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ABSTRACT

Mid-infrared molecular hydrogen (H2) emission is a powerful cooling agent in galaxy mergers and

in radio galaxies; it is a potential key tracer of gas evolution and energy dissipation associated with

mergers, star formation, and accretion onto supermassive black holes. We detect mid-IR H2 line

emission in at least one rotational transition in 91% of the 214 Luminous Infrared Galaxies (LIRGs)

observed with Spitzer as part of the Great Observatories All-sky LIRG Survey (GOALS). We use H2

excitation diagrams to estimate the range of masses and temperatures of warm molecular gas in these

galaxies. We find that LIRGs in which the IR emission originates mostly from the Active Galactic

Nuclei (AGN) have about 100K higher H2 mass-averaged excitation temperatures than LIRGs in
which the IR emission originates mostly from star formation. Between 10 and 15% of LIRGs have H2

emission lines that are sufficiently broad to be resolved or partially resolved by the high resolution

modules of Spitzer’s Infrared Spectrograph (IRS). Those sources tend to be mergers and contain AGN.

This suggests that a significant fraction of the H2 line emission is powered by AGN activity through

X-rays, cosmic rays, and turbulence. We find a statistically significant correlation between the kinetic

energy in the H2 gas and the H2 to IR luminosity ratio. The sources with the largest warm gas kinetic

energies are mergers. We speculate that mergers increase the production of bulk in-flows leading to

observable broad H2 profiles and possibly denser environments.

1. INTRODUCTION

Molecular hydrogen (H2) is the material from which

stars form and black holes grow. In turn, young mas-

sive stars and active galactic nuclei (AGN) transfer en-

ergy to the molecular hydrogen and change its physical

conditions. In this paper we use several approaches to

estimate if and how the molecular gas changes on kilo-

parsec scales in response to changes in the gravitational

potential due to galaxy mergers and in response to AGN

emission.

In interacting galaxies, large gas-flows move low-

metallicity gas from the outer regions of the galaxy

toward the center (e.g. Kewley et al. 2010). The time-

scales for this process seem to be on the order of 1 Gyr:

Rupke et al. (2010) find that in the approximate time

between first and second passage in a merger, the cen-
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tral metallicity becomes diluted by low-metallicity gas

flowing in from the metal-poor outskirts of the merging

galaxies. Kinematic signatures in the warm molecular

gas may indicate bulk flows on similar timescales.

The amount of interstellar medium (ISM) available

for star formation determines a galaxy’s evolution. Be-

cause star formation is enhanced in interacting galaxies

(e.g. Patton et al. 2013), mergers may consume their

gas supply at a higher rate than non-mergers (e.g Mi-

hos & Hernquist 1996; Springel 2000; Hayward et al.

2011). However, observational studies of gas in post-

mergers find them to have more neutral hydrogen than

non-mergers (e.g Ellison et al. 2015; Larson et al. 2016).

While there are large variations of gas properties in

interacting galaxies (e.g Haan et al. 2011a; Fernández

et al. 2014), mergers may have more cold gas than non-

mergers because of inflows from cooled ionized halo gas

(Ellison et al. 2015; Braine & Combes 1993). If such

inflows include a warm molecular phase it could take

the form of asymmetric emission profiles or red-shifted

components. One of our goals in this work is to comple-

ment studies of atomic hydrogen in mergers, and trace

the fate of the warm molecular gas component in the

ISM of nearby star-forming galaxies.

Our investigation focuses on warm molecular gas as

traced by H2 rotational emission lines (Table 1) in a

sample of nearby, Luminous Infrared Galaxies (LIRGs).

LIRGs are galaxies with L(8 − −1000µm) = LIR ≥
1011L� a subset of which have LIR ≥ 1012L� and

are called Ultraluminous Infrared Galaxies (ULIRGs:

Sanders & Mirabel 1996). Because LIRGs can have a

wide range of optical classifications and because they

span the full range of galaxy interactions from non-

merging spirals to late stage mergers they are well suited

for the study of how AGN and mergers impact the ISM

(Armus et al. 2009; Petric et al. 2011; Larson et al. 2016;

Psychogyios et al. 2016; Stierwalt et al. 2013; Privon

et al. 2015). Furthermore, LIRGs bridge the luminosity

gap between nearby star-forming galaxies and quasars

and so they may provide the link between the extreme

objects we see at high redshift and typical nearby sys-

tems.

The LIRGs we study here are part of the Great Ob-

servatories All-sky LIRG Survey (GOALS) which tar-

gets a representative sample of 202 systems in the local

Universe (z ≤ 0.088) selected from the IRAS Revised

Bright Galaxy Sample (Sanders et al. 2003). An outline

of the GOALS project and a multi-wavelength analysis

of the LIRG VV 340 are given in Armus et al. (2009).

Results from the MIR spectroscopy of the GOALS sam-

ple were presented in Evans et al. (2008), Inami et al.

(2010), Dı́az-Santos et al. (2010), Dı́az-Santos et al.

(2011), Dı́az-Santos et al. (2014), Petric et al. (2011),

Mazzarella et al. (2012), Modica et al. (2012), Stierwalt

et al. (2013), and Stierwalt et al. (2014).

The connections between AGN, merger stage, and the

state of the gas are complex. In a detailed, high-spectral

resolution, Spitzer IRS, study of the GOALS LIRGS,

Inami et al. (2013) found no correlation between fine-

structure line ratios and the merger stage but found

that emission lines from more highly ionized ions have

broader line widths, e.g. Ne v] emission lines are broader

than [Ne iii] lines, which in turn are broader than [Ne ii]

lines. They also find five LIRGs whose shifted [Ne iii],

[Ne v] lines suggest the presence of fast moving highly

ionized gas that may be part of galactic bulk-flows. In

this paper, we compare the line widths of the warm

molecular gas with the contribution of the AGN to the

mid-infrared (MIR) luminosity to test if the thermal en-

ergy in the warm gas is contributed by the AGN.

In most LIRGs and ULIRGs, star formation domi-

nates the heating of H2 (Stierwalt et al. 2014; Hill &

Zakamska 2014; Higdon et al. 2006). However, a frac-

tion of LIRGs and even a larger fraction of ULIRGs have

more MIR H2 emission than what could be expected

if the H2 emission originates in photo-dissociation re-

gions. Stierwalt et al. (2014) use low resolution IRS

data to study the H2 and dust properties of LIRGs

and find that most nearby LIRGs have higher ratios

of L(H2)/L(PAHs) than normal star-forming galaxies.

Stierwalt et al. (2014) show that this ratio increases with

H2 luminosity and that in around 10% of LIRGs, the H2

emission may be excited by shocks either from powerful

starbursts or AGN. ULIRGs show on average three times

more emission in the rotational transitions of molecular

hydrogen than expected based on their star formation

rates (Hill & Zakamska 2014). Hill & Zakamska (2014)

also found a weak positive correlation between H2 emis-
sion and the length of the tidal tails and a strong corre-

lation between H2 and [Fe ii] suggesting that the excess

H2 is produced by shocks.

Studies of warm molecular H2 kinematics may help

disentangle the impact that gravitational interactions

and AGN have on the interstellar medium. In this pa-

per, we extract kinematic information from resolved H2

line profiles to test if mergers lead to bulk gas motions.

We also estimate if and how the masses, temperatures

and excitation conditions of H2 change with merger

stage and with the AGN contribution to the LIRG’s IR

luminosity. The paper is organized as follows. In sec-

tion 2 we describe the IRS observations and reduction

methods. Section 3 includes a presentation of the H2

flux measurements, a description of the method used to

estimate the total warm H2 masses and temperatures as
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well as basic statistics of these quantities as a function

of merger stage, IR luminosity, and AGN contribution

to the IR emission. In section 4 we discuss our findings

and in section 5 we summarize our conclusions.

2. SAMPLE AND DATA

The GOALS sample properties and selection are de-

scribed in detail in Armus et al. (2009). For this inves-

tigation we use the spectra of 248 individual nuclei in

202 LIRG systems, observed in the high-resolution IRS

modules (Short-High, and Long-High) and complemen-

tary low-resolution (IRS Short-Low, Long-Low) spectra

for 234 sources. The widths of the SL, SH, LL, LH slits

(3.6′′, 4.7′′, 10.7′′, 11.1′′) correspond to 1.5, 2.0, 4.5, and

4.6 kpc respectively at a distance of 88 Mpc – the me-

dian galaxy distance in our sample. The distances to the

GOALS’s galaxies are between 17.5 and 387 Mpc. We

obtained the IRS spectra in our own observing program

(PI: Armus, PID 30323) for 158 LIRG systems, with the

IRS spectra for the remaining 44 LIRG systems taken

from the Spitzer archive. In all data from PID 30323,

the IRS Staring Mode was employed, using “cluster tar-

get” observations for those sources with well separated

(≥ 10 arcsec) companions. Among the 202 LIRGs stud-

ied, secondary nuclei were targeted only when the flux

ratio of primary to secondary nucleus (as measured in

the Spitzer MIPS 24 µm data) is less than or equal to

five, in order to capture the spectra of the nuclei actively

participating in the far-infrared emission of the system.

A more detailed description of how the spectra, used

for the analysis presented in this paper, were reduced

is given in three previous papers: Petric et al. (2011);

Inami et al. (2013); Stierwalt et al. (2013). The spectra

were extracted with the SPICE1 software, assuming that

the flux in the slit originates from a point source. The
profile for the extraction is set automatically to match

the PSF at different wavelengths. The PSF was de-

termined by the IRS team from standard calibrators.

Twenty eight systems were observed in spectral mapping

mode. These data were assembled and cleaned to re-

move noisy pixels. Nuclear spectra were then extracted

with CUBISM (Smith et al. 2007a) using extraction re-

gions of sizes equal to those of extraction regions for

point sources in the spectra taken in staring mode. A

more detailed description of the spectra including the

position of the IRS slits are given in Stierwalt et al.

(2013), Inami et al. (2013), and the GOALS delivery

documents2.

1 http://irsa.ipac.caltech.edu/data/SPITZER/docs/
datanalysys/tools/spice/

2 https://irsa.ipac.caltech.edu/data/GOALS/overview.html

The GOALS sources were classified in 5 merger stages:

(0) no obvious sign of a disturbance either in the IRAC

or HST morphologies, or published evidence that the gas

is not in dynamical equilibrium (i.e., undisturbed circu-

lar orbits); (1) early stage, where the galaxies are within

1 arcmin of each other, but little or no morphological

disturbance can be observed; (2) the galaxies exhibit

bridges and tidal tails but they do not have a common

envelope, and each optical disk is relatively intact; (3)

the optical disks are completely destroyed but two nu-

clei can be distinguished; (4) the two interacting nuclei

are merged but structure in the disk indicates that the

source has gone through a merger. The merger clas-

sifications for LIRGs are published in Stierwalt et al.

(2013), see also Fig. 10 in Petric et al. (2011). A subset

of 65 LIRGs was re-evaluated by Larson et al. (2016).

We acknowledge the pitfalls of morphological classifica-

tions, and refer the reader to the more precise techniques

requiring high sensitivity and high spatial and velocity

resolution(Privon et al. 2013).

Here we seek to be consistent with previous merger-

class investigations of the GOALS sample of LIRGs pre-

sented in Larson et al. (2016); Stierwalt et al. (2013);

Haan et al. (2011b) and we compress the merger stages

into three categories: non mergers (nm) which are

targets without obvious signs of morphological distur-

bances; early-mergers (em) which are systems in which

the interacting galaxies are within 1 arcmin of each other

but show little or no morphological disturbance; and

mergers (m) which are all the other stages of gravita-

tional interactions.

3. RESULTS

In this section we will present: our measurements of

emission line fluxes, and line-widths, how we identify
resolved emission lines, how we estimate warm molecular

H2 masses, temperatures, ortho to para ratios, and H2

excitation conditions.

3.1. Fluxes

To measure line fluxes and line-widths from our SH,

LH and SL spectra we fit Gaussian functions to the

atomic and molecular gas emission line profiles. We in-

spect all the fits to ensure that spurious hot pixels were

excluded. We did not use PAHFIT (Smith et al. 2007b)

because it does not account for potential ice absorption.

We also refer the reader to Stierwalt et al. (2014) who

present H2 fluxes estimated from simultaneous fits of the

dust and gas features and continuum in the low resolu-

tion data after scaling the SL spectra to match the LL

data. Here we chose to measure the H2 emission line

fluxes the same way from the low and high resolution

http://irsa.ipac.caltech.edu/data/SPITZER/docs/datanalysys/tools/spice/
http://irsa.ipac.caltech.edu/data/SPITZER/docs/datanalysys/tools/spice/
https://irsa.ipac.caltech.edu/data/GOALS/overview.html
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spectra because the S0 line is not easily detected in the

low resolution spectra, yet its measurement is important

for determining warm molecular gas mass and temper-

atures.

For each line flux measurement we average the fluxes

estimated from the two IRS nods; to assess the flux er-

rors we combine the uncertainties from the Gaussian fits

in quadrature. We calculate upper limits from line free

regions near the line of interest by estimating the total

emission for a hypothetical line with: a width equal to

the spectral resolution at that wavelength and a three σ

intensity peak.

Figure 1 shows the H2 S(0), S(1), S(2), S(3), [Fe II],

[Ne II], [O IV] and [Si II] fluxes measured from IRS

spectra. These plots show Nod 1 vs Nod 2 fluxes and

Nod 1 fluxes versus the final flux for each of the detected

lines. This figure illustrates that, for most of the sources,

our estimates from each of the IRS node positions match

well. For lines where the flux from the two nods differed

by more than 3 ×
√

(σF12 + σF22), where σF1 and

σF2 represent the errors on the flux measured in Nod

1 and Nod 2 respectively, we choose results from the

fit with the best overall signal to noise ration (SNR).

In addition, we re-inspect visually the spectra to ensure

the fit we use is better than the one we discard and to

understand the reason for the difference between the two

nods.

