin. One rec-
ognizes in Eqs. (23)-(24) the phase-space factors from
the standard RPA when the occupation numbers nk are
replaced by their step function form, n0

k, when using the
Hartree-Fock (HF) ground state. In general, however,
the occupation numbers are the correlated ones, differ-
ent from zero and one. It is remarked that this norm
factor is a different feature with respect to the one-body
Green-function case. Note also that, contrary to the one-

body case, the quantity R̃0−1

introduced in Eq. (21) is
not exactly the inverse of the non-interacting response
function R0, but instead we have in short-hand notation

R̃0−1

R0 = N where N is the norm matrix.
We now proceed exactly in analogy with the one-body

case. Because of the presence of the norm matrix N in
Eq. (20), we first have to divide it out by multiplying Eq.
(20) by the inverse of N . Writing Eq. (20) schematically
as

R̃0−1

R = N + F, (26)

we obtain by division with N

R̃0−1

R̃ = 1 + F̃ = 1 + F̃ R̃−1R̃ ≡ 1 +KR̃, (27)

with R̃ = RN−1 and F̃ = FN−1. So we arrive at a BSE
of the form

R̃−1 = R̃0−1

−K, (28)

with the kernel K given by

K = F̃ R̃−1 = F̃ [R̃0−1

−K]. (29)

With explicit notations, the BSE with a one-frequency
kernel can thus be written as
∫

dt1R̃
0−1

k1k2
(t− t1)R̃k1k2k

′
1
k′
2
(t1 − t′) = δk1k

′
1
δk2k

′
2
δ(t− t′)

+

∫
dt1

∑

k3k4

Kk1k2k3k4
(t− t1)R̃k3k4k

′
1
k′
2
(t1 − t′), (30)

with

Kk1k2k
′
1
k′
2
(t− t′) = −i

∫
dt1

∑

k′
3
k′
4

〈0|T{Jk1k2
(t)c†

k′
3

(t1)ck′
4
(t1)}|0〉N

−1
k′
3
k′
4

[R̃0−1

k′
3
k′
4
(t1 − t′)δk′

3
k′
1
δk′

4
k′
2
−Kk′

3
k′
4
k′
1
k′
2
(t1 − t′)]. (31)

We apply then the EOM a second time as in the one-body
case and obtain the final expression of the kernel

Kk1k2k
′
1
k′
2
(t− t′) = K0

k1k2k
′
1
k′
2
δ(t− t′) +Kdyn

k1k2k
′
1
k′
2

(t− t′),

(32)
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with a purely static contribution

K0
k1k2k

′
1
k′
2
= 〈0|[[c†k2

ck1
, V ], c†

k′
1

ck′
2
]|0〉N−1

k′
1
k′
2

,

(33)

and a dynamic contribution

Kdyn
k1k2k

′
1
k′
2

(t− t′) = −i〈0|T{Jk1k2
(t)J†

k′
1
k′
2

(t′)}|0〉irrN−1
k′
1
k′
2

.

(34)

Please note the complete analogy of this expression with
Eq. (17). At this point some discussion is in order: we re-
alize that the right-hand side of Eq. (34) corresponds to
a four-body Green function of the 2p-2h and 2h-2p type.
It contains therefore double p-h excitations. The index
“irr” may seem less evident than in the one-body case.
One may, however, verify again by perturbation theory
that everything works exactly as in the one-body case

and that the subtraction of the matrix K in R̃0−1

− K
exactly eliminates all p-h reducible contributions of the
2p-2h/2h-2p Green function. The p-h (two-line) irre-
ducibility is just the analog of the one-line irreducibility
in the one-body case. Up to some technical details to
be discussed below, we thus have derived, as announced,
a BSE with a one-frequency kernel obtained by Fourier
transforming into frequency space the time dependence
of the kernel in Eq. (34), which at equilibrium depends
only on the time difference t − t′. The frequency-space
BSE that we have obtained is thus

(ω − ǫ̃k1
+ ǫ̃k2

)R̃k1k2k
′
1
k′
2
(ω) = δk1k

′
1
δk2k

′
2

+
∑

k3k4

[K0
k1k2k3k4

+Kdyn
k1k2k3k4

(ω)]R̃k3k4k
′
1
k′
2
(ω), (35)

where

ǫ̃k = ǫk + V MF
k , (36)

are the one-body energies with mean-field shifts included.
Please notice that in Eq. (37) the kernel K0 is now with-
out the mean-field contribution, i.e. in Eq. (33) V has
been replaced by V − V MF where V MF is the mean-field
potential operator. Not to introduce new symbols, from
now on, K should always be understood in this way.
This needs, however, further elaboration and discus-

sions. Actually the existence of the kernel K hinges en-
tirely on the existence of the inverse of the one-frequency

response function R̃, via K = R̃0−1

− R̃−1. Again, this
is in complete analogy to the case of the Dyson equa-

tion: Σ = G0−1

− G−1. For readers who may doubt
about the existence of R̃−1, we announce that below we
will find approximate expressions for K which reproduce
known expressions from the literature which have been
derived from the Hedin equations. We note that, as this
was the case with the one-body self-energy, also here the
single-frequency kernel in Eq. (32) splits into a purely
static (instantaneous) and a dynamic (time-dependent)
part. It is quite suggestive to interpret the purely static
term K0 as some kind of higher mean field. Below, we

will give an explicit expression for it and will see that
it contains static p-h correlation functions. Viewing the
ground state as containing a gas of p-h quantum fluctua-
tions, one can then interpret the purely static term as the
(frequency-independent) mean field of those fluctuations.
We will refer to K0 as a “particle-hole mean field” and
shall show below in which way it is related to a specific
form of W in the GW+BSE approach.
However, before that, let us transform the BSE by re-

turning from R̃ to the original linear-response function R.
It is straightforward to show that the latter then obeys
the following equation

