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Symplectic homology and the Eilenberg–Steenrod axioms

KAI CIELIEBAK

ALEXANDRU OANCEA

We give a definition of symplectic homology for pairs of filled Liouville cobor­

disms, and show that it satisfies analogues of the Eilenberg­Steenrodaxioms except

for the dimension axiom. The resulting long exact sequence of a pair generalizes

various earlier long exact sequences such as the handle attaching sequence, the

Legendrian duality sequence,and the exact sequence relating symplectic homology

and Rabinowitz Floer homology. New consequences of this framework include

a Mayer­Vietoris exact sequence for symplectic homology, invariance of Rabi­

nowitz Floer homology under subcritical handle attachment, and a new product

on Rabinowitz Floer homology unifying the pair­of­pants product on symplectic

homology with a secondary coproduct on positive symplectic homology.

In the appendix, joint with Peter Albers, we discuss obstructions to the existence

of certain Liouville cobordisms.
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1 Introduction

To begin with, a story. At the Workshop on Conservative Dynamics and Symplectic

Geometry held at IMPA, Rio de Janeiro in August 2009, the participants had seen in

the course of a single day at least four kinds of Floer homologies for non­compact
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objects, among which wrapped Floer homology, symplectic homology, Rabinowitz­

Floer homology, and linearized contact homology. The second author was seated in the

audience next to Albert Fathi, who at some point suddenly turned to him and exclaimed:

“There are too many such homologies!". Hopefully this paper can serve as a structuring

answer: although there are indeed several versions of symplectic homology (non­

equivariant, S1 ­equivariant, Lagrangian, each coming in several flavors determined by

suitable action truncations), we show that they all obey the same axiomatic pattern, very

much similar to that of the Eilenberg­Steenrod axioms for singular homology. In order

to exhibit such a structured behaviour we need to extend the definition of symplectic

homology to pairs of cobordisms endowed with an exact filling.

We find it useful to explain immediately our definition, although there is a price to pay

regarding the length of this Introduction.

We need to first recall the main version of symplectic homology that is currently in use,

which can be interpreted as dealing with cobordisms with empty negative end. This

construction associates to a Liouville domain, meaning an exact symplectic manifold

(W2n, ω, λ), ω = dλ such that α = λ|∂W is a positive contact form (see §2.1), a

symplectic homology group SH∗(W) which is an invariant of the symplectic completion

(Ŵ, ω̂) = (W, ω) ∪
(
[1,∞) × ∂W, d(rα)

)
. The generators of the underlying chain

complex can be thought of as being either the critical points of a Morse function on

W which is increasing towards the boundary, or the positively parameterized closed

orbits of the Reeb vector field Rα on ∂W defined by dα(Rα, ·) = 0, α(Rα) = 1.

Since the generators of the underlying complex are closed Hamiltonian orbits, we also

refer to symplectic homology as being a theory of closed strings (compare with the

discussion of Lagrangian symplectic homology, or wrapped Floer homology, further

below). We interpret a Liouville domain (W, ω, λ) as an exact symplectic filling of its

contact boundary (M, ξ = kerα), or as an exact cobordism from the empty set to M ,

which we call the positive boundary of W , also denoted M = ∂+W .

The implementation of this setup is the following. One considers on Ŵ (smooth time­

dependent 1­periodic approximations of) Hamiltonians Hτ which are identically zero

on W and equal to the linear function τr − τ , r ∈ [1,∞) on the symplectization part

[1,∞) × M , where τ > 0 is different from the period of a closed Reeb orbit on M .

One then sets

SH∗(W) =
−→
lim
τ→∞

FH∗(Hτ )

where FH∗(Hτ ) stands for Hamiltonian Floer homology of Hτ which is generated by

closed Hamiltonian orbits of period 1, and the direct limit is considered with respect to

continuation maps induced by increasing homotopies of Hamiltonians. The dynamical
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interpretation of these homology groups reflects the fact that the Hamiltonian vector

field of a function h(r) defined on the symplectization part [1,∞) × M is equal to

Xh(r, x) = h′(r)Rα(x). A schematic picture for the Hamiltonians underlying symplectic

homology of such cobordisms with empty negative end is given in Figure 1, in which the

arrows indicate the location of the two kinds of generators for the underlying complex,

constant orbits in the interior of the cobordism and nonconstant orbits located in the

“bending" region near the positive boundary. The vertical thick dotted arrow in Figure 2

indicates that we consider a limit over τ →∞ .

r

Hτ

MW

Figure 1: Symplectic homology of a domain

Key to our construction is the notion of Liouville cobordism with filling. The definition

of a Liouville cobordism W2n is similar to that of a Liouville domain, with the notable

difference that we allow the volume form α ∧ (dα)n−1 determined by α on ∂W to

define the opposite of the boundary orientation on some of the components of ∂W , the

collection of which is called the negative boundary of W and is denoted ∂−W , while

the positive boundary of W is ∂+W = ∂W \ ∂−W . In addition, we assume that one

is given a Liouville domain F whose positive boundary is isomorphic to the contact

negative boundary of W , so that the concatenation F ◦W is a Liouville domain with

positive boundary ∂+W .

Given a Liouville cobordism W with filling F , the output of the closed theory is a

symplectic homology group SH∗(W). Although we drop the filling F from the notation

for the sake of readability, this homology group does depend on F . The dependence

is well understood in terms of the geometric augmentation of the contact homology

algebra of ∂−W induced by the filling, see [15]. Symplectic homology SH∗(W) is

an invariant of the Liouville homotopy class of W with filling, and the generators of

the underlying chain complex can be thought of as being of one of the following three

types: negatively parameterized closed Reeb orbits on ∂−W , constants in W , and

positively parameterized closed Reeb orbits on ∂+W .

To implement this setup one considers (smooth time­dependent 1­periodic approxima­

tions of) Hamiltonians Hµ,τ described as follows: they are equal to the linear function
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τr − τ on the symplectization part [1,∞) × ∂+W , they are identically equal to 0 on

W , they are equal to the linear function −µr + µ on some finite but large part of the

negative symplectization (δ, 1] × ∂−W ⊂ F with δ > 0, and finally they are constant

on the remaining part of F . Here τ > 0 is required not to be equal to the period of a

closed Reeb orbit on ∂+W , and µ > 0 is required not to be equal to the period of a

closed Reeb orbit on ∂−W . Finally, one sets

SH∗(W) =
−→
lim

b→∞

←−
lim

a→−∞

−→
lim

µ,τ→∞
FH(a,b)
∗ (Hµ,τ ),

where FH
(a,b)
∗ denotes Floer homology truncated in the finite action window (a, b).

Though the definition may seem frightening when compared to the one for Liouville

domains, it is actually motivated analogously by the dynamical interpretation of the

groups that we wish to construct. Let us consider the corresponding shape of Hamilto­

nians depicted in Figure 2. (The vertical thick dotted arrows in Figure 2 indicate that

we consider limits over µ → ∞ and τ → ∞ .) A Hamiltonian Hµ,τ has 1­periodic

orbits either in the regions where it is constant, or in the small “bending" regions near

{δ} × ∂−W and ∂±W where it acquires some derivative with respect to the symplec­

tization coordinate r . The role of the finite action window (a, b) in the definition is to

take into account only the orbits located in the areas indicated by arrows in Figure 2:

as µ and τ increase, the orbits located deep inside the filling F have very negative

action and naturally fall outside the action window. The order of the limits on the

extremities of the action window, first an inverse limit on a → −∞ and then a direct

limit on b → ∞ , is important. It has two motivations: (i) the inverse limit functor

is not exact except when applied to an inverse system consisting of finite dimensional

vector spaces. Should one wish to exchange the order of the limits on a and b, such a

finite dimensionality property would typically not hold on the inverse system indexed

by a→ −∞ , and this would have implications on the various exact sequences that we

construct in the paper. (ii) With this definition, symplectic homology of a cobordism

is a ring with unit (see §10). Should one wish to reverse the order of the limits on a

and b, this would not be true anymore.

It turns out that the full structure of symplectic homology involves in a crucial way a

definition that is yet more involved, namely that of symplectic homology groups of a

pair of filled Liouville cobordisms. To give the definition of such a pair it is important to

single out the operation of composition of cobordisms which we already implicitly used

above. Given cobordisms W and W ′ such that ∂+W = ∂−W ′ as contact manifolds,

one forms the Liouville cobordism W ◦ W ′ = W ∂+W∪∂−W′ W ′ by gluing the two

cobordisms along the corresponding boundary. The resulting Liouville structure is

well­defined up to homotopy. A pair of Liouville cobordisms (W,V) then consists
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r

Hµ,τ

∂+WW∂−W

µ τ

rF

Figure 2: Symplectic homology of a cobordism

of a Liouville cobordism (W, ω, λ) together with a codimension 0 submanifold with

boundary V ⊂ W such that (V, ω|V , λ|V ) is a Liouville cobordism and (W \ V, ω|, λ|)

is the disjoint union of two Liouville cobordisms Wbottom and W top such that W =

Wbottom ◦ V ◦W top . We allow any of the cobordisms Wbottom , W top , or V to be empty.

If V = ∅ we think of the pair (W,∅) as being the cobordism W itself. A convenient

abuse of notation is to allow V = ∂+W or V = ∂−W , in which case we think of V

as being a trivial collar cobordism on ∂±W . This setup does not allow for V = ∂W

in case the latter has both negative and positive components, but one can extend it in

this direction without much difficulty at the price of somewhat burdening the notation,

see Remark 1.1 and Section 2.6. A pair of Liouville cobordisms with filling is a pair

(W,V) as above, together with an exact filling F of ∂−W . In this case the cobordism

V inherits a natural filling F ◦Wbottom . See Figure 3.

W

F

∂+W∂+V

W top

∂−V∂−W

Wbottom V

Figure 3: Cobordism pair (W,V) with filling F

Given a cobordism pair (W,V) with filling F we define a symplectic homology group

SH∗(W,V) by a procedure similar to the above, involving suitable direct and inverse

limits and based on Hamiltonians that have the more complicated shape depicted

in Figure 4. The Hamiltonians depend now on three parameters µ, ν, τ > 0 and

the vertical thick dotted arrows in Figure 4 indicate that we consider limits over
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µ, ν, τ →∞ . One sets

SH∗(W,V) =
−→
lim

b→∞

←−
lim

a→−∞

−→
lim

µ,τ→∞

←−
lim
ν→∞

FH(a,b)
∗ (Hµ,ν,τ ).

This is as complicated as it gets. The definition is again motivated by the dynamical

interpretation of the groups that we wish to construct. For a given finite action window

and for suitable choices of the parameters the orbits that are taken into account in

FH∗(Hµ,ν,τ ) are located in the regions indicated by arrows in Figure 4. They correspond

(from left to right in the picture) to negatively parameterized closed Reeb orbits on

∂−W , to constants in Wbottom , to negatively parameterized closed Reeb orbits on ∂−V ,

to positively parameterized closed Reeb orbits on ∂+V , to constants in W top , and

finally to positively parameterized closed Reeb orbits on ∂+W (see §6).

We wish to emphasise at this point the fact that the above groups of periodic orbits

cannot be singled out solely from action considerations. Filtering by the action and

considering suitable subcomplexes or quotient complexes is the easiest way to extract

useful information from some large chain complex, but this is not enough for our

purposes here. Indeed, getting hold of enough tools in order to single out the desired

groups of orbits was one of the major difficulties that we encountered. We gathered

these tools in §2.3, and there are no less than four of them: a robust maximum principle

due to Abouzaid and Seidel [3] (Lemma 2.2), an asymptotic behaviour lemma which

appeared for the first time in [15] (Lemma 2.3), a new stretch­of­the­neck argument

tailored to the situation at hand (Lemma 2.4), and a new mechanism to exclude certain

Floer trajectories asymptotic to constant orbits (Lemma 2.5). The simultaneous use of

these tools is illustrated by the proof of the Excision Theorem 6.8.

ν

F
r

Hµ,ν,τ

τ

ν

µ

Wbottom W top

V

Figure 4: Symplectic homology of a cobordism pair

Important particular cases of such relative symplectic homology groups are the symplec­
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tic homology groups of a filled Liouville cobordism relative to (a part of) its boundary.

Recalling that we think of a contact type hypersurface in W as a trivial collar cobordism,

we obtain groups SH∗(W, ∂±W). It turns out that these can be equivalently defined

using Hamiltonians of a much simpler shape, as shown in Figure 5 below. It is then

straightforward to define also symplectic homology groups SH∗(W, ∂W), which play

a role in the formulation of Poincaré duality, see §3.2. We refer to §2.4 for the details

of the definitions.

SH∗(W, ∂+W)

W ∂+W∂−WF

r r ∂+W

W∂−W

r

F r

W∂−WF

r ∂+W

r

SH∗(W, ∂−W)SH∗(W, ∂W)

Figure 5: Symplectic homology of a cobordism relative to its boundary

Remark 1.1 Our previous conventions for Liouville pairs do not allow to interpret

SH∗(W, ∂W) as symplectic homology of the pair (W, [0, 1] × ∂W) in case ∂W has

both negative and positive components. To remedy for this one needs to further extend

the setup to pairs of multilevel Liouville cobordisms with filling, see §2.6.

The mnemotechnic rule for all these constructions is the following:

To compute SH∗(W,V) one must use a family of Hamiltonians that vanish on W \ V ,

that go to −∞ near ∂V and that go to +∞ near ∂W \ ∂V .

Some of these shapes of Hamiltonians already appeared, if only implicitly, in Viterbo’s

foundational paper [70], as well as in [24]. We make their use systematic.

These constructions have Lagrangian analogues, which we will refer to as the open

theory. The main notion is that of an exact Lagrangian cobordism with filling, meaning

an exact Lagrangian submanifold L ⊂ W of a Liouville cobordism W , which intersects

∂W transversally, and such that ∂−L = L ∩ ∂−W is the Legendrian boundary of an

exact Lagrangian submanifold LF ⊂ F inside the filling F of W . We call LF an exact

Lagrangian filling. There is also an obvious notion of exact Lagrangian pair with filling.

The open theory associates to such a pair (L,K) a Lagrangian symplectic homology

group SH∗(L,K), which is an invariant of the Hamiltonian isotopy class preserving
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boundaries of the pair (L,K) inside the Liouville pair (W,V). (In the case of a single

Lagrangian L with empty negative boundary this is known under the name of wrapped

Floer homology of L .) Formally the implementation of the Lagrangian setup is the

same, using exactly the same shapes of Hamiltonians for a Lagrangian Floer homology

group. The generators of the relevant chain complexes are then Hamiltonian chords

which correspond either to Reeb chords with endpoints on the relevant Legendrian

boundaries, or to constants in the interior of the relevant Lagrangian cobordisms. One

can also mix the closed and open theories together as in [40], see §8.3, and there are

also S1 ­equivariant closed theories, see §8.2. In order to streamline the discussion, we

shall restrict in this Introduction to the non­equivariant closed theory described above.

Remark (grading). For simplicity we shall restrict in this paper to Liouville domains

W whose first Chern class vanishes. In this case the filtered Floer homology groups are

Z­graded by the Conley­Zehnder index, where the grading depends on the choice of a

trivialisation of the canonical bundle of W for each free homotopy classes of loops. If

c1(W) is non­zero the groups are only graded modulo twice the minimal Chern number.

As announced in the title, one way to state our results is in terms of the Eilenberg­

Steenrod axioms for a homology theory. We define a category which we call the

Liouville category with fillings whose objects are pairs of Liouville cobordisms with

filling, and whose morphisms are exact embeddings of pairs of Liouville cobordisms

with filling. Such an exact embedding of a pair (W,V) with filling F into a pair

(W ′,V ′) with filling F′ is an exact codimension 0 embedding f : W →֒ W ′ , meaning

that f ∗λ′−λ is an exact 1­form, together with an extension f̄ : F◦W →֒ F′ ◦W ′ which

is also an exact codimension 0 embedding, and such that f (V) ⊂ V ′ . A cobordism

triple (W,V,U) (with filling) is a topological triple such that (W,V) and (V,U) are

cobordism pairs (with filling).

Theorem 1.2 Symplectic homology with coefficients in a field K defines a contravari­

ant functor from the Liouville category with fillings to the category of graded K­vector

spaces. It associates to a pair (W,V) with filling the symplectic homology groups

SH∗(W,V), and to an exact embedding f : (W,V) →֒ (W ′,V ′) between pairs with

fillings a linear map

f! : SH∗(W
′,V ′)→ SH∗(W,V)

called Viterbo transfer map, or shriek map. This functor satisfies the following prop­

erties:

(i) (HOMOTOPY) If f and g are homotopic through exact embeddings, then

f! = g!.
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(ii) (EXACT TRIANGLE OF A PAIR) Given a pair (W,V) for which we denote the inclusions

V
i
−→ W

j
−→ (W,V), there is a functorial exact triangle in which the map ∂ has degree

−1

SH∗(W,V)
j! // SH∗(W)

i!zzttt
tt
tt

SH∗(V)
∂

[−1]
ff▲▲▲▲▲▲▲▲

Here we identify as usual a cobordism W with the pair (W,∅).

(iii) (EXCISION) For any cobordism triple (W,V,U), the transfer map induced by the

inclusion (W \ int(U),V \ int(U))
i
−→ (W,V) is an isomorphism:

i! : SH∗(W,V)
≃
−→ SH∗(W \ int(U),V \ int(U)).

These are symplectic analogues of the first Eilenberg­Steenrod axioms for a homology

theory [35]. The one fact that may be puzzling about our terminology is that we

insist on calling this a homology theory, though it defines a contravariant functor. Our

arguments are the following. The first one is geometric: With Z/2­coefficients we

have an isomorphism SH∗(T
∗M) ≃ H∗(LM) between the symplectic homology of the

cotangent bundle of a closed manifold M and the homology of LM , the space of free

loop on M . Moreover, the product structure on SH∗(T
∗M) is isomorphic to the Chas­

Sullivan product structure on H∗(LM), and the latter naturally lives on homology since

it extends the intersection product on H∗(M) ∼= Hn+∗(T
∗M,T∗M\M). The second one

is algebraic and uses the S1 ­equivariant version of symplectic homology (see §8.2):

We wish that S1 ­equivariant homology with coefficients in any ring R be naturally a

R[u]­module, with u a formal variable of degree −2, and that multiplication by u be

nilpotent. In contrast, S1 ­equivariant cohomology should naturally be a R[u]­module,

with u of degree +2, and multiplication by u should typically not be nilpotent. This

is exactly the kind of structure that we have on the S1 ­equivariant version of our

symplectic homology groups. The third one is an algebraic argument that refers to

the 0­level part of the S1 ­equivariant version of a filled Liouville cobordism: Given

such a cobordism W2n , this 0­level part is denoted SH
S1,=0
k (W) and can be expressed

either as the degree n + k part of H∗(W, ∂W) ⊗ R[u−1], with R the ground ring and

u of degree −2, or as the degree n − k part of H∗(W) ⊗ R[u]. Since H∗(W) ⊗ R[u]

is nontrivial in arbitrarily negative degrees, it is only the first expression that allows

the interpretation of SH
S1,=0
∗ (W) as the singular (co)homology group of a topological

space via the Borel construction. This natural emphasis on homology determines our

interpretation of the induced maps as shriek or transfer maps.
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Our bottom line is that the theory is homological in nature, but contravariant because

the induced maps are shriek maps.

Note that in the case of a pair (W,V) the simplest expression for SH
S1,=0
k (W,V)

is obtained by identifying it with the degree n − k part of the cohomology group

H∗(W,V)⊗R[u−1]. To turn this into homology one needs to use excision followed by

Poincaré duality, and the expression gets more cumbersome. A similar phenomenon

happens for the non­equivariant version SH=0
∗ (W,V). In order to simplify the notation

we always identify the 0­level part of symplectic homology with singular cohomology

throughout the paper.

Remark (coefficients). The symplectic homology groups are defined with coefficients

in an arbitrary ring R , and statement (i) in Theorem 1.2 is valid with arbitrary coef­

ficients too. Field coefficients are necessary only for statements (ii) and (iii). As a

general fact, the statements in this paper which involve exact triangles are only valid

with field coefficients, and the proof of excision does require such an exact triangle,

see §6. The reason is that we define our symplectic homology groups as a first­inverse­

then­direct­limit over symplectic homology groups truncated in a finite action window.

The various exact triangles involving symplectic homology are obtained by passing to

the limit in the corresponding exact triangles for such finite action windows, at which

point arises naturally the question of the exactness of the direct limit functor and of the

inverse limit functor. While the direct limit functor is exact, the inverse limit functor

is not. Nevertheless, the inverse limit functor is exact when applied to inverse systems

consisting of finite dimensional vector spaces, which is the case for symplectic homol­

ogy groups truncated in a finite action window. In order to extend the exact triangle of

a pair (and also the other exact triangles which we establish in this paper) to arbitrary

coefficients one would need to modify the definition of our groups by passing to the

limit at chain level and use a version of the Mittag­Leffler condition, a path that we

shall not pursue here. See also the discussion of factorisation homology below, the dis­

cussion in §4, and Remark 8.2. More generally, one can define symplectic homology

with coefficients in a local system with fibre K , see [64, 1], and most of the results of

this paper adapt in a quite straightforward way to that setup. One notable exception

are the duality results in §3, in which the treatment of local coefficients would be more

delicate.

In view of the above discussion, we henceforth adopt the following convention:

Convention (coefficients). In this paper we use constant coefficients in a field K .