Table 2 gives the H2 rotational emission line fluxes

and uncertainties, measured from the IRS high reso-

lution spectra. Figure 2 shows histograms of the line

fluxes and luminosities corresponding to the rotational

transitions, S(0), S(1), and S(2). Table 3 gives detec-

tion statistics for the H2 emission lines: percentages of

detected sources, minimum, mean, median, maximum,

and standard deviations of the detected fluxes and lumi-

nosities. In particular, we find that the median H2 S(0),

S(1), and S(2) luminosities are 106.7, 107.1, and 106.8 L�
respectively. Appendix 1 describes how we combined

fluxes from different modules.

3.2. Resolved Lines

The IRS high resolution modules are described in

the official instrumental handbook3 as cross-dispersed

echelle spectrographs that provide a resolving power

R = λ/∆λ ∼ 600. The velocity resolution of the

high resolution modules is nominally c/R = 494 km/s

between 4 and 18 µm and 503 km/s between 25 and 34.2

µm. Previous investigations of high-resolution line pro-

files used measurements of the widths of standard IRS

calibration targets (P Cygni, HD 190429, HD 174638)

3 (Version 5.0, last modified December 12, 2012)

to assess that the uncertainty in the instrumental reso-

lution is 59 km/s in SH and 63 km/s in LH (e.g Dasyra

et al. 2008; Guillard et al. 2012).

To take advantage of the large number of high resolu-

tion, high signal-to-noise spectra of the GOALS targets,

here we take a complementary approach by looking at

the distribution of line widths of the H2 S(1) and S(0)

lines in our sample of LIRGs. To determine the ex-

pected distribution of widths for a sample of unresolved

source we use two independent methods and compare

our results. We include several derived line-width esti-

mates that are smaller than the instrumental resolution,

those are sources with poor sampling, and/or low signal

to noise. We keep them here because they indicate the

error budget in our overall measurements.

Method 1: We assume that, in the absence of re-

solved sources, the distribution of H2 line widths should

be symmetric. Figure 3 shows the histogram of the H2

S(1) and S(0) lines with 10 km/s bins. The distributions

of derived line-widths show a tail of sources with larger

line-widths, presumably representing the resolved and

marginally resolved objects. We estimate the standard

deviation and mode from measurements with a SNR of

three or better.

We find that the H2 S(1) distribution has a mode of

511 km/s (RES1 thereafter), and a weighted mean of 540

km/s. Using the mode and the measurements of lines

lower than the mode, we obtain a standard deviation

of 56 km/s for the unresolved sources that we claim is

purely of instrumental origin (σinst = 56 km/s). The

value for this standard deviation is almost identical to

the uncertainty quoted by Dasyra et al. (2008). We look

at three classes of sources: clearly resolved, marginally

resolved and not resolved.

Writing: FWHM−σFWHM ≥ RES1 + n ∗σinst, where

FWHM is the measured Full Width at Half Maximum,

we find three sources with n = 3 and six with n = 2.

We refer to these sources as being clearly resolved. Eigh-

teen nuclei have marginally resolved H2 S(1) emission

with n = 1. Those eighteen marginally resolved sources

would have been considered clearly resolved in earlier

studies (e.g Dasyra et al. 2008; Guillard et al. 2012). We

present the measured properties of all these 27 sources

with FWHM−σFWHM ≥ 567 kms/sec in Table ??. Note

that these sources are not resolved at a 1σ statistical sig-

nificance level but higher, because we look at both the

distribution of possible widths and the error associated

with each measurement.

Method 2: In the second approach we derive the

distribution of possible measurements for an unresolved

source by looking at both the measured H2 line-widths

(FWHM) and the errors associated with those individ-
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Figure 1. H2 (S0), H2 (S1), H2 (S2), [Ne ii], [O iv] and [Si ii] fluxes measured from IRS spectra modules SH and LH. As
described in the text each fit was inspected by hand and the continuum adjusted for bad pixels in the two nods associated with
each SH or LH observation. These plots show in black the measured Nod 1 vs Nod 2 fluxes and in red Nod 1 fluxes versus the
final flux for each of the detected lines.
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ual measurements. Figure 4 shows the distribution of

derived H2 S(1) FWHM, each represented as a gaussian

centered on the measured H2 line-width and a width

equal to the estimated error on the measurement. Each

gaussian is normalized to an area of 1. Adding up all the

individual gaussian distributions gives the most proba-

ble line-width measurement. Adding up all the individ-

ual gaussian distribution of sources with measured H2

FWHM smaller than this value gives the probability dis-

tribution of possible measurements of H2 line-width for

an unresolved source. Using this probability distribu-

tion and the error on each measurement for the sources

we marked as marginally resolved or resolved from the

previous technique, we compute the likelihood it is ac-

tually unresolved. We find that the sources we marked

as marginally resolved and resolved have a probability

between 2× 10−6 (for NGC 6240) and 0.1 (for VV250)

to be unresolved with a median value of 0.01.

The S(0) line width distribution was more difficult

to characterize because of larger error bars on the es-

timated line-widths. We found different modes when we

binned the line-widths distribution using bin sizes of 10,

15, 20 and 25 km/sec. The modes we find range be-

tween 421 and 545 km/sec, with an average value of 494

km/sec. The weighted mean of the un-binned distribu-

tion of line-widths is also 494 km/sec. We thus used the

weighted mean of 494 km/sec as the most likely value for

a measurement of an unresolved source. The associated

dispersion is 62 km/sec. We find eight galaxies that have

marginally resolved S(0) lines: NGC 0828, ESO 255-

IG007, ESO 507-G070, IRAS 13052-5711, NGC 5257,

CGCG 142-034, NGC 6240 and MCG +04-18-002. The

measured S(1) FWHM of these source range between

603 and 781 km/s, with median of 653 km/s, while their

S(0) FWHMs range between 611 and 835 km/s with a

median of 785 km/s.

3.3. Excitation Diagrams, Masses and Temperatures of

Molecular H2

Figure 5 presents the excitation diagrams for the

sources where we detected at least two of the rotational

transitions in the IRS SH, LH, or SL spectra. An ex-

citation diagram is a plot of the column density in the

upper level of each transition (Nu), normalized by its

statistical weight (gu) as a function of the temperature

Tu associated with the upper level energy Eu. We in-

spect visually all the excitation diagrams to determine

if more than one temperature component is needed to

model the data. For most sources, two temperature fits

are not well constrained, i.e. the masses and tempera-

tures we derive are not the results from a fit, instead

they are estimates of four unknown parameters from

four emission line fluxes; therefore we cannot provide

comparisons of χ2 as a function of the number of tem-

perature components. We are cognizant of the limita-

tions of this approach but it allows us to qualitatively

and consistently compare with other samples of galax-

ies analyzed in a similar fashion. There are no obvious

systemic errors in this method that would erroneously

lead to trends between the warm molecular gas proper-

ties and the target’s morphologies (mergers versus non-

mergers) or AGN contribution to the IR emission from

their host galaxy.

Errors on the estimated warm H2 masses and temper-

atures come from: (1) measurement errors and (2) the

assumption that we can describe the data with a sim-

ple distribution of one or two temperature components.

When we add the H2 emission line flux uncertainties in

quadrature we find mass estimates errors on the order of

10-15%. We assess the second source of error by using

three methods to estimate warm H2 masses and temper-

atures and comparing the results: (1) we use only the

S(1) and S(3) lines, as it was done in Hill & Zakamska

(2014), (2) we fit the excitation diagrams with detected

lines only, and (3) for excitation diagrams where S(0)

is not detected, we use the S(0) upper limits as if they

were detections and derive an upper limit on the total

mass. We find that adding the S(0) line to the excita-

tion diagram fit has the largest impact: the estimated

masses become 1.5 larger when we include S(0) mea-

surements. Because LL data often lack the sensitivity

to detect the S(0) line, estimates of warm molecular gas

masses based on lower resolution IRS data may be sys-

tematically lower than the true values (Roussel et al.

2007; Hill & Zakamska 2014).

To compute warm molecular gas masses and temper-

atures we use the same method as Ogle et al. (2010),

Higdon et al (2006), and Roussel et al. (2007). We as-

sume that the gas is in local thermodynamic equilibrium

(LTE). The relation between the observed transitions of

the H2 rotational levels and the total column density

NTOT are given by:

Nu = gu NTOT exp[−Eu/(kT )]/Z(T ), (1)

where Z(T ) is the partition function for the Jth state

given by

Z(T ) =
∑
J

exp(−EJ/kT.) (2)

T =
Eu2 − Eu1

k × ln(Nu1/Nu2 × gu2/gu1)
(3)

where Nu is the column density in the upper level of

each transition, gu its statistical weight, and Eu its en-

ergy. The Eu/k associated with S(0), S(1), S(2) and
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Figure 2. Histograms of measured fluxes (left) and luminosities (right) for the H2 molecular gas corresponding to the following
rotational transitions, S(0) S(1), and S(2) The fluxes are given in log[ W/m−2] and the luminosities in log of solar units. Solid
histogram present our detections. Dashed histograms show the upper limits, and the red vertical lines indicate the median
luminosities.
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S(3) as well as the statistical weights for the lines are

given in Table 1. The column density Nu is related to

the measured flux F emitted in a transition:

Nu =
F

hνA
× 4π

Ω
(4)

where A is the Einstein coefficient giving the probability

for spontaneous emission, hν is the transition energy

and Ω is the beam solid angle. The statistical weight

is a function of the rotational number J , and the spin

number I, given by:

gu = (2I + 1)(2J + 1 ). (5)

The mass can be determined from NTOT with the

source size derived from the size of the spectral extrac-

tion region: 4.7” × 4.7” at the distance of each source

(e.g. 2 kpc for a source at a redshift of 0.02) .

We estimate that the molecular H2 gas has mass-

averaged effective temperatures between 92 and 650 K,

and the sums of the individual mass components are

between 106 and 109 M�. The derived values are esti-

mates because the gas may have a distribution of tem-

peratures and may originate from regions with different

physical properties within the few kpc region probed by

our spectra. However, such estimates are useful because

they provide comparisons with similar analysis done on

normal galaxies and ULIRGs. This analysis provides

a practical way to characterize the true underlying gas

temperatures. With the exception of two sources for

which we find the coldest temperatures at 92 K and 97

K, the coldest components are above 100 K. The LIRGs

IRAS 19542+1110 and ESO 339-G011 are the only two

sources with total warm molecular gas masses greater

than 1×109M�.

The estimated masses and temperatures of the warm

molecular gas emitting in the MIR are presented in Ta-

ble ??. The median temperature for sources that are

well fit by one temperature component is ∼300 K. The

median of the total masses is log M� = 7.2 ± 0.5. Fig-

ure 6 shows the distribution of total gas masses normal-

ized by LIR and temperatures (mass - averaged tem-

peratures for sources where we required at least two

temperatures to fit the observed rotational lines) as a

function of merger stage.

Out of the 214 nuclei for which we determine excita-

tion diagrams, 103 require two temperature components.

The average masses of warm molecular gas for objects

in the non-interacting (n), early-mergers (em), and late

stage mergers (m) are 8.3, 8.9, and 12.5 × 107 M�
respectively. The average temperatures of warm molec-

ular gas we derive for sources in each of these respective

interaction stages are 242, 243, and 277 K respectively.

3.4. Ortho to Para Ratios

To understand the impact that AGN and gravitational

interactions have on the warm molecular gas we also look

at the relative strengths of emission from states with odd

total angular momentum to emission from states with

even angular momentum (ortho to para ratios: OPR,

appendix B). The H2 molecule consists of two covalently

bound hydrogen atoms. Because its center of mass is the

same as that of its electrical charges it does not have a

permanent dipole moment. Therefore H2 cannot transi-

tion from its ortho state (i.e. odd total angular momen-

tum number J) to its para state (i.e even J). The value

of the OPR is related to the history of the molecular

cloud. If the gas is in local thermodynamic equilibrium

(LTE), a Boltzman distribution describes the popula-

tions at each energy level, and the OPR is a known

function of temperature. At typical 300 K tempera-

tures, the OPR is 3. Measuring OPRs that are lower

than 3 may suggest that the gas is not in LTE or that

the gas is thermalized at a temperature lower than 300

K (see Flagey et al. 2013, for a similar discussion about

H2O OPR). The thermalization time for H2 is of the

order of 5000 years so the OPR traces the temperature

of the matter with which the H2 has last thermalized

beyond that time. Other interpretations for measuring

OPRs that are different than 3 are related to extinction

and/or the presences of multiple components along the

line of sight (Flagey et al. 2013; Roussel et al. 2007, and

ref. within). Following Roussel et al. (2007) we first de-

termined which sources have non-LTE OPRs using the

apparent excitation temperatures derived from the S(0),

S(1), S(2) and S(3) lines. More details about how the

OPRs were estimated are provided in Appendix 1 and

Figure 7 shows several illustrative examples.

We find 30 LIRGs with OPR values that appear in-
compatible with LTE conditions. Among these sources

are Arp 220, NGC 3690, and NGC 0992. To test if

we observe OPRs incompatible with LTE because of

dust we assume that the amount of extinction is pro-

portional to the silicate strength measured by Stierwalt

et al. (2013) using the method described in Spoon et al.

(2007). The silicate strength at 9.7 µm is defined as:

log(f9.7µm/C9.7µm) where f9.7µm is the flux measured

at 9.7µm and C9.7µm is the continuum flux in the ab-

sence of the absorption feature (see: Stierwalt et al. 2013;

Spoon et al. 2007). The silicates strength of Arp 220 is

one of the highest in the GOALS sample and NGC 3690

has a silicate strength of -1.65 ± 0.02 which is relatively

high for LIRGs though not one of the highest (Stier-

walt et al. 2013). Extinction might be the reason why

we observe an OPR incompatible with LTE in those

two LIRGs. NGC 0992, however, does not appear to
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Figure 3. Histograms for H2 S(1) (left) and H2 S(0) (right) FWHM measured in the high resolution IRS modules (using
bins of 10 km/s). In red we show our model for the distribution of possible measurements if none of the sources were resolved.
(See text for details.) The standard deviation of this distribution, shown in red, is 56 km/s for the H2 S(1) transitions. The
mode and σinst of the S(0) distribution of FWHMs are 515 km/s and 103 km/s. The mode is marked in cyan, and the mode
+ 1, 2, and 3 σinst and mode - 1× σinst are labeled in green. The black solid histograms show only those widths with errors
σFWHM ≤ FWHM/3.
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be heavily obscured: Stierwalt et al. (2013) report a sili-

cate strength of 0.05 ± 0.04 for this source. It thus seems

that at least in the case of NGC 0992, either the silicate

absorption does not originate in the same region as the

warm H2 or, as is the case for several normal galaxies,

the gas is not yet thermalized (Roussel et al. 2007). This

could mean (1) that we are observing this galaxy at a

peculiar moment in its evolution, which would be sur-

prising given the low critical densities of H2 rotational

transitions or (2) that given the large size of our beam we

are recovering emission from regions with heterogenous

physical conditions, with gas at different temperatures.