(ω − ǫ̃k1
+ ǫ̃k2

)Rk1k2k
′
1
k′
2
(ω) = Nk1k2k

′
1
k′
2

+
∑

k3k4

[K0
k1k2k3k4

+Kdyn
k1k2k3k4

(ω)]Rk3k4k
′
1
k′
2
(ω), (37)

We will refer to as Eq. (37) as “Dyson-BSE”.
The reader may be worried that we did not get rid of

the possibly troublesome norm factor Nk1k2
= nk2

− nk1

in the denominator in Eqs. (33) and (34) implying that
there may be numerical troubles for situations where
nk1

≃ nk2
. Actually, there are good reasons for this divi-

sion. It is analogous to, e.g., what happens with the gen-
erator coordinate method (GCM) where also the norm
kernel has to be diagonalized and configurations corre-
sponding to zero eigenvalues be eliminated [33]. This
always happens when expanding the quantity of inter-
est into a non-orthogonal basis set (here the products

c†k2
ck1

), a feature which is also underpinning our ap-
proach. Actually the present BSE approach is practi-
cally equivalent to the EOM of Rowe [32] (see also Ref.
[27]), where one expands an excited state into a series
of components where higher and higher many-body op-
erators act on the formally exact ground state. Exactly
the same type of norm factors N as here appear on the
right-hand-side of an eigenvalue problem as in Eq. (38)
below. We will not further discuss this very general case
here as we will henceforth work in the p-h/h-p subspace
(for definition, see below), where this problem does not
appear, and replace the norm kernel in the denominator
by its HF expression. Taking higher-order corrections of
the norm in the denominator into account has probably
little influence on the accuracy of the results as suggested
by some explicit examples [26].
Before going on, let us transform our Dyson-BSE into

an eigenvalue problem. As just mentioned, this will be
done in the p-h/h-p subspace

∑

p′h′

(
A B

−B∗ −A∗

)

php′h′

(
Xν

p′h′

Y ν
p′h′

)
= Ων

(
Xν

ph

Y ν
ph

)
, (38)

with h, h′ referring to hole states (h, h′ ≤ kF, where kF
is the Fermi momentum) and p, p′ referring to particle
states (p, p′ > kF). This equation is of the typical RPA
form as described, e.g., in Ref. [33]. The present generic
equation is, however, potentially much more general be-
cause in principle the A and B matrices depend on the
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eigenvalues Ων and on the amplitudes (Xν , Y ν), the lat-
ters being related to the ground state |0〉 and excited

state |ν〉 by Xν
ph = 〈0|c†hcp|ν〉 and Y ν

ph = 〈0|c†pch|ν〉. The
A and B matrices are related to the BSE kernel in Eq.
(32) by

Aphp′h′ = (ǫ̃p − ǫ̃h)δpp′δhh′ +Kphp′h′ ,

Bphp′h′ = Kphh′p′ . (39)

For example, to first order in the interaction this gives

Kphp′h′ → v̄ph′hp′ and Kphh′p′ → v̄pp′hh′ , (40)

where the occupation factors ni have been replaced by
their uncorrelated form n0

i , and Eq. (38) reduces to the
standard RPA equation (with exchange) or TDHF. We
will not further elaborate on the eigenvalue form of the
Dyson-BSE approach and rather continue investigating
the BSE kernel.

B. The purely static part of the BSE kernel

Let us now discuss the K0 term of the kernel and
see how far it is related to the static W kernel of the
GW approach. To establish an explicit form for K0, we
have to evaluate the double commutator contained in the
particle-hole mean-field part of Eq. (33). One finds

K0
k1k2k3k4

= Nk1k2
v̄k1k4k2k3[

−
1

2

∑

ll′l′′

(δk2k4
v̄k1ll′l′′Cl′l′′k3l + δk1k3

v̄ll′k2l′′Ck4l′′ll′)

+
∑

ll′

(v̄k1lk3l′Ck4l′k2l + v̄k4lk2l′Ck1l′k3l)

