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MUSCLE SHEAR WAVE ELASTOGRAPHY IN INCLUSION BODY MYOSITIS:
FEASIBILITY, RELIABILITY AND RELATIONSHIPS WITH MUSCLE IMPAIRMENTS
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and Jean-Yves Hogrel*
* Institute of Myology, Paris, France; and † Inflammatory Muscle and Innovative Targeted Therapies, Department of Internal

Medicine and Clinical Immunology, University Pierre et Marie Curie, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, Paris, France

Abstract—Degenerative muscle changes may be associated with changes in muscle mechanical properties. Shear 
wave elastography (SWE) allows direct quantification of muscle shear modulus (MSM). The aim of this study 
was to evaluate the feasibility and reliability of SWE in the severely disordered muscle as observed in inclusion 
body myositis. To explore the clinical relevance of SWE, potential relationships between MSM values and level 
muscle impairments (weakness and ultrasound-derived muscle thickness and echo intensity) were investigated. 
SWE was performed in the biceps brachii at 100°, 90°, 70° and 10° elbow flexion in 34 patients with inclusion 
body myositis. MSM was assessed before and after five passive stretch-shortening cycles at 4°/s from 70° to 10°
elbow angle and after three maximal voluntary contractions to evaluate potential effects of muscle pre-
conditioning. Intra-class correlation coefficients and standard errors of measurements were >0.83 and <1.74 kPa 
and >0.64 and <1.89 kPa for within- and between-day values, respectively. No significant effect of passive loading–
unloading and maximal voluntary contractions was found (all p values >0.18). MSM correlated to predicted muscle 
strength (all Spearman correlation coefficients (ρ) > 0.36; all p values < 0.05). A significant correlation was found 
between muscle echo intensity and muscle shear modulus at 70° only (ρ = 0.38, p < 0.05). No correlation was found 
between muscle thickness and MSM (all ρ values > 0.23 and all p values > 0.25, respectively). Within- and between-
day reliability of muscle SWE was satisfactory and moderate, respectively. SWE shows promise for assessing changes 
in mechanical properties of the severely disordered muscle. Further investigations are required to clarify these 
findings and to refine their clinical value. (E-mail: d.bachasson@institut-myologie.org) 

Key Words: Skeletal muscle, Shear wave elastography, Quantitative muscle ultrasound imaging, Myositis, Neu-
romuscular disorders, Muscle stiffness, Muscle elasticity, Passive muscle mechanics.

INTRODUCTION

In the skeletal muscle, passive and active mechanical prop-
erties may be affected by structural alterations induced by
disuse and pathological processes (Wisdom et al. 2015).
Measuring these properties may help to assess and monitor
disease-induced muscle changes (Bilston and Tan 2015;
Brandenburg et al. 2014).

Ultrasound elastography techniques provide an op-
portunity for direct quantification of passive and active

muscle elasticity in real time (Dubois et al. 2015; Eby et al.
2013; Gennisson et al. 2013). In comparison with previ-
ous ultrasound-based techniques for elastography, shear
wave elastography (SWE) has been found to exhibit su-
perior reliability (Bavu et al. 2011; Brandenburg et al.
2014). Assessments of muscle stiffness using SWE have
been reported to be particularly relevant for investigat-
ing mechanisms underlying limitations in range of motion
in conditions involving muscle/tendon retraction and/or
spasticity, such as cerebral palsy (Brandenburg et al. 2016),
stroke (Lee et al. 2015) and Duchenne muscular dystro-
phy (Lacourpaille et al. 2015). Good agreement between
fibrosis staging using biopsy and elasticity assessed from
SWE has been repeatedly reported in liver (Deffieux et al.
2015), highlighting the great potential of this technique
to characterize tissue-level changes. However, studies that
have investigated relationships between local muscle
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elasticity and the severity of degenerative muscle changes
are particularly scarce (Bilston and Tan 2015). For in-
stance, the muscle pathology in inclusion body myositis
(IBM, i.e., the most common acquired inflammatory my-
opathy after 50 y of age) combines inflammation and
myofiber degeneration, leading to severe muscle atrophy,
fatty infiltration, fibrosis and edema. It is unclear whether
these changes affect passive mechanical muscle proper-
ties when they co-occur (Virgilio et al. 2015; Wisdom et al.
2015). In addition, data regarding within- and between-
day reliability of measurements using SWE in the severely
disordered muscle are scarce.