3.5. H2 Excitation Conditions

We seek to determine if the detected warm H2 gas is

emitted primarily in photon-dominated regions (PDRs).

MIR rotational lines are rapidly thermalized and hence

they provide few diagnostics with which to determine

the excitations mechanisms. However some conjectures

can be made by comparing the emission of the warm H2

gas and that from other MIR coolants known to origi-

nate in PDRs such as [Si II] and PAH emission (Kauf-

man et al. 2006; Cluver et al. 2010).

About 80% of the LIRGs nuclei in GOALS have MIR

colors (using continuum fluxes measured in the IRAC

3.6, 4.5, 5.8 and 8 µm bands and 15/5.5 µm fluxes) that

are consistent with a PDR origin for the observed MIR

dust continuum (Petric et al. 2011). Since molecular

gas and dust are closely connected we also compare the

warm molecular emission properties with PDR models.

We use the PDR models of Kaufman et al. (2006) who

calculate the [Si ii] and H2 S(0), S(1), S(2) and S(3) pure

rotational line emission arising from PDRs in massive

star-forming regions.

Kaufman et al. (2006) computed simultaneous solu-

tions for the chemistry, radiative transfer, and thermal

balance in PDRs and assumed that in the outer layers

the PDR contains singly ionized carbon, silicon and iron

with a temperature greater than 100 K. The observed

[Si ii] emission at 35 µm is thought to come from this

outer layer of PDR. The rotational H2 transitions (seen

in MIR) and the ro-vibrational H2 lines (seen in NIR) are

thought to come from a deeper layer where the H I /H2

transition is supposed to occur. The resultant emission

is a function of the PDR density n and of the incident

FUV ( 6.0 eV ≤ hν ≤ 13.6 eV) flux. The FUV inci-

dent radiation is described in terms of G0 : 1.6 × 10−3

ergs cm−2, value comparable to estimates of the local

interstellar field in the Milky Way.

Figure 8 shows the combinations of G0 and density n

possible for the observed [Si ii] and H2 flux ratios. We

find that our measurements can best be modeled by a

PDR/HII model with log(G0) values between 2.3 and

2.8 and log(n) between 4.1 and 4.6. In Figure 8 we test

for systematic differences between: AGN-dominated

sources and non-AGN dominated sources, mergers and

isolated galaxies, targets with resolved H2 emission and

those without. We find that AGN-dominated sources

appear to have a wider range of possible G0 and den-

sity n conditions, similar to the work of Lambrides et

al. (2018 submitted) who analyze a sample of 2200

active galaxies observed by Spitzer IRS and find that

AGN-dominated galaxies have a wider range of dust-

grain properties.

For two sources, III Zw 35 and NGC 1961, the S(1)

to [Si ii] ratios are higher than what can be expected

from the PDR models. Those sources are not detected

in [O iv] suggesting that if any AGN were present, its

MIR emission does not contribute to the overall MIR

luminosity of the galaxy because either it is obscured or

the AGN is MIR-faint compared to MIR emission from

star-forming regions. III Zw 35 was characterized as

a LINER by Carrillo et al. (1999) on the basis of the

Veilleux & Osterbrock (1987) classification. Based on

its detection in the 2-10 keV X-ray band with Chandra

at a level of 7 ± 2 × 10−15 erg/s/cm2, and X-ray hard-

ness it was characterized as a Compton-thick source by

González-Mart́ın et al. (2009). Similarly NGC 1961 is

part of the Carrillo et al. (1999) LINER catalogue, and

was detected with the Einstein X-ray observatory in the

0.2-4.0 keV band at a level of 7 ± 3 × 10−13 erg/s/cm2

(Fabbiano et al. 1992). The X-ray detections of these

LINER galaxies suggest that an XDR model might be

more suitable to the data here Meijerink et al. (2007),

and that the sources may be heavily obscured. Both

objects are among a small percentage (4%) of LIRGs

where we detect the H2 S(5) lines and their excitation

diagrams suggest that the warm molecular gas is not

well described by a single temperature.

4. DISCUSSION

Nearby LIRGs appear to have higher H2/PAH flux ra-

tios than normal star-forming galaxies (Stierwalt et al.

2014). Stierwalt et al. (2014) use simultaneous fits to

the dust and gas emission and continuum features in the

low resolution IRS data to determine that around 10%

of LIRGs have H2 emission that is not consistent with

PDR models and so could be instead excited by shocks

from powerful starbursts or AGN. They also find that

LH2
/LPAHs ratios are positively correlated to LH2

and

are not correlated with the silicate optical strengths, un-

like in ULIRGs (Zakamska 2010). Stierwalt et al. (2014)

explain this difference between LIRGs and ULIRGs by

suggesting that the excitation mechanisms of warm H2
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Figure 4. The distribution of derived H2 line FWHM (obtained from fitting each line with a Gaussian) each represented as a
(grey) gaussian centered on the measured H2 line-width and a width equal to the estimated error on the measured H2 line-width;
the peak of each gaussian is set to normalize its area to 1. Adding up all the individual gaussian distributions gives gives the
most probable line-width measurement for the LIRGs in our sample and is represented as the red solid-line curve. The solid-line
black Gaussian gives the probability distribution of possible measurements of H2 line-width for an unresolved source and was
obtained by adding up all the probability distribution for the 94 unresolved sources shown as blue, dotted Gaussian curves. We
used this probability distribution and the error on each measurement to compute the likelihood a source is unresolved. The
derived estimates that appear lower than the instrumental resolution are sources with poor sampling, and/or low signal to noise.
We keep them here because they indicate the error budget in our measurements.



12

Figure 5. Excitation diagrams. The electronic version and appendix C contain all the excitation diagrams. Here we only show
2 examples of sources well fit by 1 and 2 temperature components.

outside photo-dissociation regions, i.e. shocks and AGN

are less common in LIRGs than they are in ULIRGs.

Here we use data at higher spectral resolution to (1) in-

vestigate the kinematics of the warm H2, (2) estimate H2

masses and temperatures, and (3) use [Si ii] and OPR

analysis to look at the gas excitation conditions. We

discuss theoretical predictions that (1) mergers lead to

inflows of gas toward the center and (2) AGN impact the

distribution of central molecular gas, through outflows,

shocks, and an abundance of cosmic rays.

To compare our measurements of LIRGs to those of

normal galaxies and ULIRGs, mergers to non-mergers,

and pure starbursts to AGN dominated sources, we per-

form statistical tests that rely on both detections and

upper limits to determine the probability that two sam-

ples are drawn from the same population. The inter-

action stages we use for this analysis are derived from

those used in Petric et al. (2011), and re-analyzed with

help from the work of Stierwalt et al. (2013) and Larson

et al. (2016) (but see also Petty et al. (2014); Haan et al.

(2011a)). We use three broad categories: non-mergers,

mergers, and early-mergers. We call a LIRG AGN dom-

inated if its 6.2 PAH equivalent width is less than 0.27

and the high ionization [Ne v] is detected or the ratio

of [O iv] /[Ne ii] is larger than 1.75 (Armus et al. 2007;

Veilleux et al. 2009; Petric et al. 2011; Stierwalt et al.

2013).

We used the Astronomy SURVival analysis (ASURV)

statistical package (Feigelson & Nelson 1985; Isobe et al.

1986). When we compare flux ratios or fluxes with

upper-limits we present the average probability that the

two samples are drawn from the same population us-

ing the following 5 non-parametric tests: (1) the Gehan

Generalized Wilcoxon Test using permutation variance,

(2) Gehan’s generalized Wilcoxon test using hypergeo-

metric variance, (3) Logrank test, (4) Peto & Peto Gen-

eralized Wilcoxon Test and (5) Peto & Prentice Gener-

alized Wilcoxon Test. When we compare kinematics or

dust gas masses we use the Kolmogorov-Smirnov (KS)

statistical test. The numbers we provide are: how dif-

ferent two samples are based on their cumulative distri-

butions and the statistical significance of their difference

based on the probability that they are drawn from the

same population.

We compare our fluxes and luminosities with those of

normal galaxies and ULIRGs. Comparisons using the

ratios of S(0) to IR and S (1) to IR are shown in table

5. We find that the most significant differences are be-

tween normal (nearby, non-merging, galaxies discussed

in Roussel et al. 2007) and LIRGs, as well as between

LIRGs and ULIRGs (Higdon et al. 2006). The sources

investigated by Roussel et al. (2007) are at closer dis-

tances and contain fewer sources where the AGN dom-

inates the IR emission than the LIRGs in our sample.

Because the normal galaxies presented in Roussel et al.

(2007) are closer than the GOALS LIRGs, and because

fewer sources in the Roussel et al. (2007) sample are

mergers, the IRS spectra probe regions of different sizes

and that may experience different processes.

4.1. Kinematics as a function of interaction stage, and

the AGN contribution to the LIR

One of the goals of this work is to estimate if we can

identify the kinematic signatures that gravitational in-

teractions and AGN leave on the ISM on kpc scales.

To do this we separated the sources in two groups: 194

LIRGs with unresolved H2 lines and 27 sources with

resolved and marginally resolved H2 lines (See section

3.1.2) to determine if they are resolved simply because of

geometry, or if they have different H2 properties. While
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Figure 6. H2 masses normalized by the LIR (left) and temperatures (right) versus merger stage. Filled circles use S(0)
detections, empty circles use S(0) upper limits. Red circles give the average value for each merger state.
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Figure 7. Temperatures as a function of OPR, the thickness of the lines represent the errors associated with the determination
of temperature. Here we provide several examples representative of the observed range of properties.
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Figure 8. Grayscales showing the most probable region of the (n, G0) space for top: LIRGs with AGN producing more than
50% of the MIR emission versus LIRGs in which processes associated with star formation contribute to most of the observed
MIR, middle: LIRGs showing signs of gravitational interactions versus those without and bottom: LIRGs with relatively
broad H2 velocity profiles. These estimates are based on their combined S1/S0, S1/S2, and S1/SiII ratios and on the models of
Kaufman et al. (2006) models and only include detections. See text for details.
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LIRGs with resolved H2 lines appear to have more and

hotter gas the results are not highly statistically signifi-

cant. Table 7 summarizes the statistics presented here.

To test if the H2 line broadening may come from ro-

tation of a highly inclined massive galaxy, we visually

inspect the 27 sources with resolved and marginally re-

solved H2 line profiles to see how many appear highly

inclined. However, because most sources with broader

profiles are mergers and we lack higher resolution spatial

and kinematic information, we cannot properly deter-

mine the inclination of the inner few kpc probed by the

IRS spectra. ESO353-G020, UGC03351, ESO507-G070,

and NGC 7771 could have broader profiles because of

rotation: their profile widths are consistent with what

we would expect for a spiral of inclination of more than

30◦, and a mass to light ratio of order 3.8.

Differences between the H2 S(1) to [Si ii] flux ratios of

resolved and not-resolved sources would indicate differ-

ences in excitation conditions either because of different

radiation fields strengths, spectral shapes or overall den-

sities. The marginally resolved sources appear to have

above average H2 luminosities relative to the 6.2 µm

PAH emission and to the [Si ii] emission. Our small

sample of resolved sources makes it difficult to extract

statistically significant conclusions. However we provide

this analysis for completeness.

Guillard et al. (2012) find resolved H2 lines in radio

galaxies, Dasyra & Combes (2011) find them in optically

selected AGN, and Ogle et al. (2012) find them in z∼
2 radio galaxies. Here we wish to test if the AGN at

the cores of LIRGs also impact their surrounding ISM.

From our sample of LIRGs with broad H2 lines, only

two sources show detectable [Ne v] at 14.3 µm emission.

However, these objects show low [Ne v] /[Ne ii] ratios of

0.08 and 0.05, with an average AGN contribution to the

total IR luminosity (∼ 8− 1000µm) of 13% which is the

same as the mean of the entire sample of LIRGs (Petric

et al. 2011). The S(1) line-widths we measure for LIRGs

are lower than those observed in powerful radio galaxies

or ULIRGs.

Supermassive black holes at the centers of spheroidal

galaxies can supply more energy to the galaxy than

the binding energy of the galaxy, even when they grow

slowly and have a low feedback efficiency (Hopkins et al.

2006). In simulations, AGN in gas rich mergers produce

molecular gas outflows; when the outflows have compo-

nents on the direction of our line of sight, they can be ob-

served as kinematic features such as broad and/or asym-

metric emission-line profiles (Narayanan et al. 2006).

Assuming that the viewing geometries of ULIRGs and

LIRGs are not statistically different we would expect

that the fraction of ULIRGs with AGN and broad H2

lines should be similar to that of LIRGs, yet we find rela-

tively fewer LIRGs with broad H2 profile. Fewer LIRGs

than ULIRGs have AGN that contribute significantly to

their host IR, so our observation could be low number

statistics or suggest that the feedback efficiency is higher

in ULIRGs than it is in LIRGs.

Mergers are also known to enhance the H2 emission

(e.g. Peterson et al. 2012; Guillard et al. 2009, 2012), and

about 40% of LIRGs are mergers. However it may be

that H2 emission shocked by the tidal interactions, like

that observed in the bridge of the early stage merger the

Taffy Galaxies (Peterson et al. 2012), was not captured

in our nuclear MIR spectroscopic observations which

were focused on the LIRGs nuclei and not the diffuse

extended IR emission. The eight galaxies with broad

S(0) and S(1) emission profiles appear to be interacting.