Let us now discuss briefly the two other Eilenberg­Steenrod axioms, namely the direct

sum axiom and the dimension axiom, and explain why they do not, and indeed cannot,
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have a symplectic counterpart. (I) The direct sum axiom expresses the fact that the

homology of an arbitrary disjoint union of topological spaces is naturally isomorphic

to the direct sum of their homologies, whereas in contrast a cohomology theory would

involve a direct product. The distinction between direct sums and direct products is

not relevant in the setup of Liouville domains, which are by definition compact and

therefore consist of at most finitely many connected components. Passing to arbitrary

disjoint unions would mean to go from Liouville domains to Liouville manifolds

as in [67], and the contravariant nature of the functor would imply that it behaves

as a direct product. This is one of the reasons why [67] refers to the same object

as “symplectic cohomology". However, in view of the extension of the definition

to cobordisms this appears to be only a superficial distinction. The deeper fact is

that, whichever way one turns it around, symplectic homology of a cobordism with

nonempty negative boundary is an object of a mixed homological­cohomological nature

because its definition involves both a direct limit (on b→∞) and an inverse limit (on

a→ −∞). We actually present in §3.3 an example showing that algebraic duality fails

already in the case of symplectic homology of a trivial cobordism. (II) The dimension

axiom of Eilenberg and Steenrod expresses the fact that the value of the functor on

any pair homotopy equivalent to a pair of CW­complexes is determined by its value

on a point. This fact relies on the homotopy axiom and illustrates the strength of the

latter: since any ball is homotopy equivalent to a point, the homotopy axiom allows

one to go up in dimension for computations. As a matter of fact the dimension of a

space plays no role in the definition of a homology theory in the sense of Eilenberg and

Steenrod, although it is indeed visible homologically via the fact that the homology

of a pair consisting of an n­ball and of its boundary is concentrated in degree n. In

contrast, symplectic homology is a dimension dependent theory. Moreover, it cannot

be determined by its value on a single object. No change in dimension is possible,

and no dimension axiom can exist. For example, symplectic homology vanishes on

the 2n­dimensional ball since the latter is subcritical, but the theory is nontrivial. The

symplectic analogue of the class of CW­complexes is that of Weinstein manifolds, and

the whole richness of symplectic homology is encoded in the way it behaves under

critical handle attachments, see [13]. One could say that it is determined by its value

on the elementary cobordisms corresponding to a single critical handle attachment,

but that would be an essentially useless statement, since it would involve all possible

contact manifolds and all their possible exact fillings. The complexity of symplectic

homology reflects that of Reeb dynamics and is such that there is no analogue of the

dimension axiom.

We show in §3.2 how to interpret Poincaré duality by defining an appropriate version
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of symplectic cohomology, and we establish in §7.4 a Mayer­Vietoris exact triangle.

It is interesting to note at this point a formal similarity with the recent development

of factorisation homology, see the paper [7] by Ayala and Francis as well as the refer­

ences therein. Roughly speaking, a factorisation homology theory is a graded vector

space valued monoidal functor defined on some category of open topological mani­

folds of fixed dimension n, with morphism spaces given by topological embeddings,

and which obeys a dimension axiom involving the notion of an En ­algebra. (Such a

category includes in particular that of closed manifolds of dimension n − 1, which

are identified with open trivial cobordisms of one dimension higher, a procedure very

much similar to our viewpoint on contact hypersurfaces as trivial cobordisms.) If

one forgets the monoidal property then one essentially recovers the restriction of an

Eilenberg­Steenrod homology theory to a category of manifolds of fixed dimension.

Conjecturally the symplectic analogue of a factorisation homology theory should in­

volve some differential graded algebra (DGA) enhancement of symplectic homology

in the spirit of [40], and the axioms satisfied by factorisation homology should pro­

vide a reasonable approximation to the structural properties satisfied by such a DGA

enhancement.

One other lesson that the authors have learned from Ayala and Francis [7] is that the

Eilenberg­Steenrod axioms can, and probably should, be formulated at chain level.

More precisely, the target of a homological functor is naturally the category of chain

complexes up to homotopy rather than that of graded R­modules. This kind of formu­

lation in the case of symplectic homology seems to lie at close hand using the methods

of our paper, but we shall not deal with it.

A fruitful line of thought, pioneered by Viterbo in the case of Liouville domains [70],

is to compare the symplectic homology groups of a pair (W,V) with the singular

cohomology groups, the philosophy being that the difference between the two measures

the amount of homologically interesting dynamics on the relevant contact boundary.

The singular cohomology Hn−∗(W,V) is visible through the Floer complex generated

by the constant orbits in W \ V of any of the Hamiltonians Hµ,ν,τ , see Figure 4, with

the degree shift being dictated by our normalisation convention for the Conley­Zehnder

index, and this Floer complex coincides with the Morse complex since we work on

symplectically aspherical manifolds and the Hamiltonian is essentially constant in the

relevant region [66]. Note also that these constant orbits are singled out among the

various types of orbits involved in the computation of SH∗(W,V) by the fact that their

action is close to zero, whereas all the other orbits have negative or positive action

bounded away from zero. Accordingly, we denote the resulting homology group by
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SH=0
∗ (W,V), with the understanding that we have an isomorphism

SH=0
∗ (W,V) ≃ Hn−∗(W,V).

In the case of a Liouville domain (Figure 1) we see that these constant orbits form a

subcomplex since all the other orbits have positive action. As such, for a Liouville

domain there is a natural map Hn−∗(W)→ SH∗(W). In the case of a cobordism or of

a pair of cobordisms such a map does not exist anymore since the orbits on level zero

do not form a subcomplex anymore. The correct way to heal this apparent ailment is

to consider symplectic homology groups truncated in action with respect to the zero

level, which we denote

SH>0
∗ (W,V), SH≥0

∗ (W,V), SH≤0
∗ (W,V), SH<0

∗ (W,V).

Their meaning is the following. Each of them respectively takes into account, among

the orbits involved in the definition of SH∗(W,V), the ones which have strictly positive

action (on ∂+V and ∂+W ), non­negative action (on ∂+V , ∂+W , and W \ V ), non­

positive action (on ∂−V , ∂−W , and W \V ), negative action (on ∂−V and ∂−W ). We

refer to §2.4 and §2.5 for the definitions.

We have maps SH<0
∗ (W,V) → SH

≤0
∗ (W,V) → SH∗(W,V) induced by inclusions of

subcomplexes, and also maps SH∗(W,V)→ SH
≥0
∗ (W,V)→ SH>0

∗ (W,V) induced by

projections onto quotient complexes. The group SH=0
∗ (W,V) can be thought of as a

homological cone since it completes the map SH<0
∗ (W,V)→ SH

≤0
∗ (W,V) to an exact

triangle. The various maps which connect these groups are conveniently depicted as

forming an octahedron as in diagram (1). The continuous arrows preserve the degree,

whereas the dotted arrows decrease the degree by 1. Among the eight triangles forming

the surface of the octahedron, the four triangles whose sides consist of one dotted arrow

and two continuous arrows are exact triangles (see Proposition 2.18), and the four

triangles whose sides consist either of three continuous arrows or of one continuous

arrow and two dotted arrows are commutative. The structure of this octahedron

is exactly the same as the one involved in the octahedron axiom for a triangulated

category [56, Chapter 1], and for a good reason: this tautological octahedron can be

deduced from the octahedron axiom of a triangulated category starting from (the chain

level version of) a commuting triangle which involves SH<0
∗ , SH

≤0
∗ , and SH∗ , and in

which the composition of the natural maps SH<0
∗ → SH

≤0
∗ → SH∗ is the natural map

SH<0
∗ → SH∗ . Turning this around, this action­filtered octahedron can serve as an

interpretation of the octahedron axiom for a triangulated category fit for readers with a

preference for variational methods over homological methods.
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OO

Our uniform and emotional notation for these groups is

SH♥∗ (W,V), ♥ ∈ {∅, > 0,≥ 0,= 0,≤ 0, < 0},

with the meaning that SH∅
∗ = SH∗ .

Definition 1.3 A functor from the Liouville category with fillings to the category of

graded K­vector spaces satisfying the conclusions of Theorem 1.2 is called a Liouville

homology theory.

Theorem 1.4 For ♥ ∈ {∅, > 0,≥ 0,= 0,≤ 0, < 0} the action filtered symplectic

homology group SH♥∗ with coefficients in a field K defines a Liouville homology

theory.

The octahedron (1) defines a diagram of natural transformations which is compatible

with the functorial exact sequence of a pair.

In particular, each of the symplectic homology groups SH♥∗ defines a Liouville homo­

topy invariant of the pair (W,V). Note that such an invariance statement can only hold

provided we truncate the action with respect to the zero value, which is the level of con­

stant orbits. Indeed, answering a question of Polterovich and Shelukhin, we can define

symplectic homology groups SH
(a,b)
∗ (W,V) truncated in an arbitrary action interval

(a, b) ⊂ R , see §2.5, and the exact triangle of a pair still holds for SH
(a,b)
∗ . However,

the homotopy axiom would generally break down and the resulting homology groups
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would not be Liouville homotopy invariant, except if the interval is either small and

centered at 0, or semi­infinite with the finite end close enough to zero, which are the

cases that we consider. Failure of Liouville homotopy invariance for most truncations

by the action can be easily detected by rescaling the symplectic form. We believe this

action filtration carries interesting information for cobordisms in the form of spectral

invariants, or more generally persistence modules [63].

What do we gain from this extension of the theory of symplectic homology from Liou­

ville domains to Liouville cobordisms, and from having singled out the action filtered

symplectic homology groups SH♥∗ ? Firstly, a broad unifying perspective. Secondly,

new computational results. We refer to §8, §9, and §10 for a full discussion, and give

here a brief overview.

(a) Our point of view encompasses symplectic homology, wrapped Floer homology,

Rabinowitz­Floer homology, S1 ­equivariant symplectic homology, linearized contact

homology, non­equivariant linearized contact homology. Indeed:

In view of [29] Rabinowitz­Floer homology of a separating contact hypersurface Σ

in a Liouville domain W is SH∗(Σ), understood to be computed with respect to the

natural filling int(Σ).

We show in §8.2 that Viterbo’s S1 ­equivariant symplectic homology SHS1

∗ and its

flavors SH
S1,♥
∗ define Liouville homology theories, and the same is true for negative

and periodic cyclic homology. The Gysin exact sequences are diagrams of natural

transformations which are compatible with the exact triangles of pairs and with the

octahedron (1).

In view of [18] linearized contact homology is encompassed by SH
S1,>0
∗ and non­

equivariant linearized contact homology is encompassed by SH>0
∗ . Moreover, our

enrichment of symplectic homology to (pairs of) cobordisms indicates several natural

extensions of linearized contact homology theories which blend homology with coho­

mology and whose definition involves the “banana", i.e. the genus zero curve with two

positive punctures, see also [12] and Remark 9.22. Indeed, such an enrichment should

exist at the level of contact homology too, i.e. non­linearized.

(b) Most of the key exact sequences established in recent years for symplectic invariants

involving pseudo­holomorphic curves appear to us as instances of the exact triangle

of a pair. Examples are the critical handle attaching exact sequence [13], the new

subcritical handle attaching exact sequence of §9.6, see also [19], the exact sequence

relating Rabinowitz­Floer homology and symplectic homology [29], the Legendrian

duality exact sequence [38]. We discuss these in detail in §9. Our point of view embeds
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all these isolated results into a much larger framework and establishes compatibilities

between exact triangles, e.g. with Gysin exact triangles, see §8.2.

(c) Since our setup covers Rabinowitz­Floer homology, it clarifies in particular the

functorial behaviour of the latter. Unlike for symplectic homology, a cobordism does

not give rise to a transfer map but rather to a correspondence

SH∗(∂
−W)←− SH∗(W) −→ SH∗(∂

+W).

This allows us in particular to prove invariance of Rabinowitz­Floer homology un­

der subcritical handle attachment and understand its behaviour under critical handle

attachment as a formal consequence of [13]. See §9.

(d) We describe in §10 which of the symplectic homology groups carry product struc­

tures, with respect to which transfer maps are ring homomorphisms as in the classical

case of symplectic homology of a Liouville domain. As a consequence we construct

a degree −n product on Rabinowitz­Floer homology which induces a degree 1 − n

coproduct on positive symplectic homology.

(e) We give a uniform treatment of vanishing and finite dimensionality results in §9.3.

(f) We establish in §7.4 Mayer­Vietoris exact triangles for all flavors SH♥∗ . To the best

of our knowledge such exact triangles have not appeared previously in the literature.

A word about our method of proof. We already mentioned the confinement lemmas

of §2.3. There are two other important ingredients in our construction: continuation

maps and mapping cones. We now describe their roles. It turns out that the key map

of the theory is the transfer map

i! : SH♥∗ (W)→ SH♥∗ (V)

induced by the inclusion i : V →֒ W for a pair of Liouville cobordisms (W,V) with

filling, see §5.1. It is instrumental for our constructions to interpret this transfer map

as a continuation map determined by a suitable increasing homotopy of Hamiltonians.

(Compare with the original definition [70] of the transfer map for Liouville domains,

where its continuation nature is only implicit and truncation by the action plays the

main role.) The next step is to interpret the homological mapping cone of the trans­

fer map as being isomorphic to the group SH♥∗ (W,V) shifted in degree down by 1

(Proposition 7.13). This is achieved via a systematic use of homological algebra for

mapping cones, see §4, in which a higher homotopy invariance property of the Floer

chain complex plays a key role (Lemma 4.7). While it is possible to show directly

starting from the definitions that the groups SH∗(W,V), SH∗(W), and SH∗(V) fit into

an exact triangle, we did not succeed in proving this directly for the truncated versions
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SH♥∗ . The situation was unlocked and the arguments were streamlined upon adopting

the continuation map and mapping cone point of view.

We implicitly described the structure of the paper in the body of the Introduction, so we

shall not repeat it here. The titles of the sections should now be self­explanatory. We

end the Introduction by mentioning two further directions that unfold naturally from the

present paper. The first one is to extend symplectic homology, which is a linear theory

in the sense that its output is valued in graded R­modules, possibly endowed with a

ring structure, to a nonlinear theory at the level of DGAs. This is accomplished for

SH>0
∗ of Liouville domains in [40], but the other flavors may admit similar extensions

too. The second one is a further categorical extension of the theory to the level of

the wrapped Fukaya category, in the spirit of [3] where this is again accomplished for

Liouville domains. We expect in particular a meaningful theory of wrapped Fukaya

categories for cobordisms, with interesting applications.
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2 Symplectic (co)homology for filled Liouville cobordisms

Symplectic homology for Liouville domains was introduced by Floer–Hofer [43, 26]

and Viterbo [70]. In this section we extend their definition to filled Liouville cobordisms.

Since symplectic homology is a well established theory, we will omit many details of

the construction and concentrate on the new aspects. For background we refer to the

excellent account [1].
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2.1 Liouville cobordisms

A Liouville cobordism (W, λ) consists of a compact manifold with boundary W and

a 1­form λ such that dλ is symplectic and λ restricts to a contact form on ∂W . We

refer to λ as the Liouville form. If the dimension of W is 2n the last condition means

that λ ∧ (dλ)n−1 defines a volume form on ∂W . We denote by ∂+W ⊂ ∂W the

union of the components for which the orientation induced by λ ∧ (dλ)n−1 coincides

with the boundary orientation of W and call it the convex boundary of W . We call

∂−W = ∂W \ ∂+W the concave boundary of W . The convex/concave boundaries

of W are contact manifolds (∂±W, α± := λ|∂±W ).1 We refer to [25, Chapter 11] for

an exhaustive discussion of Liouville cobordisms and their homotopies. A Liouville

domain is a Liouville cobordism such that ∂W = ∂+W .

Example 2.1 Given a Riemannian manifold (N, g), its unit codisk bundle D∗r N :=

{(q, p) ∈ T∗N | ‖p‖g ≤ r} is a Liouville domain with the canonical Liouville form

λ = p dq, whereas T∗r,RN := D∗RN \ int D∗r N for r < R is a Liouville cobordism with

concave boundary given by S∗r N := ∂D∗r N .

Define the Liouville vector field Z ∈ X (W) by ιZdλ = λ and denote by α± the

restriction of λ to ∂±W . It is a consequence of the definitions that Z is transverse to

∂W and points outwards along ∂+W , and inwards along ∂−W . The flow φt
Z of the

vector field Z defines Liouville trivialisations of collar neighborhoods N± of ∂±W

Ψ
+ :
(
(1− ε, 1] × ∂+W, rα+

)
→ (N+, λ),

Ψ
− :
(
[1, 1 + ε)× ∂−W, rα−

)
→ (N−, λ),

via the map

(r, x) 7→ ϕln r
Z (x).

Given a contact manifold (M, α), its symplectization is given by (0,∞) ×M with the

Liouville form rα . We call (0, 1] ×M and [1,∞) ×M (both equipped with the form

rα) the negative, respectively positive part of the symplectization.

Given a Liouville cobordism (W, λ), we define its completion by

Ŵ = ((0, 1] × ∂−W) ⊔Ψ− W Ψ+⊔ [1,∞)× ∂+W,

with the obvious Liouville form still denoted by λ .

1Unless otherwise stated our contact manifolds will be always cooriented and equipped with

chosen contact forms.
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Given a contact manifold (M, α) we define a (Liouville) filling to be a Liouville domain

(F, λ) together with a diffeomorphism ϕ : ∂F → M such that ϕ∗α = λ|∂F .

We view a Liouville cobordism (W, ω, λ) as a morphism from the concave boundary

to the convex boundary, W : (∂−W, α−)→ (∂+W, α+). We view a Liouville domain

W as a cobordism from ∅ to its convex boundary. Given two Liouville cobordisms

W and W ′ together with an identification ϕ : (∂−W, α−)
∼=
→ (∂+W ′, α′+), we define

their composition by

W ◦W ′ = W ⊔
ϕ:∂−W

∼=
→∂+W′

W ′.

The gluing is understood to be compatible with the trivialisations Ψ− and Ψ′+ , so that

the Liouville forms glue smoothly.

2.2 Filtered Floer homology

A contact manifold (M, α) carries a canonical Reeb vector field Rα ∈ X (M) defined by

the conditions iRαdα = 0 and α(Rα) = 1. We refer to the closed integral curves of Rα

as closed Reeb orbits, or just Reeb orbits. We denote by Spec(M, α) the set of periods

of closed Reeb orbits. This is the critical value set of the action functional given by

integrating the contact form on closed loops, and a version of Sard’s theorem shows

that Spec(M, α) is a closed nowhere dense subset of [0,∞). If M is compact the set

Spec(M, α) is bounded away from 0 since the Reeb vector field is nonvanishing.

Consider the symplectization ((0,∞)×M, rα) and let h : (0,∞)×M → R be a function

that depends only on the radial coordinate, i.e. h(r, x) = h(r). Its Hamiltonian vector

field, defined by d(rα)(Xh, ·) = −dh, is given by

Xh(r, x) = h′(r)Rα(x).

The 1­periodic orbits of Xh on the level {r}×M are therefore in one­to­one correspon­

dence with the closed Reeb orbits with period h′(r). Here we understand that a Reeb

orbit of negative period is parameterized by −Rα , whereas a 0­periodic Reeb orbit is

by convention a constant.

Let (W, λ) be a Liouville domain and Ŵ its completion. We define the class

H(Ŵ)

of admissible Hamiltonians on Ŵ to consist of functions H : S1× Ŵ → R such that in

the complement of some compact set K ⊃ W we have H(r, x) = ar + c with a, c ∈ R

and a /∈ ±Spec(∂W, α) ∪ {0}. In particular, H has no 1­periodic orbits outside the

compact set K .
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An almost complex structure J on the symplectization ((0,∞) × M, rα) is called

cylindrical if it preserves ξ = kerα , if J|ξ is independent of r and compatible with

d(rα)|ξ , and if J(r∂r) = Rα . Such almost complex structures are compatible with

d(rα) and are invariant with respect to dilations (r, x) 7→ (cr, x), c > 0. In the

definition of Floer homology for admissible Hamiltonians on Ŵ we shall use almost

complex structures which are cylindrical outside some compact set that contains W ,

which we call admissible almost complex structures on Ŵ .

Consider an admissible Hamiltonian H and an admissible almost complex structure J

on the completion Ŵ of a Liouville domain W . To define the filtered Floer homology

we use the same notation and sign conventions as in [29], which match those of

[24, 3, 40]:

dλ(·, J·) = gJ (Riemannian metric),

dλ(XH , ·) = −dH, XH = J∇H (Hamiltonian vector field),

LŴ := C∞(S1, Ŵ), S1
= R/Z (loop space),

AH : LŴ → R, AH(x) :=

∫

S1

x∗λ−

∫

S1

H(t, x(t)) dt (action),

∇AH(x) = −J(x)(ẋ − XH(t, x)) (L2 ­gradient),

u : R→ LW, ∂su = ∇AH(u(s, ·)) (gradient line)

(2) ⇐⇒ ∂su + J(u)(∂tu− XH(t, u)) = 0 (Floer equation),

P(H) := Crit(AH) = {1­periodic orbits of the Hamiltonian vector field XH },

M(x−, x+; H, J) = {u : R× S1 → W | ∂su = ∇AH(u(s, ·)), u(±∞, ·) = x±}/R

(moduli space of Floer trajectories connecting x± ∈ P(H)),

dimM(x−, x+; H, J) = CZ(x+)− CZ(x−)− 1,

AH(x+)− AH(x−) =

∫

R×S1

|∂su|
2ds dt =

∫

R×S1

u∗(dλ− dH ∧ dt).

Here the formula expressing the dimension of the moduli space in terms of Conley­

Zehnder indices is to be understood with respect to a symplectic trivialisation of u∗TW .

Let K be a field and a < b with a, b /∈ Spec(∂W, α). We define the filtered Floer

chain groups with coefficients in K by

FC<b
∗ (H) =

⊕

x ∈ P(H)

AH(x) < b

K · x, FC(a,b)
∗ (H) = FC<b

∗ (H)/FC<a
∗ (H),
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with the differential ∂ : FC
(a,b)
∗ (H)→ FC

(a,b)
∗−1 (H) given by

∂x+ =
∑

CZ(x−)=CZ(x+)−1

#M(x−, x+; H, J) · x−.

Here # denotes the signed count of points with respect to suitable orientations. We think

of the cylinder R×S1 as the twice punctured Riemann sphere, with the positive puncture

at +∞ as incoming, and the negative puncture at −∞ as outgoing. This terminology

makes reference to the corresponding asymptote being an input, respectively an output

for the Floer differential. Note that the differential decreases both the action AH and

the Conley­Zenhder index. The filtered Floer homology is now defined as

FH(a,b)
∗ (H) = ker ∂/im ∂.

Note that for a < b < c the short exact sequence

0→ FC(a,b)
∗ (H)→ FC(a,c)

∗ (H)→ FC(b,c)
∗ (H)→ 0

induces a tautological exact triangle

(3) FH(a,b)
∗ (H)→ FH(a,c)

∗ (H)→ FH(b,c)
∗ (H)→ FH(a,b)

∗ (H)[−1].

Remark. We will suppress the field K from the notation. As noted in the Introduction,

the definition can also be given with coefficients in a commutative ring, and more

generally with coefficients in a local system as in [64, 1].

2.3 Restrictions on Floer trajectories

We shall frequently make use of the following three lemmas to exclude certain types of

Floer trajectories. The first one is an immediate consequence of Lemma 7.2 in [3], see

also [65, Lemma 19.3]. Since our setup differs slightly from the one there, we include

the proof for completeness.