−
1

2

∑

ll′

(v̄k1k4ll′Cll′k2k3
+ v̄ll′k2k3

Ck1k4ll′)
]
N−1

k3k4
, (41)

where

Ck1k2k3k4
= 〈0|c†k3

c†k4
ck2

ck1
|0〉

−nk1
nk2

(δk1k3
δk2k4

− (k3 ↔ k4)) (42)

is the fully correlated part (i.e. the cumulant) of the two-
body density matrix. We see that K0 is divided into four
parts: the first term on the right-hand side is the usual
RPA antisymmetrized interaction term. We should real-
ize that in this first term the norm factor on the right of
the interaction has been divided out [see Eq. (33)] and
that, contrary to standard RPA, the occupation factors
are in principle not the HF ones but the correlated ones.
Neglecting all the terms involving C in Eq. (41) but keep-
ing correlations in the occupancies leads to the so-called
renormalized RPA (r-RPA) briefly explained further in
the Appendix. The next two terms are the one-body
self-energy contributions (either the hole or the particle
is not connected to the interaction). The remaining two-
body correlation terms connect particles and holes. They
can be qualified as screening terms and we want to inves-
tigate them further. The screening terms can be divided

into two groups: the first two terms correspond to an ex-
change of p-h fluctuations between the particle and hole
and are, therefore, responsible for the screening of the
long-range part of the interaction. This can be seen from
the ordering of the indices k1 and k3 in the matrix ele-
ment of the interaction. Clearly a creator and a destruc-
tor are correlated. The second two terms correspond to
an exchange of p-p/h-h fluctuations, that is they sum p-
p/h-h ladder diagrams. They take care of the short-range
correlations. Let us mention that neglecting the dynamic
kernel, a self-consistent scheme for the two-body correla-
tion function can be established, since it is given by inte-
grating R(ω) over the frequency in the upper/lower half
complex plane. This self-consistent scheme is referred
to as SCRPA. It has the nice quality that all desirable
properties of standard RPA, such as the fulfillment of
the sum rule and conservation laws are maintained. This
is explicitly shown in Ref. [41]. In the past, it has pro-
duced encouraging results for several non-trivial model
cases [24–27]. Let us mention that Eq. (41) has been
given earlier [29] and that it has recently also been de-
rived by Chatterjee and Pernal [34] for applications in
chemical physics including, however, also diagonal con-
figurations.

In order to establish a connection with the static
screened interaction W of the GW+BSE approach, we
consider in more detail the p-h fluctuation terms. As
an example, let us consider the fourth term on the right-
hand side of Eq. (41) and evaluate it first to second order
in the interaction. Since C is at least of first order, we
will elaborate this and get the corresponding K0 to sec-
ond order. First let us give the relation between C and
the linear-response function R

Ck4l′k2l = 〈0|c†l cl′c
†
k2
ck4

|0〉−n̄k2
nk4

δl′k2
δlk4

−nlnk2
δk2k4

δll′ ,

(43)
where n̄k = 1− nk and

〈0|c†l cl′c
†
k2
ck4

|0〉 = i lim
t−t′→0+

Rl′lk2k4
(t−t′)+nlnk2

δk2k4
δll′ .

(44)
The reader may wonder why there is the last term on the
right-hand side of above Eq. (44). The point is that since
R is the solution of the BSE, it does not contain such dis-
connected terms where the time t does not communicate
with time t′, see the definition of R in Eq. (19). This is
also easily seen in solving, e.g., Eq. (37) to lowest order,
that is without the kernel K and using the HF form of
norm N , which leads to Eq. (46) below. However, on
the left-hand side, in the expectation value of the two-
body-density-matrix operators, such terms are contained
and, therefore, we have to add them on the right-hand
side. A good way to see this is to evaluate Eq. (43) in
HF approximation where C = 0 by definition. Then the
right-hand side must also be zero which is only the case if
the extra term is added. Let us now expand the response
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function in Eq. (44) up to first order

Rl′lk2k4
(t− t′) = R0

k2k4
(t− t′)δl′k2

δlk4
+∫

dt1R
0
l′l(t− t1)v̄l′k4lk2

R0
k2k4

(t1 − t′),

(45)

where R0 is the non-interacting HF linear-response func-
tion

R0
k2k4

(t− t′) = −i[θ(t− t′)n̄0
k2
n0
k4

+ θ(t′ − t)n0
k2
n̄0
k4
]

×e−i(ẽk2−ẽk4 )(t−t′). (46)

Inserting Eq. (45) into Eq. (44) and then Eq. (44) into

Eq. (43), and using N0
k1k2

= N0−1

k1k2
, one obtains for the

fourth term in the K0 kernel

K0,4
p1h2h3p4

=
∑

ll′

v̄p1lh3l′Cp4l′h2lN
0
h3p4

≃
∑

ll′

v̄p1lh3l′
n̄0
p4
n̄0
l′n

0
h2
n0
l

ǫ̃p4
+ ǫ̃l′ − ǫ̃h2

− ǫ̃l
v̄l′p4lh2

. (47)

Please note that the lowest-order term in Eq. (45) is
cancelled by the second term on the right-hand side of
Eq. (44). The expressions (47) and (48) (see below for
the latter) are the only ones which contribute to K0 at
second order with a p-h bubble exchange. We see this
from the fact that the index k2 in Eq. (47) is a hole,
then k1 must be a particle and, since k4 is a particle, k3
must be a hole because our convention is that the index
couple k1k2 or k3k4 can only be ph or hp. As we see,
the term in Eq. (47) contributes to the B matrix in Eq.
(39). In analogy, we obtain for the fifth term in Eq. (41)

K0,5
p1h2h3p4

=
∑

ll′

v̄p4lh2l′Cp1l′h3lN
0
h3p4

≃
∑

ll′

v̄p4lh2l′
n̄0
p1
n̄0
l′n

0
h3
n0
l

ǫ̃p1
+ ǫ̃l′ − ǫ̃h3

− ǫ̃l
v̄l′p1lh3

. (48)