Therefore, this study was aimed at assessing the fea-
sibility and reliability (within- and between-day) of use
of SWE in the severely disordered muscle that may be ob-
served in patients with neuromuscular diseases such as
IBM. The acute effect of stretching and muscle contrac-
tion was also evaluated. To explore the clinical relevance
of SWE, potential relationships between MSM values and
level muscle impairment (weakness and ultrasound-
derived muscle thickness and echo intensity) were
investigated.

METHODS

Participants
A total of 34 patients diagnosed with IBM volun-

teered to participate in this study (18 men: age = 67.5 ± 7.6
y, height = 172 ± 6 cm, weight = 78 ± 12 kg; 16 women:
age = 61.9 ± 8.5 y, height = 161 ± 6 cm, weight = 63 ±
11 kg). All patients had definite IBM; that is, pathologi-
cal examination of their biopsies revealed fibers invaded
by lymphocytes, vacuoles and amyloid deposits (Benveniste
and Hilton-Jones 2010). Symptom onset was 7.6 ± 4.5 y,
and time since diagnosis was 2.6 ± 2.6 y. The mean IBM
weakness composite index (Benveniste et al. 2011) was
60 ± 18 (maximal score = 100). Patients had no history of
traumatic event in their right upper limb. This study con-
formed to the Declaration of Helsinki and was approved
by the local ethics committee. All patients gave written
informed consent.

Muscle shear modulus assessment

Patient setup. Participants sat (85° hip flexion) on an
ergometer (Biodex, Biodex Medical, Shirley, NY, USA)
with the right upper limb positioned as follows: 90° shoul-
der flexion, 20° shoulder abduction, 0° shoulder rotation,
90° elbow flexion, 0° supination. The upper body was sta-
bilized with straps across the thorax and the abdomen.

Muscle SWE. Measurements were performed in the
short head of the right biceps brachii because of its lon-
gitudinal architecture (Lieber and Ward 2011) and because
it is variably affected in patients with IBM (Cox et al. 2011).

SWE measurements in biceps brachii have also been found
to be feasible and reliable in healthy subjects (Lacourpaille
et al. 2012). Muscle shear modulus (MSM) was assessed
at different elbow joint angles. Measurements were per-
formed using an Aixplorer Ultrasound scanner (V9.2,
Supersonic Imagine, Aix-en-Provence, France) driving a
4- to 15-MHz linear transducer array (SL15-4, 256 ele-
ments, pitch = 0.2 mm). Settings were defined as follows:
supersonic shear imaging mode enabled; musculoskel-
etal pre-set, penetration mode enabled; tissue tuner at
1540 m/s; gain at 40%; dynamic range at 80 dB. MSM was
calculated assuming a linear elastic behavior in muscle
tissue (Bercoff et al. 2004) as:

μ ρ= Vs
2 (1)

where ρ is the density of muscle (1000 kg/m3), and Vs is
the shear wave speed.

A generous amount of water-soluble transmission gel
was used during scanning for optimal acoustic coupling,
and minimal pressure was applied to the transducer to limit
tissue deformation. The belly of the short head of the biceps
brachii was identified during transverse scanning in B-mode
at two-thirds of the distance between the acromion and
antecubital fossa. Then the probe was rotated and care-
fully aligned with the direction of muscle fascicles as
recommended by Gennisson et al. (2010). Appropriate
transducer alignment was achieved when several fas-
cicles were continuously visible. A > 5-s delay was used
before capturing all clips to obtain stabilized acquisition.
During all measurements, participants were asked to keep
their whole upper limb as relaxed as possible, and
elastograms and B-mode images were carefully moni-
tored. Clips were discarded if subtle movement and/or
contraction was detected. Typical recordings for one patient
are illustrated in Figure 1.

Post-processing of SWE data. Each frame of the 10-s
clips was processed using a custom software developed
in MATLAB (The MathWorks, Natick, MA, USA) (Dubois
et al. 2015; Vergari et al. 2014). A rectangular region of
interest (ROI) was manually defined on the first frame as
large as possible between the superficial and the deep apo-
neurosis in the muscle belly, and focal penetration defects
or fibrous septa were carefully avoided. The ROI was
tracked over other frames to evaluate the same region all
over the measurement. MSM was computed as the mean
of shear modulus values within whole ROIs. A normal-
ized shear modulus was computed for each individual by
dividing values at all tested joint angles by the value ob-
tained at 100°.