This may be consistent with shocks associated with tidal

interactions being an energetically significant source of

exciting the molecular gas. For all LIRGs with resolved

and marginally resolved H2 S(1) lines we approximate

the kinetic energy (Ekin) of H2 as 3/2 MH2σ
2
H2

where

MH2
is the mass of warm H2 gas (section 3.2) and σH2

is

the velocity dispersion (section 3.1.2). We find a statis-

tically significant correlation (i.e. probability that they

are not correlated is 0.04) between the kinetic energy in

the H2 gas and the ratio of L(H2S(1)) to the LIR (Figure

9). While the observed L(H2S(1)) to the LIR ratios are

compatible with H2 excitation by UV pumping, we may

see evidence for collisional excitation at kinetic energies

greater than 1055 ergs.

The sources with the largest warm gas kinetic ener-

gies are mergers. A possible explanation for our find-

ings is that mergers increase the production of bulk in-

flows leading to observable broad H2 profiles and pos-

sibly denser environments and larger masses of warm

molecular gas in the central regions of advanced stage

mergers than in non-mergers. Outflows associated with

the central region can also explain some of the broader

profiles. Using the continuum source sizes from Dı́az-

Santos et al. (2011) and stellar masses of 1011 M� we

estimate escape velocities for the gas that range from

∼ 300 to ∼ 1000 km/s. The combination of merger

tidal interactions, star formation and AGN activity in

those sources may dramatically affect the overall state

of the molecular gas by pushing a fraction of it out of

the LIRG. We speculate that while outflows may be im-

portant, bulk molecular gas inflows may also be present

(e.g. Yamashita et al. 2017); those inflows move suffi-

cient gas to the center to fuel star formation and AGN

accretion which lead to turbulence and heating of the

molecular gas to 100-1000K, i.e. the warm gas observed
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Figure 9. The estimated kinetic energy in the warm H2 gas correlates well with the ratio of LH2S(1) to LIR for non-mergers
(black circles), early stage mergers (blue triangles) and advanced mergers (red squares).
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in the MIR. Both inflows and outflows generate turbu-

lence and heat of the molecular gas (Beirão et al. 2015).

One way to put our investigation of H2 in LIRGs in

the context of the study of how AGN and gravitational

interactions impact the ISM is to compare it with studies

of neutral hydrogen. Gravitational interactions do not

appear to significantly affect the neutral gas to stellar

mass ratios in galaxies throughout the merger sequence

and post-mergers may on average be more gas rich than

isolated galaxies (e.g. Ellison et al. 2015). However, in-

teractions may be responsible for the cooling of halo-gas

and lead to central build up of molecular gas (e.g. Braine

& Combes 1993). Our finding that in some advanced

mergers the kinetic energy of the warm molecular gas in

the central few kpcs is correlated to the ratio of H2 to IR

luminosities is consistent with this scenario. Advanced

mergers tend to host more AGN (e.g Petric et al. 2011;

Veilleux et al. 2009) and the ratio of H2 to PAH lumi-

nosity increases with H2 luminosity in LIRGs (Stierwalt

et al. 2014) and in ULIRGs (Hill & Zakamska 2014).

Inami et al. (2013) found five nearby LIRGs with asym-

metric [Ne III] and [Ne V] emission lines. We do not

find any asymmetric H2 resolved profiles, or with signif-

icant central velocity shifts but this may be due to the

comparatively lower signal to noise of the H2 lines. Spa-

tially resolved NIR spectroscopic studies (e.g Medling

et al. 2015; Rupke et al. 2010) are required to confirm

that the the broader MIR profiles are associated with

inflow of cooled halo gas.

4.2. Masses and Temperatures as a function of

interaction stage, and the AGN contribution to

the LIR

Petric et al. (2011) found there are relatively more

AGN dominated sources among late-stage mergers than

star formation dominated sources, compared to non-

interacting LIRGs. While we did not find any statis-

tically significant differences between the H2 masses of

mergers and non-mergers, late-stage mergers have the

highest warm molecular H2 masses and temperatures.

However the difference decreases when we normalize the

H2 masses by the IR luminosities, making it difficult to

extract strong conclusions from this finding.

When we only use the 128 fits with S(0) detections

we (1) no longer find that late mergers have the high-

est masses, but we still find that the advanced mergers

show higher mass-averaged temperatures and (2) find

that AGN-dominated sources have about 100K higher

mass-averaged temperatures than star formation domi-

nated LIRGs. KS tests do not indicate a statistically sig-

nificant difference between the LIR/MH2
ratios of merg-

ers and those of non-mergers.

The median warm molecular gas mass for sources with

an AGN contribution greater than 50% of the total IR

luminosity is 2.3 ×107M�, and for sources where an

AGN contributes less than 10% to the total IR lumi-

nosity it is a few times higher at 1.2 ×108M�. The KS

statistical difference between them is 0.3 and the prob-

ability that they are drawn from the same population

is 2%. The mean and median ratios of LIR to MH2 for

AGN dominated sources are 1.2 and 0.6 ×104 L�/M�,

and those for starburst dominated sources are 1.8 and

0.3 ×104L�/M�, with a KS statistic difference between

them of 0.17 and a probability that they are the same

population of 38%. The average and median temper-

atures for AGN dominated sources are 313 and 296 K

while those of SB dominated galaxies are 203 and 177

K respectively. The KS statistic differences between the

two distributions of temperatures is the largest for any

comparison done in the sample, 0.446, with a probabil-

ity of effectively 0 that they are drawn from the same

populations.

Statistical differences between the warm gas proper-

ties of AGN dominated LIRGs and star formation dom-

inated LIRGs are more significant than the differences

between mergers and non-mergers and as significant as

those between LIRGs and ULIRGs, and between LIRGs

and normal-galaxies (table 7).

4.3. H2 excitation conditions as a function of

interaction stage, and the AGN contribution to

the LIR

In Figure 10 we compare the H2 S(1) emission versus

the [Si ii] emission, both normalized by the LIR lumi-

nosity. This comparison is important because H2 and

[Si ii] are both tracers of the warm interstellar medium

but their relative intensities vary as a function of the

radiation field intensity and the metallicity (Kaufman

et al. 2006).

The correlation between the H2/IR and [Si ii]/IR lu-

minosity ratios (Figure 10) suggests that those cool-

ing lines have a common origin for the majority of the

sources but that advanced stage mergers may have more

diverse H2 heating mechanisms. While we do not find

statistically significant differences between the [Si ii] to

H2 S(1) emission line ratios in mergers from those in

non-mergers, mergers have a lower median [Si ii] to H2

S(1) emission line ratios (9 versus 12) though the disper-

sion is large (5 for non-mergers and early stage mergers

and 8 for mergers) (Figure 11).

These results confirm those of Peterson et al. (2012)

who point out that while mergers can enhance the to-

tal H2 emission, the observed H2 properties are highly

dependent on the collision geometry and on the initial
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Figure 10. Comparison between the ratios of H2 S(1) emission to the IR luminosity versus the ratios of [Si II] to the IR
luminosity for non-mergers (black), early stage mergers (blue) and advanced mergers (red). Sources with resolved and marginally
resolved S(1) lines are shown as (green) crosses. Sources with a significant AGN contribution to the total IR luminosity are
shown as (magenta) stars.

Figure 11. Histograms of [Si II] to H2 S(1) emission line ratios for: (left) non-mergers, (center) early-stage mergers, and (right)
mergers. The standard deviation of the distribution of [Si II] to H2 S(1) line emission ratios is two times larger for mergers than
it is for early-stage mergers and non-mergers. The median [Si II] to H2 S(1) emission line ratios are ∼ 12 for non-mergers and
∼9 for mergers.
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conditions of the mergers. It is thus not surprising that

we do not find strong trends with interaction stage or

the IR emission.

5. SUMMARY AND CONCLUSIONS

We present measurements of the rotational transitions

of molecular hydrogen observed in a MIR spectroscopic

survey of 202 LIRG nuclei with Spitzer IRS. We detect

H2 emission in at least one rotational transition in 91%

of the sources, S(1) being the most commonly detected

transition. The ratio of H2 S(0)+S(1)+S(2) luminos-

ity to the IR luminosity ranges between 2.3 ×10−6 and

0.014.

We perform a statistical analysis of the S(0) and S(1)

lines and their ratios to the IR luminosity, including

upper-limits, to investigate if there are systematic differ-

ences between the H2 properties of LIRGs in our sample,

normal galaxies as measured by Roussel et al. (2007),

and ULIRGs as measured by Higdon et al. (2006). We

find that the probability that LIRGs and normal galax-

ies are drawn from the same population is null while the

probability that LIRGs and ULIRGs are drawn from

the same population is 16%. We compare in a simi-

lar statistical fashion the H2 S(0), S(1), and H2 [S(1)+

S(2)]/LIR for merging versus non-merging LIRGs and

for AGN-dominated LIRGs versus star formation dom-

inated LIRGs. We find probabilities of 39% and 30%,

respectively, that those samples of galaxies are drawn

from the same population.

We compare the ratios of the H2 lines to the [Si II] line

in the context of the theoretical models of PDR/HII

regions of Kaufman et al. (2006). Our measurements

can be modeled by FUV radiation field values between

102.0 and 102.8 and hydrogen nucleus densities n be-

tween 103.5 and 104.5 cm−3.

For 78 sources where we detect at least 4 transitions

with high SNR, we investigate if the temperatures esti-

mated from the S(0), S(1), S(2) and S(3) lines are consis-

tent with an ortho to para ratio expected for thermalized

gas. For half of the sources the observed S(0) to S(3)

lines suggest that the gas is either non-thermalized or

that we are observing emission from regions at different

temperatures.

We compute excitation diagrams and use them to es-

timate the masses and temperatures of warm molecu-

lar gas in 214 LIRG nuclei in the GOALS sample. We

find that the masses of warm gas in advanced mergers

are slightly larger than those of non-interacting systems,

and that the statistical differences between the warm gas

properties of AGN dominated sources and non AGN

dominated sources are more significant than the dif-

ferences between mergers and non-mergers. AGN may

power a fraction of the H2 indirectly through dynamical

perturbations which may be responsible for both exten-

sive shocks in the ISM and an increased rate of accre-

tion onto the supermassive black hole. One way to look

for the connection between dynamical perturbations and

the warm H2 gas is to look for sign of kinematic pecu-

liarities. In Petrus et al. (in prep.) we use data from the

Gemini Near Infrared Spectrograph to show that such

peculiarities are common among LIRGs with excess H2

emission.

We find that between 10 to 15% of LIRGs have re-

solved or marginally resolved S(0) and/or S(1) lines and

that those sources tend to be mergers and have a slightly

higher fraction of AGN dominated sources among them.

As was pointed out in Peterson et al. (2012), while

mergers can have a significant enhancing effect on the

total H2 luminosity emitted, the observed H2 properties

are highly dependent on the collision geometry and on

the initial conditions of the mergers. Those sources with

resolved lines also tend to have slightly higher H2 /IR

luminosity ratios suggesting either higher G0 or higher

densities. We find a correlation between the kinetic en-

ergy in the warm molecular gas and the intrinsic H2 line

widths.

These data, in conjunction with the findings of Elli-

son et al. (2015) and Yamashita et al. (2017), suggest

that the velocity broadening observed in some H2 pro-

files may be due to inflow of halo gas that feeds central

star formation and the central supermassive black hole

which in turn produce outflows that impart kinetic en-

ergy to the central molecular gas. Alternatively inflows

of gas from the galaxies’s disk may stimulate star forma-

tion and AGN activity which heat the warm molecular

gas to sufficiently high temperatures to be detected via

MIR H2 lines.

Both interpretations are consistent with the narra-

tive of quasar formation that starts with two interacting

gas rich galaxies, passes through an obscured, reddened

QSO and ends with an optically luminous QSOs. Those

optically luminous QSOs can still have large ISM reser-

voirs (e.g Petric et al. 2015) if as proposed by Braine &

Combes (1993), as galaxies merge, hot gas from the halo

cools and forms fresh molecular gas on dust grains.
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Table 1. H2 Rotational Transitionsa

Notation b Transition c Rest λµm d Eu/k [K] e A [10−7 s−1] f g (J) g

S(0) J = 2 - 0 28.219 510 0.00029 5

S(1) J = 3 - 1 17.035 1015 0.00476 21

S(2) J = 4 - 2 12.279 1682 0.0276 9

S(3) J = 5 - 3 9.665 2504 0.0984 33

S(4) J = 6 - 4 8.025 3474 0.264 13

S(5) J = 7 - 5 6.910 4586 0.588 45

S(6) J = 8 - 6 6.109 5829 1.14 17

S(7) J = 9 - 7 5.511 7197 2.00 57

aRoussel et al. (2007)

b Short notation of H2 transition

c The quantum numbers associated with the upper and lower energy levels, the tran-
sition from the upper to lower level results in the emission of the observed line listed
in Column 1

dRest wavelength for transition given in column 1

eThe rotational upper energies from (Roussel et al. 2007; Huber & Hertzberg 1979;
Black & Dalgarno 1976)

fTransition probabilities from (Roussel et al. 2007; Black & Dalgarno 1976)

gThe statistical weight for the transition given in column 1.
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Table 2. H2 Fluxes