Again this term only contributes to the B matrix of
Eq. (39). Both terms correspond to the first two terms in
Eq. (34) of Ref. [23]. If we treat the last two (p-p/h-h)
terms of our Eq. (41) in the same way as the p-h terms,
we also reproduce the other two terms in Eq. (34) of Ref.
[23]

(K0,6 +K0,7)p1h2h3p4
=

1

2

∑

ll′

[
v̄p1p4ll′

n0
h3
n0
h2
n̄0
l n̄

0
l′

ǫ̃h3
+ ǫ̃h2

− ǫ̃l − ǫ̃l′
v̄ll′h2h3

−v̄ll′h2h3

n0
l n

0
l′ n̄

0
p1
n̄0
p4

ǫ̃p1
+ ǫ̃p4

− ǫ̃l − ǫ̃l′
v̄p1p4ll′

]
. (49)

As before, these terms only contribute to the B matrix
of Eq. (39).
From Eq. (41), it is clear that in Eq. (45) we can

replace R0
ll′δll1δl′l3 by the full linear-response function

Rll′l1l3 what leads to a better approximation where the

exchange p-h bubble ll′ is replaced, e.g., by the RPA or
even higher approximations. In general we have for R in
frequency space

Rk1k2k
′
1
k′
2
(ω) ≡ R>

k1k2k
′
1
k′
2

(ω)−R<
k1k2k

′
1
k′
2

(ω) =

∑

ν

〈0|c†k2
ck1

|ν〉〈ν|c†
k′
1

ck′
2
|0〉

ω − Ων + iη
−

〈0|c†
k′
1

ck′
2
|ν〉〈ν|c†k2

ck1
|0〉

ω +Ων − iη
,

(50)

where η → 0+. Actually this can be done also in Eq.
(49) where one can resum the pp ladders taking care of
the short-range correlations. We will not further dwell
on those extensions of our formalism for the moment.
Let us now consider the self-energy corrections in Eq.

(41). For instance, let us extract a further interaction.
For example, we obtain (indicating the time variables as
subscripts for compactness)

Ck4l′′ll′ ≃ −i lim
t′−t→0+

∫
dt1 θ(t1 − t)n0

k4

e−iǫ̃k4(t−t1)〈0|T{jk4
(t1)(c

†
l c

†
l′cl′′)t′}|0〉, (51)

and an analogous expression for the renormalization of
the particle line. Evaluating, as before, C to first order,
one obtains for the second and third term

K0,2+3
p1h2p3h4

=

1

2

∑

ll′l′′

[
δh2h4

v̄p1ll′l′′
n0
l′n

0
l′′ n̄

0
l n̄

0
p3

ǫ̃p3
+ ǫ̃l − ǫ̃l′ − ǫ̃l′′

v̄l′′l′lp3

− δp1p3
v̄h2l′′l′l

n̄0
l n̄

0
l′n

0
l′′n

0
h4

ǫ̃h4
+ ǫ̃l′′ − ǫ̃l′ − ǫ̃l

v̄ll′l′′h4

]
. (52)

We realize that this expression contributes only to the A
matrix and that the second-order contribution to K0 is
now complete.
Of course, as in the case of the screening terms, we also

can sum the p-h bubbles to a full linear-response func-
tion. For this, we should factorize the three-body prop-
agator in Eq. (51) into a product of a response function
and a one-body propagator

〈0|T{(c†a2
ca4

ca3
)t1(c

†
l c

†
l′cl′′)t′}|0〉 ≃[

〈0|T{(c†a2
ca4

)t1(c
†
l′cl′′ )t′}|0〉〈0|T{ca3

(t1)c
†
l (t

′)}|0〉

−(a3 ↔ a4)
]
− [l ↔ l′]. (53)

As indicated, there are four different ways to do this fac-
torization and, thus, we multiply the final expression with
this factor to obtain

−
1

2

∑

ll′l′′

δk1k3
v̄ll′k2l′′Ck4l′′ll′ ≃ −δk1k3

n0
k4

×
∑

a2a3a4

∑

ll′l′′

v̄k4a2a3a4
R<

a2a4l′′l′
(ω = ǫ̃k4

− ǫ̃a3
)v̄ll′k2l′′ .

(54)
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Proceeding with the second self-energy correction in the
same way, one obtains an analogous expression.
We will discuss the relation with the static form of

W below in Sec. IV. The well-known problem coming
from the approximation of Eq. (53) is that if the response
function is replaced by its uncorrelated p-h response in
Eq. (54), one does not recover the correct second-order
expression of the kernel [35]. The result is by a factor
of two too large and, therefore, one usually subtracts
the second-order contribution in order to obtain the cor-
rect lowest-order contribution of Σ to the kernel and also
of the ensuing RPA correlation energy [35]. In princi-
ple this subtraction procedure is not completely correct,
since the corresponding imaginary part of the self-energy
has no definite sign. How this can be fixed is explained in
Refs. [35, 36]. We will not dwell on this here and ignore
this subtlety in the remainder of the paper, supposing
that the uncorrelated terms are small, and we will con-
centrate on the comparison with approximations given in
the literature [20, 21, 23] where this problem is also not
addressed.
In our approach, the one-body self-energy corrections

appear directly in the purely static part of the integral
kernel. So the self-energy corrections are treated consis-
tently with the screening terms. This may be important
because it is known that often there are significant can-
cellations between both contributions. Since screening
and self-energy corrections in the purely static part K0

of the kernel involve again the response function R, as ex-
plained above, a self-consistent cycle can be established.