Within- and between-day reliability
For all measurements, two clips were consecutively

acquired after re-positioning the probe to assess within-



day reliability for all elbow flexion positions (100°, 90°,
70° and 10°). A sub-sample of 15 patients came on a second
visit 1 week apart to evaluate between-day reliability of
MSM measurements. To evaluate the between-day relia-
bility, the first of the two measurements was used.

Acute effect of muscle pre-conditioning and assessment
of maximal voluntary strength

Passive muscle stiffness has been reported to be af-
fected by the muscle’s previous history of length changes
and contractions (Lacourpaille et al. 2014; Whitehead et al.
2001). Therefore, MSM at 100°, 90°, 70° and 10° elbow
flexion was re-assessed immediately after five passive
stretch-shortening cycles at 4°/s from 70° to 10° elbow
angle using the Biodex ergometer in 19 patients. In 8 pa-
tients, MSM was reassessed immediately after a set of
voluntary contractions of the elbow flexors at 90° elbow
flexion. Clips were acquired after probe re-positioning for
both stretch-shortening cycles and voluntary contrac-
tions. The set of contractions consisted of three increasing
5-s submaximal contractions followed by three 5-s maximal
voluntary contractions with 1 min of rest between ma-
neuvers. This set of voluntary contractions was performed
in all subjects to assess maximal voluntary strength.
Maximal peak torque over 500 ms was expressed as a per-
centage of predicted value using previously published
predictive equations (Harbo et al. 2012).

Quantification of muscle echo intensity and muscle
thickness

To evaluate muscle echo intensity, a gray-scale index
(GSI) ranging from 0 to 1 was defined as follows for B-mode

images (8-bit resolution, resulting in a number between 0
and 255, where black = 0 and white = 255) acquired
transversally to muscle fascicles at 90° elbow flexion (2):

gray scale index− = − ⋅( ) =

⋅∑
1

1

255

1n m
Iii

n m

(2)

with Ii the intensity of the pixel i in a ROI of n × m. A
lower GSI value corresponds to greater muscle echo in-
tensity (Dubois et al. 2018). As mentioned above, gain and
all other ultrasound settings were kept constant for all sub-
jects (Caresio et al. 2015). Thickness of the biceps brachii
was measured with electronic calipers as previously de-
scribed (Arts et al. 2010).

Statistical analysis
Data within text and tables are expressed as the

mean ± standard deviation (SD) or mean (95% confi-
dence interval [lower 95% CI, upper 95% CI]). The
assumptions of normality and sphericity were confirmed
using the D’Agostino K-squared and Mauchly tests, re-
spectively. To assess within- and between day reliability,
change in mean and paired t-tests were used for detec-
tion of systematic bias. Standard error of measurement
(SEM) was used to study absolute reliability. Relative re-
liability was assessed with the intra-class correlation
coefficient (ICC) with 95% confidence interval. Regres-
sion analysis and Bland–Altman plots were also performed.
When available, data from the second visit were ana-
lyzed jointly with data from the first visit to evaluate within-
day reliability. A two-way analysis of variance (ANOVA,

0

Ultrasound probe
Gel
Ergometer

Fig. 1. (a) Lateral view of the experimental setup. (b) Typical recordings of shear modulus measurements using shear wave
elastography in the short head of the biceps brachii at 100°, 90°, 70° and 10° elbow joint angles in one patient with inclusion

body myositis. ROI = region of interest for post-processing of elastograms.



trial × condition) were conducted to test main and inter-
action effects on changes in MSM induced by passive
conditioning. A one-way ANOVA was used to assess the
effect of maximal voluntary contractions. Tukey’s honest
significant difference (HSD) post hoc tests were con-
ducted when a significant main and/or interaction effect
was found. We hypothesized monotonic relationships
between variables, but we did not assume that these re-
lationships would be linear. Therefore, Spearman’s rank-
order correlation coefficients (ρ) were computed to assess
relationships between variables. All analyses were per-
formed in the computing environment R Version 3.2.3.
Statistical significance was set at p < 0.05 for all tests.