Name RA Dec S(0) Flux S(1) Flux S(2) Flux S(3) Flux Merger

deg deg 10−18Wm−2 10−18Wm−2 10−18Wm−2 10−18Wm−2 stagea

NGC0023 2.4723 25.924 14 ± 3 96 ± 4 46 ± 8 99 ± 3 em

NGC0034 2.7778 -12.107 40 ± 9 139 ± 7 41 ± 5 58 ± 1 m

Arp256 4.7121 -10.377 < 8 ± 1 48 ± 6 18 ± 5 25 ± 2 m

ESO350-IG038 9.2189 -33.555 < 9 ± 1 8 ± 1 < 6 ± 1 < 30 ± 1 m

NGC0232-W 10.6910 -23.561 18 ± 3 108 ± 6 46 ± 11 105 ± 2 em

NGC0232-E 10.7201 -23.541 < 7 ± 1 52 ± 6 13 ± 6 61 ± 6 em

MCG+12-02-001 13.5162 73.085 70 ± 3 92 ± 5 32 ± 8 83 ± 3 m

NGC0317B 14.4184 43.792 53 ± 4 107 ± 5 40 ± 8 57 ± 11 m

IC1623B 16.9482 -17.507 101 ± 5 190 ± 2 88 ± 4 50 ± 1 m

MCG-03-04-014 17.5372 -16.853 < 5 ± 1 84 ± 9 27 ± 6 53 ± 1 nm

ESO244-G012 19.5356 -44.462 35 ± 3 89 ± 6 24 ± 8 35 ± 2 m

CGCG436-030 20.0115 14.362 < 7 ± 1 45 ± 1 72 ± 5 44 ± 1 em

ESO353-G020 23.7136 -36.137 22 ± 3 117 ± 6 58 ± 10 87 ± 3 nm

RR032-N 24.0975 -37.322 15 ± 2 53 ± 5 19 ± 7 16 ± 1 m

RR032-S 24.1006 -37.340 7 ± 3 51 ± 5 16 ± 7 < 26 ± 1 m

IRASF01364-1042 24.7205 -10.453 < 3 ± 1 88 ± 5 20 ± 1 28 ± 1 m

IIIZw035 26.1271 17.101 < 3 ± 1 30 ± 1 11 ± 1 17 ± 1 em

NGC0695 27.8093 22.582 14 ± 2 48 ± 2 18 ± 1 24 ± 1 nm

UGC01385 28.7243 36.918 < 8 ± 1 45 ± 5 21 ± 12 48 ± 5 em

NGC08380-S 32.428 -10.184 33 ± 4 122 ± 6 31 ± 4 34 ± 2 em

NGC0838-E 32.4113 -10.146 22 ± 3 102 ± 5 < 16 ± 1 77 ± 5 em

NGC0838-W 32.3530 -10.136 11 ± 3 67 ± 6 < 16 ± 1 58 ± 3 em

NGC0828 32.5397 39.190 26 ± 3 111 ± 6 34 ± 10 23 ± 1 m

IC0214 33.5232 5.173 7 ± 1 50 ± 1 < 3 ± 1 < 8 ± 1 m

NGC0877-N 34.4991 14.544 6 ± 2 21 ± 1 < 3 ± 1 11 ± 1 m

NGC0877-S 34.4723 14.521 12 ± 2 27 ± 1 9 ± 1 < 9 ± 1 m

MCG+05-06-036-N 35.8416 32.197 < 17 ± 1 86 ± 8 17 ± 3 48 ± 12 em

MCG+05-06-036-S 35.8288 32.188 < 11 ± 1 30 ± 8 < 13 ± 1 15 ± 6 em

UGC01845 36.0332 47.970 32 ± 3 99 ± 5 29 ± 9 65 ± 3 nm

NGC0958 37.6785 -2.939 11 ± 1 21 ± 1 5 ± 1 12 ± 1 nm

NGC0992 39.3561 21.101 14 ± 4 54 ± 5 40 ± 5 26 ± 2 nm

UGC02238 41.5729 13.096 < 16 ± 1 68 ± 6 54 ± 6 29 ± 1 m

IRASF02437+2122 41.6631 21.586 < 8 ± 1 34 ± 1 12 ± 2 < 18 ± 1 em

UGC02369 43.5077 14.971 < 6 ± 1 35 ± 6 19 ± 4 37 ± 8 m

UGC02608-N 48.7561 42.036 < 8 ± 1 69 ± 6 17 ± 7 50 ± 5 em

UGC02608-S 48.8108 41.981 < 2 ± 1 < 68 ± 1 < 50 ± 1 < 29 ± 1 em

NGC1275 49.9507 41.512 < 11 ± 1 139 ± 8 99 ± 14 208 ± 3 nm

IRASF03217+4022 51.2724 40.559 16 ± 3 54 ± 6 19 ± 9 < 29 ± 1 nm

NGC1365 53.4015 -36.140 35 ± 6 196 ± 5 82 ± 9 119 ± 6 nm

IRASF03359+1523 54.6964 15.548 13 ± 3 31 ± 1 12 ± 1 < 9 ± 1 m

CGCG465-012-N 58.5320 15.990 7 ± 1 20 ± 1 8 ± 1 20 ± 2 em

CGCG465-012-S 58.5665 15.929 16 ± 1 45 ± 1 17 ± 2 29 ± 1 em

IRAS03582+6012-E 60.6375 60.345 3 ± 1 29 ± 1 16 ± 1 16 ± 1 m

IRAS03582+6012-W 60.6332 60.344 4 ± 1 20 ± 1 10 ± 1 6 ± 1 m

UGC02982 63.0945 5.547 22 ± 1 67 ± 1 37 ± 2 17 ± 1 nm

ESO420-G013 63.4571 -32.007 < 8 ± 1 119 ± 5 54 ± 11 72 ± 4 nm

NGC1572 65.6784 -40.601 18 ± 3 97 ± 7 41 ± 9 40 ± 2 nm

IRAS04271+3849 67.6379 38.930 24 ± 3 83 ± 6 29 ± 11 51 ± 3 m

NGC1614 68.4994 -8.579 < 16 ± 1 130 ± 6 72 ± 11 69 ± 3 m

UGC03094 68.8910 19.172 < 3 ± 1 33 ± 6 < 14 ± 1 40 ± 1 nm

ESO203-IG001 71.7075 -48.559 < 4 ± 1 29 ± 1 11 ± 2 11 ± 1 m

MCG-05-12-006 73.0207 -32.991 < 9 ± 1 50 ± 5 < 25 ± 1 22 ± 2 nm

NGC1797 76.9368 -8.019 36 ± 3 57 ± 5 < 26 ± 1 32 ± 3 em

CGCG468-002-W 77.0821 17.363 3 ± 2 35 ± 4 12 ± 10 30 ± 6 em

CGCG468-002-E 77.0884 17.369 8 ± 3 55 ± 5 28 ± 8 < 29 ± 1 em

IRAS05083+2441-S 77.8578 24.755 15 ± 4 44 ± 6 23 ± 11 45 ± 3 em

VIIZw031 79.193 3 79.670 < 6 ± 1 51 ± 9 24 ± 4 30 ± 5 nm

IRAS05129+5128 79.2332 51.532 < 7 ± 1 47 ± 6 72 ± 19 106 ± 12 m

IRASF05189-2524 80.2559 -25.363 < 18 ± 1 38 ± 6 16 ± 1 < 34 ± 1 m

IRASF05187-1017 80.2772 -10.246 < 4 ± 1 32 ± 1 18 ± 5 < 28 ± 1 nm

IRAS05223+1908 81.3195 19.180 < 6 ± 1 < 12 ± 1 < 16 ± 1 < 34 ± 1 m

MCG+08-11-002 85.1821 49.695 40 ± 3 107 ± 6 46 ± 10 53 ± 3 m

NGC1961 85.5200 69.379 20 ± 3 169 ± 6 69 ± 5 < 32 ± 1 m

UGC03351 86.4501 58.701 29 ± 3 95 ± 6 33 ± 8 31 ± 1 nm

IRAS05442+1732 86.7967 17.563 35 ± 3 87 ± 6 44 ± 8 22 ± 2 em

IRASF06076-2139 92.4406 -21.674 < 8 ± 1 30 ± 5 12 ± 3 24 ± 7 m

UGC03410-E 93.6265 80.450 17 ± 1 68 ± 1 24 ± 1 < 8 ± 1 m

UGC03410-W 93.4941 80.477 15 ± 1 30 ± 1 12 ± 2 5 ± 1 m

NGC2146 94.6571 78.357 100 ± 9 275 ± 5 < 23 ± 1 122 ± 4 m

ESO255-IG007-W 96.8404 -47.177 33 ± 3 79 ± 8 26 ± 3 53 ± 7 m

ESO255-IG007-E 96.8440 -47.180 < 3 ± 1 22 ± 4 < 54 ± 1 < 26 ± 1 m

ESO255-IG007-S 96.8462 -47.184 10 ± 2 17 ± 16 8 ± 8 < 25 ± 1 m

ESO557-G002-N 97.9467 -17.621 < 2 ± 1 51 ± 1 19 ± 1 28 ± 1 em

ESO557-G002-S 97.9405 -17.646 < 1 ± 1 15 ± 1 7 ± 1 < 8 ± 1 em

UGC03608 104.3934 46.403 27 ± 4 102 ± 5 35 ± 6 51 ± 2 m

IRASF06592-6313 104.9177 -63.298 13 ± 3 53 ± 7 19 ± 5 35 ± 2 nm

AM0702-601-N 105.8506 -60.256 < 4 ± 1 26 ± 8 72 ± 4 < 30 ± 1 em

AM0702-601-S 105.8688 -60.279 10 ± 3 47 ± 7 < 13 ± 1 27 ± 8 em

NGC2342 107.3253 20.636 12 ± 3 37 ± 5 20 ± 5 24 ± 1 em

NGC2369 109.1607 -62.339 7 ± 1 56 ± 1 36 ± 1 23 ± 1 nm

IRAS07251-0248 111.9068 -2.915 < 8 ± 1 13 ± 4 137 ± 3 < 28 ± 1 m

NGC2388 112.2227 33.819 < 8 ± 1 89 ± 6 59 ± 12 65 ± 1 em

MCG+02-20-003-N 113.9310 11.710 27 ± 3 69 ± 5 23 ± 8 < 29 ± 1 em

MCG+02-20-003-S 113.9230 11.612 < 2 ± 1 < 22 ± 1 < 13 ± 1 < -666 ± 1 em

IRAS08355-4944 129.2578 -49.908 < 9 ± 1 38 ± 5 < 17 ± 1 < 31 ± 1 m

NGC2623 129.6003 25.755 < 8 ± 1 64 ± 6 31 ± 14 51 ± 3 m

ESO432-IG006-W 131.1134 -31.697 14 ± 2 46 ± 5 18 ± 8 48 ± 4 m

ESO432-IG006-E 131.1205 -31.692 8 ± 2 46 ± 5 28 ± 9 56 ± 5 m

ESO60-IG016 133.1336 -69.032 < 7 ± 1 < 26 ± 1 19 ± 4 16 ± 6 m

IRASF08572+3915 135.1058 39.065 < 9 ± 1 11 ± 7 < 14 ± 1 < 27 ± 1 m

IRAS09022-3615 136.0529 -36.450 < 8 ± 1 107 ± 8 52 ± 5 72 ± 6 m

UGC04881-E 138.9796 44.332 7 ± 3 29 ± 2 13 ± 1 24 ± 1 m

UGC05101 143.9652 61.353 24 ± 3 42 ± 12 20 ± 3 25 ± 7 m

MCG+08-18-013 144.1283 48.469 < 2 ± 1 < 4 ± 1 < 2 ± 1 < 8 em

Arp303-N 146.5879 3.071 11 ± 1 29 ± 1 10 ± 1 14 ± 1 em

Arp303-S 146.5846 3.046 11 ± 1 31 ± 1 12 ± 1 < 8 ± 1 em

NGC3110 151.0088 -6.475 15 ± 2 59 ± 7 28 ± 6 45 ± 1 em

ESO374-IG032 151.5194 -33.885 < 11 ± 1 40 ± 6 21 ± 4 28 ± 7 m

IRASF10173+0828 155.0009 8.226 < 3 ± 1 13 ± 3 < 2 ± 1 < 8 ± 1 em

NGC3221 155.5844 21.573 14 ± 1 36 ± 1 18 ± 2 5 ± 1 m

NGC3256 156.9636 -43.904 96 ± 15 343 ± 6 149 ± 10 171 ± 3 m

ESO264-G036 160.7813 -46.212 9 ± 1 38 ± 1 20 ± 1 22 ± 1 nm

ESO264-G057 164.7571 -43.440 21 ± 1 50 ± 1 22 ± 1 < 8 ± 1 m

IRASF10565+2448 164.8256 24.543 < 7 ± 1 59 ± 7 22 ± 4 34 ± 6 m

MCG+07-23-019 165.9717 40.849 < 2 ± 1 48 ± 1 < 2 ± 1 33 ± 1 m

CGCG011-076 170.3011 -2.984 < 5 ± 1 62 ± 1 62 ± 1 50 ± 3 m

IRASF11231+1456 171.4377 14.677 12 ± 2 27 ± 2 12 ± 2 21 ± 1 em

ESO319-G022 171.9758 -41.614 15 ± 2 42 ± 6 16 ± 8 27 ± 3 m

NGC3690-W 172.1291 58.561 < 33 ± 1 150 ± 6 95 ± 8 48 ± 1 m

NGC3690-E 172.1402 58.563 166 ± 20 228 ± 5 148 ± 8 < 48 m

ESO320-G030 178.304 -39.131 4 ± 1 41 ± 1 21 ± 1 46 ± 1 nm

ESO440-IG058-S 181.7161 -31.950 21 ± 3 70 ± 5 19 ± 10 36 ± 2 m

ESO440-IG058-N 181.7154 -31.946 < 3 ± 1 13 ± 5 < 18 ± 1 < 27 ± 1 m

IRASF12112+0305 183.4419 2.812 < 3 ± 1 38 ± 1 14 ± 1 20 ± 1 m

NGC4194 183.5402 54.526 < 9 ± 1 98 ± 6 37 ± 17 136 ± 5 m

ESO267-G030-E 183.5534 -47.228 21 ± 3 56 ± 5 25 ± 11 21 ± 2 em

ESO267-G030-W 183.4678 -47.274 32 ± 3 46 ± 4 15 ± 6 47 ± 4 em