C. The dynamic part of the BSE kernel

Let us now discuss the time-dependent (dynamic) part
Kdyn of the interaction kernel in Eq. (34) which is a p-h
irreducible four-body propagator of the 2p-2h type. It
is straightforward to evaluate it to lowest order. Since
the dynamic kernel is already explicitly of second order
in the interaction, it is sufficient to evaluate the 2p-2h

propagator to lowest (HF) order. Using Jk1k2
= c†k2

jk1
−

j†k2
ck1

and dropping for now, for simplicity, the factor

N0−1

k′
1
k′
2

which just gives a minus sign for the contribution

to the B matrix, the full expression of the second-order
dynamic kernel is then

K
dyn,(2)
k1k2k

′
1
k′
2

(t− t′) = −i〈0|T{(c†k2
jk1

)t(j
†

k′
1

ck′
2
)t′}|0〉0

−i〈0|T{(j†k2
ck1

)t(c
†

k′
1

jk′
2
)t′}|0〉0

+i〈0|T{(c†k2
jk1

)t(c
†

k′
1

jk′
2
)t′}|0〉0

+i〈0|T{(j†k2
ck1

)t(j
†
k′
1

ck′
2
)t′}|0〉0,

(55)

where the subscript “0” indicates that this term is evalu-
ated to lowest order. The first two terms are self-energy
corrections recognizable by the index pair k1, k

′
1 or k2, k

′
2

whereas the other two terms have “mixed” indices. These
expressions describe the decay of a p-h mode into uncor-
related (incoherent) 2p-2h states. The four terms have
different meanings. The two terms with either jj† or j†j
describe, as just mentioned, dynamic self-energy correc-
tions to the particle and the hole states, respectively. The
other two terms with jj or j†j† describe a p-h exchange
between the particle and the hole. Such incoherent pro-
cesses have already been considered a long time ago by
Landau [37] in his study of the damping of zero sound in
a Fermi liquid. A detailed study of this is given in Ref.
[36].

To obtain the spectral representation of Kdyn,(2), we
just need to consider the generic propagator

−i〈0|T{(c†k4
c†k3

ck1
ck2

)t(c
†

k′
2

c†
k′
1

ck′
3
ck′

4
)t′}|0〉0, (56)

calculate its Fourier transform

[
n0
k4
n0
k3
n̄0
k1
n̄0
k2

ω − ǫ̃k1
− ǫ̃k2

+ ǫ̃k4
+ ǫ̃k3

+ iη

−
n̄0
k4
n̄0
k3
n0
k1
n0
k2

ω − ǫ̃k1
− ǫ̃k2

+ ǫ̃k4
+ ǫ̃k3

− iη

]
δk1k2k

′
1
k′
2
δk3k4k

′
3
k′
4
,

(57)

with δk1k2k
′
1
k′
2
= δk1k

′
1
δk2k

′
2
− δk1k

′
2
δk2k

′
1
, and use this in

Eq. (55). The obtained expression is well known in the
nuclear physics literature [38]. More recently such ex-
pressions have been derived by Rebolini and Toulouse
[23], but starting from the Hedin equations and without
including the self-energy corrections.

Instead of approximating the 2p-2h propagator by its
uncorrelated expression, we can include higher-order ef-
fects. For example one can factorize it into a product
of a response function and an uncorrelated p-h propa-
gator. Or, one can factorize it into a product of two
linear-response functions. The choice will depend on the
physical situation. Such approximations have been con-
sidered in Ref. [39]. As in the case of the self-energy
of the one-body Dyson equation, those factorizations do
not give, however, the correct lowest-order limit of the
kernel. If important, one has to correct for it. How this
can be done consistently is explained, as already men-
tioned, in Refs. [35, 36]. Let us give explicit expressions
for the spectral representation ofKdyn for the case where
we approximate the 2p-2h propagator into a product of a
linear-response function times an uncorrelated p-h prop-
agator. Typically, one will evaluate the response function
with the RPA method. It is then easy to get the spectral
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form of Kdyn (skipping now the p-p/h-h contributions)

K dyn
k1k2k

′
1
k′
2

(ω) =
∑

ν

{ ∑

l2l3l4l
′
2
l′
3
l′
4

(
δk2,k

′
2
v̄k1l2l3l4

〈0|c†l2cl4 |ν〉〈ν|c
†
l′
4

cl′
2
|0〉

ω − (ǫ̃l3 − ǫ̃k2
+ Ων) + iη

v̄l′
4
l′
3
l3l

′
2
k′
1

+ δk1,k
′
1
v̄k2l2l3l4

〈0|c†l4cl2 |ν〉〈ν|c
†

l′
2

cl′
4
|0〉

ω − (ǫ̃k1
− ǫ̃l3 + Ων) + iη

v̄l′
4
l′
3
l3l

′
2
k′
2

)