Lemma 2.2 (no escape lemma) Let H be an admissible Hamiltonian on a completed

Liouville domain (Ŵ, ω, λ). Let V ⊂ Ŵ be a compact subset with smooth boundary

∂V such that λ|∂V is a positive contact form, J is cylindrical near ∂V , and H = h(r)

in cylindrical coordinates (r, x) near ∂V = {r = 1}. If both asymptotes of a Floer

cylinder u : R× S1 → Ŵ are contained in V , then u is entirely contained in V .

The result continues to hold if Hs depends on the coordinate s ∈ R on the cylinder

R×S1 such that ∂sHs ≤ 0 and the action Ahs(r) = rh′s(r)−hs(r) satisfies ∂sAhs(r) ≤ 0

for r near 1.
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Proof Assume first that H is s­independent. Arguing by contradiction, suppose that

u leaves the set V . After replacing V by the set {r ≤ r0} for a constant r0 > 1

close to 1, we may assume that u leaves V and is transverse to ∂V . In cylindrical

coordinates near ∂V we have XH = h′(r)R and λ = rα , where R is the Reeb vector

field of α = λ|∂V , so the functions H = h(r) and λ(XH) = rh′(r) are both constant

along ∂V . Note that their difference equals the action Ah(r).

Now S := u−1(Ŵ \ Int V) is a compact surface with boundary. We denote by j and β

the restrictions of the complex structure and the 1­form dt from the cylinder R × S1

to S, so that on S the Floer equation for u can be written as
(
du− XH(u)⊗ β

)0,1
= 0.

We estimate the energy of u|S :

E(u|S) =
1

2

∫

S

|du − XH ⊗ β|
2volS

=

∫

S

(u∗dλ− u∗dH ∧ β)

=

∫

S

d
(
u∗λ− (u∗H)β

)
+

∫

S

(u∗H)dβ

=

∫

∂S

(
u∗λ− (u∗H)β

)

=

∫

∂S

λ
(
du− XH(u) ⊗ β

)

=

∫

∂S

λ
(

J ◦
(
du − XH(u)⊗ β

)
◦ (−j)

)

=

∫

∂S

dr ◦ du ◦ (−j)

≤ 0.

Here the equality in the 4­th line follows from Stokes’ theorem and dβ ≡ 0. The

equality in the 5­th line holds because the r­component of u|∂S equals r0 and thus
∫

∂S

u∗
(
λ(XH)− H

)
β =

∫

∂S

Ah(r0)β =

∫

S

Ah(r0)dβ = 0.

The equality in the 6­th line follows from the Floer equation, and the equality in the

7­th line from λ ◦ J = dr and dr(XH) = 0 along ∂V . The last inequality follows from

the fact that for each tangent vector ξ to ∂S defining its boundary orientation, jξ points

into S, so du(jξ) points out of V and dr ◦ du(jξ) ≥ 0. Since E(u|S) is nonnegative,

it follows that E(u|S) = 0, and therefore du − XH(u) ⊗ β ≡ 0. So each connected

component of u|S is contained in an XH ­orbit, and since XH is tangent to ∂V , u(S)

is entirely contained in ∂V . This contradicts the hypothesis that u leaves V and the

lemma is proved for s­independent H .
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If Hs is s­dependent we get an additional term
∫

S
(u∗∂sHs)ds∧ dt ≤ 0 in the third line,

so the equality in the 4­th line becomes an inequality ≤ . The equality in the 5­th line

also becomes an inequality ≤ due to the nonpositive additional term in

∫

∂S

Ahs(r0)β =

∫

S

Ahs(r0)dβ +

∫

S

∂sAhs(r0)ds ∧ dt ≤ 0.

This proves the lemma for s­dependent Hs .

Remark. The proof shows that Lemma 2.2 continues to hold if the cylinder R × S1

is replaced by a general Riemann surface S with a 1­form β satisfying H dβ ≤ 0

and Ah(r)dβ ≤ 0 for all r near 1. In this case we can allow H to depend on s in

holomorphic coordinates s + it on a region U ⊂ S in which β = c dt for a constant

c ≥ 0, with the requirements ∂sHs ≤ 0 and ∂sAhs(r) ≤ 0 as before. This generalization

underlies the definition of product structures in Section 10.

The second lemma summarises an argument that has appeared first in [15, pages 654­

655]. Since the conventions in [15] differ from ours, we include the short proof for

completeness.

Lemma 2.3 (asymptotic behaviour lemma) Let (R+×M, rα) be the symplectization

of a contact manifold (M, α). Let H = h(r) be a Hamiltonian depending only on the

radial coordinate r ∈ R+ , and let J be a cylindrical almost complex structure. Let

u = (a, f ) : R± × S1 → R+ × M be a solution of the Floer equation (2) with

lims→±∞ u(s, ·) = (r±, γ±(·)) for suitably parameterized Reeb orbits γ± .

(i) Assume h′′(r−) > 0. Then either there exists (s0, t0) ∈ R× S1 such that a(s0, t0) >

r− , or u is constant equal to (r−, γ−).

(ii) Assume h′′(r+) < 0. Then either there exists (s0, t0) ∈ R×S1 such that a(s0, t0) >

r+ , or u is constant equal to (r+, γ+).

Proof In coordinates (s, t) ∈ R± × S1 , the Floer equation for u = (a, f ) with Hamil­

tonian H = h(r) writes out as

(4) ∂sa− α(∂tf ) + h′(a) = 0, ∂ta + α(∂sf ) = 0, πξ∂sf + J(f )πξ∂tf = 0,

where πξ : TM → ξ = kerα is the projection along the Reeb vector field R . In case (i),

suppose h′′(r−) > 0 and a(s, t) ≤ r− for all (s, t) ∈ R−×S1 . After replacing R−×S1
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by a smaller half­cylinder we may assume that h′′(a(s, t)) ≥ 0 for all (s, t) ∈ R− × S1 .

Then the average a(s) :=
∫ 1

0
a(s, t)dt satisfies

a′(s) =

∫ 1

0

∂sa(s, t)dt

=

∫ 1

0

α(∂sf )(s, t)dt −

∫ 1

0

h′
(
a(s, t)

)
dt

≥

∫ 1

0

f ∗α(s)−

∫ 1

0

h′(r−)dt

≥

∫

γ−

α− h′(r−) = h′(r−)− h′(r−) = 0.

Here the second equality follows from the first equation in (4), the first inequality from

a(s, t) ≤ r− and h′′(a(s, t)) ≥ 0, and the second inequality from Stokes’ theorem and

f ∗dα ≥ 0. For the third equality observe that x−(t) =
(
r−, γ−(t)

)
is a 1­periodic orbit

of XH = h′(r)R iff γ̇− = h′(r−)R , so that
∫
γ−
α = h′(r−).

Now a′(s) ≥ 0 and a(−∞) = r− imply that a(s) ≥ r− for all s, which is compatible

with a(s, t) ≤ r− only if a(s, t) = r− for all (s, t). Then all of the preceding inequalities

are equalities, in particular f ∗dα ≡ 0, and therefore u(s, t) =
(
r−, γt(t) for all (s, t).

This proves case (i). Case (ii) follows from case (i) by replacing h by −h and u(s, t)

by u(−s,−t).

Lemma 2.3 can be rephrased by saying that nonconstant Floer trajectories must rise

above their output asymptote if the Hamiltonian is convex at the asymptote, and they

must rise above their input asymptote if the Hamiltonian is concave at the asymptote.

Combined with Lemma 2.2, it forbids Floer trajectories of the kind shown in Figure 6.

Ŵ

H

−+

Figure 6: Such Floer trajectories are forbidden by Lemma 2.3 in combination with Lemma 2.2.



Symplectic homology and the Eilenberg–Steenrod axioms 27

The third lemma follows from a neck stretching argument using the compactness

theorem in symplectic field theory (SFT). We refer to Figure 7 for a sketch of a

situation in which a certain kind of Floer trajectory is forbidden by this technique.

Lemma 2.4 (neck stretching lemma) Let H be an admissible Hamiltonian on a

completed Liouville domain (Ŵ, λ). Let V ⊂ Ŵ be a compact subset with smooth

boundary ∂V such that H ≡ c near ∂V and λ|∂V is a positive contact form. Let JR be

the compatible almost complex structure on Ŵ obtained from J by inserting a cylinder

of length 2R around ∂V . Then for sufficiently large R there exists no JR ­Floer cylinder

u : R× S1 → Ŵ with asymptotic orbits x± at ±∞ such that

(1) x− ⊂ intV and x+ ⊂ Ŵ \ V with AH(x+) < −c, or

(2) x+ ⊂ V and x− ⊂ Ŵ \ V with AH(x−) > −c.

Ŵ

c

γ+
γ−

H

∂VV

Figure 7: Such Floer trajectories are forbidden if −c > AH(x+) .

Proof Let us first describe more precisely the neck stretching along M = ∂V . Pick a

tubular neighborhood [−ε, ε] ×M of M in Ŵ on which H ≡ c and λ = eρα , where

α = λ|M and ρ denotes the coordinate on R . Let J be a compatible almost complex

structure on Ŵ whose restriction J0 to [−ε, ε] × M is independent of ρ and maps

ξ = kerα to ξ and ∂ρ to Rα . Let φR be any diffeomorphism [−R,R] → [−ε, ε]

with derivative 1 near the boundary. Then we define JR on Ŵ by (φR × id)∗J0 on

[−ε, ε]×M , and by J outside [−ε, ε] ×M .

Consider a JR ­Floer cylinder u : R × S1 → Ŵ with asymptotic orbits x± . Its Floer

energy is given by

AH(x+)− AH(x−) =

∫

R×S1

|∂su|
2ds dt =

∫

R×S1

u∗(dλ− dH ∧ dt).

Set Σ = u−1([−ε, ε] ×M) and write the restriction of u to Σ as

u|Σ = (φR ◦ a, f ), (a, f ) : Σ→ [−R,R]×M.
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Let ψ : [−R,R] → [e−ε, eε] be any nondecreasing function which equals eφR on the

boundary. Using non­negativity of the integrand in the Floer energy, vanishing of dH

on [−ε, ε] ×M , and Stokes’ theorem, we obtain

AH(x+)− AH(x−) ≥

∫

Σ

u∗(dλ− dH ∧ dt) =

∫

Σ

u∗dλ

=

∫

Σ

(a, f )∗d(eφRα) =

∫

Σ

(a, f )∗d(ψα)

=

∫

Σ

(
ψ′(a)da ∧ f ∗α+ ψ(a)f ∗dα

)
.

Since (a, f ) is J0 ­holomorphic, da ∧ f ∗α and f ∗dα are nonnegative 2­forms on Σ .

Since ψ′(a) ≥ 0 and ψ(a) ≥ e−ε , and ψ was arbitrary with the given boundary

conditions, this yields a uniform bound (independent of R) on the Hofer energy of

(a, f ) (see [14, 30]).

Now suppose that there exists a sequence Rk → ∞ and JRk
­Floer cylinders uk :

R × S1 → Ŵ with asymptotic orbits x± lying on different sides of M . By the SFT

compactness theorem [14, 30], uk converges in the limit to a broken cylinder consisting

of components in the completions of V and Ŵ \ V satisfying the Floer equation and

J0 ­holomorphic components in R×M , glued along closed Reeb orbits in M . Since x±

lie on different sides of M , the punctures asymptotic to x± lie on different components.

Hence for large k there exists a separating embedded loop δk ⊂ R×S1 such that uk ◦δk

is C1 ­close to a (positively parameterized) closed Reeb orbit γ on M (which we view

as a loop in Ŵ lying on ∂V ). Here δk is parameterized as a positive boundary of the

component of R× S1 that is mapped to V̂ . Now we distinguish two cases.

Case (i): x− ⊂ V and x+ ⊂ Ŵ \ V . Then δk winds around the cylinder in the

positive S1 ­direction, and since the Hamiltonian action increases along Floer cylinders

we conclude

AH(x+) ≥ AH(γ) ≥ AH(x−).

Since
∫
γ λ =

∫
γ α ≥ 0, we obtain AH(γ) =

∫
γ λ−

∫ 1

0
c dt ≥ −c and hence AH(x+) ≥

−c.

Case (ii): x+ ⊂ V and x− ⊂ Ŵ \V . Then δk winds around the cylinder in the negative

S1 ­direction, and since the Hamiltonian action increases along Floer cylinders we

conclude

AH(x+) ≥ AH(−γ) ≥ AH(x−).

Since
∫
γ λ =

∫
γ α ≥ 0, we obtain AH(−γ) = −

∫
γ λ −

∫ 1

0
c dt ≤ −c and hence

AH(x−) ≤ −c.
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Our fourth lemma prohibits certain trajectories asymptotic to constant Hamiltonian

orbits. We consider the setup consisting of a completed Liouville domain Ŵ , a

cobordism V ⊂ W such that (W,V) is a Liouville pair, i.e. W = Wbottom ◦ V ◦W top ,

and a Hamiltonian H : Ŵ → R which is constant on V , which depends only on

the radial coordinate r in an open neighborhood of ∂V , and which is either strictly

convex or strictly concave as a function of r outside V in each component of the given

neighborhood of ∂V . Denote by c the value of H on V .

Let f : V → R be a Morse function which depends only on the radial coordinate r in

some neighborhood of ∂V and such that ∂±V are regular level sets. We require the

gradient of f to point inside/outside V along ∂−V if H is concave/convex near ∂−V ,

and to point inside/outside V along ∂+V if H is concave/convex near ∂+V .

Given ǫ > 0 we denote by Vǫ = ([1 − ǫ, 1] × ∂−V) ∪ V ∪ ([1, 1 + ǫ] × ∂+V) an

ǫ­thickening of V inside Ŵ . For ǫ > 0 small enough let

Hf ,ǫ : S1 × Ŵ → R

be a smooth Hamiltonian which is equal to c + ǫ2f on V , which is equal to H outside

Vǫ , and which smoothly interpolates between H and c + ǫ2f on [1− ǫ, 1]× ∂−V and

[1, 1 + ǫ]× ∂+V as a function of r which is either concave or convex, according to H

being concave or convex on each of these regions.

We consider admissible almost complex structures on Ŵ which are time­independent

on V , cylindrical near ∂V , and such that the gradient flow of f is Morse­Smale.

Lemma 2.5 Let f : V → R be a Morse function and Hf ,ǫ a Hamiltonian as above.

For ǫ > 0 small enough the following hold:

(1) If the gradient of f points inside V along ∂−V , then there is no Floer trajectory for

Hf ,ǫ which is asymptotic at the positive end to a constant orbit given by a critical point

of f and which is asymptotic at the negative end to an orbit in Wbottom .

(2) If the gradient of f points outside V along ∂−V , then there is no Floer trajectory

for Hf ,ǫ which is asymptotic at the negative end to a constant orbit given by a critical

point of f and which is asymptotic at the positive end to an orbit in Wbottom .

Proof To prove (1) we argue by contradiction and assume without loss of generality

that there is a sequence of positive real numbers ǫn → 0 and a sequence of Floer

trajectories un : R × S1 → Ŵ solving ∂sun + Jt(un)(∂tun − XHf ,ǫn
(un)) = 0 such

that lims→∞ un(s, t) = p+ , lims→−∞ un(s, t) = x−(t), with p+ a critical point of f ,

x− : S1 → Ŵ a 1­periodic orbit of H inside Wbottom , and J = (Jt) an admissible
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almost complex structure which is time­independent on V and such that the flow of the

gradient of f for the corresponding Riemannian metric is Morse­Smale.

We interpret V as a Morse­Bott critical manifold with boundary for the action functional

AH , and we view Hf ,ǫn , n ≥ 1 as determining a sequence of Morse perturbations

of AH along V . The Morse­Bott compactness theorem proved in a more restricted

Hamiltonian setting in [16, Proposition 4.7], and in a general SFT setting in [14, 30],

applies to our situation. Indeed, the fact that the Morse­Bott manifold V has boundary

plays no role and the proof of [16, Proposition 4.7] carries over mutatis mutandis.

It follows that, up to extracting a subsequence, the sequence un converges in the

terminology of [16, Definition 4.2] to a broken Floer trajectory [u] with gradient

fragments. The critical manifold V may be disconnected, but all its components are

located on the same action level AH = −c. Since Floer trajectories for H strictly

increase the action from the asymptote at the negative puncture to the asymptote at the

positive puncture, we infer that each level of the limit [u] contains at most one gradient

trajectory of f . Moreover, [u] has a representative ū = (u1, . . . ,uℓ) described as

follows: there exists 1 ≤ i ≤ ℓ such that

• u1, . . . ,ui−1 are Floer trajectories for H , with u1(−∞) = x− , uj(+∞) =

uj+1(−∞) for 1 ≤ j ≤ i− 2.

• ui is a Floer trajectory with one gradient fragment, i.e. ui = (ui, γi) with ui a

Floer trajectory for H and γi : [0,+∞) → V a negative gradient trajectory for

f , i.e. solving γ̇i = −∇f (γi), subject to the following conditions: ui−1(+∞) =

ui(−∞) if i > 1 and ui(−∞) = x− if i = 1; ui(+∞) = γi(0) ∈ V ; and

γi(+∞) = p+ if i = ℓ .

• ui+1, . . . ,uℓ are negative gradient trajectories uj = γj : R → V for f , i.e.

solving γ̇j = −∇f (γj), j = i + 1, . . . , ℓ , subject to the conditions γj(−∞) =

γj−1(+∞) for j = i + 1, . . . , ℓ , and γℓ(+∞) = p+ .

We now focus on the level ui = (ui, γi). Three situations can arise:

Case 1: γ(0) ∈ V \ ∂V . Then the Floer trajectory ui solves the Cauchy­Riemann

equation ∂su + J(u)∂tu = 0 on some half­cylinder [s0,+∞) × S1 for s0 ≫ 0. We

identify biholomorphically [s0,+∞)×S1 with a punctured disc Ḋ and, by assumption,

u : Ḋ→ V admits a continuous extension at the puncture. Thus 0 ∈ D is a removable

singularity and we can view ui : R × S1 → Ŵ as being defined on a Riemann sphere

with a single negative puncture, on which it solves a Floer equation. The asymptote

at the negative puncture is located in Wbottom by assumption, and the image of ui

intersects ∂−V . Then Lemma 2.2 gives a contradiction.
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Case 2: γ(0) ∈ ∂+V . Pick δ > 0 such that [1− δ, 1]× ∂+V does not contain critical

points of f . Since [u] is the limit of the sequence un , there exists n0 ≥ 1 such that

the image of un intersects the set (1 − δ, 1] × ∂+V . By assumption both asymptotes

of un are located in Wbottom ∪ V \ ([1 − δ, 1] × ∂+V), and Lemma 2.2 again gives a

contradiction.

Case 3: γ(0) ∈ ∂−V . The map γi : [0,∞) → V solves γ̇i = −∇f (γi) and enters

V in positive time, but at the same time −∇f points outwards along ∂V , which is a

contradiction.

The proof of (2) is entirely analogous: cases 1 and 2 are treated exactly in the same

way, while case 3 is proved similarly to (1) using that negative gradient trajectories

of a Morse function on V whose gradient points outwards along ∂V must exit V in

negative time.

Remark 2.6 The conclusions of Lemma 2.5 most likely do not hold if one exchanges

“positive" and “negative" in either of the statements (1) or (2). Although we do not

have an explicit example involving Floer trajectories, i.e. twice punctured spheres,

we can easily give an example involving pairs of pants. Consider to this effect a

Liouville domain W and the trivial cobordism V = [1
2
, 1]×∂W over the boundary. As

discussed in §10, the symplectic homology group SH
≤0
∗ (V) = SH

≤0
∗ (∂W) is a unital

graded commutative ring, and the unit maps to 1 ∈ Hn−∗(∂W) under the projection

SH
≤0
∗ (V)→ SH=0

∗ (V) ≃ Hn−∗(∂W). Assume now that the map SH<0
∗ (V)→ SH

≤0
∗ (V)

is nontrivial – which holds for example in the case of unit cotangent bundles of closed

manifolds – and consider a class α 6= 0 in its image. Since 1 · α = α 6= 0 we infer

the existence of at least one solution to a Floer equation defined on a pair of pants with

two positive punctures and one negative puncture, asymptotic at one of the positive

punctures to a constant orbit inside V , and asymptotic at the two other punctures to

orbits located in Wbottom = W \ V .

2.4 Symplectic homology of a filled Liouville cobordism

Let (W, λ) be a Liouville cobordism and (F, λ) a Liouville filling of (∂−W, α− =

λ∂−W). We compose F and W to the Liouville domain

WF := F ◦W

and denote its completion by ŴF . We define the class

H(W; F)
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of admissible Hamiltonians on ŴF with respect to the filling F to consist of functions

H : S1 × ŴF → R such that H ∈ H(ŴF) and H = 0 on W . When there is no danger

of confusion we shall use the notation

H(W)

for the set H(W; F) and refer to its elements as admissible Hamiltonians on W .

Remark 2.7 For the purposes of this section it would have been enough to define

admissible Hamiltonians by the condition H ≤ 0 on W . This would have allowed for

cofinal families consisting of Hamiltonians with nondegenerate 1­periodic orbits. The

definition that we have adopted requires to use small perturbations in order to define

Floer homology and is slightly cumbersome in that respect. However, it will prove

very convenient when we come to the definition of symplectic homology groups for

pairs.

Next we consider continuation maps. Let H− ≥ H+ be admissible Hamiltonians

and Hs , s ∈ R be a decreasing homotopy through admissible Hamiltonians such

that Hs = H± near ±∞ . Let Js be a homotopy of admissible almost complex

structures. Solutions of the Floer equation ∂su + Js(u)(∂tu − XHs(u)) = 0 satisfy a

maximum principle in the region where all the Hamiltonians Hs are linear and all

the almost complex structures are cylindrical, and their count defines continuation

maps FH∗(H+) → FH∗(H−). Since the homotopy is decreasing, the action increases

along solutions of the preceding s­dependent Floer equation, so it decreases under

the continuation map. We infer from this the existence of filtered continuation maps

FH
(−∞,b)
∗ (H+)→ FH

(−∞,b)
∗ (H−), b ∈ R , and more generally the existence of filtered

continuation maps

FH(a,b)
∗ (H+)→ FH(a,b)

∗ (H−), a < b.

For an admissible Hamiltonian H we also have natural morphisms determined by

inclusions of and quotients by appropriate subcomplexes

FH(a,b)
∗ (H)→ FH(a′,b′)

∗ (H), a ≤ a′, b ≤ b′.