IRAS12116-5615 183.592 -56.542 < 8 ± 1 92 ± 7 33 ± 16 < 26 ± 1 nm

IRASF12224-0624 186.266 -6.681 < 2 ± 1 6 ± 1 < 3 ± 1 < 7 ± 1 nm

UGC08058 194.0595 56.874 < 33 ± 1 57 ± 15 < 14 ± 1 < 38 ± 1 m

NGC4922 195.3553 29.314 < 8 ± 1 66 ± 7 32 ± 11 34 ± 1 m

CGCG043-099 195.4617 4.333 < 4 ± 1 51 ± 3 24 ± 1 32 ± 1 m

MCG-02-33-098-W 195.5819 -15.768 16 ± 3 45 ± 5 35 ± 9 44 ± 3 m

MCG-02-33-098-E 195.5849 -15.767 10 ± 3 27 ± 5 < 19 ± 1 < 28 ± 1 m

ESO507-G070 195.7184 -23.922 37 ± 4 151 ± 6 87 ± 6 152 ± 4 m

IRAS13052-5711 197.0780 -57.458 23 ± 1 73 ± 1 32 ± 1 30 ± 1 em

IC0860 198.7647 24.619 < 8 ± 1 42 ± 1 23 ± 1 < 8 ± 1 nm

IRAS13120-5453 198.7767 -55.157 < 19 ± 1 87 ± 9 < 22 ± 1 85 ± 8 m

VV250a-E 198.8957 62.125 < 9 ± 1 64 ± 8 22 ± 5 43 ± 8 m

VV250a-W 198.8779 62.129 < 4 ± 1 < 14 ± 1 < 29 ± 1 < 30 ± 1 m

UGC08387 200.1473 34.139 39 ± 4 141 ± 1 58 ± 2 81 ± 1 m

NGC5104 200.3462 0.342 14 ± 7 76 ± 7 26 ± 5 51 ± 2 nm

MCG-03-34-064 200.6019 -16.728 < 9 ± 1 41 ± 6 < 41 ± 1 < 36 ± 1 em

NGC5135 201.4332 -29.833 18 ± 3 121 ± 6 92 ± 8 88 ± 3 nm

ESO173-G015 201.8491 -57.489 225 ± 4 333 ± 5 192 ± 104 < 31 ± 1 nm

IC4280 203.2225 -24.207 14 ± 1 51 ± 1 18 ± 2 36 ± 1 nm

NGC5256 204.5719 48.276 < 4 ± 1 82 ± 2 23 ± 10 38 ± 2 nm

Arp240-E 204.9907 0.831 7 ± 5 37 ± 9 < 14 ± 1 12 ± 1 m

Arp240-W 204.9708 0.840 14 ± 4 29 ± 8 < 15 ± 1 15 ± 1 m

UGC08696 206.1755 55.887 < 16 ± 1 88 ± 10 51 ± 4 100 ± 7 m

UGC08739 207.3081 35.257 20 ± 1 59 ± 1 26 ± 2 < 8 ± 1 nm

ESO221-IG010 207.7372 -49.055 23 ± 3 70 ± 5 9 ± 9 75 ± 4 nm

NGC5331-S 208.0675 2.101 14 ± 1 66 ± 1 15 ± 4 29 ± 1 m

NGC5331-N 208.0685 2.109 7 ± 1 28 ± 1 14 ± 1 5 ± 1 m

Arp84-S 209.6584 37.424 < 3 ± 1 13 ± 6 < 17 ± 1 < 8 ± 1 m

Arp84-N 209.6401 37.454 28 ± 3 72 ± 6 34 ± 6 54 ± 1 m

CGCG247-020 214.9302 49.237 < 7 ± 1 48 ± 1 14 ± 4 31 ± 2 nm

NGC5653 217.5435 31.215 17 ± 4 63 ± 5 28 ± 10 < 29 ± 1 nm

IRASF14348-1447 219.4095 -15.007 10 ± 3 46 ± 1 23 ± 1 28 ± 2 m

IRASF14378-3651 220.2454 -37.076 < 4 ± 1 12 ± 9 7 ± 5 18 ± 9 m

NGC5734-N 221.2877 -20.870 16 ± 3 58 ± 5 19 ± 7 35 ± 3 em

NGC5734-S 221.2959 -20.913 6 ± 3 31 ± 4 15 ± 8 < 27 ± 1 em

VV340a-N 224.2529 24.618 14 ± 1 43 ± 1 23 ± 1 20 ± 1 em

VV340a-S 224.2513 24.607 3 ± 1 10 ± 1 4 ± 1 < 8 ± 1 em

CGCG049-057 228.3076 7.223 3 ± 1 15 ± 1 17 ± 1 12 ± 1 nm

ESO099-G004 231.2416 -63.125 33 ± 3 41 ± 5 < 17 ± 1 < 30 ± 1 m

IRASF15250+3608 231.7475 35.977 < 9 ± 1 42 ± 13 8 ± 4 < 27 ± 1 m

NGC5936 232.5033 12.989 17 ± 3 63 ± 5 72 ± 7 55 ± 3 nm

Arp220 233.7385 23.503 < 79 ± 1 174 ± 7 114 ± 10 89 ± 3 m

NGC5990 236.5684 2.415 32 ± 3 81 ± 5 32 ± 8 65 ± 2 em

NGC6052 241.3036 20.543 18 ± 3 29 ± 4 21 ± 7 19 ± 1 m

NGC6090 242.9196 52.457 < 5 ± 1 103 ± 7 155 ± 4 ... m

IRASF16164-0746 244.7991 -7.901 13 ± 3 98 ± 1 44 ± 2 38 ± 3 m

CGCG052-037 247.7356 4.083 < 5 ± 1 61 ± 1 24 ± 2 34 ± 2 nm

NGC6156 248.7190 -60.619 36 ± 3 66 ± 5 32 ± 7 38 ± 2 nm

ESO069-IG006 249.5494 -68.436 < 7 ± 1 88 ± 13 33 ± 4 39 ± 7 m

IRASF16399-0937 250.6671 -9.720 < 7 ± 1 88 ± 7 34 ± 6 56 ± 12 m

ESO453-G005-S 251.87895 -29.356 < 1 ± 1 21 ± 1 < 6 ± 1 8 ± 1 em

ESO453-G005-N 251.8723 -29.319 4 ± 1 15 ± 1 7 ± 2 < 8 ± 1 em

NGC6240 253.2454 2.401 < 15 ± 1 470 ± 8 332 ± 42 672 ± 17 m

IRASF16516-0948 253.5988 -9.889 18 ± 1 112 ± 1 39 ± 2 45 ± 1 m

NGC6286-S 254.6308 58.936 36 ± 2 63 ± 7 21 ± 6 < 8 ± 1 m

IRASF17132+5313 258.5833 53.175 < 4 ± 1 36 ± 2 17 ± 1 18 ± 1 m

IRASF17138-1017 259.1483 -10.344 < 12 ± 1 80 ± 7 < 25 ± 1 18 ± 1 m

ESO138-G027 261.6806 -59.932 < 8 ± 1 32 ± 5 22 ± 9 32 ± 5 nm

UGC11041 268.7159 34.776 15 ± 3 59 ± 5 26 ± 8 30 ± 3 nm

CGCG141-034 269.2360 24.017 < 8 ± 1 42 ± 5 12 ± 6 20 ± 2 nm

IRAS17578-0400-N 270.1327 -4.015 17 ± 2 63 ± 5 37 ± 7 17 ± 3 em

IRAS17578-0400-S 270.1420 -4.029 < 3 ± 1 11 ± 7 72 ± 51 15 ± 4 em

IRAS17578-0400-W 270.1012 -4.018 < 3 ± 1 17 ± 5 < 16 ± 1 < 31 ± 1 em

IRAS18090+0130-E 272.9101 1.528 19 ± 3 61 ± 6 < 18 ± 1 25 ± 9 m

IRAS18090+0130-W 272.8892 1.528 < 6 ± 1 32 ± 5 10 ± 7 < 29 ± 1 m

NGC6621 273.2308 68.363 18 ± 3 50 ± 5 27 ± 12 < 2 ± 1 m

IC4687 273.4084 -57.725 8 ± 1 126 ± 7 7 ± 2 34 ± 1 m

CGCG142-034-E 274.1695 22.113 17 ± 1 60 ± 2 34 ± 7 23 ± 2 m

CGCG142-034-W 274.1410 22.111 8 ± 2 24 ± 1 6 ± 1 18 ± 2 m

IRASF18293-3413 278.1712 -34.191 50 ± 3 211 ± 6 109 ± 9 102 ± 3 m

NGC6670-W 278.3927 59.888 10 ± 1 39 ± 2 12 ± 1 17 ± 1 m

NGC6670-E 278.4073 59.890 10 ± 1 38 ± 1 < 2 ± 1 16 ± 1 m

IC4734 279.6073 -57.490 24 ± 2 101 ± 5 51 ± 8 69 ± 11 nm

NGC6701 280.8022 60.653 25 ± 3 90 ± 5 36 ± 8 < 26 ± 1 nm

VV414-W 287.7250 73.410 19 ± 286 36 ± 5 20 ± 17 22 ± 2 m

VV414-E 287.7682 73.426 < 8 ± 1 32 ± 6 < 15 ± 1 < 31 ± 1 m

ESO593-IG008 288.6298 -21.318 < 2 ± 1 64 ± 2 28 ± 1 26 ± 1 m

IRASF19297-0406 293.0885 -3.999 < 5 ± 1 49 ± 4 28 ± 10 31 ± 12 m

IRAS19542+1110 299.1491 11.318 < 7 ± 1 < 23 ± 1 14 ± 6 13 ± 8 nm

ESO339-G011 299.4067 -37.936 29 ± 3 48 ± 5 35 ± 8 40 ± 3 nm

NGC6907 306.2774 -24.809 21 ± 3 85 ± 4 35 ± 10 53 ± 3 nm

MCG+04-48-002 307.1461 25.733 18 ± 3 67 ± 7 24 ± 9 < 27 ± 1 em

NGC6926 308.2755 -2.027 13 ± 1 32 ± 1 10 ± 1 < 8 ± 1 m

IRAS20351+2521 309.3229 25.527 < 7 ± 1 51 ± 6 23 ± 9 29 ± 7 nm

CGCG448-020-W 314.3504 17.126 5 ± 3 31 ± 5 < 19 ± 1 < 25 ± 1 m

CGCG448-020-E 314.3516 17.128 < 8 ± 1 68 ± 6 29 ± 5 46 ± 7 m

IRAS20551-4250 314.6116 -42.650 < 11 ± 1 68 ± 12 32 ± 3 43 ± 6 m

ESO286-G035 316.0463 -43.593 12 ± 3 56 ± 5 26 ± 1 30 ± 3 m

IRAS21101+5810 317.8720 58.386 < 7 ± 1 37 ± 5 15 ± 4 15 ± 1 m

ESO343-IG013-S 324.0439 -38.545 13 ± 1 48 ± 1 22 ± 2 14 ± 1 m

ESO343-IG013-N 324.0455 -38.542 26 ± 4 25 ± 1 10 ± 2 25 ± 1 m

NGC7130 327.0813 -34.952 < 5 ± 1 69 ± 6 36 ± 8 29 ± 2 m

ESO467-G027 333.6665 -27.464 9 ± 1 38 ± 1 13 ± 1 14 ± 1 nm

IC5179 334.0446 -36.840 5 ± 1 18 ± 1 9 ± 1 9 ± 1 nm

ESO602-G025 337.8562 -19.035 < 16 ± 1 44 ± 7 88 ± 21 53 ± 3 nm

UGC12150 340.3011 34.249 30 ± 3 67 ± 7 25 ± 6 30 ± 1 nm

IRASF22491-1808 342.9556 -17.873 < 4 ± 1 16 ± 1 8 ± 1 < 7 ± 1 m

NGC7469 345.8151 8.874 < 13 ± 1 162 ± 7 79 ± 11 178 ± 4 em

CGCG453-062 346.2355 19.552 < 3 ± 1 51 ± 1 16 ± 2 < 29 ± 1 nm

ESO148-IG002 348.9459 -59.055 < 5 ± 1 15 ± 13 < 12 ± 1 < 28 ± 1 m

IC5298 349.0029 25.557 < 9 ± 1 38 ± 1 36 ± 2 29 ± 2 nm

NGC7552 349.0386 -42.587 < 3 ± 1 100 ± 1 59 ± 1 85 ± 1 nm

NGC7591 349.5678 6.586 < 8 ± 1 53 ± 5 72 ± 7 < 31 ± 1 nm

NGC7592-E 349.5946 -4.416 < 4 ± 1 35 ± 1 13 ± 1 9 ± 1 m

NGC7592-W 349.5912 -4.416 20 ± 3 72 ± 1 25 ± 1 9 ± 1 m

ESO077-IG014-E 350.2727 -69.213 10 ± 1 34 ± 2 14 ± 1 15 ± 1 m

ESO077-IG014-W 350.2655 -69.217 7 ± 1 34 ± 2 12 ± 1 13 ± 1 m

NGC7674 351.9863 8.779 < 7 ± 1 44 ± 2 < 3 ± 1 < 12 ± 1 em

NGC7679 352.1943 3.511 < 6 ± 1 66 ± 5 27 ± 8 < 14 em

IRASF23365+3604 354.7554 36.353 < 3 ± 1 19 ± 11 9 ± 4 24 ± 9 m

MCG-01-60-022 355.5038 -3.615 < 8 ± 1 64 ± 5 26 ± 6 107 ± 11 m

IRAS23436+5257 356.5226 53.234 12 ± 3 49 ± 7 167 ± 5 45 ± 12 em

Arp86-N 356.7705 29.483 5 ± 2 15 ± 1 5 ± 1 < 8 ± 1 m

Arp86-S 356.7446 29.459 11 ± 2 32 ± 1 12 ± 1 24 ± 1 m

Note—(a)– Stierwalt et al. (2014) give H2 S(3) fluxes obtained by simultaneously by fitting the dust and gas absorption,
emission and continuum gas and dust features. To achieve this Stierwalt et al. (2014) scale the SL spectra to match
the LL spectra.