+
∑

l2l4l
′
2
l′
4

(
v̄k1l2k

′
1
l4

〈0|c†l2cl4 |ν〉〈ν|c
†
l′
2

cl′
4
|0〉

ω − (ǫ̃k′
1
− ǫ̃k2

+Ων) + iη
v̄k′

2
l′
2
k2l

′
4

+ v̄k2l2k
′
2
l4

〈0|c†l4cl2 |ν〉〈ν|c
†

l′
4

cl′
2
|0〉

ω − (ǫ̃k1
− ǫ̃k′

2
+Ων) + iη

v̄l′
4
k1l

′
2
k′
1

)}
. (58)

We note that the first two terms on the right-hand side of
the above equation correspond again to self-energy cor-
rections, whereas the last two terms are contributions
where p-h modes are exchanged between the particle and
the hole. We also realize that these exchange contribu-
tions correspond to Eq. (31) of Ref. [20]. The “backward
going” terms do not contribute as easily realized. If we
consider the static limit (ω = 0), they should be con-
sidered together with Eqs. (47) and (48). This shall be
discussed in more detail in the next section.
Before doing so, it may be worth showing how to in-

clude further p-h correlations in summing up the free p-h
propagators, contained in Eq. (58), to extra RPA modes.
This is most easily done by factorizing the 2p-2h prop-
agator into a fully antisymmetrized product of two p-h
response functions

− i 〈0|T{(c†k4
c†k3

ck1
ck2

)t(c
†

k′
2

c†
k′
1

ck′
3
ck′

4
)t′}|0〉 ≃

i
[{

[Rk2k4k
′
2
k′
4
(t− t′)Rk1k3k

′
1
k′
3
(t− t′)− (k′3 ↔ k′4)]

− [k′1 ↔ k′2]
}
− {k1 ↔ k2}

]
−
[
k3 ↔ k4

]
, (59)

where

Rk2k4k
′
2
k′
4
(t− t′) =

∑

ν

[
〈0|c†k4

ck2
|ν〉〈ν|c†

k′
2

ck′
4
|0〉e−iΩν(t−t′)

+ 〈0|c†
k′
2

ck′
4
|ν〉〈ν|c†k4

ck2
|0〉eiΩν(t−t′)

]
(60)

is the Fourier transform into time space of Eq. (50). The
Fourier transform of Eq. (59) into frequency space is
then easily performed with Eq. (60)

∑

νν′

[ 〈0|c†k4
ck2

|ν〉〈ν|c†
k′
2

ck′
4
|0〉〈0|c†k3

ck1
|ν′〉〈ν′|c†

k′
1

ck′
3
|0〉

ω − Ων − Ων′ + iη

−
〈0|c†

k′
2

ck′
4
|ν〉〈ν|c†k4

ck2
|0〉〈0|c†

k′
1

ck′
3
|ν′〉〈ν′|c†k3

ck1
|0〉

ω +Ων +Ων′ − iη

]

+ exchange terms, (61)

where “exchange terms” means that all exchange terms
present in Eq. (59) should be included also here. Insert-
ing Eq. (61) into Eq. (34) yields an expression equiva-
lent to Eq. (23) of Ref. [21] (see also Ref. [39]). Notably
only the first term with +iη will survive, that is, it en-
ters only the A matrix, as also pointed out in Ref. [21].
Since it is fully antisymmetric between the two-particle
states and two-hole states in entrance and exit channels,
the approximation gives a conserving approximation for
the response function [40, 41].

IV. COMPARISON WITH GW+BSE

Let us now consider similarities and differences of
the present Dyson-BSE approach to the response func-
tion and the GW+BSE scheme as commonly used in
condensed-matter and chemical physics.
A first point consists in the fact that in the present

formalism all Coulomb matrix elements are antisym-
metrized [see Eq. (2)] whereas in the GW+BSE scheme
all exchange matrix elements are usually absent besides
the one contained in the first order of the screening
term. This also concerns the W used within the RPA
in condensed-matter physics: only the bubble diagrams
are resummed, as it was done in the original work of
Bohm and Pines [42]. Including then the static limit of
Kdyn (i.e. at ω = 0) in Eq. (58) to K0 of Eq. (41) yields
an expression very similar to the “excitonic” Hamiltonian
H2p,exc in Eqs. (16) and (21) of Ref. [20]. However, there
are also substantial differences and, for a detailed com-
parison, let us give our full static expression here (sum-
ming the p-h bubble exchange to a full response function
and skipping the self-energy and p-p/h-h contributions
for easier comparison)

K stat
k1k2k

′
1
k′
2
= vk1k2k

′
1
k′
2
− vk1k2k

′
2
k′
1

−
∑

l1l
′
1

∑

l2l
′
2

(

n̄ 0
k1
n0
k′
1
v̄k1l1k

′
1
l′
1

∑

ν

〈0|c†
l′
1

cl1 |ν〉〈νc
†
l2
cl′

2
|0〉

ǫ̃k2
− ǫ̃k′

2
+Ων − iη

v̄l′
2
k2l2k

′
2
n̄0
k′
2
n0
k2

+

n̄ 0
k2
n0
k′
2
v̄k2l1k

′
2
l′
1

∑

ν

〈0|c†
l′
1

cl1 |ν〉〈νc
†
l2
cl′

2
|0〉

ǫ̃k2
− ǫ̃k′

2
+Ων − iη

v̄l′
2
k1l2k

′
1
n̄0
k′
1
n0
k1

)