These morphisms commute with the continuation morphisms, and we obtain more

general versions of the latter

FH(a,b)
∗ (H+)→ FH(a′,b′)

∗ (H−), a ≤ a′, b ≤ b′.

Given real numbers −∞ < a < b < ∞ , we define the filtered symplectic homology

groups of W (with respect to the filling F) to be

(5) SH(a,b)
∗ (W) =

−→
lim

H∈H(W;F)
FH(a,b)
∗ (H).
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The direct limit is taken here with respect to continuation maps and with respect to the

partial order ≺ on H(W; F) defined as follows: H ≺ K if and only if H(t, x) ≤ K(t, x)

for all (t, x). Note that in a cofinal family the Hamiltonian necessarily goes to +∞

on F ∪ ([1,∞) × ∂+W). Recall also that, in order to achieve nondegeneracy of the

1­periodic orbits, the Hamiltonian H needs to be perturbed on W where it is constant

equal to zero. Our convention is that we compute the direct limit using a cofinal family

for which the size of the perturbation goes to zero.

Taking the direct limit in (3) we obtain for a < b < c the tautological exact triangle

(6) SH(a,b)
∗ (W)→ SH(a,c)

∗ (W)→ SH(b,c)
∗ (W)→ SH(a,b)

∗ (W)[−1].

Definition 2.8 We define six versions of symplectic homology groups of W (with

respect to the filling F):

SH∗(W) =
−→
lim

b→∞

←−
lim

a→−∞
SH(a,b)
∗ (W) (FULL SYMPLECTIC HOMOLOGY)

SH>0
∗ (W) =

−→
lim

b→∞

←−
lim
aց0

SH(a,b)
∗ (W) (POSITIVE SYMPLECTIC HOMOLOGY)

SH≥0
∗ (W) =

−→
lim

b→∞

−→
lim
aր0

SH(a,b)
∗ (W) (NON­NEGATIVE SYMPLECTIC HOMOLOGY)

SH=0
∗ (W) =

←−
lim
bց0

−→
lim
aր0

SH(a,b)
∗ (W) (ZERO­LEVEL SYMPLECTIC HOMOLOGY)

SH≤0
∗ (W) =

←−
lim
bց0

←−
lim

a→−∞
SH(a,b)
∗ (W) (NON­POSITIVE SYMPLECTIC HOMOLOGY)

SH<0
∗ (W) =

−→
lim
bր0

←−
lim

a→−∞
SH(a,b)
∗ (W) (NEGATIVE SYMPLECTIC HOMOLOGY)

Since the actions of Reeb orbits are bounded away from zero, the direct/inverse limits

as a (or b) goes to zero stabilize for a (respectively b) sufficiently close to zero, so

they are not actual limits. Note that the actual inverse limits as a → −∞ in these

definitions are always applied to finite dimensional vector spaces when considering

field coefficients. This ensures that the inverse and direct limits preserve exactness of

sequences; see [28] for further discussion of the order of limits, and also [35, Chapter 8]

for a discussion of exactness.

The geometric content of the definition is the following. Let H be a Hamiltonian as

depicted in Figure 8, which is constant and very positive on F \ ([δ, 1] × ∂F) with

0 < δ < 1, which is linear of negative slope with respect to the r­coordinate on

[δ, 1] × ∂F , which vanishes on W , and which is linear of positive slope with respect
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to the r­coordinate on [1,∞[×∂+W . The 1­periodic orbits of H fall in four classes,

denoted F (orbits in the filling), I− (orbits that correspond to negatively parameterized

closed Reeb orbits on ∂−W ), I0 (constant orbits in W ), and I+ (orbits that correspond

to positively parameterized closed Reeb orbits on ∂+W ). As δ → 0 and as the

absolute values of the slopes go to ∞ , Hamiltonians of this type form a cofinal family

in H(W; F). The action of orbits in the class F becomes very negative and falls outside

any fixed and finite action window (a, b), so that the homology groups SH
(a,b)
∗ (W)

take into account only orbits of type I−0+ . Each flavour of symplectic homology

group SH♥∗ (W), ♥ ∈ {∅, > 0,≥ 0,= 0,≤ 0, < 0}, with SH∅
∗ (W) as a notation for

SH∗(W), respectively takes into account orbits in the class I−0+ , I+ , I0+ , I0 , I−0 , I−

for arbitrarily large values of the slope. As such, each of these symplectic homology

groups corresponds to a certain count of negatively parameterized closed Reeb orbits

on ∂−W , of constant orbits in W , and of positively parameterized closed Reeb orbits

on ∂+W .

1δ r

∂−W ∂+W

I0

I+

H

F

I−

F

1

Figure 8: Cofinal family of Hamiltonians for SH♥
∗ (W)

The next proposition will be proved as Proposition 5.5 below.

Proposition 2.9 Each of the above six versions of symplectic homology is an invariant

of the Liouville homotopy type of the pair (W; F).

The following computation is fundamental in applications.

Proposition 2.10 Let dim W = 2n. Then we have a canonical isomorphism

SH=0
∗ (W) ∼= Hn−∗(W).

Proof Consider a Hamiltonian K of the shape as in Figure 8. Since ŴF is symplecti­

cally aspherical, it follows from [66, Theorem 7.3] (see also [70, Proposition 1.4]) that
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if K is sufficiently C2 ­small on W , then its Floer chain complex reduces to the Morse

cochain complex for an appropriate choice of almost complex structure. Fix such a K

and denote by c > 0 its constant value on the filling F . Pick ε with 0 < ε < c, so

that the constant orbits in F have action −c < −ε. Since the Conley­Zehnder index

of a critical point is related to its Morse index by CZ = n−Morse, we get a canonical

isomorphism FH
(−ε,ε)
∗ (K) ∼= Hn−∗(W).

Consider any other Hamiltonian H of the shape as in Figure 8 with K ≤ H . We choose

ε smaller than the smallest action of a closed Reeb orbit on ∂W . Then all nonconstant

orbits of H have action outside (−ε, ε) and a monotone homotopy from K to H yields

a continuation isomorphism FH
(−ε,ε)
∗ (K)

∼=
→ FH

(−ε,ε)
∗ (H), which induces in the direct

limit over H a canonical isomorphism FH
(−ε,ε)
∗ (K)

∼=
→ SH

(−ε,ε)
∗ (W) = SH=0

∗ (W).

Remark 2.11 If W is a Liouville domain we have

SH<0
∗ (W) = 0, SH≤0

∗ (W) = SH=0
∗ (W), SH≥0

∗ (W) = SH∗(W),

and the group SH>0
∗ (W) coincides by definition with the group SH+

∗ (W) of [15]. If W

is a Liouville cobordism with Liouville filling F we have (by a standard continuation

argument)

SH>0
∗ (W) ∼= SH>0

∗ (WF).

Proposition 2.12 The following “tautological" exact triangles hold for the symplectic

homology groups of W :

SH<0
∗

// SH∗

~~⑦⑦
⑦⑦
⑦⑦

SH
≥0
∗

[−1]

aa❈❈❈❈❈❈

SH
≤0
∗

// SH∗

~~⑦⑦
⑦⑦
⑦⑦

SH>0
∗

[−1]

aa❈❈❈❈❈❈

SH<0
∗

// SH
≤0
∗

}}⑤⑤
⑤⑤
⑤⑤

SH=0
∗

[−1]

aa❇❇❇❇❇❇

SH=0
∗

// SH
≥0
∗

}}⑤⑤
⑤⑤
⑤⑤

SH>0
∗

[−1]

aa❇❇❇❇❇❇

Proof We prove the exactness of the triangle

(7) SH≤0
∗ (W)→ SH∗(W)→ SH>0

∗ (W)→ SH≤0
∗ (W)[−1] .

The proofs for the other three triangles are similar and left to the reader.

Let ε > 0 be smaller than the minimal period of a closed characteristic on ∂+W . It

follows from the definitions that

SH≤0
∗ (W) =

←−
lim

a→−∞
SH(a,ε)
∗ (W)
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and

SH>0
∗ (W) =

−→
lim

b→∞
SH(ε,b)
∗ (W).

For fixed a, b ∈ R such that −∞ < a < 0 < ε < b < ∞ we have from (6) an exact

triangle

SH(a,ε)
∗ (W)→ SH(a,b)

∗ (W)→ SH(ε,b)
∗ (W)→ SH(a,ε)

∗ (W)[−1] .

All the terms in this exact triangle are finite dimensional vector spaces. The inverse

limit functor is exact on directed systems consisting of finite dimensional vector spaces,

and the direct limit functor is always exact. We then obtain (7) by first taking the inverse

limit on a→ −∞ , and then taking the direct limit on b→∞ .

Symplectic homology groups relative to boundary components. Let A ⊂ ∂W be a

union of boundary components of W and denote

A± = A ∩ ∂±W.

We further assume that A− is a union of boundaries of components of F . We refer to

such an A as an admissible subset of ∂W .

Examples. One obvious choice is A− = ∂−W , which satisfies the assumption for any

F . If each component of F has connected boundary then one can take A− ⊂ ∂−W

arbitrary. If F consists of a single connected component then the only possible choices

are A− = ∂−W or A− = ∅ . Note also that, if A satisfies the assumption, then

Ac := ∂W \ A also does.

Let FA− denote the filling of (A−, α−) consisting of the union of the components of F

with boundary contained in A− . Denote

(ŴF \W)A = int FA− ∪ ((1,∞) × A+),

so that

ŴF \W = (ŴF \W)A ⊔ (ŴF \W)Ac .

Given real numbers −∞ < a < b < ∞ , we define the filtered symplectic homology

groups of W relative to A (with respect to the filling F) to be

(8) SH(a,b)
∗ (W,A) =

−→
lim

H ∈ H(W; F)

H →∞ on (ŴF \W)Ac

←−
lim

H ∈ H(W; F)

H → −∞ on (ŴF \W)A

FH(a,b)
∗ (H).

Definition 2.13 We define six flavors of symplectic homology groups of W relative to

A, or symplectic homology groups of the pair (W,A),

SH♥∗ (W,A), ♥ ∈ {∅, > 0,≥ 0,= 0,≤ 0, < 0},
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by the formulas in Definition 2.8 with SH
(a,b)
∗ (W) replaced by SH

(a,b)
∗ (W,A). The

notation SH♥∗ with ♥ = ∅ refers to SH∗ .

We refer to Figure 9 for an illustration of several significant cases of Hamiltonians

used in the computation of relative symplectic homology groups. The case A = ∅

corresponds to Figure 8. In each case, in the limit the orbits that appear in the filling

either fall below or fall above any fixed and finite action window, so that only orbits

appearing near W are taken into account. As an example, SH∗(W, ∂−W) corresponds to

a a certain count of positively parameterized closed Reeb orbits on ∂−W , of constant

orbits in W , and of positively parameterized closed Reeb orbits on ∂+W . Similar

interpretations hold for SH∗(W, ∂+W), SH∗(W, ∂W), and also for all their ♥­flavors.

In Figure 9 we encircled with a dashed line the region which contains the orbits that

are taken into account. The mnemotechnic rule is the following:

To compute SH♥∗ (W,A) one must use a family of Hamiltonians that go to −∞ near A

and that go to +∞ near ∂W \ A.

SH∗(W, ∂+W)

SH∗(W) SH∗(W, ∂W)

∂
+W∂

−W

∂
+W∂

−W ∂
−W

∂
−W ∂

+W

∂
+W

SH∗(W, ∂−W)

Figure 9: Shape of Hamiltonians for SH∗(W,A) with A = ∅, ∂W, ∂−W, ∂+W
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Our notation is motivated by the following analogue of Proposition 2.10, which is

proved in the same way.

Proposition 2.14 Let dim W = 2n and A ⊂ ∂W be admissible. Then we have a

canonical isomorphism

SH=0
∗ (W,A) ∼= Hn−∗(W,A).

�

The tautological exact triangles described in Proposition 2.12 also exist for the relative

symplectic homology groups SH♥∗ (W,A) (same proof). Also, the relative symplectic

homology groups SH♥∗ (W,A) are invariants of the Liouville homotopy type of the pair

(W,F) (see §7.3, compare Propositions 2.9 and 2.16).

2.5 Symplectic homology groups of a pair of filled Liouville cobordisms

A Liouville pair, or pair of Liouville cobordisms, is a triple (W,V, λ) where (W, λ) is a

Liouville cobordism and V ⊂ W is a codimension 0 submanifold with boundary such

that

(i) (V, λ|V ) is a Liouville cobordism;

(ii) W \ V is a disjoint union of two (possibly empty) Liouville cobordisms Wbottom

and W top such that

W = Wbottom ◦ V ◦W top.

We fix a filling F of W and define WF , ŴF as above. We define the class

H(W,V; F)

of admissible Hamiltonians on (W,V) with respect to the filling F to consist of elements

H : S1× ŴF → R such that H ∈ H(ŴF) and H = 0 on W \V (see Figure 14). Given

real numbers −∞ < a < b < ∞ , we define the action­filtered symplectic homology

groups of (W,V) (with respect to the filling F) to be

(9) SH(a,b)
∗ (W,V) =

−→
lim

H ∈ H(W, V; F)

H →∞ on (ŴF \W)

←−
lim

H ∈ H(W, V; F)

H → −∞ on int V

FH(a,b)
∗ (H).

Definition 2.15 We define six flavors of symplectic homology groups of the Liouville

pair (W,V),

SH♥∗ (W,V), ♥ ∈ {∅, > 0,≥ 0,= 0,≤ 0, < 0},

by the formulas in Definition 2.8 with SH
(a,b)
∗ (W) replaced by SH

(a,b)
∗ (W,V). The

notation SH♥∗ with ♥ = ∅ refers to SH∗ .
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To describe the geometric content of the definition we consider a cofinal family of

Hamiltonians H of the shape described in Figure 14. Heuristically, each of the groups

SH♥∗ (W,V) represents a certain count of negatively parameterized closed Reeb orbits

on ∂−W and ∂−V , of constant orbits in W \ V , and of positively parameterized closed

Reeb orbits on ∂+V and ∂+W , which correspond to generators of type I−0+ and III−0+

in Figure 14. However, unlike in the case of (relative) symplectic homology groups

for a single cobordism, it is not possible to arrange the parameters of the Hamiltonians

in the cofinal family so that for a fixed and finite value of the action window (a, b) the

group FH
(a,b)
∗ (H) takes into account only orbits of types I−0+ and III−0+ . Instead, we

will use in §6 below an indirect argument relying on the confinement lemmas in §2.3

and on the properties of continuation maps in order to prove an isomorphism between

SH♥∗ (W,V) and SH♥∗ (Wbottom, ∂−V) ⊕ SH♥∗ (W top, ∂+V) (Theorem 6.8). There we

will also see (Corollary 6.9) that Definition 2.13 is a special case of Definition 2.15 by

taking for V a tubular neighbourhood of a union of boundary components A .

The following three results generalize the corresponding ones for a single cobordism.

Proposition 2.16 Each of the above six versions of symplectic homology is an invari­

ant of the Liouville homotopy type of the triple (W,V,F).

Proof See Proposition 7.14 below.

Proposition 2.17 Let dim W = 2n. Then we have a canonical isomorphism

SH=0
∗ (W,V) ∼= Hn−∗(W,V).

Proof The proof of Proposition 2.10 does not carry over to this situation because

Hamiltonians as in Figure 14 may have nonconstant orbits of action zero of type II− .

Instead, we combine the Excision Theorem 6.8 with Proposition 2.14 and excision in

singular cohomology to obtain canonical isomorphisms

SH=0
∗ (W,V) ∼= SH=0

∗ (Wbottom, ∂−V)⊕ SH=0
∗ (W top, ∂+V)

∼= Hn−∗(Wbottom, ∂−V)⊕ Hn−∗(W top, ∂+V)

∼= Hn−∗(W,V).

The proof of the following proposition is verbatim the same as the one of Propo­

sition 2.12. Recall to this effect that we are using field coefficients, and note that
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SH
(a,b)
∗ (W,V) is finite dimensional for any choice of parameters −∞ < a < b < ∞ .

This holds because in the nondegenerate case there are only a finite number of closed

Reeb orbits on ∂(W \ V) with action smaller than max(|a|, |b|), and only these or­

bits contribute to the relevant Floer complex for the cofinal family of Hamiltonians

described in §6.

Proposition 2.18 The following tautological exact triangles hold for the symplectic

homology groups of a pair (W,V):

SH<0
∗

// SH∗

~~⑦⑦
⑦⑦
⑦⑦

SH
≥0
∗

[−1]

aa❈❈❈❈❈❈

SH
≤0
∗

// SH∗

~~⑦⑦
⑦⑦
⑦⑦

SH>0
∗

[−1]

aa❈❈❈❈❈❈

SH<0
∗

// SH
≤0
∗

}}⑤⑤
⑤⑤
⑤⑤

SH=0
∗

[−1]

aa❇❇❇❇❇❇

SH=0
∗

// SH
≥0
∗

}}⑤⑤
⑤⑤
⑤⑤

SH>0
∗

[−1]

aa❇❇❇❇❇❇

�

2.6 Pairs of multilevel Liouville cobordisms with filling

As mentioned in the Introduction, according to our conventions for pairs of Liouville

cobordisms the symplectic homology group SH∗(W, ∂W) cannot be interpreted as

SH∗(W, [0, 1] × ∂W) in case ∂W has both negative and positive components. We

explain in this section a further extension of the setup which removes this limitation.

Let ℓ ≥ 0 be an integer. A Liouville cobordism with ℓ levels is, in case ℓ ≥ 1, a

disjoint union W = W1 ⊔ W2 ⊔ · · · ⊔Wℓ of Liouville cobordisms, called levels, and

is the empty set if ℓ = 0. We think of W1 as being the “bottom­most" level, and of

Wℓ as being the “top­most" level. Each Wi may itself be disconnected. Our previous

definition of Liouville cobordisms corresponds to the case ℓ = 1. We also refer to

such a W as being a multilevel Liouville cobordism.

Let V and W be two Liouville cobordisms with ℓ levels. We say that V and W

can be interweaved if ∂+Vi = ∂−Wi for i = 1, . . . , ℓ and ∂+Wi = ∂−Vi+1 for

i = 1, . . . , ℓ − 1. The interweaving of V and W , denoted V ⋄ W , is the Liouville

cobordism with one level V1 ◦W1 ◦· · · ◦Vℓ ◦Wℓ . We allow in the definition the bottom­

most or the top­most level of V or W to be empty, and in that case the condition for
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∂+Wℓ

Vℓ WℓW1V1

∂−V1

Figure 10: Interweaving of two multilevel cobordisms

interweaving V and W which involves that level has to be understood as being void.

In the case of cobordisms with one level, interweaving specialises to composition. See

Figure 10.

Given a Liouville cobordism W with ℓ ≥ 1 levels, a Liouville filling for W is a

Liouville cobordism with ℓ levels F = F1 ⊔ · · · ⊔ Fℓ such that F1 is a nonempty

Liouville domain and F and W can be interweaved. In the case ℓ = 1, this notion

specialises to our previous notion of a Liouville filling.

Given a Liouville cobordism W with one level, a Liouville sub­cobordism V ⊂ W is

a codimension 0 submanifold such that with respect to the induced Liouville form V

and Vc = W \ V are multilevel Liouville cobordisms that can be interweaved. If V

has only one level then (W,V) is a Liouville pair in the sense of §2.5.

Given a multilevel Liouville cobordism W , a Liouville sub­cobordism V ⊂ W consists

of a collection of (possibly empty) multilevel Liouville sub­cobordisms, one for each of

the levels of W . We speak in such a situation of a pair of multilevel Liouville cobordisms.

In case W has a filling, we speak of a pair of multilevel Liouville cobordisms with filling.

Let (W,V) be a pair of multilevel Liouville cobordisms with filling F . Denote WF =

F ⋄W and consider the symplectization ŴF . We define the class

H(W,V; F)

of admissible Hamiltonians on (W,V) with respect to the filling F to consist of elements

H : S1× ŴF → R such that H ∈ H(ŴF) and H = 0 on W \V (see Figure 11). Given

real numbers −∞ < a < b < ∞ , we define the action­filtered symplectic homology

groups of (W,V) (with respect to the filling F) to be

(10) SH(a,b)
∗ (W,V) =

−→
lim

H ∈ H(W, V; F)

H →∞ on (ŴF \W)

←−
lim

H ∈ H(W, V; F)

H → −∞ on int V

FH(a,b)
∗ (H).
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F1

W1

V1

F2

W2

V2

Fℓ

Wℓ

Vℓ

r

Figure 11: Hamiltonian in H(W,V; F) for a multilevel cobordism

Definition 2.19 We define six flavors of symplectic homology groups of the multilevel

Liouville pair (W,V),

SH♥∗ (W,V), ♥ ∈ {∅, > 0,≥ 0,= 0,≤ 0, < 0},

by the formulas in Definition 2.8 with SH
(a,b)
∗ (W) replaced by SH

(a,b)
∗ (W,V). The

notation SH♥∗ with ♥ = ∅ refers to SH∗ .

The above definition obviously specialises to Definition 2.15 in case W is a filled

Liouville cobordism with one level.

Within the paper we state and prove all the results for pairs of one level Liouville

cobordisms with filling. However, all these results hold more generally for pairs (W,V)

of multilevel Liouville cobordisms with filling. The formulation of these more general

statements is verbatim the same. The proofs are only superficially more involved: a

repeated application of the Excision Theorem 6.8 allows one to restrict to the case where

W is a one level cobordism with filling, and the case of a multilevel sub­cobordism

V is treated in exactly the same way as that of a one level sub­cobordism. For these

reasons, we will not give in the sequel any more details regarding multilevel Liouville

cobordisms and will restrict to one level pairs.

3 Cohomology and duality

3.1 Symplectic cohomology for a pair of filled Liouville cobordisms

We continue with the notation of the previous section. Our definition of symplectic

cohomology for a pair of filled Liouville cobordisms extends the one for Liouville
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domains used in [29, §2.5].

The starting point of the definition is the dualization of the Floer chain complex with

coefficient field K . We denote

FC∗>a(H) =
∏

x ∈ P(H)

AH(x) > a

K · x.

The grading is given by the Conley­Zehnder index, and the differential δ : FCk
>a(H)→

FCk+1
>a (H) is defined by

δx− =
∑

CZ(x+)=CZ(x−)+1

#M(x−, x+; H, J) · x+.

The differential increases the action, so that FC∗>b(H) ⊂ FC∗>a(H) is a subcomplex if

a < b. We define filtered Floer cochain groups

FC∗(a,b)(H) = FC∗>a(H)/FC∗>b(H).