Note—(a)–The GOALS sources were classified in 5 stages, Petric et al. (2011); Stierwalt et al. (2013), e.g. Fig. 10
in Petric et al. (2011). The merger classifications for each LIRG is given in Stierwalt et al. (2013) and a subset was
re-evaluated by Larson et al. (2016). Here we compress the merger stages in three categories, non mergers (nm):
targets without obvious signs of morphological disturbances, early-mergers (em): galaxies are within 1 arcmin of each
other but show little or no morphological disturbance, mergers (m): this includes all other stages of gravitational
interactions.
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Table 3. H2 Detection Statistics from IRS SH and LH Spectra

Line and Units Detection rate Minimum Maximum Mean Median Standard Dev.

log(S(0)[W/m2]) 53% -17.7 -15.6 -16.5 -16.6 0.5

log(LS(0))[ L�]) ... 5.8 7.9 6.8 6.7 0.8

log(S(1)[W/m2]) 91% -17.2 -15.4 -16.2 -16.3 0.4

log(LS(1) [L�]) ... 6.0 8.3 7.3 7.1 0.9

log(S(2)[W/m2]) 68% -16.4 -15.5 -16.5 -16.6 0.3

log(LS(2)[L�]) ... 5.7 8.7 7.1 6.8 1.2

log(S(3)[W/m2] ) 72% -16.1 -15.2 -16.4 -16.5 0.8

log(LS(3)[L�] ... 5.2 8.1 7.2 6.9 0.6
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Table 4. General Properties of Galaxies where the H2 S(1) is Resolved or Marginally Resolved

Name S(1) FWHM S(1) FWHM intrinsic [Ne V] detection flag [O IV] detection flag

[km/s] [km/s] [1 detected] [0 not detected]

ESO353-G020 608 329 ± 46 0 1

IRASF01364-1042I 1318 1215 ± 173 0 0

IIZw35 658 413 ± 59 0 0

NGC0828 661 420 ± 59 0 1

MCG+08-11-002 641 386 ± 55 0 1

NGC1961 624 358 ± 48 0 0

UGC03351 661 420± 52 0 1

ESO255-IG007 690 464 ± 92 0 0

NGC2369 583 281 ± 35 0 1

ESO320-G030 583 281 ± 35 0 0

ESO507-G070 629 365 ± 45 0 0

IRAS13052-5711 603 321 ± 40 0 0

VV250a 814 634 ± 126 0 0

IC4280 620 352 ± 43 0 1

NGC5256 649 400 ± 44 1 1

NGC52578 782 592 ± 73 0 0

NGC5331 616 343 ± 43 0 1

NGC5331 661 420 ± 47 0 0

IRASF16164-0746 612 336 ± 37 0 1

ESO069-IG006 752 552 ± 61 0 0

IRASF16399-0937 661 420 ± 60 0 1

NGC6240 756 558 ± 56 1 1

CGCG142-034 653 407 ± 51 0 0

CGCG142-034 608 329 ± 41 1 1

ESO593-IG008 690 464 ± 52 0 1

MCG+04-48-002 653 407± 68 1 0

NGC7771 690 464 ± 58 0 1
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Table 5. Masses and Temperatures of Warm Molecular Gas as estimated from
MIR spectroscopy

Source RA Dec T 1 log(M1) T 2 log(M2) 〈T〉
∑

M

deg deg [K] log(M�) [K] log(M�) [K] log(M�)