RESULTS

Within- and between-day reliability of muscle SWE
values

Within- and between-day reliability data of measure-
ments performed at each tested angle are summarized in
Tables 1 and 2, respectively. No systematic bias was de-
tected for both within-day (all p > 0.44) and between-
day (all p > 0.30) measurements. For within-day values,
the ICC and SEM were >0.83 and <1.74 kPa, respective-
ly. Regarding between-day values, the ICC and SEM were
>0.64 and <1.89 kPa, respectively. Regression analysis and
Bland–Altman plots are displayed in Figure 2. Lower and
upper limits of agreements were −2.97 and 2.82 kPa for
within-day measurements and −4.23 and 2.89 kPa for
between-day measurements, respectively.

Effect of elbow joint angle and passive loading–
unloading cycles on muscle shear modulus

Normalized shear moduli at each tested angle during
the first measurement are illustrated in Figure 3. Normal-

ized MSM at 10° was significantly greater than shear
moduli at all other angle (all p values < 0.05). There were
no significant differences between 100° and 90° (p = 0.77)
or between 90° and 70° (p = 0.57).

Absolute values of muscle shear moduli at all elbow
joint angles measured before and after passive loading/
unloading cycles are illustrated in Figure 4A. MSM at 10°
was significantly greater than values at all other angles
(p < 0.001). There were no significant differences between
100° and 90° (p = 0.96) or between 90° and 70° p = 0.97).
No significant effect of trial or trial × angle interaction was
found (p = 0.54 and p = 0.68, respectively).

Effect of maximal voluntary contractions on muscle
shear modulus

Maximal elbow flexor isometric strength was
25.7 ± 11.1 N · m, corresponding to 70.1 ± 25.7% of pre-
dicted values. Measurements of MSM at 90° before and
after maximal voluntary contractions are illustrated in
Figure 4B. No significant effect of maximal voluntary con-
tractions was found (p = 0.18).

Relationships between muscle shear modulus, muscle
strength, muscle echo intensity and muscle thickness

Muscle shear moduli at all angles significantly cor-
related with muscle strength expressed as a percentage of
predicted values (at 100°: ρ = 0.39, p < 0.05; at 90°:
ρ = 0.36, p < 0.05; at 70°: ρ = 0.46, p < 0.01; at 10°:
ρ = 0.53, p < 0.01). Individual data points are illustrated
in Figure 5. No significant correlation was found between
normalized MSM and muscle strength expressed as a per-
centage of predicted values (at 90°: ρ = −0.03, p = 0.87;
at 70°: ρ = 0.13, p = 0.47; at 10°: ρ = 0.32, p = 0.07).
Muscle thickness was 1.37 ± 0.37 cm and correlated with

Table 1. Within-day reliability of muscle shear modulus in patients with inclusion body myositis (n = 49)

Angle Test (kPa) Re-test (kPa) CIM [95% CI] (kPa) SEM [95% CI] (kPa) ICC [95% CI]

All 11.58 ± 6.52 11.51 ± 6.47 −0.07 [−0.29, 0.14] 1.04 [0.95, 1.17] 0.97 [0.97, 0.98]
100° 7.66 ± 1.46 7.74 ± 1.58 0.07 [−0.12, 0.27] 0.47 [0.39, 0.59] 0.90 [0.84, 0.94]
90° 8.38 ± 1.63 8.36 ± 1.76 −0.03 [−0.26, 0.21] 0.53 [0.44, 0.68] 0.90 [0.83, 0.95]
70° 9.76 ± 2.69 9.67 ± 2.45 −0.10 [−0.53, 0.34] 1.07 [0.89, 1.34] 0.83 [0.72, 0.90]
10° 22.13 ± 5.87 21.85 ± 6.17 −0.28 [−1.08, 0.52] 1.74 [1.42, 2.24] 0.92 [0.85, 0.96]

CIM = change in mean; SEM = standard error of measurement; ICC = intra-class correlation coefficient.