We have a natural identification

FC∗(a,b)(H) ∼= FC(a,b)
∗ (H)∨, δ = ∂∨,

where FC
(a,b)
∗ (H)∨ = HomR(FC

(a,b)
∗ (H),R).

We have natural morphisms at filtered cochain level defined by shifting the action

window

FC∗(a′,b′)(H)→ FC∗(a,b)(H), a ≤ a′, b ≤ b′.

These morphisms are dual to the ones defined on Floer chain groups. Also, given

admissible Hamiltonians H− ≥ H+ and a decreasing homotopy from H− to H+ , we

have filtered continuation maps which commute with the differentials

FC∗(a,b)(H−)→ FC∗(a,b)(H+).

These continuation maps are dual to the ones defined on Floer chain groups, and

commute with the morphisms defined by shifting the action window. The homotopy

type of the continuation maps does not depend on the choice of decreasing homotopy

with fixed endpoints.

Let W be a Liouville cobordism with filling F , and let A ⊂ ∂W be an admissible

union of boundary components as in §2.4. Recall also the notation Ac = ∂W \ A and

(ŴF \W)A = int FA− ∪ ((1,∞)×A+), and recall also the class H(W; F) of admissible

Hamiltonians from §2.4. Let −∞ < a < b < ∞ be real numbers. We define the
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filtered symplectic cohomology groups of W relative to A (with respect to the filling

F) to be

(11) SH∗(a,b)(W,A) =
−→
lim

H ∈ H(W; F)

H → −∞ on (ŴF \W)A

←−
lim

H ∈ H(W; F)

H →∞ on (ŴF \W)Ac

FH∗(a,b)(H).

The mnemotechnic rule is the same as in the case of symplectic homology:

To compute SH∗(a,b)(W,A) one must use a family of Hamiltonians that go to −∞ near

A and that go to +∞ near ∂W \ A.

Definition 3.1 We define six flavors of symplectic cohomology groups of W relative

to A , or symplectic cohomology groups of the pair (W,A),

SH∗♥(W,A), ♥ ∈ {∅,≥ 0, > 0,= 0,≤ 0, < 0},

by the following formulas (the notation SH∗∅ refers to SH∗):

SH∗(W,A) =
−→
lim

a→−∞

←−
lim

b→∞
SH∗(a,b)(W,A) (FULL SYMPLECTIC COHOMOLOGY)

SH∗<0(W,A) =
−→
lim

a→−∞

←−
lim
bր0

SH∗(a,b)(W,A) (NEGATIVE SYMPLECTIC COHOMOLOGY)

SH∗≤0(W,A) =
−→
lim

a→−∞

−→
lim
bց0

SH∗(a,b)(W,A) (NON­POSITIVE SYMPLECTIC COHOMOLOGY)

SH∗=0(W,A) =
←−
lim
aր0

−→
lim
bց0

SH∗(a,b)(W,A) (ZERO­LEVEL SYMPLECTIC COHOMOLOGY)

SH∗≥0(W,A) =
←−
lim
aր0

←−
lim

b→∞
SH∗(a,b)(W,A) (NON­NEGATIVE SYMPLECTIC COHOMOLOGY)

SH∗>0(W,A) =
−→
lim
aց0

←−
lim

b→∞
SH∗(a,b)(W,A) (POSITIVE SYMPLECTIC COHOMOLOGY)

Let now (W,V) be a pair of Liouville cobordisms with filling F as in §2.5, and recall

the class H(W,V; F) of admissible Hamiltonians for the pair (W,V) with respect to the

filling F . Let −∞ < a < b < ∞ be real numbers. We define the filtered symplectic

cohomology groups of (W,V) (with respect to the filling F) to be

(12) SH∗(a,b)(W,V) =
−→
lim

H ∈ H(W, V; F)

H → −∞ on V

←−
lim

H ∈ H(W, V; F)

H →∞ on (ŴF \W)

FH∗(a,b)(H).
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Definition 3.2 We define six flavors of symplectic cohomology groups of the Liouville

pair (W,V),

SH∗♥(W,V), ♥ ∈ {∅, > 0,≥ 0,= 0,≤ 0, < 0},

by the formulas in Definition 3.1 with SH∗(a,b)(W,A) replaced by SH∗(a,b)(W,V). The

notation SH∗∅ refers to SH∗ .

The discussion from §2.5 regarding the geometric content of the definition holds for

cohomology as well. The following proposition is proved similarly to Proposition 2.17.

Proposition 3.3 Let (W,V) be a pair of Liouville cobordisms with filling of dimension

2n. Then we have a canonical isomorphism

SH∗=0(W,V) ∼= Hn−∗(W,V).

�

3.2 Poincaré duality

The differences and the similarities between symplectic homology and symplectic

cohomology are mainly dictated by the order in which we consider direct and inverse

limits. We illustrate this by the following theorem, which was one of our guidelines

for the definitions.

Theorem 3.4 (Poincaré duality) Let W be a filled Liouville cobordism and A ⊂

∂W be an admissible union of connected components. Then we have a canonical

isomorphism

SH♥∗ (W,A) ∼= SH−∗−♥(W,Ac).

Here the symbol ♥ takes the values ∅, > 0,≥ 0,= 0,≤ 0, < 0, and −♥ is by

convention equal to ∅, < 0,≤ 0,= 0,≥ 0, > 0, respectively.

Proof Given a time­dependent 1­periodic Hamiltonian H : S1 × Ŵ → R we denote

H̄ : S1 × Ŵ → R , H̄(t, x) = −H(−t, x). Given a time­dependent 1­periodic family

of almost complex structures J = (Jt)t∈S1 on Ŵ , we denote J̄ = (J̄t), t ∈ S1 with

J̄t = J−t . Given a loop x : S1 → Ŵ , we denote x̄ : S1 → Ŵ , x̄(t) = x(−t). Given a

cylinder u : R× S1 → Ŵ , we denote ū : R× S1 → Ŵ , ū(s, t) = u(−s,−t).

The key to the proof of Poincaré duality for symplectic homology is the canonical

isomorphism, which will be also referred to as Poincaré duality,

(13) FC(a,b)
∗ (H, J) ∼= FC−∗(−b,−a)(H̄, J̄),
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obtained by mapping each 1­periodic orbit x of H to the 1­periodic orbit of H̄ given by

the oppositely parameterized loop x̄, and each Floer cylinder u for (H, J) to the cylinder

ū, which is a Floer cylinder for (H̄, J̄). Note that the positive and negative punctures get

interchanged when passing from u to ū, so that a chain complex is transformed into a

cochain complex. It is straightforward that AH̄(x̄) = −AH(x). It is less straightforward,

but true, that CZ(x̄) = −CZ(x). The proof follows from [29, Lemma 2.3], taking into

account that the flows of H̄ and H satisfy the relation ϕt
H̄

= ϕ−t
H . We refer to [29,

Proposition 2.2] for a discussion of this Poincaré duality isomorphism in the context

of autonomous Hamiltonians, and for a precise statement of its compatibility with

continuation maps.

The isomorphism (13) directly implies a canonical isomorphism

(14) SH(a,b)
∗ (W,A) ∼= SH−∗(−b,−a)(W,Ac).

To see this, note that the class of admissible Hamiltonians H(W; F) is stable under

the involution H 7→ H̄ . It follows that we can present SH−∗(−b,−a)(W,Ac) as a first­

inverse­then­direct limit on FH−∗(−b,−a)(H̄) for H ∈ H(W; F), whereas SH
(a,b)
∗ (W,A) is

presented as a first­inverse­then­direct limit on FH
(a,b)
∗ (H). In view of (13) it is enough

to see that the inverse and direct limits in the definitions are taken over the same sets.

Indeed, for SH
(a,b)
∗ (W,A) the inverse limit is taken over Hamiltonians H that go to

−∞ on (ŴF \W)A , which is equivalent to H̄ going to ∞ on (ŴF \W)A , and this is

precisely the directed set for the inverse limit in the definition of SH−∗(−b,−a)(W,Ac). A

similar discussion holds for the direct limit.

The isomorphisms SH♥∗ (W,A) ∼= SH−∗−♥(W,Ac) follow from (14) and from the defini­

tions. We analyse the case ♥ = “ > 0" and leave the other cases to the reader. In the

definition of SH>0
∗ (W,A) the inverse limit is taken over a ց 0 and the direct limit is

taken over b→∞ , which is equivalent to −aր 0 and −b→ −∞ . After relabelling

(−b,−a) = (a′, b′), this is the same as b′ ր 0 and a′ → −∞ , which corresponds to

the definition of SH−∗<0 (W,Ac).

3.3 Algebraic duality and universal coefficients

We discuss in this section the algebraic duality between homology and cohomology in

the symplectic setting that we consider. Recall that we use field coefficients.

The starting observation is that, given a degree k , real numbers a < b, admissible

Hamiltonians H ≤ H′ , an admissible decreasing homotopy (Hs), s ∈ R connecting

H′ to H , and a regular homotopy of almost complex structures (Js), s ∈ R connecting



Symplectic homology and the Eilenberg–Steenrod axioms 47

an almost complex structure J′ which is regular for H′ to an almost complex structure

J which is regular for H , there are canonical identifications

FCk
(a,b)(H, J) ∼= FC

(a,b)
k (H, J)∨, σk ∼= (σk)∨,

where σk : FC
(a,b)
k (H, J) → FC

(a,b)
k (H′, J′), σk : FCk

(a,b)(H
′, J′) → FCk

(a,b)(H, J) are

the continuation maps induced by the homotopy (Hs, Js). These identifications follow

from the definitions and hold with arbitrary coefficients.

We now turn to the relationship between SH
(a,b)
∗ (W,V) and SH∗(a,b)(W,V). Since we

work in a finite action window (a, b), both the direct and the inverse limits in the defi­

nition of SH
(a,b)
∗ (W,V) and SH∗(a,b)(W,V) eventually stabilize, so that we can compute

these groups using only one suitable Hamiltonian. The universal coefficient theorem

then implies with coefficients in a field K the existence of a canonical isomorphism

(see for example [20, §V.7])

(15) SHk
(a,b)(W,V;K) ∼= SH

(a,b)
k (W,V;K)∨.

The issue of comparing SHk
♥(W,V) and SH♥k (W,V) becomes therefore a purely alge­

braic one, as it amounts to comparing via duality the various double limits involved

in Definitions 2.8 and 3.1 (see also Definitions 2.15 and 3.2). The key property is the

following: given a direct system of modules Mα and a module N over some ground

ring R , the natural map

(16) HomR(lim
−→

Mα,N)
≃
−→ lim

←−
HomR(Mα,N)

is an isomorphism. However, it is generally not true that, given an inverse system Mα ,

the natural map

HomR(lim
←−

Mα,N)←− lim
−→

HomR(Mα,N)

is an isomorphism (the two sets actually have different cardinalities in general). In our

situation, N = R is the coefficient field K .

We omit in the sequel the field K from the notation.

Proposition 3.5 Let (W,V) be a pair of Liouville cobordisms with filling. Using field

coefficients we have canonical isomorphisms

SHk
♥(W,V) ∼= SH♥k (W,V)∨, ♥ ∈ {> 0,≥ 0,= 0}

and

SH♥k (W,V) ∼= SHk
♥(W,V)∨, ♥ ∈ {< 0,≤ 0,= 0}.
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Proof Assume first ♥ ∈ {> 0,≥ 0,= 0}. In all three cases, the limit over a→ 0 in

the definition of SH♥∗ (W,V) and SH∗♥(W,V) stabilizes, and the result follows from (15)

and (16) applied to the limit b→∞ .

Assume now ♥ ∈ {< 0,≤ 0,= 0}. In all three cases the limit over b → 0 in

the definition of SH♥∗ (W,V) and SH∗♥(W,V) stabilizes, and the result follows again

from (16) applied to the limit a→ −∞ , by rewriting (15) as

SH
(a,b)
k (W,V) ∼= SHk

(a,b)(W,V)∨.

This holds because the vector spaces which are involved are finite dimensional.

Corollary 3.6 (a) Let (W,V) be a pair of filled Liouville cobordisms with vanishing

first Chern class. Suppose that ∂V and ∂W carry only finitely many closed Reeb orbits

of any given degree. Then with field coefficients we have for all flavors ♥ canonical

isomorphisms

SHk
♥(W,V) ∼= SH♥k (W,V)∨ and SH♥k (W,V) ∼= SHk

♥(W,V)∨.

(b) Let W be a Liouville domain. Then with field coefficients we have canonical

isomorphisms

SHk(W) ∼= SHk(W)∨.

Proof Part (a) follows from the proof as Proposition 3.5, using that all inverse limits

remain finite dimensional. Part (b) holds because for a Liouville domain we have

SHk(W) = SH
≥0
k (W).

Remark 3.7 Proposition 3.5 illustrates the fact that the full symplectic homology

and cohomology groups of a cobordism or of a pair of cobordisms are of a mixed

homological­cohomological nature. This is due to the presence of both a direct and of

an inverse limit in the definitions. As such, the full version SH∗(W,V) does not satisfy

in general any form of algebraic duality. In fact, in Example 9.8 below we construct a

Liouville cobordism W for which in some degree k (and with Z2 ­coefficients) neither

SHk(W) ∼= SHk(W)∨ nor SHk(W) ∼= SHk(W)∨ holds.

4 Homological algebra and mapping cones

4.1 Cones and distinguished triangles

Let R be a ring. Let Ch denote the category of chain complexes of R­modules. The

objects of this category are chain complexes of R­modules, and the morphisms are chain



Symplectic homology and the Eilenberg–Steenrod axioms 49

maps of degree 0. Let Kom denote the category of chain complexes of R­modules

up to homotopy. The objects are the same as the ones of Ch, and the morphisms are

equivalence classes of degree 0 chain maps with respect to the equivalence relation

given by homotopy equivalence. We use homological Z­grading, and we use the

following notational conventions :

(i) given a morphism X −→ Y in Kom, we use the notation X
f
−→ Y for a specific

representative f of this morphism. Thus f is a morphism in Ch.

(ii) all diagrams are understood to be commutative in Kom. If we specify represen­

tatives in Ch for the morphisms, we say that a diagram is strictly commutative

if it commutes in Ch.

(iii) we use the notation

X

s

f //

ϕ

��

Y

ψ

��
X′

g
// Y ′

for a diagram in Ch which is commutative modulo a specified homotopy s, i.e.

such that ψf − gϕ = s∂X + ∂Y′s. In particular, the diagram

X
f //

ϕ

��

Y

ψ

��
X′

g
// Y ′

is commutative in Kom.

(iv) given a chain complex X = {(Xn), ∂X} and k ∈ Z , we define the shifted complex

X[k] by

X[k]n = Xn+k, n ∈ Z, ∂X[k] = (−1)k∂X.

Given a morphism f : X → Y , we define f [k] : X[k]→ Y[k] as f [k] = f .

Our conventions for cones and distinguished triangles follow the ones of Kashiwara

and Schapira [56, Chapter 1], except that we use dual homological grading. Given a

chain map f : X → Y , we define its cone to be the chain complex

C(f ) = Y ⊕ X[−1], ∂C(f ) =

(
∂Y f

0 ∂X[−1]

)
=

(
∂Y f

0 −∂X

)

We have in particular a short exact sequence of chain complexes

(17) 0 // Y
α(f ) // C(f )

β(f ) // X[−1] // 0
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where α(f ) =

(
IdY

0

)
is the canonical inclusion, and β(f ) =

(
0 IdX[−1]

)
is the

canonical projection. For simplicity we abbreviate in the sequel the identity maps by

1, e.g. we write α(f ) =

(
1

0

)
and β(f ) =

(
0 1

)
.

One of the key features of the cone construction is that the connecting homomorphism

in the homology long exact sequence associated to the short exact sequence (17) is

equal to f∗ , the morphism induced by f .

By definition, a triangle in Kom is a sequence of morphisms

(18) X
f // Y

g // Z
h // X[−1]

A distinguished triangle is a triangle which is isomorphic in Kom to a triangle of the

form

(19) X
f // Y

α(f ) // C(f )
β(f ) // X[−1]

We call (19) a model distinguished triangle.

It follows from the definition that a distinguished triangle (18) induces a long exact

sequence in homology

(20) · · ·H∗(X)
f∗ // H∗(Y)

g∗ // H∗(Z)
h∗ // H∗−1(X)

f∗ // · · ·

We shall often represent such a long exact sequence as

H(X)
f∗ // H(Y)

g∗{{✇✇
✇✇
✇✇
✇✇
✇

H(Z)

h∗

[−1]
cc●●●●●●●●●

We call such a diagram an exact triangle.

The above definition of the class of distinguished triangles makes Kom into a trian­

gulated category in the sense of Verdier. This means that the class of distinguished

triangles satisfies Verdier’s axioms (TR0)–(TR5) (see for example [56, §§1.4­1.5]).

One of the essential axioms is (TR3): a triangle (18) is distinguished if and only if the

triangle

Y
g // Z

h // X[−1]
−f [−1] // Y[−1]

is distinguished. This follows from Lemma 4.1(i) below, see also [56, Lemma 1.4.2].
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Lemma 4.1 Let f : X → Y be a morphism in Ch.

(i) [56, Lemma 1.4.2] There exists a morphism in Ch

Φ : X[−1]→ C(α(f ))

which is an isomorphism in Kom, with an explicit homotopy inverse in Ch denoted

Ψ : C(α(f ))→ X[−1],

and such that the diagram below commutes in Kom:

Y
α(f ) // C(f )

β(f ) // X[−1]
−f [−1] //

Φ

��

Y[−1]

Y
α(f )

// C(f )
α(α(f ))

// C(α(f ))
β(α(f ))

//

Ψ

OO

Y[−1]

(ii) There exists a morphism in Ch

τ : Y[−1]→ C(β(f ))

which is an isomorphism in Kom, with an explicit homotopy inverse in Ch denoted

σ : C(β(f ))→ Y[−1],

and such that the diagram below commutes in Kom

C(f )
β(f ) // X[−1]

−f [−1] // Y[−1]

τ

��

−α(f )[−1] // C(f )[−1]

C(f )
β(f )

// X[−1]
α(β(f ))[−1]

// C(β(f ))

σ

OO

β(β(f ))
// C(f )[−1]

Proof (i) (following [56]) Taking into account that C(α(f )) = Y ⊕ X[−1] ⊕ Y[−1],

we define in matrix form

Φ =




0

1

−f


 , Ψ =

(
0 1 0

)
.

(Here 1 stands for IdX[−1] according to our convention.) A direct verification shows

that these are chain maps, and also that the third square in the diagram commutes

in Ch, i.e. β(α(f ))Φ = −f [−1]. Such verifications formally amount to elementary

multiplications of matrices. For example:

∂C(α(f ))Φ =




∂Y f 1

0 ∂X[−1] 0

0 0 ∂Y[−1]






0

1

−f


 =




0

∂X[−1]

−∂Y[−1]f



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and

β(α(f ))Φ =
(

0 0 1
)



0

1

−f


 = −f .

The second square in the diagram is commutative in Kom. Indeed, direct verification

shows that Ψα(α(f )) = β(f ). On the other hand, the maps Φ and Ψ are homotopy

inverses to each other. Indeed, direct verification shows that ΨΦ = IdX[−1] and

IdC(α(f )) − ΦΨ =




1 0 0

0 0 0

0 f 1


 = ∂C(α(f ))K + K∂C(α(f )),

where K : C(α(f ))→ C(α(f ))[1] is a homotopy given in matrix form by

K =




0 0 0

0 0 0

1 0 0


 .

(ii) Taking into account that C(β(f )) = X[−1]⊕ Y[−1]⊕ X[−2] we define in matrix

form

τ =




0

−1

0


 , σ =

(
−f −1 0

)
.

Here 1 stands for IdY[−1] . Direct verification shows that these are chain maps, that

β(β(f ))τ = −α(f )[−1] so that the third square is commutative in Ch, and that

σα(β(f )) = −f [−1].

Commutativity in Kom of the second square follows again from the fact that σ and τ

are homotopy inverses to each other. Indeed, we have στ = IdY[−1] , whereas

IdC(β(f )) − τσ =




1 0 0

−f 0 0

0 0 1


 = ∂C(β(f ))L + L∂C(β(f )),

where L : C(β(f ))→ C(β(f ))[1] is a homotopy defined in matrix form by

L =




0 0 0

0 0 0

1 0 0


 .
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Remark 4.2 One consequence of Lemma 4.1 (i.e. axiom (TR3)) is that a triangle

X
f // Y

g // Z
h // X[−1]

is distinguished if and only if the triangle

X[−1]
−f [−1] // Y[−1]

−g[−1] // Z[−1]
−h[−1] // X[−2]

is distinguished. The triangle

X[−1]
f [−1] // Y[−1]

g[−1] // Z[−1]
h[−1] // X[−2]

is in general not distinguished, but rather anti­distinguished in the sense of [56, Defini­

tion 1.5.9]. The class of distinguished triangles is distinct from that of anti­distinguished

triangles, as explained to us by S. Guillermou.

We use Lemma 4.1 in order to replace by cones in Kom the kernels and cokernels of

certain maps in Ch.

Lemma 4.3 Let

(21) 0 −→ A
i
−→ B

p
−→ C −→ 0

be a short exact sequence in Ch which is split as a short exact sequence of R­modules.

(i) Given a splitting s : C → B , i.e. a degree 0 map such that ps = IdC , there is a

canonical chain map f : C[1]→ A and there are canonical identifications in Ch

B = C(f ), i = α(f ), p = β(f ).

(ii) The maps

Φ : C
≃
−→ C(i), τ : A[−1]

≃
−→ C(p)

defined in (i) and (ii) of Lemma 4.1 are isomorphisms in Kom and they determine

isomorphisms of distinguished triangles

A
i // B

p // C
−f [−1] //

Φ≃

��

A[−1]

A
i

// B
α(i)

// C(i)
β(i)

// A[−1]
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and

B
p // C

−f [−1] // A[−1]
−i[−1] //

τ≃

��

B[−1]

B
p

// C
α(p)

// C(p)
β(p)

// B[−1]

In particular, the homology long exact sequences determined by the top and bottom

line in each of the above diagrams are isomorphic.

(iii) Assume that the splitting s : C → B is a chain map. We then have an isomorphism

in Kom

A
≃
−→ C(s).

(The same holds if we assume that the splitting s is homotopic to a chain map.)