NGC0023 2.470 25.924 113 7.973 386 6.548 123 7.989

NGC0034 2.780 -12.108 124 8.396 318 7.025 132 8.415

NGC0034 2.790 -12.021 319 7.013 ... ... 319 7.013

MCG-02-01-051 4.710 -10.359 121 8.318 411 6.729 129 8.328

ESO350-IG038 9.220 -33.555 391 6.580 ... ... 391 6.580

NGC0232 10.690 -23.561 116 8.766 517 5.962 116 8.767

NGC0232 10.720 -23.541 175 8.111 11 7.398 148 8.188

MCG+12-02-001 13.520 73.085 193 8.474 15 7.699 167 8.543

NGC0317B 14.420 43.792 324 7.431 ... ... 324 7.431

IC1623AB 16.950 -17.507 528 6.815 ... ... 528 6.815

MCG-03-04-014 17.540 -16.853 115 8.199 359 6.722 122 8.215

ESO244-G012 19.530 -44.462 147 7.870 459 5.652 149 7.873

ESO244-G012 19.530 -44.467 208 7.207 ... ... 208 7.207

CGCG436-030 20.010 14.362 211 8.009 464 7.013 234 8.049

ESO353-G020 23.710 -36.137 312 6.831 ... ... 312 6.831

ESO297-G011 24.100 -37.322 113 8.497 310 7.146 122 8.516

ESO297-G011 24.100 -37.341 365 6.551 ... ... 365 6.551

IRASF01364-1042 24.720 -10.453 169 7.422 308 6.501 184 7.470

IRASF01417+1651 26.130 17.103 223 7.258 ... ... 223 7.258

NGC0695 27.810 22.582 237 7.124 ... ... 237 7.124

UGC01385 28.720 36.918 219 7.553 ... ... 219 7.553

UGC01385 28.760 36.920 257 7.193 111 8.307 122 8.340

NGC0838 32.430 -10.184 205 7.670 ... ... 205 7.670

NGC0838 32.410 -10.146 188 6.885 ... ... 188 6.885

NGC0838 32.350 -10.136 174 7.149 ... ... 174 7.149

NGC0838 32.340 -10.133 304 7.476 ... ... 304 7.476

NGC0828 32.540 39.190 321 7.021 ... ... 321 7.021

IC0214 33.520 5.173 144 7.881 322 6.661 154 7.907

IC0214 33.480 5.168 400 5.740 109 8.310 109 8.312

NGC0877 34.500 14.544 107 7.692 330 6.441 119 7.716

MCG+05-06-036 35.840 32.197 339 6.975 ... ... 339 6.975

MCG+05-06-036 35.830 32.188 306 6.749 ... ... 306 6.749

UGC01845 36.030 47.970 348 6.956 ... ... 348 6.956

NGC0958 37.680 -2.939 354 6.473 ... ... 354 6.473

NGC0992 39.360 21.101 333 6.975 ... ... 333 6.975

UGC02238 41.570 13.096 206 7.292 704 6.400 263 7.344

IRASF02437+2122 41.660 21.586 179 7.818 ... ... 179 7.818

IRASF02437+2122 41.690 21.557 200 6.201 500 5.644 265 6.307

UGC02369 43.510 14.971 195 8.079 ... ... 195 8.079

UGC02369 43.510 14.977 111 8.149 436 5.938 113 8.152

UGC02608 48.760 42.036 151 7.723 301 6.760 165 7.767

UGC02608 48.810 41.981 112 7.655 352 6.745 139 7.706

IRASF03217+4022 51.270 40.559 151 7.845 366 6.436 159 7.862

NGC1365 53.400 -36.141 319 6.683 ... ... 319 6.683

IRASF03359+1523 54.700 15.548 131 8.090 323 6.944 145 8.117

CGCG465-012 58.530 15.990 158 7.718 334 6.740 175 7.761

CGCG465-012 58.570 15.929 320 7.000 ... ... 320 7.000

IRAS03582+6012 60.640 60.345 398 6.623 ... ... 398 6.623

IRAS03582+6012 60.630 60.344 310 7.367 ... ... 310 7.367

UGC02982 63.090 5.547 316 6.708 ... ... 316 6.708

ESO420-G013 63.460 -32.007 190 7.780 ... ... 190 7.780

ESO550-IG025 65.330 -18.811 210 7.248 ... ... 210 7.248

NGC1572 65.680 -40.601 96 8.029 314 7.004 115 8.068

IRAS04271+3849 67.640 38.930 327 7.676 ... ... 327 7.676

NGC1614 68.500 -8.580 386 7.009 ... ... 386 7.009

UGC03094 68.890 19.172 313 7.352 ... ... 313 7.352

ESO203-IG001 71.710 -48.558 316 6.905 ... ... 316 6.905

NGC1797 76.940 -8.019 330 6.910 104 8.869 107 8.873

NGC1797 76.940 -7.969 152 7.664 510 6.461 173 7.690

CGCG468-002 77.080 17.363 160 7.604 305 6.651 175 7.650

CGCG468-002 77.090 17.369 210 7.761 24 7.207 169 7.868

IRAS05083+2441 77.860 24.755 329 7.086 ... ... 329 7.086

IRAS05083+2441 77.870 24.768 206 7.394 ... ... 206 7.394

IRASF05081+7936 79.190 79.670 281 6.238 102 8.127 105 8.130

IRAS05129+5128 79.230 51.532 314 5.853 ... ... 314 5.853

IRASF05189-2524 80.260 -25.363 219 8.371 133 7.977 195 8.517

IRAS05223+1908 81.320 19.180 200 8.097 ... ... 200 8.097

MCG+08-11-002 85.180 49.695 311 6.822 ... ... 311 6.822

NGC1961 85.520 69.379 313 6.286 ... ... 313 6.286

UGC03351 86.450 58.701 111 8.660 329 7.013 115 8.670

IRAS05442+1732 86.800 17.563 111 8.288 331 6.857 119 8.303

IRAS05442+1732 86.770 17.553 435 7.286 ... ... 435 7.286

IRASF06076-2139 92.440 -21.673 230 7.951 ... ... 230 7.951

IRASF06076-2139 92.440 -21.676 87 7.809 305 6.754 105 7.845

UGC03410 93.620 80.450 136 7.450 344 6.704 168 7.521

UGC03410 93.490 80.476 650 7.926 ... ... 650 7.926

NGC2146 94.660 78.357 332 6.732 ... ... 332 6.732

ESO255-IG007 96.840 -47.177 171 7.786 ... ... 171 7.786

ESO557-G002 97.950 -17.621 347 6.808 ... ... 347 6.808

ESO557-G002 97.940 -17.646 111 8.220 422 6.207 113 8.225

UGC03608 104.390 46.403 109 7.629 382 6.415 125 7.655

IRASF06592-6313 104.920 -63.298 470 6.730 ... ... 470 6.730

IRASF07027-6011 105.870 -60.279 206 8.400 625 7.330 238 8.436

NGC2342 107.330 20.636 123 8.538 327 7.258 133 8.560

NGC2342 107.300 20.603 121 8.650 339 7.176 128 8.665

NGC2369 109.160 -62.343 97 8.456 318 7.188 109 8.479

IRAS07251-0248 111.910 -2.915 221 8.350 148 8.196 191 8.581

NGC2388 112.220 33.819 128 8.045 346 6.299 132 8.053

NGC2388 112.120 33.838 181 7.631 ... ... 181 7.631

MCG+02-20-003 113.930 11.710 113 8.230 364 6.574 118 8.241

MCG+02-20-003 113.920 11.612 334 7.185 ... ... 334 7.185

IRASF08339+6517 129.600 65.121 163 7.267 330 6.029 173 7.290

NGC2623 129.600 25.755 96 8.740 310 7.064 101 8.750

ESO432-IG006 131.110 -31.697 112 8.013 299 6.933 127 8.045

ESO432-IG006 131.120 -31.692 191 7.769 ... ... 191 7.769

ESO60-IG16 133.130 -69.032 318 7.569 ... ... 318 7.569

ESO60-IG16 133.130 -69.033 319 7.281 ... ... 319 7.281

IRASF08572+3915 135.110 39.065 396 7.037 ... ... 396 7.037

IRAS09022-3615 136.050 -36.450 100 8.790 335 6.931 103 8.797

IRASF09111-1007 138.400 -10.325 135 7.983 463 5.834 138 7.986

IRASF09111-1007 138.410 -10.322 331 6.713 ... ... 331 6.713

CGCG209-036 138.940 44.236 184 8.212 ... ... 184 8.212

UGC04881 138.980 44.333 127 6.816 344 6.170 167 6.904

UGC04881 138.980 44.331 159 7.863 331 6.916 177 7.909

MCG+08-18-013 144.150 48.474 312 7.844 ... ... 312 7.844

MCG+08-18-013 144.130 48.469 409 6.161 ... ... 409 6.161

IRASF09437+0317 146.590 3.071 130 8.274 345 6.560 134 8.283

IC0563 146.580 3.046 121 8.633 659 5.699 121 8.633

NGC3110 151.010 -6.475 261 7.554 ... ... 261 7.554

NGC3221 155.580 21.570 322 7.083 ... ... 322 7.083

NGC3256 156.960 -43.904 322 7.382 ... ... 322 7.382

ESO264-G036 160.780 -46.212 105 8.336 401 6.320 107 8.340

ESO264-G057 164.760 -43.440 170 7.373 ... ... 170 7.373

IRASF10565+2448 164.830 24.543 133 8.456 516 6.980 146 8.470

MCG+07-23-019 165.970 40.850 126 8.442 328 6.979 133 8.456

CGCG011-076 170.300 -2.984 174 8.137 ... ... 174 8.137

CGCG011-076 170.280 -2.994 258 6.276 677 5.375 306 6.326

IC2810 171.440 14.677 340 7.438 ... ... 340 7.438

IC2810 171.460 14.668 326 7.248 ... ... 326 7.248

NGC3690 172.130 58.561 127 8.636 335 7.260 136 8.654

NGC3690 172.140 58.563 109 8.201 341 6.851 119 8.220

ESO440-IG058 181.720 -31.946 112 7.723 369 6.639 132 7.757

IRASF12112+0305 183.440 2.812 158 8.072 ... ... 158 8.072

NGC4194 183.540 54.527 303 6.690 117 8.137 124 8.152

ESO267-G030 183.550 -47.228 313 7.299 ... ... 313 7.299

ESO267-G030 183.470 -47.274 283 7.049 ... ... 283 7.049

IRAS12116-5615 183.590 -56.542 250 7.425 ... ... 250 7.425

IRASF12224-0624 186.270 -6.681 237 7.701 ... ... 237 7.701

NGC4418 186.730 -0.878 348 7.587 ... ... 348 7.587

NGC4418 186.770 -0.907 199 7.725 ... ... 199 7.725

Mrk231 194.060 56.874 106 8.230 343 6.489 111 8.238

NGC4922 195.360 29.314 247 7.675 124 8.436 143 8.505

NGC4922 195.350 29.308 110 8.338 319 6.976 119 8.356

MCG-02-33-098 195.580 -15.768 131 8.093 825 5.305 133 8.093

ESO507-G070 195.720 -23.922 184 7.365 ... ... 184 7.365

IRAS13052-5711 197.080 -57.458 103 9.228 329 8.004 116 9.253

IC0860 198.760 24.619 404 7.155 ... ... 404 7.155

IRAS13120-5453 198.780 -55.156 110 8.114 353 6.352 113 8.124

VV250a 198.900 62.125 193 7.041 ... ... 193 7.041

VV250a 198.880 62.129 112 8.666 314 7.220 119 8.681

UGC08387 200.150 34.140 184 7.467 ... ... 184 7.467

NGC5104 200.350 0.343 132 6.849 369 5.946 158 6.901

MCG-03-34-064 200.580 -16.708 159 8.398 ... ... 159 8.398

NGC5135 201.430 -29.833 289 7.639 ... ... 289 7.639

ESO173-G015 201.850 -57.489 92 8.400 402 6.480 96 8.405

IC4280 203.220 -24.207 228 7.509 729 6.322 258 7.537

NGC5256 204.570 48.276 121 8.303 444 6.097 123 8.305

NGC5256 204.570 48.278 116 8.220 390 6.049 117 8.223

NGC5257 204.990 0.831 428 7.614 ... ... 428 7.614

NGC5257 204.970 0.841 112 8.356 322 7.332 130 8.396

Mrk273 206.180 55.887 317 7.049 ... ... 317 7.049

UGC08739 207.310 35.257 121 7.993 378 5.953 124 7.997

ESO221-IG010 207.740 -49.055 311 7.752 ... ... 311 7.752

NGC5331 208.070 2.101 316 7.322 ... ... 316 7.322

NGC5331 208.070 2.109 311 6.502 ... ... 311 6.502

NGC5395 209.660 37.424 177 7.228 ... ... 177 7.228

NGC5394 209.640 37.454 200 8.398 863 7.009 226 8.415

CGCG247-020 214.930 49.237 157 7.942 293 7.294 182 8.029

NGC5653 217.540 31.215 177 8.053 ... ... 177 8.053

IRASF14348-1447 219.410 -15.007 323 7.470 ... ... 323 7.470

IRASF14378-3651 220.250 -37.076 291 6.924 ... ... 291 6.924

NGC5734 221.290 -20.870 329 7.754 ... ... 329 7.754

NGC5734 221.300 -20.913 344 6.597 ... ... 344 6.597

VV340a 224.250 24.618 130 7.943 369 6.360 137 7.954

VV340a 224.250 24.607 320 6.716 ... ... 320 6.716

IC4518AB 224.420 -43.132 164 7.449 364 6.121 173 7.468

IC4518AB 224.440 -43.133 386 5.851 ... ... 386 5.851

VV705 229.530 42.746 195 8.114 ... ... 195 8.114

VV705 229.530 42.744 301 6.953 ... ... 301 6.953

ESO099-G004 231.240 -63.125 173 7.823 ... ... 173 7.823

IRASF15250+3608 231.750 35.977 206 7.303 320 6.741 231 7.408

NGC5936 232.500 12.989 327 6.702 107 8.481 110 8.489

Arp220 233.740 23.503 96 8.225 327 6.360 99 8.230

NGC5990 236.570 2.415 122 8.705 367 7.104 128 8.715

NGC6052 241.300 20.543 165 7.810 358 6.571 175 7.834

NGC6090 242.920 52.458 193 7.838 ... ... 193 7.838

IRASF16164-0746 244.800 -7.901 116 8.303 347 6.747 122 8.316

CGCG052-037 247.740 4.083 180 7.602 ... ... 180 7.602

2MASXJ16305326+0404243 247.720 4.073 200 6.841 500 6.281 265 6.946

ESO069-IG006 249.550 -68.436 317 7.642 ... ... 317 7.642

ESO069-IG006 249.560 -68.455 200 8.093 500 7.555 267 8.204

IRASF16399-0937 250.670 -9.720 560 6.563 ... ... 560 6.563

ESO453-G005 251.880 -29.356 116 8.533 430 6.265 118 8.535

ESO453-G005 251.870 -29.319 111 8.009 362 6.243 116 8.013

NGC6240 253.250 2.401 184 7.487 ... ... 184 7.487

IRASF16516-0948 253.600 -9.889 175 7.637 ... ... 175 7.637

NGC6286 254.630 58.937 333 7.173 ... ... 333 7.173

NGC6286 254.600 58.956 200 7.688 ... ... 200 7.688

IRASF17132+5313 258.590 53.175 323 7.405 ... ... 323 7.405

IRASF17138-1017 259.150 -10.345 325 7.602 ... ... 325 7.602

IRASF17207-0014 260.840 -0.284 15 7.820 290 6.916 46 7.871

ESO138-G027 261.680 -59.932 313 7.207 ... ... 313 7.207

UGC11041 268.720 34.776 111 8.093 302 6.732 120 8.111

CGCG141-034 269.240 24.017 111 8.173 387 6.076 113 8.179

IRAS17578-0400 270.130 -4.015 317 6.699 ... ... 317 6.699

IRAS17578-0400 270.140 -4.029 133 7.612 296 6.511 145 7.644

IRAS17578-0400 270.100 -4.018 111 7.167 309 5.858 120 7.188

IRAS18090+0130 272.910 1.528 380 6.899 ... ... 380 6.899

IRAS18090+0130 272.890 1.528 135 8.382 404 6.322 137 8.386

NGC6621 273.230 68.363 360 7.294 ... ... 360 7.294

NGC6621 273.240 68.358 314 7.513 ... ... 314 7.513

NGC6621 273.250 68.354 369 6.912 ... ... 369 6.912

IC4687 273.420 -57.725 296 6.999 ... ... 296 6.999

IC4687 273.410 -57.733 387 6.836 ... ... 387 6.836

CGCG142-034 274.170 22.113 341 5.775 ... ... 341 5.775

CGCG142-034 274.140 22.111 389 6.607 ... ... 389 6.607

IRASF18293-3413 278.170 -34.191 304 6.783 ... ... 304 6.783

NGC6670AB 278.390 59.888 109 8.467 287 7.143 117 8.487

NGC6670AB 278.410 59.890 149 8.210 328 7.100 162 8.241

IC4734 279.610 -57.490 115 8.513 303 7.201 124 8.534

NGC6786 287.730 73.410 311 6.740 ... ... 311 6.740

NGC6786 287.770 73.426 370 6.769 ... ... 370 6.769

ESO593-IG008 288.630 -21.318 353 6.938 ... ... 353 6.938

IRASF19297-0406 293.090 -4.000 106 8.380 510 7.344 140 8.418

IRAS19542+1110 299.150 11.318 192 6.931 ... ... 192 6.931

ESO339-G011 299.410 -37.936 108 7.924 325 6.246 112 7.933

NGC6907 306.280 -24.809 191 7.258 ... ... 191 7.258

MCG+04-48-002 307.150 25.733 132 7.974 338 6.633 141 7.993

MCG+04-48-002 307.120 25.723 192 6.895 ... ... 192 6.895

NGC6926 308.280 -2.027 325 7.057 ... ... 325 7.057
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Table 6. General H2 comparisons using censored data statistical methods

Samples compared log(LS(0)/LIR) log(LS(1)/LIR)

ULIRGs vs LIRGs 0% 8%

Normal Galaxies vs LIRGs 0% 0%

Merging vs Non-merging GOALS galaxies % 90% 68 %

LIRGs with [NeV] detections vs SB 47% 65%

LIRGs where the AGN dominates the IR vs SB 25% 42%

Note—We give the probability that the two samples are drawn from the same pop-
ulation. This is the average probability we obtain from running each of the fol-
lowing statistical tests especially well suited for data containing upper limits, also
known as censored data : (1) the Gehan Generalized Wilcoxon Test using permu-
tation variance, (2) Gehan’s generalized Wilcoxon test using hypergeometric vari-
ance, (3) Logrank test, (4) Peto & Peto Generalized Wilcoxon Test and (5) Peto &
Prentice Generalized Wilcoxon Test. Those statistical tests are implemented in the
ASURV program by E. Feigelson. Most recently this program can be also be found
at http : //www.r−project.org. For the mergers vs non-mergers comparisons we also
used the 24 µm flux determined by multiplying the LL IRS spectra with the MIPS
24 µm filter as explained in Petric et al. (2011). This was done to test for systematic
differences associated with IRAS photometry of mergers and non-mergers. Using the
24 micron versus the IR micron luminosity gave us similar results.
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Table 7. General H2 comparisons using the Kolmogorov-Smirnov test

Samples compared DKS1 PKS1

Sources with resolved H2 lines versus sources with unresolved H2 lines

Masses 0.3 3%

Temperature 0.2 11%

Merger Stage 0.2 13%

All Mergers versus all non-Mergers

Warm Gas Masses 0.1 44%

Temperature of Warm Gas 0.2 7%

Advanced Mergers versus all non-Mergers

Warm Gas Masses 0.3 3%

Temperature of Warm Gas 0.3 3%

AGN dominated versus starburst dominated

Warm Gas Masses 0.3 2%

Temperature of Warm Gas 0.4 0.1%

Note—(1) The Kolmogorov Smirnov statistic DKS gives an estimate of the difference between two
distributions of measurements. It does this by comparing the cumulative cumulative distribution
functions between the two sets of values being compared. DKS = Maximum (cumulative distribution
of sample 1 - cumulative distribution of sample 2). A cumulative distribution (plotted on the vertical
axis) gives probability that the variable takes a value less than a certain value (shown in the x-axis).
A small DKS (e.g. lower than 0.1) means that the sample properties are similar while a large DKS
means that they may be different. To determine if the DKS is statistically significant we calculate
the PKS which gives the probability that the two sets of values compared are drawn from the same
population.
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APPENDIX

A. A1: MATCHING APERTURES

For this investigation of warm molecular H2 properties we combined fluxes determined from LH, SH and SL spectra

(Petric et al. 2011; Inami et al. 2013; Stierwalt et al. 2013, 2014). The widths of the SL, SH, and, LH slits (3.7′′, 4.7′′,

and 11.1′′) corresponding to 1.5, 2.0, and 4.6 kpc respectively at the median galaxy distance of our sample (88 Mpc).

We scaled each of the LH H2 S(0) fluxes by comparing the SH and the LH spectra. We averaged two scaling factors

for simplicity called LH2SHv1 and LH2SHv2. LH2SHv1 is the ratio of the median flux in the SH spectra, in the

wavelength region overlapping with the LH spectra, to the median flux in the LH spectra, in the wavelength region

overlapping with the SH spectra. LH2SHv2 is the ratio of the extrapolated flux at 18 µm, from a fit to the continuum

of the SH spectra at wavelengths greater than 17.5 µm, to the flux at 18 µm from the LH spectra, derived the same

way from data at wavelengths shorter than 20 µm. The linear fit is done by minimizing the absolute differences and

not the usual least squares fit. This is important because doing so minimizes the impact of bad pixels that are often

found at the edge on the fit. The median value of LH2SHv1 is 0.78 and that of LH2SHv2 is 0.66, and the median

of the final scaling factor is 0.72.

For S(3)-S(7) fluxes we rely on measurements from the lower resolution SL- spectra. We scale the SL fluxes by the

ratio of the spectral extraction widths (4.7/3.7). We compute the error associated with this scaling by looking at the

median ratio between the scaled S(3) SL flux and the measured S(3) SH flux. That median relative difference is 25%

for S(3). We add this to the error obtained from the gaussian fits in quadrature. As a test of our method we apply

the same scaling factor to the [Ne II] fluxes derived in SL and compare them with those found in SH. For the [Ne II]

lines we find a scatter associated with these scalings of 20%. Figure (12) shows how the different scaled up values for

SL H2 S(3) and [Ne II] compared to the values measured in SH and suggests that our method is reliable at the 20-25%

level. We applied those scaling factors to all SL estimates.

B. A2: ORTHO-TO-PARA RATIOS

The OPR value in the high temperature limit (OPRhigh T ), defined as:

OPR = OPRhighT

∑
O(2JO + 1) exp[−EO/(kT )]∑
P (2JP + 1) exp[−EP /(kT )]

(B1)

where o and p refers to ortho (odd) and para (even) states, respectively, I is the spin number, and J is the rotational

quantum number, is equal to 3 in LTE, and allows one to estimate departure from LTE otherwise. If all the observed

H2 is in LTE then T (S0-S1) ≤ T (S0-S2) ≤ T(S1-S2) ≤ T(S1-S3) ≤ T(S2-S3), as is expected from a Boltzman

distribution.

Therefore, the variations of these apparent excitation temperatures as a function of OPRhigh T , combined with the

condition of monotony, will define a range of OPRhigh T . If the value of 3 is allowed, then the source is compatible

with LTE.

The expression for the excitation temperatures is as follows. T(S0-S2) and T(S1-S3) are independent of OPRhighT
because they only involve para or ortho levels, and determined directly from the observed fluxes:

kT =
Eu2 − Eu1

ln(Nu1/Nu2 × gu2/gu1)
(B2)

T(S0-S1), T(S1-S2), and T(S2-S3) however depend on OPRhighT as follows:

k T (SP − SO) = (Eu,O − Eu,P )/ln(OPRhighTR) (B3)

with

R = FP /FO × AO/AP × λP /λO × (2J0 + 1)/(2JP + 1). (B4)

For each pair (p, o) = (0, 1), (2, 1), and (2, 3), we have computed possible temperatures as a function of OPRhighT
between 1 and 3. We are able to investigate 78 sources for which the S(0) to S(3) lines were detected and for which the

uncertainties of the line flux do not lead to a significantly large uncertainty in the excitation temperature (see Figure

7).
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Figure 12. Top Left: measured H2 S(3) line fluxes in SH versus those measured in SL before scaling. Top Right: measured
[Ne II] line fluxes in SH versus those measured in SL before scaling. Red points in both plots show SH measurements versus
the scaled SL fluxes. Black points in both plots show SH measurements versus measured SL fluxes. Bottom Left: ratio of SH
to SL flux estimates of the H2 S(3) line versus the flux measured in SH. Bottom Right: ratio of SH to SL flux estimates of
the [Ne II] line versus the flux measured in SH.