Table 2. Between-day reliability of muscle shear modulus in patients with inclusion body myositis

Angle Day 1 (kPa) Day 2 (kPa) CIM [95% CI] (kPa) SEM [95% CI] (kPa) ICC [95% CI]

All 12.07 ± 6.72 11.41 ± 6.09 −0.67 [−1.13, −0.20] 1.28 [1.09, 1.56] 0.96 [0.93, 0.97]
100 7.65 ± 1.43 7.32 ± 1.61 −0.33 [−100, 0.33] 0.85 [0.62, 1.34] 0.69 [0.30, 0.88]
90 8.11 ± 1.63 7.78 ± 1.41 −0.34 [−1.12, 0.45] 0.92 [0.66, 1.51] 0.64 [0.18, 0.87]
70 9.38 ± 2.26 9.10 ± 1.97 −0.28 [−0.97, 0.42] 0.96 [0.71, 1.46] 0.80 [0.54, 0.92]
10 22.30 ± 4.29 20.64 ± 3.87 −1.66 [−3.08, 0.24] 1.89 [1.39, 2.92] 0.73 [0.39, 0.89]

CIM = change in mean; SEM = standard error of measurement; ICC = intra-class correlation coefficient.



absolute strength (ρ = −0.43, p < 0.01). GSI was 0.70 ± 0.07
and correlated with predicted muscle strength (ρ = 0.46,
p < 0.01). GSI also correlated with MSM at all angles
except 10° (at 100°: ρ = 0.49, p < 0.05; at 90°: ρ = 0.54,
p < 0.05; at 70°: ρ = 0.62, p < 0.01; at 10°: ρ = 0.17,
p = 0.23).

DISCUSSION

The aim of the present study was to investigate the
feasibility and relevance of muscle shear modulus assess-
ment using ultrasound shear wave elastography in the biceps
brachii of patients with IBM. Main results are as follows:
(i) Within-day reliability of MSM measurements was sat-
isfactory. (ii) Agreement of between-day MSM
measurements was moderate. (iii) Passive loading/unloading
cycles and maximal voluntary contractions did not sig-

nificantly affect MSM values. (4) Lower muscle stiffness
was associated with more severe muscle weakness.

Muscle stiffness and stretch-stiffening behavior
As repeatedly demonstrated using SWE (Lacourpaille

et al. 2014) and conventional stress-strain tests (Eby et al.
2013), our data revealed an increase in MSM with in-
creasing tensile load, illustrating the typical non-linear
length–tension behavior of muscle tissue when sub-
jected to tensile strain. Our data indicated substantial
dispersion at the longest muscle length tested (i.e., 10°
elbow angle) suggesting inter-individual differences in the
passive force–length relationship (as estimated here using
SWE) that may result from muscle remodeling and/or an-
atomic variations (Fig. 2). In healthy subjects, the elbow
joint angle corresponding to the slack length of the biceps
brachii has been reported to occur at ~85°–95° (Lacourpaille
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Fig. 2. Regression analysis (a, c) and Bland–Altman plots (b, d) for within- and between day reliability of measurements. (a,
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and Hug 2013; Lacourpaille et al. 2014). This may thus
explain the absence of significant differences between MSM
at 100° and 90° for both normalized and absolute MSM
values. Consequently, it is reasonable to consider that mea-
surements performed at 100° elbow joint angle reflects
intrinsic shear modulus of the muscle tissue without passive
tension.

Within-day and between-day reliability of muscle SWE
values

Mean SEMs expressed as coefficients of variation
were <8.6% and ICCs were >0.92, indicating satisfacto-
ry agreement between within-day measurements of MSM.
These data are in line with previous studies that reported
similar results in biceps brachii in healthy subjects (i.e.,
ICC = 0.87 and SEM = 0.17 kPa (Lacourpaille et al. 2012)),
patients with stroke (i.e., ICC = 0.93, coefficient of vari-
ation = 4.5% (Lee et al. 2015)) and Duchenne muscular
dystrophy (ICCs ranging from 0.67 to 0.80 (Brandenburg
et al. 2015)). Prior to the current study, within- and between-
day reliability of muscle mean shear modulus using an
identical experimental setup were assessed in 12 un-
matched healthy subjects. The ICC and SEM were 0.98
and 0.90 kPa, respectively (unpublished data). In IBM pa-
tients, In the current work, within-day reliability was
comparable between all tested angles; that is, when ex-
pressed as coefficients of variation, SEMs were 6.0%, 6.4%,
8.6% and 7.2% at 100°, 90°, 70° and 10° elbow angles,
respectively. Collectively, these results support that SWE
may be used to assess acute changes in passive muscle stiff-
ness induced by various factors (i.e., stretching, passive
loading/unloading cycles, maximal voluntary contrac-
tions) and to investigate relationships between variables
as performed in the present study.