Proof For item (i) let (i s) : C(f ) = A ⊕ C
∼=
→ B be the isomorphism of R­modules

induced by s. Since p(∂Bs− s∂C) = 0 and i is injective, we can define f : C[1]→ A

uniquely by if = ∂Bs − s∂C and one checks that this map has the desired properties.

Item (ii) is simply a rephrasal of Lemma 4.1.

Item (iii) is a consequence of (ii) as follows. Let us write s =

(
ϕ

1

)
with ϕ : C → A .

Viewing B as the cone of f as in (i), the condition that s is a chain map translates

into ϕ∂C = ∂Aϕ + f . (This in turn can be reinterpreted as saying that −ϕ is a chain

homotopy between f and 0.)

We consider the map π : B = A ⊕ C → A given by π =
(

1 −ϕ
)

. Then π is a

chain map and ker π = im s, so that we have a split short exact sequence

0 −→ C
s
−→ B

π
−→ A −→ 0

and we conclude using the first assertion in (ii).

The class of chain maps is closed under homotopies: if s is homotopic to a chain map,

then it is an actual chain map.

Remark. It is not true that a short exact sequence of complexes 0 → A
i
−→ B

p
−→

C → 0 can always be completed to a distinguished triangle A
i
−→ B

p
−→ C −→ A[−1].

Thus the splitting assumption in Lemma 4.3 is necessary. Indeed, consider the example

of the short exact sequence of Z­modules

0 // Z
i

×2
// Z

p // Z/2 // 0
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where p is the canonical projection and i is multiplication by 2, thought of as an exact

sequence of chain complexes supported in degree 0. The cone of i is equal to Z in

degrees 0 and 1, with differential

(
0 ×2

0 0

)
. The map

(
p 0

)
: C(i) → Z/2

is a quasi­isomorphism, yet Z/2 is not homotopy equivalent to C(i) since the only

morphism Z/2→ C(i) is the zero map. This shows that the above short exact sequence

cannot be completed to a distinguished triangle.

Proposition 4.4 Let

X
f //

ϕ

��

Y

ψ

��
X′

g
// Y ′

be a commutative diagram inKom. This can be completed to a diagram whose rows and

columns are distinguished triangles in Kom and in which all squares are commutative

(in Kom), except the bottom right square which is anti­commutative

X
f //

ϕ

��

Y //

ψ

��

Z //

χ

��

X[−1]

��
X′

g //

��

Y ′ //

��

Z′ //

��

X′[−1]

��
X′′

h //

��

Y ′′ //

��

Z′′

−

//

��

X′′[−1]

��
X[−1] // Y[−1] // Z[−1] // X[−2]

Remark 4.5 This statement, attributed to Verdier, is proved in Beilinson, Bernstein,

Deligne [8, Proposition 1.1.11] by a repeated use of the octahedron axiom (TR5). This

is also proved in [59, Lemma 2.6] under the name “3× 3 Lemma", where it is shown

that it is actually equivalent to the octahedron axiom. The same statement appears

as Exercise 10.2.6 in [71]. Our proof is more explicit and produces a diagram in

which all the squares except the initial one and the bottom right one are commutative

in Ch, and in which the bottom right square is anti­commutative in Ch. This result

encompasses [18, Lemma 2.18] and [17, Lemma 5.7]. For completeness, we will

reprove [17, Lemma 5.7] as Lemma 4.6 below as a consequence of Proposition 4.4

(under an additional splitting assumption).
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Proof of Proposition 4.4 We start with the square

X

s

f //

ϕ

��

Y

ψ

��
X′

g
// Y ′

which is commutative modulo the homotopy s, meaning in our notation that

(22) ψf − gϕ = s∂X + ∂Y′s.

We construct the grid diagram in the statement by a repeated use of the cone construction.

The first two lines and the first two columns are constructed as model distinguished

triangles. More precisely, we define

Z = C(f ) = Y ⊕ X[−1], Z′ = C(g) = Y ′ ⊕ X′[−1], χ =

(
ψ s

0 ϕ

)
.

The condition that χ is a chain map is equivalent to equation (22), and the second and

third square formed by the first two lines are then commutative in Ch:

X
f //

ϕ

��

Y
α(f ) //

ψ

��

Z
β(f ) //

χ

��

X[−1]

ϕ[−1]

��
X′

g // Y ′
α(g) // Z′

β(g) // X′[−1]

Similarly, we define

X′′ = C(ϕ) = X′ ⊕ X[−1], Y ′′ = C(ψ) = Y ′ ⊕ Y[−1], h =

(
g −s

0 f

)
.

Again, the condition that h is a chain map is equivalent to equation (22) and the first two

columns determine a diagram in which the second and third square are commutative

in Ch:

X
f //

ϕ

��

Y

ψ

��
X′

g //

α(ϕ)

��

Y ′

α(ψ)

��
X′′

h //

β(ϕ)

��

Y ′′

β(ψ)

��
X[−1]

f [−1] // Y[−1]
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We define

Z′′ = C(χ).

We construct the third and fourth columns of the grid diagram as model distinguished

triangles, and we are left to specify the morphisms A,B,C,D below:

X
f //

ϕ

��

Y
α(f ) //

ψ

��

C(f )
β(f ) //

χ

��

X[−1]

ϕ[−1]

��
X′

g //

α(ϕ)

��

Y ′
α(g) //

α(ψ)

��

C(g)
β(g) //

α(χ)

��

X′[−1]

α(ϕ[−1])

��
C(ϕ)

h //

β(ϕ)

��

C(ψ)
A //

β(ψ)

��

C(χ)
B //

β(χ)

��

C(ϕ[−1])

β(ϕ[−1])

��
X[−1]

f [−1] // Y[−1]
C // C(f )[−1]

D // X[−2]

The key point is that we have isomorphisms of chain complexes

I : C(χ)
≃ // C(h),

Y ′ ⊕ X′[−1]⊕ Y[−1]⊕ X[−2] Y ′ ⊕ Y[−1]⊕ X′[−1]⊕ X[−2]

I :=




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 −1




and

(23) J(f ) : C(f )[−1]
≃ // C(f [−1]),

Y[−1]⊕ X[−2] Y[−1]⊕ X[−2]

J(f ) :=

(
1 0

0 −1

)
.

One checks directly that the maps I and J(f ) commute with the differentials.

The third line in our diagram, involving the maps A and B , is defined using the

isomorphisms I and J(ϕ) from the model distinguished triangle associated to h, i.e.
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A = I−1α(h), B = J(ϕ)β(h)I :

C(ϕ)
h // C(ψ)

A // C(χ)
B //

I ≃

��

C(ϕ[−1])

C(ϕ)
h // C(ψ)

α(h) // C(h)
β(h) // C(ϕ)[−1]

J(ϕ) ≃

OO

In matrix form we have

A =




1 0

0 0

0 1

0 0


 , B =

(
0 1 0 0

0 0 0 1

)
.

The fourth line in our diagram, involving the maps C and D , is defined using the

isomorphism J(f ) from the model distinguished triangle associated to f [−1], i.e. C =

J(f )−1α(f [−1]), D = β(f [−1])J(f ):

X[−1]
f [−1] // Y[−1]

C // C(f )[−1]
D //

J(f ) ≃

��

X[−2]

X[−1]
f [−1] // Y[−1]

α(f [−1])// C(f [−1])
β(f [−1]) // X[−2]

In matrix form we have

C =

(
1

0

)
, D =

(
0 −1

)
.

A direct check shows that

Aα(ψ) = α(χ)α(g), Bα(χ) = α(ϕ[−1])β(g), Cβ(ψ) = β(χ)A,

and

Dβ(χ) = −β(ϕ[−1])B.

For later use, we recall Lemma 5.7 from [17] and show how it follows from Proposi­

tion 4.4 under an additional assumption.

Lemma 4.6 ([17, Lemma 5.7]) Let

(24) 0 // A
i //

f
��

B
p //

g

��

C //

h
��

0

0 // A′
i′ // B′

p′ // C′ // 0
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be a morphism of short exact sequences of complexes. We then have a diagram whose

rows and columns are exact and in which all squares are commutative, except the

bottom right one which is anti­commutative.

H∗(A)
i∗ //

f∗

��

H∗(B)
p∗ //

g∗

��

H∗(C) //

h∗

��

H∗−1(A)

f∗

��
H∗(A

′)
i′∗ //

α(f )∗

��

H∗(B
′)

p′∗ //

α(g)∗

��

H∗(C
′) //

α(h)∗

��

H∗−1(A′)

α(f )∗

��
H∗(C(f )) //

β(f )∗

��

H∗(C(g)) //

β(g)∗

��

H∗(C(h))

−

//

β(h)∗

��

H∗−1(C(f ))

β(f )∗

��
H∗−1(A)

i∗ // H∗−1(B)
p∗ // H∗−1(C) // H∗−2(A)

Proof Up to changes in notation, this is exactly Lemma 5.7 in [17].

To wrap up the story, we show here how this result follows from Proposition 4.4 under

the additional assumption that the short exact sequences are split as sequences of R­

modules (this is always the case if R is field or, more generally, if we work with chain

complexes of free R­modules).

Choose splittings s : C → B and s′ : C′ → B′ . By Lemma 4.3, these determine

canonical chain maps ϕ : C[1] → A and ϕ′ : C′[1] → A′ , together with canonical

identifications B = C(ϕ), i = α(ϕ), p = β(ϕ), B′ = C(ϕ′), i′ = α(ϕ′), p′ = β(ϕ′).

The map g : B→ B′ can then be identified with a map C(ϕ)→ C(ϕ′) written in matrix

form as

g =

(
f t

0 h

)
: A⊕ C → A′ ⊕ C′.

The condition that g is a chain map is then equivalent to the three relations

f∂A = ∂A′ f , h∂C = ∂C′h, fϕ− ϕ′h = ∂A′ t − t∂C.

We interpret the last relation as fϕ − ϕ′h[1] = ∂A′ t + t∂C[1] , which means that the

square

(25) C[1]

t

ϕ //

h[1]

��

A

f

��
C′[1]

ϕ′
// A′
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is commutative up to a homotopy given by t : C → A′ . The initial diagram (24)

appears then as the horizontal extension of this commutative square in Kom to a map

of distinguished triangles.

We now apply Proposition 4.4 to the square (25) in order to obtain the grid diagram

C[1]

t

ϕ //

h[1]

��

A
i //

f

��

B
p //

g

��

C

h

��
C′[1]

ϕ′ //

��

A′
i′ //

��

B′
p′ //

��

C′

��
C(h[1]) //

��

C(f ) //

��

C(g)

−

//

��

C(h)

��
C // A[−1] // B[−1] // C[−1]

The anti­commutativity of the bottom right corner can be traded for anti­commutativity

of the bottom left corner by changing the sign of the two bottom middle vertical

arrows. The grid diagram in the statement of the lemma is then obtained by passing to

homology.

4.2 Uniqueness of the cone

We now spell out what is the additional piece of structure that is needed in order for

the cone of a map to be uniquely and canonically defined up to homotopy.

(i) Hom complexes. Let X,Y be chain complexes of R­modules and denote

Homd(X,Y), d ∈ Z

the R­module of R­linear maps of degree d . This is a chain complex with differential

∂ : Homd(X,Y)→ Homd−1(X,Y),

∂Φ = ∂YΦ− (−1)|Φ|Φ∂X,

where |Φ| = d denotes the degree of a map Φ ∈ Homd(X,Y). The space of degree d

cycles

Zd(X,Y) = ker(∂ : Homd(X,Y)→ Homd−1(X,Y))
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is the space of degree d chain maps X → Y . Two degree d chain maps are homologous,

i.e. they differ by an element of

Bd(X,Y) := Im(∂ : Homd+1(X,Y)→ Homd(X,Y)),

if and only if they are chain homotopic.

Remark/Notation. We denote a degree d map f from X to Y by

f : X
d
−→ Y.

We do not use the notation f : X → Y[d], which we reserve for chain maps. This

distinction is relevant in practice when using cones because the differential of the

complex Y[d] is not ∂Y , but (−1)d∂Y .

(ii) Chain maps between cones. Let

X

s

f //

ϕ

��

Y

ψ

��
X′

g
// Y ′

be a diagram of degree 0 chain maps which is commutative modulo a prescribed degree

1 homotopy s ∈ Hom1(X,Y ′), meaning that ψf − gϕ = ∂(s). We have an induced

chain map

χs =

(
ψ s

0 ϕ[−1]

)
: C(f ) // C(g).

Y ⊕ X[−1] Y ′ ⊕ X′[−1]

The homotopy class of the map χs depends only on the equivalence class of the

homotopy s modulo B1(X,Y ′). Indeed, if t ∈ Hom1(X,Y ′) is another map such that

ψf − gϕ = ∂(t) then s− t ∈ Z1(X,Y ′). If s− t ∈ B1(X,Y ′), meaning that

s− t = ∂(b)

with b ∈ Hom2(X,Y ′), then

χs − χt = ∂

(
0 b

0 0

)
∈ B0(C(f ),C(g)),

meaning that χs and χt are chain homotopic.

(iii) Lifts of B0 modulo B1 . Denote B1 = B1(X,Y), Z1 = Z1(X,Y), Hom1 =

Hom1(X,Y). Let

V1 ⊂ Hom1
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be a subspace such that V1 ∩ Z1 = B1 and V1 + Z1 = Hom1 . Equivalently, B1 ⊂ V1

is a subspace and ∂ induces an isomorphism V1/B1
≃
→ B0 . We call V1 a linear lift of

B0 modulo B1 .

Let such a linear lift V1 ⊂ Hom1(X,Y) be given. Given two homotopic maps f , g ∈

Hom0(X,Y), i.e. f − g = ∂(s), we can assume without loss of generality that s ∈ V1 .

The map s is uniquely defined modulo B1 , which implies that the homotopy class of

the map χs : C(f )→ C(g) is well­defined.

Thus, given a lift V1 ⊂ Hom1(X,Y), the cone of any map X → Y is uniquely defined

in Kom.

4.3 Directed, bi­directed, and doubly directed systems

We now explain a setup in which one can speak of limits of ordered systems of mapping

cones. The motivation for the definitions to follow lies in the definition of symplectic

homology as a direct/inverse limit over directed systems in which the morphisms are

Floer continuation maps in Floer homology. To this effect, the reader my find it useful

to refer to §4.4 and §5.1. We begin with a few definitions.

A directed set is a partially ordered set (I,≺) such that for any i, j there exists k with

i, j ≺ k . An inversely directed set is a partially ordered set (I,≺) such that for any i, j

there exists ℓ with ℓ ≺ i, j. Equivalently, we require that I with the opposite order be

a directed set. A bi­directed set is a partially ordered set (I,≺) which is both directed

and inversely directed. Our typical example is I = R .

A system in Kom indexed by I is a collection of chain complexes X(i), i ∈ I together

with chain maps ϕj
i : X(i) → X(j), i ≺ j such that ϕk

jϕ
j
i = ϕk

i for i ≺ j ≺ k

and ϕi
i = IdX(i) in Kom. More precisely, there exist maps xijk ∈ Hom1(X(i),X(k)),

i ≺ j ≺ k and xi ∈ Hom1(X(i),X(i)) such that

ϕk
i − ϕ

k
jϕ

j
i = ∂(xijk), IdX(i) − ϕ

i
i = ∂(xi).

We speak of a directed system, of an inversely directed system, and of a bi­directed

system if (I,≺) is a directed set, an inversely directed set, respectively a bi­directed set.

We call the maps ϕj
i structure maps.

More generally, let (I+,≺) be a directed set and (I−,≺) be an inversely directed set.

A doubly directed set modelled on I± is a subset I ⊂ I− × I+ with the following two

properties:

• if (i, j) ∈ I then (i′, j) ∈ I for all i′ ≺ i and (i, j′) ∈ I for all j′ ≺ j;
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• for every j ∈ I+ there exists i ∈ I− such that (i, j) ∈ I .

Our typical example is I± = R∗± and I = {(a, b) ∈ R∗− × R∗+ : a ≤ f (b)}, where

f : R∗+ → R∗− is a decreasing function such that f (b)→ −∞ as b→∞ .

A doubly directed system in Kom indexed by the doubly directed set I is a collection

of chain complexes X(i, j), (i, j) ∈ I together with chain maps ϕij
i′j

: X(i′, j) → X(i, j)

for i′ ≺ i and ϕij′

ij : X(i, j) → X(i, j′) for j ≺ j′ with respect to which every X(i, ·) is

a directed system and every X(·, j) is an inversely directed system, and such that all

diagrams

(26) X(i′, j) //

��

X(i, j)

��
X(i′, j′) // X(i, j′)

are commutative in Kom, for any choice of indices such that i′ ≺ i, j ≺ j′ and

(i, j), (i′, j), (i, j′), (i′, j′) ∈ I . We call the maps ϕij

i′j
and ϕij′

ij structure maps.

Given a map of bi­directed systems or a map of doubly directed systems, which means

a collection of chain maps indexed by the relevant indexing set which commute in Kom

with the chain maps defining each of the systems, we are interested in understanding

conditions under which the cone of that map is itself a bi­directed, respectively a

doubly directed system. The two situations are similar, except for more cumbersome

notation in the case of doubly directed systems since we need to work with two indexing

variables (i, j) rather than with just one index variable i. For this reason we shall focus

in the sequel on bi­directed systems and indicate how the discussion adapts to doubly

directed systems.

Let {X(i), ϕj
i}, {Y(i), ψj

i} be two bi­directed systems in Kom with the same index set

I . A map of bi­directed systems in Kom is a collection of chain maps fi : X(i)→ Y(i),

i ∈ I such that ψj
ifi and fjϕ

j
i are homotopic for all i ≺ j. Given s

j
i ∈ Hom1(X(i),Y(j)),

i ≺ j such that ψj
ifi − fjϕ

j
i = ∂(s

j
i), denote χj

i = χ
s

j
i
. We then have a commutative

diagram

X(i)

s
j
i

fi //

ϕj
i

��

Y(i)

ψj
i

��

// C(fi)

χj
i

��

// X(i)[−1]

��
X(j)

fj

// Y(j) // C(fj) // X(j)[−1]

We are interested in finding conditions under which {C(fi), χ
j
i} is a bi­directed system

in Kom.
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Let us consider the following condition:

(B) There exists a collection {bijk}, i ≺ j ≺ k with bijk ∈ Hom1(X(i),Y(k)) such that

sk
i − ψ

k
j sj

i − sk
jϕ

j
i + fkxijk − yijkfi = ∂(bijk), i, j, k.

Here it is understood that {xijk}, {yijk} and {sj
i} are given as above. A direct compu­

tation then shows that

χk
i − χ

k
jχ

j
i = ∂

(
yijk bijk

0 −xijk

)
, i, j, k.

Indeed, the off­diagonal term on the left hand side is sk
i − ψk

j s
j
i − sk

jϕ
j
i , while the

off­diagonal term on the right hand side is ∂(bijk)− fkxijk + yijkfi .

Remark. Condition (B) is motivated both by the outcome of preliminary computations

for bi­directed systems in Ch and by the example of Floer continuation maps discussed

below.

Condition (B) is clearly independent of the choice of {sj
i}, {xijk}, and {yijk} up to

homotopy. This motivates the stronger condition (C) below, of a more intrinsic nature.

For the statement, recall the notion of a lift of B0 mod B1 from §4.2.(iii).

(C) We are given the data of collections of lifts of B0 mod B1 :

{Xj
i ⊂ Hom1(X(i),X(j))}, i ≺ j,

{Y j
i ⊂ Hom1(Y(i),Y(j))}, i ≺ j,

{V j
i ⊂ Hom1(X(i),Y(j))}, i ≺ j

such that (ψk
j )∗V

j
i ⊂ Vk

i , (ϕj
i)
∗Vk

j ⊂ Vk
i , (fk)∗X

k
i ⊂ Vk

i , and (fi)
∗Yk

i ⊂ Vk
i .

We claim that

(C) =⇒ (B).

For the proof we start by choosing s
j
i ∈ V

j
i , xijk ∈ Xk

i , yijk ∈ Yk
i . We then remark that

−yijkfi+sk
i + fkxijk and ψk

j s
j
i+sk

jϕ
j
i are both contracting homotopies for ψk

j ψ
j
ifi− fkϕ

k
jϕ

j
i ,

so that their difference is a cycle. Now condition (C) implies that both these homotopies

lie in Vk
i , which implies that their difference is a boundary ∂(bijk).

Condition (B) implies that {C(fi), χ
j
i} is a bi­directed system in Kom. The same holds

in particular under condition (C).

We now indicate how the discussion adapts to the case of a map {fij : X(i, j)→ Y(i, j)}

between doubly directed systems indexed by the same doubly directed set I . Denote

ϕij

i′j
, ϕij′

ij the structure maps for {X(i, j)}, and denote ψij

i′j
, ψij′

ij the structure maps for
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{Y(i, j)}. Denote σij′

i′j
, τ ij′

i′j
the homotopies that express the commutativity in Kom of

the diagrams (26):

ϕij′

ij ϕ
ij

i′j
− ϕij′

i′j′
ϕi′j′

i′j
= ∂(σij′

i′ j
), ψij′

ij ψ
ij

i′j
− ψij′

i′j′
ψi′j′

i′j
= ∂(τ ij′

i′ j
).

Denote s
ij

i′j
and s

ij′

ij the homotopies that express the fact that f·j and fi· are maps of

directed systems.

The analogue of condition (B) for doubly­directed systems is the following:

(B̃) We require condition (B) to hold for each of the maps of directed systems fi·

and f·j , and in addition we require that there exists a collection {Bij′

i′j
} with B

ij′

i′j
∈

Hom1(X(i′, j),Y(i, j′)) such that

ψij′

ij s
ij
i′j + s

ij′

ij ϕ
ij
i′j − ψ

ij′

i′j′s
i′j′

i′j − s
ij′

i′j′ϕ
i′ j′

i′ j + fij′σ
ij′

i′j − τ
ij′

i′j fi′j = ∂(B
ij′

i′j).

Similarly to the case of bi­directed systems, a direct computation shows that

χij′

ij χ
ij

i′j
− χij′

i′j′
χi′j′

i′j
= ∂

(
τ ij′

i′j B
ij′

i′j

0 −σij′

i′j

)
,

where χcd
ab : C(fab) → C(fcd) are the maps induced between cones, as before. It is

important to note that condition (B̃) is of the same nature as condition (B), and the

only difference between the two is that condition (B̃) takes into account the additional

conditions of commutativity up to homotopy which are involved in the definition of a

doubly directed system.

One can also phrase for doubly directed systems an analogue (C̃) of condition (C) for

bi­directed systems, but we shall not need it and therefore we do not make it explicit.