−
∑

l2l4l
′
2
l′
4

(

n̄ 0
k1
n̄0
k′
1
v̄k1l2k

′
1
l4

〈0|c†l2cl4 |ν〉〈ν|c
†

l′
2

cl′
4
|0〉

ǫ̃k′
1
− ǫ̃k2

+Ων + iη
v̄k′

2
l′
2
k2l

′
4
n0
k2
n0
k′
2

+

n 0
k2
n0
k′
2
v̄k2l2k

′
2
l4

〈0|c†l4cl2 |ν〉〈ν|c
†

l′
4

cl′
2
|0〉

ǫ̃k1
− ǫ̃k′

2
+Ων + iη

v̄l′
4
k1l

′
2
k′
1
n̄0
k1
n̄0
k′
1

)
.

(62)
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We see that the first two terms belong to the B matrix
and the last two terms to the Amatrix of Eq. (39). In the
GW+BSE scheme all antisymmetrized matrix elements
v̄k1k2k3k4

in Eq. (62) are replaced by only the direct term
vk1k2k3k4

. In addition, in the denominators the differ-
ences of orbital energies are absent, so that only the RPA
roots Ων remain, which corresponds to the static W (0)
of the GW+BSE kernel (see, e.g., Ref. [20]). It is diffi-
cult to judge the combined effect of the two differences
of GW+BSE with respect to the above expression in Eq.
(62). The extra orbital energies in the denominators in
our expressions have, however, certainly a reduction ef-
fect. A detailed numerical evaluation is out of the scope
of the present work but shall eventually be presented in
the future. It seems to us that the appearance of the
orbital energies in the denominators has its justification.
In the work of Romaniello et al. [20] they also appear

as an extra static contribution from their W̃ expression
in Eq. (27) in Ref. [20] in putting therein ωλ = 0. It
is clear that, although the terms in Eq. (62) are instan-
taneous, there can never be an exact equal time process
when an RPA mode crosses between the particle and the
hole lines. There is always an infinitesimal time differ-
ence allowing for the orbital energies to appear in the
denominators of Eq. (62).

A further difference of our EOM approach is that the
self-energy contributions appear directly in the BSE ker-
nel. It is possible to resum them separately, which would
lead to dressed quasi-particles (and quasi-holes), quite
similarly to the GW+BSE scheme. In this respect we
do not see any significant difference between the two ap-
proaches.

In our Dyson-BSE scheme we obtain the same (approx-
imate) dynamic contributions to the kernel as obtained
by Sangalli et al. [21] [see their Eqs. (22) and (23)]. They
also contain the self-energy contributions. It is also clear
that those dynamic contributions only renormalize the A
matrix and give no contribution to the B matrix. On the
other hand in Ref. [21], the B matrix is not renormal-
ized, not containing the additional correlations which are
summed up in Eq. (41). In Ref. [23], the renormalization
of the B matrix is given only to lowest order. Let us also
point out that the so-called time-blocking approximation
(TBA) [43] invented recently in nuclear physics to derive
a BSE kernel depending only on one frequency certainly
has a very close relation with the procedures employed
in Refs. [23] and [20, 21]. It may be relevant to realize
that the first two terms in Eq. (62) which derive from
Eq. (41) and renormalize the B matrix are an approx-
imation to Eq. (41) [see the Appendix]. As we will see
in the next section in some two-body problems it may be
important to keep the full expression of Eq. (41).

V. ILLUSTRATION ON THE HUBBARD

MOLECULE

The Hubbard model describes electrons on a lattice
with the Coulomb interaction replaced by an on-site con-
stant U . The well-known Hamiltonian is given by

H = −t
∑

<ij>σ

c†iσcjσ + U
∑

i

n̂i↑n̂i↓, (63)

where c†iσ and ciσ are the electron creation and destruc-
tion operators at site i with spin projection σ and the

n̂iσ = c†iσciσ are the number operators for electrons at
site i with spin projection σ. As usual t is the nearest-
neighbor hopping integral. For demonstration purposes,
in this work, we will limit ourselves to the simplest non-
trivial case which is the one of two sites (Ns = 2) with two
electrons, the so-called Hubbard molecule. As the prob-
lem has already been solved exactly with the SCRPA
method [25] derived from Rowe’s [32] EOM, we only
will outline the basic principle here using, however, the
Dyson-BSE approach. It is advantageous to write the
Hamiltonian in momentum space

H =
∑

k,σ

(ǫk−µ)n̂k,σ+
U

2Ns

∑

k,p,q,σ

c†k,σck+q,σc
†
p,−σcp−q,−σ,

(64)

where n̂k,σ = c†k,σck,σ is the occupation number operator

of the momentum-spin mode (k, σ) and ǫk = −2t cos(k)
are the one-body energies with the lattice spacing set
to unity. Because of having only two electrons and the
periodic boundary conditions, the only allowed momenta
are k1 = 0 and k2 = −π. Accordingly, we only have two

types of p-h operators: Jσ = c†k1,σ
ck2,σ with σ = ±1/2.