Our data indicated moderate agreement on between-
day MSM measurements as indicated by ICCs <0.80 and
substantial SEMs (i.e., SEMs expressed as coefficients of
variation were 10.4, 10.6, 9.8 and 7.8% at 100°, 90°, 70°
and 10°, respectively). There are several potential expla-
nations for these findings. In the present work, probe

Fig. 3. Muscle shear modulus at different muscle lengths. Muscle
shear modulus assessed with shear wave elastography in the short
head of the biceps brachii at 100°, 90°, 70° and 10° elbow joint angles
(n = 33). Values are normalized to values at 100°. *Significantly dif-

ferent from value at 100°.

Fig. 4. Effect of passive loading–unloading and maximal voluntary contractions on muscle shear modulus. Muscle shear modulus
was assessed with shear wave elastography in the short head of the biceps brachii at elbow joint angles of 100°, 90°, 70° and
10° before (Pre 1, Pre 2) and after (Post) five passive stretch-shortening cycles at 4°/s from 70° to 10° elbow angle (n = 19)
(A) or three maximal voluntary isometric contractions of the elbow flexors (n = 8) (B). *Significantly different from value at

100°. No significant effect of passive conditioning or maximal voluntary isometric contractions was found.



positioning was based on anatomical landmarks and the
skin was deliberately not marked between days to fit a clin-
ical setting. Furthermore, patients studied in the present
work exhibited severe muscle atrophy and heteroge-
neously distributed degenerative changes (i.e., fatty
infiltration, fibrosis, disrupted fascicles (Cox et al. 2011))
so that small positioning changes may result in more dra-
matic variations in MSM in comparison to healthy muscle.
Probe pressure is also a critical factor (Kot et al. 2012).
Experimental apparatus (e.g., probe mounting jig, immer-
sion of the probe in a silicon pool) have been proposed
to bypass the confounding effect of probe pressure
(Andonian et al. 2016; Koo et al. 2014). However, such
experimental procedures question the feasibility of high-
quality muscle SWE measurements within a clinical setting.
The alignment of the probe with the direction of the fas-
cicles is also critical factor (Gennisson et al. 2010; Maisetti

et al. 2012). In a recent work, Miyamoto et al. (2015) re-
ported a significant effect of the probe angle relative to
the fascicle on the shear modulus in the biceps brachii.
Although the difference was small (<1.3% of the mea-
sured values), for instance, as compared with the inter-
observer reliability (around 9% according to Dubois et al.
2015), this may contribute to explaining the variability of
the measurements observed in the current study.

Another important factor to consider is that exer-
cise, particularly eccentric bout, may cause a long-
lasting increase in muscle stiffness (Green et al. 2012;
Lacourpaille et al. 2014). High relative intensity of muscle
contraction level during daily-life activities because of
weakness associated with high sensitivity to muscle damage
may thus lead to substantial fluctuations of muscle stiff-
ness in patients. These exercise-induced increases in muscle
stiffness have also been reported to be more prominent at
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Fig. 5. Relationship between muscle shear modulus at different joint angles and maximal voluntary strengths expressed as a
percentage of predicted value in patients with inclusion body myositis. Muscle shear modulus was assessed with shear wave
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longer muscle length, mainly because sensitivity to Ca2+

increases as muscle is elongated (Stephenson and Williams
1982). Although between-day variability of MSM was not
particularly greater at longer muscle length, this may con-
tribute to explaining the limited agreement of MSM
measurements in patients with IBM. Patient relaxation is
also a critical aspect that can substantially reduce the
reliability of measurements and may also vary between
days.