Limiting objects. Let now the coefficient ring be a field K , and recall [35] that

the inverse limit functor is exact on inversely directed systems consisting of finite

dimensional vector spaces. Let {fij : X(i, j) → Y(i, j)} be a map of doubly directed

systems, and assume that each X(i, j) and Y(i, j) has finite dimensional homology in

each degree. Under condition (B̃) we obtain in the first­inverse­then­direct­limit a

homology exact triangle

−→
lim

j

←−
lim

i
H(X(i, j))

−→
lim

j

←−
lim

i
(fij)∗

//
−→
lim

j

←−
lim

i
H(Y(i, j))

ww♣♣♣
♣♣
♣♣
♣♣
♣♣

−→
lim

j

←−
lim

i
H(C(fij))

[−1]
gg◆◆◆◆◆◆◆◆◆◆◆
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Remark. The following question is relevant. When is

−→
lim

j

←−
lim

i
X(i, j) −→

−→
lim

j

←−
lim

i
Y(i, j) −→

−→
lim

j

←−
lim

i
C(fij) −→

−→
lim

j

←−
lim

i
X(i, j)[−1]

a (model) distinguished triangle? This is related to exactness criteria for the inverse

limit functor and to the so­called Mittag­Leffler condition, see for example [28] and

the references therein.

4.4 Floer continuation maps

We now show how condition (B̃) above is satisfied in the case of Floer continua­

tion maps for a doubly directed system of Hamiltonians. In order to streamline the

discussion we shall actually treat the case of a directed system of Hamiltonians, the

case of doubly directed systems being conceptually equivalent, except for the more

complicated notation.

Higher continuation maps. Let K ≤ L be two Hamiltonians and let (FC(K), ∂K),

(FC(L), ∂L) be the Floer complexes for some choice of regular almost complex struc­

tures JK and JL . An s­dependent Hamiltonian H = Hs , s ∈ R such that Hs = L

for s ≪ 0, Hs = K for s ≫ 0, and ∂sH ≤ 0, together with an s­dependent almost

complex structure interpolating between JL and JK , determines a degree 0 chain map

ϕH : FC(K)→ FC(L).

We refer to H as a decreasing Hamiltonian homotopy (from L to K ), and to ϕH as the

associated continuation map.

Given two decreasing Hamiltonian homotopies H0 and H1 from L to K , the choice of

a homotopy {Hλ}, λ ∈ [0, 1] between the two, together with the choice of a homotopy

of almost complex structures which we ignore from the notation, determines a degree

1 map

ϕ{Hλ} : FC(K)
+1
−→ FC(L).

We refer to {Hλ} as a homotopy of homotopies, or 1­homotopy, and to ϕ{Hλ} as the

associated degree 1 continuation map. This is in general not a chain map. However, it

is a chain homotopy between ϕH0 and ϕH1 :

ϕH1 − ϕH0 = ∂(ϕ{Hλ}) = ∂Kϕ{Hλ} + ϕ{Hλ}∂H.

We now go one step further. Given two 1­homotopies {H0
µ} and {H1

µ}, µ ∈ [0, 1]

the choice of a homotopy {Hλ
µ}, λ ∈ [0, 1] connecting them, together with the choice
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of a homotopy of homotopies of almost complex structures which we ignore from the

notation, determines a degree 2 map

ϕ{Hλ
µ}

: FC(K)
+2
−→ FC(L).

We refer to {Hλ
µ} as a 2­homotopy, and to ϕ{Hλ

µ}
as the associated degree 2 continua­

tion map. This is in general not a chain map. However, if {H0
µ} and {H1

µ} coincide at

µ = 0 and at µ = 1, and if {Hλ
µ} is constant at µ = 0 and at µ = 1, the map ϕ{Hλ

µ}

is a contracting chain homotopy for ϕ{H1
µ}
− ϕ{H0

µ}
:

ϕ{H1
µ}
− ϕ{H0

µ}
= ∂(ϕ{Hλ

µ}
).

More generally, denote I = [0, 1] and, for d ≥ 0, consider the d­dimensional cube Id .

(If d = 0 then Id consists of a single point.) A generic pair {Hs,z, Js,z}, z ∈ Id , s ∈ R

consisting of an Id ­family of decreasing Hamiltonian homotopies from L to K and of

an Id ­family of s­dependent almost complex structures which all coincide with JL for

s≪ 0 and with JK for s≫ 0, determines a map

ϕ{Hs,z,Js,z} ∈ Homd(FC(K),FC(L)).

This map is defined on a generator x ∈ FC(K) by

x 7→
∑

|x|−|y|=−d

#M(y, x; {Hs,z, Js,z})y

and then extended by linearity. Here M(y, x; {Hs,z, Js,z}) denotes the moduli space of

solutions to the Floer equation in the chosen Id ­family, asymptotic to y at −∞ and

asymptotic to x at +∞ . In other words, the map ϕ{Hs,z,Js,z} counts index −d solutions

of the Floer equation within the d­dimensional family parameterized by Id . We refer to

{Hs,z, Js,z} as a d­homotopy, and to ϕ{Hs,z,Js,z} as the associated degree d continuation

map.

Let {H0, J0} and {H1, J1} be two d­homotopies which are equal on ∂Id . For any

choice of a (d + 1)­homotopy {Hλ, Jλ}, λ ∈ [0, 1] which interpolates between the

two, and which is constant on (∂Id)× I ⊂ Id × I = Id+1 , the associated degree d + 1

continuation map ϕ{Hλ,Jλ} is a contracting chain homotopy for ϕ{H1,J1} − ϕ{H0,J0} :

ϕ{H1,J1} − ϕ{H0,J0} = ∂(ϕ{Hλ ,Jλ}).

We have thus proved the following

Lemma 4.7 The difference between any two degree d continuation maps determined

by d­homotopies which coincide on ∂Id is homotopic to zero. A contracting homotopy
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is provided by any degree d + 1 continuation map determined by an interpolating

(d + 1)­homotopy which is constant on (∂Id)× I ⊂ Id × I = Id+1 .

�

This statement generalizes to higher homotopies the well­known fact that any two

continuation maps in Floer theory are homotopic, so that the morphism that they

induce in homology is independent of all choices. This last property is sometimes

referred to as Floer homology being a connected simple system in the sense of Conley.

Directed systems of continuation maps.

Let {Ki}, {Li} be two directed systems of Hamiltonians, meaning that Ki ≤ Kj and

Li ≤ Lj for i ≺ j. Let {Kj
i}, {Lj

i}, i ≺ j be decreasing homotopies from Kj to

Ki , respectively from Lj to Li , yielding continuation maps ϕj
i : FC(Ki) → FC(Kj),

ψj
i : FC(Li)→ FC(Lj). Then

{FC(Ki), ϕ
j
i}, {FC(Li), ψ

j
i}

are bi­directed systems in Kom.

Assume further that Ki ≤ Li for all i. Let Hi be a decreasing homotopy from Li to Ki ,

yielding continuation maps fi : FC(Ki) → FC(Li). The collection {fi} is then a map

of bi­directed systems in Kom.

Indeed, the maps ψj
ifi and fjϕ

j
i are homotopic via a degree 1 continuation map

sj
i : FC(Ki)

+1
−→ FC(Lj)

that is associated to a 1­homotopy Hj
i connecting L

j
i#Hi and Hj#K

j
i . Here # denotes

the gluing of Hamiltonians for a large enough value of the gluing parameter.

Similarly, the maps ϕk
i and ϕk

jϕ
j
i , respectively ψk

i and ψk
j ψ

j
i , are homotopic via degree

1 maps

xijk : FC(Ki)
+1
−→ FC(Kk), yijk : FC(Li)

+1
−→ FC(Lk),

that are associated to 1­homotopies Kijk connecting Kk
i and Kk

j #K
j
i , respectively Lijk

connecting Lk
i and Lk

j #L
j
i .

We claim that condition (B) is satisfied in this setup. In view of Lemma 4.7 it is enough

to show that both ψk
j s

j
i + sk

jϕ
j
i and fkxijk + sk

i − yijkfi are degree 1 Floer continuation

maps induced by 1­homotopies parameterized by λ ∈ [0, 1] with the same endpoints

Lk
j #L

j
i#Hi at λ = 0 and Hk#Kk

j #K
j
i at λ = 1. Consider the following diagram, where

in each entry we have indicated a composition of Floer continuation maps and the
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0­homotopy which induces it, and where on each arrow we have indicated a homotopy

between the target and source maps, together with the 1­homotopy which induces

it. The main point is that a concatenation of 1­homotopies induces the sum of the

corresponding degree 1 maps, and the reversal of the direction of a 1­homotopy

induces minus the corresponding degree 1 map. The composition of the bottom

horizontal arrows is thus a degree 1­continuation map which equals ψk
j s

j
i + sk

jϕ
j
i , while

the composition of the other three arrows is a degree 1 continuation map which equals

fkxijk + sk
i − yijkfi . The corresponding 1­homotopies do have the same endpoints at

λ = 0 and λ = 1, as expected.

ψk
i fi

sk
i

Hk
i

// fkϕ
k
i

Lk
i #Hi

yijkfi Lijk#Hi

��

Hk#Kk
i

fkxijkHk#Kijk

��

ψk
j ψ

j
ifi

ψk
j s

j
i

Lk
j #Hj

i

// ψk
j fjϕ

j
i

sk
jϕ

j
i

Hk
j #K

j
i

// fkϕ
k
jϕ

j
i

Lk
j #L

j
i#Hi Lk

j #Hj#K
j
i Hk#Kk

j #K
j
i

It follows from the results in Section 4.3 that the system

{C(fi), χ
j
i}

of cones C(fi) and induced maps χj
i : C(fi) → C(fi) is a directed system in Kom.

In particular the homotopy type of the maps χj
i does not depend on the choice of

1­homotopies.

Similarly, for a doubly directed system of Hamiltonians we obtain a doubly directed

system

{C(fij), χ
cd
ab}

in Kom, together with the fact that the homotopy type of the maps χcd
ab does not depend

on the choice of 1­homotopies.
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5 The transfer map and homotopy invariance

Given a Liouville cobordism pair (W,V) we construct in this section a transfer map

f♥! : SH♥∗ (W)→ SH♥∗ (V)

for ♥ ∈ {∅,≥ 0, > 0,= 0,≤ 0, < 0} that is invariant under homotopy of Liouville

structures. This generalizes to cobordisms the transfer map defined for Liouville do­

mains by Viterbo in [70]. The whole structure that we exhibit on symplectic homology

is actually governed by the underlying chain level map. Indeed, we prove in §7 that

the shifted symplectic homology groups of the pair SH♥∗ (W,V)[−1] are isomorphic to

the homology of the cone of the chain level transfer map.

We recall that we use coefficients in a field K .

5.1 The transfer map

Let (W,V) be a Liouville cobordism pair with filling F . Recall from §2.4 the definition

of the symplectic homology groups

SH♥∗ (W) = lim
b

lim
a

−→
lim

H∈H(W;F)
FH(a,b)
∗ (H),

where H(W; F) is the class of Hamiltonians H : S1 × ŴF → R which are zero on W

and are linear of non­critical slope in the complement of WF , and the meaning of the

limits involving a and b is determined by the value of ♥ . In the previous formula

the first direct limit is considered with respect to continuation maps FH
(a,b)
∗ (H+) →

FH
(a,b)
∗ (H−) for H+ ≤ H− induced by non­increasing homotopies Hs , s ∈ R which

are equal to H± for s near ±∞ .

The transfer map will be defined as a limit of a directed system of continuation maps.

For that purpose the definition of SH♥∗ (V), which involves Hamiltonians defined on

V̂F◦Wbottom = F◦Wbottom◦V ◦[1,∞)×∂+V , needs to be recast in terms of Hamiltonians

defined on ŴF = F ◦ W ◦ [1,∞) × ∂+W . The manifold ŴF is the domain of the

Hamiltonians involved in the definition of SH♥∗ (W).

Denote by HW(V; F) the space of Hamiltonians H : S1 × ŴF → R such that H ∈

H(ŴF) and H = 0 on V .

Lemma 5.1 For any two real numbers −∞ < a < b <∞ we have

SH(a,b)
∗ (V) =

−→
lim

H∈HW (V;F)
FH(a,b)
∗ (H).
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Proof By definition we have

SH(a,b)
∗ (V) =

−→
lim

H∈H(V;F)
FH(a,b)
∗ (H),

and we claim that the two limits are equal. Recall that the space H(V; F) consists of

Hamiltonians H : V̂F◦Wbottom → R which are linear outside a compact set and such that

H = 0 on V . The claim is a consequence of the existence of a special cofinal family in

HW(V; F) constructed as follows. See Figure 12. Consider a sequence (νk), k ∈ Z−
of positive real numbers such that νk /∈ Spec(∂+V) and νk → ∞ as k → ∞ , and let

HV
k : V̂F◦Wbottom → R be a cofinal family in H(V; F) such that HV

k (r, x) = νk(r − 1) on

[1,∞)× ∂+V . Consider further sequences

(ηk), (Rk), (τk), k ∈ Z+

such that

• ηk > 0 is smaller than the distance from νk to Spec(∂+V), and ηk → 0 as

k →∞;

• Rk > max(1, (νk − a)/ηk);

• νk/4 < τk < νk/2 and τk /∈ Spec(∂+W).

Let Hk : ŴF → R be a Hamiltonian which is equal to HV
k on F ◦ Wbottom ◦ V ◦

[1,Rk] × ∂+V , which is constant equal to νk(Rk − 1) on RkW top , and which is equal

to νk(Rk − 1) + τk(r − Rk) on [Rk,∞)× ∂+W . Here RkW top stands for the image of

W top by the flow of the Liouville vector field at time ln Rk .

The Hamiltonian Hk has three more groups of 1­periodic orbits in addition to those of

the Hamiltonian HV
k :

(III− ) orbits corresponding to positively parameterized closed Reeb orbits on ∂+V =

∂−W top and located near Rk∂
+V .

(III0 ) constants in RkW top .

(III+ ) orbits corresponding to positively parameterized closed Reeb orbits on ∂+W =

∂+W top and located near Rk∂
+W top .

The orbits in group III0 have action −νk(Rk − 1), the maximal action of an orbit in

group III− is smaller than −νk(Rk − 1) + Rk(νk − ηk) = νk − Rkηk , and the maximal

action of an orbit in group III+ is smaller than −νk(Rk−1)+Rkνk/2 = −νk(Rk/2−1).

The largest of these actions is the one in group III− , which however falls below the

action window (a, b) due to the condition Rk > max(1, (νk − a)/ηk), so that the orbits

contributing to the Floer complex in the action window (a, b) are the same for HV
k and
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for Hk . Lemma 2.2 for s­dependent Hamiltonians (decreasing in s outside VF◦Wbottom )

shows that the continuation Floer trajectories for the family HV
k and for the family

Hk stay within a neighborhood of VF◦Wbottom , where the two Hamiltonians coincide.

These continuation Floer trajectories are therefore the same, and they define the same

continuation maps in the two directed systems at hand. We obtain

SH(a,b)
∗ (V) =

−→
lim

k→∞
FH(a,b)
∗ (HV

k ) =
−→
lim

k→∞
FH(a,b)
∗ (Hk).

Since Hk , k ∈ Z− is a cofinal family in HW(V; F), the conclusion of the Lemma

follows.

We obviously have H(W; F) ⊂ HW(V; F), and for each Hamiltonian K in H(W; F)

there exists a Hamiltonian H in HW(V; F) such that K ≤ H (while the converse is not

true). For any two such Hamiltonians we have continuation maps

f
(a,b)
HK : FC(a,b)

∗ (K)→ FC(a,b)
∗ (H)

induced by non­increasing homotopies which are linear at infinity, and these continu­

ation maps define a morphism between the directed systems determined by H(W; F)

and HW(V; F).

Definition 5.2 The Viterbo transfer map in the action window (a, b) is the limit

continuation map

f
(a,b)
! : SH(a,b)

∗ (W)→ SH(a,b)
∗ (V), f

(a,b)
! :=

−→
lim
K≤H

K∈H(W;F),H∈HW (V;F)

f
(a,b)
HK .

By general properties of the continuation maps the Viterbo transfer maps f
(a,b)
! fit into

a doubly­directed system, inverse on a and direct on b.

Definition 5.3 For ♥ ∈ {∅,≥ 0, > 0,= 0,≤ 0, < 0} the Viterbo transfer map

f♥! : SH♥∗ (W)→ SH♥∗ (V)

is defined as

f♥! = lim
b

lim
a

f
(a,b)
! ,

where the limits are inverse or direct according to the value of ♥ , as in Definition 2.8.

Proposition 5.4 (Functoriality of the transfer map) Let U ⊂ V ⊂ W be a triple of

Liouville cobordisms with filling. Let f♥VW , f♥UW , f♥UV be the transfer maps for the pairs

(W,V), (W,U), and (V,U) respectively, for ♥ ∈ {∅,≥ 0, > 0,= 0,≤ 0, < 0}. Then

f♥UW = f♥UV ◦ f♥VW .
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νk

0

τk

Hk

III−0+

∂−V∂−W

Rk Rk

∂+V

HV
k

νk(Rk − 1)
K

∂+W

Figure 12: Hamiltonians for the definition of the transfer map

Proof This is a direct consequence of the definition of the transfer map as a limit

continuation map, together with functoriality of continuation maps. To see this, we

recall the notation W = Wbottom ◦ V ◦W top and V = Vbottom ◦ U ◦ V top , and consider

on W the following three types of Hamiltonians, see Figures 12 and 13:

• Hamiltonians K which are admissible for W , and thus vanish on W and are

linear increasing towards ∂+W .

• one step Hamiltonians H which vanish on V , take a positive constant value on

W top , and are linear increasing towards ∂+V and ∂+W .

• two step Hamiltonians G which vanish on U , take a constant value on V top , take

a constant value on W top , and are linear increasing towards ∂+U , ∂+V , and

∂+W .

The transfer maps f♥VW are defined above as limit continuation maps induced by mono­

tone homotopies from K (at +∞) to H (at −∞). Similarly, the transfer maps f♥UW can

be obtained as limit continuation maps induced by monotone homotopies from K (at

+∞) to G (at −∞), and the transfer maps f♥UV can be obtained as limit continuation

maps induced by monotone homotopies from H (at +∞) to G (at −∞). We can

choose the homotopies from K to G to factor through H , so that they can be expressed

as concatenation of homotopies from K to H , and from H to G . The composition

of the continuation maps induced by each of these last two homotopies is equal to the

continuation map induced by the concatenation of the two homotopies – this is what
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K

H

G

Wbottom Vbottom U V top W top

Figure 13: Hamiltonians for the proof of functoriality of the transfer map

we call functoriality of continuation maps – and the same property holds in the limit.

This proves f♥UW = f♥UV ◦ f♥VW .

In the sequel we shall often drop the symbol ♥ from the notation for the transfer map,

and simply write f! instead of f♥! .

5.2 Homotopy invariance of the transfer map

Given a pair of Liouville cobordisms (W,V) with filling, we denote the transfer map

for a given Liouville structure λ by

SH♥∗ (W;λ)
f!,λ // SH♥∗ (V;λ).

Proposition 5.5 (homotopy invariance of the transfer map) Let (W,V) be a pair of

Liouville cobordisms with filling. Given a homotopy of Liouville structures λt on

W , t ∈ [0, 1], there are induced isomorphisms hW : SH♥∗ (W;λ0) → SH♥∗ (W;λ1),
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hV : SH♥∗ (V;λ0)→ SH♥∗ (V;λ1), and a commutative diagram

SH♥∗ (W;λ0)
f!,λ0 //

∼= hW

��

SH♥∗ (V;λ0)

∼= hV

��
SH♥∗ (W;λ1)

f!,λ1

// SH♥∗ (V;λ1)

The isomorphisms hW and hV do not depend on the choice of homotopy λt with fixed

endpoints.

Proof The homotopy invariance of the transfer map under deformations of the Liou­

ville structure which are constant along the boundaries of W and V is a consequence

of its definition as a limit continuation map. In particular, given a Liouville cobordism

W with two Liouville structures λ and λ′ which coincide along ∂W , the transfer map

SH♥∗ (W;λ)→ SH♥∗ (W;λ′)

is an isomorphism.

The homotopy invariance in the general case is obtained using the functoriality of the

transfer map, by a classical geometric construction which consists in attaching to ∂W

topologically trivial cobordisms with Liouville structures that interpolate between any

two given Liouville structures on the boundary of W , see [24, Lemma 3.7]. A detailed

argument is given in [48] in an S1 ­equivariant setting.

That the isomorphisms hW and hV do not depend on the choice of homotopy (λt),

t ∈ [0, 1] is a consequence of the fact that any two such homotopies with the same

endpoints are homotopic, together with the usual “homotopy of homotopies" argument

in Floer theory (see also the discussion of Floer continuation maps at the end of §4).

6 Excision

Let (W,V) be a pair of Liouville cobordisms and F a filling of W , and define WF , ŴF

as in §2.4. Recall the class H(W,V; F) of admissible Hamiltonians defined in §2.5.

For 0 < r1 < r2 and a subset A ⊂ ŴF , we denote by [r1, r2] × A = φ[log r1,log r2](A)

the image of A under the Liouville flow φt on the time interval [log r1, log r2]. For

parameters

µ, ν, τ > 0, 0 < δ, ε < 1

(that will be specified later), let H ∈ H(W,V; F) be a “staircase Hamiltonian" on ŴF ,

defined up to smooth approximation as follows (see Figure 14):
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• H ≡ (1− δ)µ on F \ (δ, 1] × ∂−W ,

• H is linear of slope −µ on [δ, 1] × ∂−W ,

• H ≡ 0 on Wbottom ,

• H is linear of slope −ν on [1, 1 + ε]× ∂−V ,

• H ≡ −εν on V \
(
[1, 1 + ε]× ∂−V ∪ [1− ε, 1]× ∂+V

)
,

• H is linear of slope ν on [1− ε, 1] × ∂+V ,

• H ≡ 0 on W top ,

• H is linear of slope τ on [1,∞)× ∂+W .

A smooth approximation of H will thus be of the form H(r, y) = h(r) on [0,∞)×∂+W

(and similarly near the other boundary components of W and V ). Hence 1­periodic

orbits of XH on {r} × ∂+W correspond to Reeb orbits on ∂+W of period h′(r), and

their Hamiltonian action equals

rh′(r)− h(r).