Let us introduce the “charge” and “spin” operators

J (±) = J↑ ± J↓, (65)

and consider the charge and spin linear-response func-
tions

R(±)(t− t′) =

−i〈0|T

(
J (±)(t)J (±)†(t′) J (±)(t)J (±)(t′)

J (±)†(t)J (±)†(t′) J (±)†(t)J (±)(t′)

)
|0〉. (66)

We therefore have to consider two 2× 2 matrix response
functions. For this very simple example it so happens
that the dynamic part Kdyn of the BSE kernel decouples
from the purely static part K0, and only K0 contributes
in the p-h/h-p space. As seen from Eq. (41), the purely
static kernel K0 only contains static two-body correla-
tion functions. They can be calculated from integrating
R(±)(ω) over the frequency in the upper/lower half com-
plex plane. Since additionally the occupation numbers
can also be expressed via the static two-body correlation
functions as (see Ref. [25])

np,σ =
∑

h

〈0|J†
ph,σJph,σ|0〉 , nh,σ =

∑

p

〈0|J†
ph,σJph,σ|0〉 ,

(67)
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we have a closed system of equations which can be solved.
It turns out that the exact solution is obtained. This is
explained in detail in Ref. [25] starting, however, with
the equivalent EOM for RPA operators and not with the
Green functions and we will not repeat the whole proce-
dure here.
The fact that the two-body problem is solved exactly

by the SCRPA in the Hubbard model is also found in sev-
eral other models, like the Lipkin model [27] and the pair-
ing model [27, 44]. However, it is not a general feature
of SCRPA that it solves any two-body problem exactly.
Generally there exist specific 2p-2h configurations which
have to be taken into account when solving a two-body
problem. It should also be pointed out that the two-body
correlation functions in Eq. (41) cannot be further ap-
proximated if the exact solution for, e.g., the Hubbard
molecule shall be obtained. Already the forms in Eqs.
(47) and (48) are approximations to Eq. (41) even if the
exchange bubble is resummed to a full linear-response
function and it is likely that they will not maintain the
exact solution. It is thus seen from this example that the
Dyson-BSE approach leads in a systematic way to man-
ageable expressions which, if necessary, sum higher cor-
relations than is the case with the GW+BSE approach.

VI. CONCLUSIONS

The objective of this work was three-fold. First, we de-
rived a formally exact BSE for the linear-response func-
tion whose integral kernel only depends on the single fre-
quency of the applied field. Explicit expressions of this
kernel in terms of higher Green functions are presented.
They lend themselves very naturally to physically moti-
vated approximations. Second, in this way, known ap-
proximations of a single frequency kernel derived from
Hedin’s equations are straightforwardly recovered. It is
shown that with our Dyson-BSE not only the second-
order expressions for the static (B matrix) and dynamic
BSE kernel given in Ref. [23] can be recovered but that
these second-order terms can naturally be resummed to
full linear-response functions. This has also been shown
in Refs. [20, 21] for the dynamic part but the renor-
malization of the static part (B matrix), which is of the
same order as the dynamic one, is missing there. Tak-
ing the static limit (ω = 0) of the dynamic part, we
obtain a complete expression for the static limit of the
BSE kernel. Third, this then allows us to make a de-
tailed comparison with the static limit of the well known
GW+BSE approach. Between both static approaches
there exist, besides quite some similarities, also substan-
tial differences which may be interesting to study further
in future work with numerical examples. At the end of
the paper, we also show that for the so-called Hubbard

molecule the exact solution can be recovered from our
Dyson-BSE approach. This is only possible with a consis-
tent and fully resummed static kernel as presented here.
Let us finally mention that the present BSE formalism is
very much related to the EOM introduced by Rowe and
further elaborated in Ref. [27].
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Appendix A: The renormalized RPA

A very much simplified version of SCRPA consists in
neglecting in K0 all the C correlation function terms.
Then, one obtains for the BSE

Rk1k2,k
′
1
k′
2
(ω) = R̃0

k1k2
(ω)δk1k

′
1
δk2k

′
2

+
∑

k3k4

R̃0
k1k2

(ω)v̄k1k4k2k3
Rk3k4k

′
1
k′
2
(ω),

(A1)

with

R̃0
k1k2

(ω) =
(1− nk1

)nk2

ω − (ǫ̃k1
− ǫ̃k2

) + iη
−

nk1
(1 − nk2

)

ω − (ǫ̃k1
− ǫ̃k2

)− iη
.

(A2)
We see that this renormalized RPA (r-RPA) equation is
like the standard RPA besides the fact that the occu-
pation numbers are the correlated ones and not the HF
ones. We thus have to give an expression for the nk’s
which couple back to the RPA. Such an approximation
for the occupation numbers nk has, e.g., been derived by
Catara et al. [45]. The expressions are given by

nh = 1− 〈0|c†hch|0〉 =
1

2

∑

p

〈0|c†pchc
†
hcp|0〉, (A3)

and

np = 〈0|c†pcp|0〉 =
1

2

∑

h

〈0|c†pchc
†
hcp|0〉, (A4)

where the two-body density matrix can directly be ob-
tained from the linear-response function. We, therefore,
have established a minimal self-consistent system of equa-
tions where the occupation numbers are calculated from
the response function.
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