Effect of passive loading/passive cycles and maximal
voluntary muscle activation on muscle SWE values

Our data indicated no significant effect of the passive
conditioning on MSM measurements. In a recent work in-
vestigating the time course effect of exercise-induced
damage on muscle stiffness, Lacourpaille et al. (2014) re-
ported no effect of passive loading/unloading cycles on
the area under the loading curve before exercise. Con-
versely, 48 h after intense exercise, significant changes were
seen for the first cycle only. In the current work, repeat-
ed maximal voluntary activation did not lead to significant
acute changes in muscle stiffness. As mentioned above,
intense exercise may lead to substantial changes in passive
mechanical muscle properties (Green et al. 2012;
Lacourpaille et al. 2014). These effects are observed mainly
at muscle length greater than the slack length and appear
to rely on calcium-dependent processes (Chen et al. 2007).
Slack elasticity measurements may therefore be more rel-
evant in characterizing the local elasticity of the muscle
tissue while limiting the confounding effects of this phe-
nomenon as well as those related to the inter-individual
differences in the passive muscle length–tension
relationship.

Relationships between muscle shear modulus, muscle
strength, muscle echo intensity and muscle thickness

As expected and as reported previously, smaller
muscle thickness was associated with smaller muscle
strength observed, emphasizing the strong relationship
between muscle size and muscle strength (Akagi et al.
2018; Jansen et al. 2012; Strasser et al. 2013). In line
with previous work in neuromuscular disorders or in the
elderly, greater muscle echogenicity was associated with
more severe muscle weakness (Fukumoto et al. 2012;
Jansen et al. 2012; Zaidman et al. 2010). Interestingly,
our data also revealed moderate positive correlations
between predicted muscle strength and muscle shear moduli
at both slack and stretched lengths (Fig. 5). These find-
ings are in line with a previous work that reported lower
muscle stiffness in both upper- and lower-limb muscles
of patients assessed with acoustic radiation force impulse
ultrasound elastography (Botar Jid et al. 2012). Further-
more, significant correlations were found between MSM
and echo intensity. Fibrous and particularly adipose tissue

content within muscle has been reported as key explan-
atory factors of increased muscle echo intensity (Caresio
et al. 2015; Reimers et al. 1993). Fatty infiltration has
been reported to be a prominent feature of muscle alter-
ation in IBM as assessed with nuclear magnetic resonance
imaging (Cox et al. 2011; Morrow et al. 2016). Together,
these data suggest that reduce lower muscle stiffness
might be related to greater structural muscle impair-
ments, that is, . greater muscle fat content. Therefore,
further investigations allowing the comparison of muscle
mechanical properties and muscle degenerative pro-
cesses assessed with nuclear magnetic resonance imaging/
spectroscopy must be conducted to clarify these findings
and the clinical relevance of muscle SWE for diagnosis
and follow-up.

Limitations
The absence of data for healthy controls in the present

work limits the interpretation of findings. Post-processing
of SWE data is an important factor for the reliability of
measurements. In the present work, we used an ad-
vanced method to post-process SWE clips (Vergari et al.
2014). However, minor changes (size, location) when de-
fining the ROIs may have occurred between days.
Mechanical anisotropy is also a critical factor in the char-
acterization of mechanical tissue properties (Green et al.
2013; Virgilio et al. 2015) and has been reported to be
altered in muscle degeneration (Qin et al. 2014). Mechan-
ical anisotropy estimation using SWE (Chino et al. 2017)
should therefore be assessed in future studies. In addi-
tion, the dispersion of the shear waves may be studied from
deeper exploitation of local tissue velocity maps ac-
quired using SWE, allowing the quantification of muscle
viscosity (Deffieux et al. 2009; Gennisson et al. 2010). The
measurement of these complex viscoelastic and anisotro-
pic mechanical properties will provide additional
opportunities to characterize the diseased muscle.

CONCLUSIONS

Muscle SWE shows promise for the investigation of
muscle degeneration in patients with muscle disorders such
as those observed in IBM. Significant challenges remain
to improve the applicability of muscle SWE in the se-
verely disordered muscle and to clarify the complex
interplay between biomechanical, structural and function-
al muscle changes in IBM and in a broader scope of muscle
diseases. Further investigations will be aimed at compar-
ing muscle mechanical properties (i.e., shear modulus, shear
viscosity and anisotropy) obtained using SWE and muscle
changes quantified using nuclear magnetic resonance
imaging/spectroscopy (e.g., fatty infiltration, inflamma-
tion) in these populations.
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