We assume that µ, ν, ν, τ do not lie in the action spectrum of ∂−W, ∂−V, ∂+V, ∂+W ,

respectively. We denote by ην > 0 a positive real number smaller than the distance

from ν to the union of the action spectra of ∂−V and ∂+V , and we define similarly

ηµ, ητ > 0. The 1­periodic orbits of H fall into 11 classes:

(F0 ) constants in F \ ([δ, 1] × ∂F),

(F+ ) orbits corresponding to negatively parameterized closed Reeb orbits on

∂F = ∂−W and located near δ × ∂−W ,

(I− ) orbits corresponding to negatively parameterized closed Reeb orbits on

∂−Wbottom = ∂−W and located near ∂−W ,

(I0 ) constants in Wbottom ,

(I+ ) orbits corresponding to negatively parameterized closed Reeb orbits on

∂+Wbottom = ∂−V and located near ∂−V ,

(II− ) orbits corresponding to negatively parameterized closed Reeb orbits on ∂−V

and located near (1 + ε)× ∂−V ,

(II0 ) constants in V \
(
[1, 1 + ε]× ∂−V ∪ [1− ε, 1] × ∂+V

)
,

(II+ ) orbits corresponding to positively parameterized closed Reeb orbits on ∂+V and

located near (1− ε)× ∂+V ,

(III− ) orbits corresponding to positively parameterized closed Reeb orbits on

∂−W top = ∂+V and located near ∂+V ,
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(I−0+)

(1− δ)µ

0

−µ

1 1 + ε

ν

τ

∂−V∂−W

1− ε 1

∂+V ∂+WF

δ 1

−εν

H

−ν

(F0+)

(III−0+)

(II−0+)

Figure 14: Hamiltonian in H(W,V; F)

(III0 ) constants in W top ,

(III+ ) orbits corresponding to positively parameterized closed Reeb orbits on ∂+W

and located near ∂+W top = ∂+W .

Notational convention. For two classes of orbits A,B we write A ≺ B if the homo­

logical Floer boundary operator maps no orbit from A to an orbit from B . A priori,

this relation is not transitive. However, when we write A ≺ B ≺ C we also mean that

A ≺ C . We write A < B if all orbits in A have smaller action than all orbits in B . Note

that A < B implies A ≺ B , and A < B < C implies A ≺ B ≺ C .

Lemma 6.1 Fix a < b. If the parameters µ, ν, τ, δ, ε above satisfy

(27) (1− δ)µ > min{−a, ν − ην} and εν > min{b, τ − ητ},

and if we use an almost complex structure that is cylindrical and has a long enough

neck near (1 − 2ε) × ∂+V , then the four groups of orbits in the action interval [a, b]

satisfy

(28) F ≺ I ≺ III ≺ II and III ≺ I.

Moreover, within each group of orbits we have the relations

(29)
F+ ≺ F0, I+ ≺ I− ≺ I0,

II− ≺ II0 ≺ II+, III0 ≺ III− ≺ III+.
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Proof The combination of Lemmas 2.2 and 2.3 yields the relations

F ≺ I−, F, I ≺ II−+, F, I, II, III−0 ≺ III+,

I+ ≺ F, I−0, III− ≺ F, I, II.

For any choice of parameters, the actions satisfy

F+ < F0, F, I−+ < I0
= III0 < II0+, III−+, II− < II0 < II+.

We see that F ≺ I−0, II, III . The remaining relation F ≺ I+ follows if the actions

satisfy F0 < I+ , i.e., −(1 − δ)µ < max{a,−(ν − ην)}, which is the first condition

in (27). Next we see that I ≺ II, III and III− ≺ I, II . For the remaining relation

III0+ ≺ I, II we arrange the actions to satisfy III+ < II0 , i.e., min{b, τ − ητ} < εν ,

which is the second condition in (27). Then we have III0 < III+ < II0 < II+ . The

relations I0 ≺ III0 and III0 ≺ I0 follow from monotonicity: there is an a priori strictly

positive lower bound on the energy of trajectories traversing V , and this rules out

trajectories running between III0 and I0 which after small Morse perturbation of H

have arbitrarily small energy. The remaining relation III0+ ≺ I, II− now follows from

Lemma 2.4, stretching the neck at the hypersurface (1− 2ε)× ∂+V where H ≡ −εν ,

and εν is bigger than all actions in the groups III0 and III+ . This proves (28). The

relations in (29) also follow from the preceding discussion.

Remark 6.2 Under the conditions of Lemma 6.1, the Floer boundary operator has

upper triangular form if the periodic orbits are ordered by increasing action within each

class and the classes are ordered (for example) as

F+ ≺ F0 ≺ I+ ≺ I− ≺ I0 ≺ III0 ≺ III− ≺ III+ ≺ II− ≺ II0 ≺ II+.

Let us fix a < 0 < b and 0 < δ, ε < 1 and consider µ, ν, τ > 0 subject to the

conditions

(30) µ > −a/(1− δ), τ > b, ν > max{−a, b/ε}.

Note that these conditions allow us to make µ, ν, τ arbitrarily large, independently

of each other. They ensure condition (27) in Lemma 6.1. Moreover, the actions of

all orbits in the classes F, II0, II+ lie outside the interval [a, b]. So the Floer chain

complex can be written as

FC(a,b)
= FC

(a,b)
III ⊕ FC

(a,b)
I ⊕ FC

(a,b)

II−

and with respect to this decomposition the Floer boundary operator has the form

(31)



∗ 0 ∗

0 ∗ ∗

0 0 ∗


 .
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Let us fix µ, τ and consider ν < ν ′ both satisfying (30). We denote the corresponding

Hamiltonians by Hν′ ≤ Hν and consider the continuation maps

φνν′ : FC(a,b)(Hν′)→ FC(a,b)(Hν)

induced by convex interpolation between Hν and Hν′ . These continuation maps may

not have the upper triangular form (31) since the combination of Lemmas 2.2 and 2.3

does not apply to the current homotopy situation. Therefore, we decompose the above

chain complex instead as

FC(a,b)
= FC

(a,b)
III ⊕ FC

(a,b)

I,II−
,

with differential written in upper triangular form as

(
∗ ∗

0 ∗

)
. The continuation maps

φνν′ have upper triangular form with respect to this decomposition and we obtain the

commuting diagram with exact rows

(32) 0 // FC
(a,b)
III (Hν′) //

��

FC(a,b)(Hν′) //

��

FC
(a,b)

I,II−
(Hν′) //

��

0

0 // FC
(a,b)
III (Hν) // FC(a,b)(Hν) // FC

(a,b)

I,II−
(Hν) // 0 ,

where FC
(a,b)

I,II−
denotes the quotient complex FC(a,b)/FC

(a,b)
III .

Lemma 6.3
←−
lim
ν→∞

FH
(a,b)
III (Hν) ∼= SH(a,b)(W top, ∂+V).

Proof We consider a homotopy of Hamiltonians which on V∪W top∪[1,∞)×∂+W is

constant and which on F ∪Wbottom is a convex interpolation between the Hamiltonian

Hν and the Hamiltonian Hν that is constant equal to −εν . Since the homotopy is

constant on the cobordism V , Lemma 2.4 applies and shows that there is no interaction

between the orbits in III and the orbits appearing in F∪Wbottom . The usual continuation

argument then shows that the homology FH
(a,b)
III is invariant during this homotopy.

Since
←−
lim
ν→∞

FH
(a,b)
III (Hν) = SH(a,b)(W top, ∂+V) by definition, we obtain the desired

isomorphism.

Lemma 6.4
←−
lim
ν→∞

FH
(a,b)

I,II−
(Hν ) ∼= SH(a,b)(Wbottom, ∂−V).
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Proof We consider a homotopy of Hamiltonians which on F∪Wbottom∪V is constant

and which on W top∪ [1,∞)×∂+W is a convex interpolation between the Hamiltonian

Hν and the Hamiltonian Kν that is constant equal to −εν on V ∪W top and is linear of

slope τ (the same as the slope of Hν ) on [1,∞)× ∂+W . See Figure 15.

We have FH(a,b)(Kν) = FH
(a,b)

I,II−
(Kν) and so we have a well­defined continuation

map φHK
ν : FH

(a,b)

I,II−
(Kν) → FH

(a,b)

I,II−
(Hν) obtained by composing the continuation

map FH(a,b)(Kν) → FH(a,b)(Hν) with the map induced by projection FH(a,b)(Hν) →

FH
(a,b)

I,II−
(Hν ). Since the homotopy is constant in the region F ∪ Wbottom ∪ V , which

contains the orbits of type I, II− , it follows that this continuation map is an isomorphism.

Indeed, the generators of the two chain complexes are canonically identified and upon

arranging them in increasing order by the action the continuation map at chain level

has upper triangular form with +1 on the diagonal. (Note that we do not use at this

point Lemma 2.4.)

For ν ≤ ν ′ we get commutative diagrams in which all maps are continuation morphisms

FH
(a,b)

I,II−
(Hν) FH

(a,b)

I,II−
(Kν)∼=

φHK
νoo

FH
(a,b)

I,II−
(Hν′)

φνν′

OO

FH
(a,b)

I,II−
(Kν′) .∼=

φHK
ν′oo

ψνν′

OO

Here ψνν′ : FH
(a,b)

I,II−
(Kν′)→ FH

(a,b)

I,II−
(Kν) is the continuation map induced by a convex

interpolation between Kν and Kν′ . As a consequence we have a canonical isomorphism

(33)
←−
lim
ν→∞

FH
(a,b)

I,II−
(Hν)

←−
lim
ν→∞

FH
(a,b)

I,II−
(Kν).∼=

←−
lim

ν→∞
φHK
ν

oo

The complex FC
(a,b)

I,II−
(Kν) can be decomposed as

(34) FC
(a,b)

I,II−
(Kν ) = FC

(a,b)
I (Kν)⊕ FC

(a,b)

II−
(Kν),

with differential of upper triangular form

(
∗ ∗

0 ∗

)
. Lemma 6.5 below shows that

this decomposition is preserved by the continuation maps ψνν′ , which also have upper

triangular form. (That this precise property could a priori fail for the Hamiltonians

Hν was the reason to deform them to the Hamiltonians Kν .) In particular, there is a

well­defined inverse system of quotient homologies FH
(a,b)

II−
(Kν), ν →∞ . Lemma 6.6
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below shows that the inverse limit of this system vanishes, and we thus obtain a

canonical isomorphism

(35)
←−
lim
ν→∞

FH
(a,b)
I (Kν)

∼= //
←−
lim
ν→∞

FH
(a,b)

I,II−
(Kν),

the map being induced in the limit by the inclusions FC
(a,b)
I (Kν) →֒ FC

(a,b)

I,II−
(Kν).

We now prove the isomorphism

(36)
←−
lim
ν→∞

FH
(a,b)
I (Kν) ∼= SH(a,b)(Wbottom, ∂−V).

The Floer trajectories which are involved in the definition of the Floer differential for

FC
(a,b)
I (Kν) are contained in a neighborhood of F ∪Wbottom by Lemma 2.2. The key

point is that the Floer trajectories involved in the definition of the continuation maps

FC
(a,b)
I (Kν′)→ FC

(a,b)
I (Kν) are also contained in a neighborhood of F ∪Wbottom . For

this purpose we choose the Hamiltonians Kν such that for ν ′ ≥ ν the Hamiltonian Kν′

coincides with Kν on a neighborhood of F ∪Wbottom where the orbits in group I for

Kν are located. This ensures that the assumptions in the last paragraph of Lemma 2.2

are satisfied for the homotopy obtained by convex interpolation between Kν and Kν′ .

Denote Kν the Hamiltonian defined on F∪Wbottom∪[1,∞)×∂−V which is equal to Kν

on F∪Wbottom and linear of slope −ν (the same as the slope of Kν ) on [1,∞)× ∂−V .

The previous argument then shows the equality

←−
lim
ν→∞

FH
(a,b)
I (Kν) =

←−
lim
ν→∞

FH
(a,b)
I (Kν),

and the right hand side is SH(a,b)(Wbottom, ∂−V) by definition.

The conclusion of Lemma 6.4 now follows by combining the isomorphisms (33), (35),

and (36).

The next lemma was used in the previous proof. We recall that Kν denotes a Hamil­

tonian which coincides with Hν on F ∪ Wbottom ∪ V , is constant equal to −εν on

V ∪W top , and is linear of slope τ (the same as the slope of Hν ) on [1,∞)×∂+W . We

choose the smoothings of the Hamiltonians Kν′ and Kν to coincide up to a translation

by ǫ(ν ′ − ν) in the region II− but only for slopes in the interval (−ν + ην , 0). We

recall the decomposition (34) of FC
(a,b)

I,II−
(Kν), with respect to which the differential has

upper triangular form.

Lemma 6.5 The Floer continuation map ψνν′ : FC
(a,b)

I,II−
(Kν′)→ FC

(a,b)

I,II−
(Kν) induced

by a non­increasing s­dependent convex interpolation from Kν at −∞ to Kν′ at +∞
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−ν

−µ

1

ν

τ

∂−V∂−W

1

∂+V ∂+WF

1

III

II−

Hν

Kν

τ

I

−εν

Figure 15: The Hamiltonians Hν and Kν

has upper­triangular form with respect to the decompositions FC
(a,b)

I,II−
= FC

(a,b)
I ⊕

FC
(a,b)

II−
for Kν and Kν′ .

Proof The only problematic relation is IKν′
≺ II−Kν

. To prove it we use the fact

that in the region II− the two Hamiltonians coincide up to a translation, so in this

region the homotopy is simply given by adding to the Hamiltonian Kν some function

R→ [−ǫ(ν ′ − ν), 0] of s with compactly supported derivative. As such, the constant

trajectories at the orbits in II−Kν
solve the s­dependent continuation Floer equation.

Assume there exists a continuation Floer trajectory u : R × S1 → ŴF from some

orbit x+ = lims→+∞ u(s, ·) in IKν′
to some orbit x− = lims→−∞ u(s, ·) in II−Kν

. By

Lemma 2.3, either u is constant equal to x− for very negative values of the parameter s,

or there exists (s, t) ∈ R× S1 with s very negative such that r(u(s, t)) > r− = r(x−(t)).

In the first situation the Floer trajectory would need to be constant equal to x− for all

values of s because of unique continuation and the fact that the constant trajectory at

x− solves the same equation. This is a contradiction since x+ 6= x− . In the second

situation we reach a contradiction using Lemma 2.2, which we can apply in the s­

independent case because the homotopy is just given by a shift by a function of s on

V ∪W top ∪ [1,∞) × ∂+W .

The next lemma was used in the proof of Lemma 6.4 as well. By Lemma 6.5 we have

a well­defined inverse system FH
(a,b)

II−
(Kν), ν →∞ .
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Lemma 6.6
←−
lim
ν→∞

FH
(a,b)

II−
(Kν) = 0.

Proof For ν ′ > ν , generators of FC
(a,b)

II−
(Kν′) correspond to closed Reeb orbits γ on

∂−V with Hamiltonian action satisfying

AKν′
(γ) = −(1 + ε)

(∫

γ
λ
)
+ εν ′ ∈ (a, b).

Since this condition is equivalent to

AKν (γ) = −(1 + ε)
(∫

γ
λ
)
+ εν ∈ (a + ε(ν − ν ′), b + ε(ν − ν ′)),

we see that the same Reeb orbits also correspond to generators of the Floer chain

group FC
(a+ε(ν−ν′),b+ε(ν−ν′))
II−

(Kν ). Varying the slope continuously from ν ′ to ν , we

obtain a continuation isomorphism between these two groups fitting into the commuting

diagram

FH
(a+ε(ν−ν′),b+ε(ν−ν′))
II−

(Kν)
∼= //

π

))❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
FH

(a,b)

II−
(Kν′)

ψνν′

��

FH
(a,b)

II−
(Kν ).

That the horizontal map is an isomorphism follows from the fact that the Hamiltonian

is deformed outside a compact set only by a global shift by a constant, and from the

fact that there are no orbits that cross the boundary of the moving action window

during the homotopy. The horizontal map can be expressed as a composition of

small­time continuation maps induced by homotopies for fixed action windows, which

are isomorphisms since each of these homotopies can be followed backwards, and of

tautological isomorphisms given by shifting the action window by some small amount

in the complement of the action spectrum.

Now if b + ε(ν − ν ′) < a, then the intervals [a + ε(ν − ν ′), b + ε(ν − ν ′)] and [a, b]

do not overlap and thus the projection π vanishes in homology. Hence the Floer chain

map ψνν′ vanishes whenever ν ′− ν > (b− a)/ε, from which the lemma follows.

Proposition 6.7 (excision for filtered symplectic homology) Let (W,V) be a pair of

Liouville cobordisms with filling and consider parameters −∞ < a < b <∞ . There

is a short exact sequence

0→ SH(a,b)
∗ (W top, ∂+V)→ SH(a,b)

∗ (W,V)→ SH(a,b)
∗ (Wbottom, ∂−V)→ 0.
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Moreover, this short exact sequence splits canonically, so that we have a canonical

isomorphism

SH(a,b)
∗ (W,V) ∼= SH(a,b)

∗ (W top, ∂+V)⊕ SH(a,b)
∗ (Wbottom, ∂−V).

Proof We fix the parameters 0 < δ, ε < 1 and µ, τ > 0 such that the first two

conditions in (30) hold, and we work with the family of Hamiltonians Hν = Hµ,ν,τ ,

ν →∞ discussed above. Then
←−
lim
ν→∞

FH(a,b)
∗ (Hν) ∼= SH(a,b)

∗ (W,V)

by definition. The short exact sequence of inverse systems (32) determines an inverse

system of homology exact triangles in which each term is a finite dimensional vector

space. In this case the inverse limit preserves exactness and we obtain using Lemmas 6.3

and 6.4 an exact triangle

SH
(a,b)
∗ (W top, ∂+V) // SH

(a,b)
∗ (W,V)

uu❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧

SH
(a,b)
∗ (Wbottom, ∂−V) .

[−1]

ii❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙

The proof of Lemma 6.4 shows that each class in SH
(a,b)
∗ (Wbottom, ∂−V) is represented

by a sequence (indexed by ν and representing an element of the inverse limit) of classes

in FH
(a,b)

I,II−
(Hν) which are each represented by a cycle that is a linear combination of

orbits in IHν . Indeed, the proof provides such a representative by a cycle in FC
(a,b)
I (Kν ),

and we have FC
(a,b)
I (Kν) = FC

(a,b)
I (Hν); on the other hand, since IHν ≺ II−Hν

as already

seen in (31), this continues to be a cycle in FC
(a,b)

I,II−
(Hν).

To prove the existence of the short exact sequence in the statement we use that the

degree −1 connecting map FH
(a,b)

I,II−
(Hν) → FH

(a,b)
III (Hν) vanishes on elements of IHν

by (31). Thus the connecting map in the above exact triangle vanishes, and the latter

becomes the short exact sequence

0→ SH(a,b)
∗ (W top, ∂+V)→ SH(a,b)

∗ (W,V)→ SH(a,b)
∗ (Wbottom, ∂−V)→ 0.

To prove the existence of a canonical splitting for this exact sequence we use again that

I ≺ III for Hν . Thus a cycle in FC
(a,b)

I,II−
(Hν) which is a linear combination of orbits in

IHν is canonically also a cycle in FC(a,b)(Hν). The splitting SH
(a,b)
∗ (Wbottom, ∂−V)→

SH
(a,b)
∗ (W,V) associates to each class, represented by a sequence of classes of cycles

in FC
(a,b)

I,II−
(Hν) which are linear combinations of orbits in IHν , the sequence of classes
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represented by the same cycles viewed in FC(a,b)(Hν ). The latter represents indeed an

element in the inverse limit of FH(a,b)(Hν), ν → ∞ because the continuation maps

φνν′ : FC(a,b)(Hν′)→ FC(a,b)(Hν) preserve the relation I ≺ III .

Taking limits over a and b, Proposition 6.7 implies

Theorem 6.8 (excision) Let (W,V) be a pair of Liouville cobordisms with filling.

Then for each flavour ♥ we have canonical isomorphisms

SH♥∗ (W,V) ∼= SH♥∗ (Wbottom, ∂−V)⊕ SH♥∗ (W top, ∂+V).

�

In Proposition 6.7 and Theorem 6.8 we allow Wbottom or W top to be empty, in which

case the corresponding term is not present in the diagram. In particular, taking V to be

a collar neighbourhood of some boundary components we obtain

Corollary 6.9 Given a Liouville cobordism W and an admissible union of connected

components A ⊂ ∂W , we have

SH♥∗ (W,A) ∼= SH♥∗ (W, I × A),

where I × A is a collar neighborhood of A in W which we view as a trivial cobordism,

so that (W, I × A) is a Liouville pair. �

This is the precise sense in which Definitions 2.13 and 2.15 are compatible.

In order to make the excision theorem resemble the one in algebraic topology, we

introduce the following notion.

Definition 6.10 A Liouville cobordism triple (W,V,U) consists of three Liouville

cobordisms U ⊂ V ⊂ W such that (W,V) and (V,U) are Liouville cobordism pairs.

A filling of a Liouville cobordism triple is a filling of W , which induces fillings of V

and U in the obvious way.

Then we have

Theorem 6.11 (excision for triples) Let (W,V,U) be a filled Liouville cobordism

triple. Then for each flavour ♥ we have canonical isomorphisms

SH♥∗ (W,V) ∼= SH♥∗ (W \ U,V \ U) .
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Here if some boundary component A of V and U coincides, then the homology on

the right hand side has to be understood relative to A . (Alternatively, one can use

Proposition 9.3 below to move U into the interior of V and avoid this situation.) Also,

if W \U contains both a bottom and an upper part then the right hand side has to be

understood according to Section 2.6 as a direct sum, as in the statement of Theorem 6.8.

Proof Let us write

W \ V = Wbottom ∐W top, V \ U = Vbottom ∐ V top.

Then

W \ U = (Wbottom ∪ Vbottom) ∐ (W top ∪ V top)

and we find

SH♥∗ (W \ U,V \ U) = SH♥∗ (Wbottom ∪ Vbottom,Vbottom)⊕ SH♥∗ (W top ∪ V top,V top)

∼= SH♥∗ (Wbottom, ∂−V)⊕ SH♥∗ (W top, ∂+V)

∼= SH♥∗ (W,V),

where the first equality is the definition and the other two isomorphisms follow from

Theorem 6.8.
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7 The exact triangle of a pair of filled Liouville cobordisms

The main result of this section is

Theorem 7.1 (exact triangle of a pair) For each filled Liouville cobordism pair

(W,V) and ♥ ∈ {∅,≥ 0, > 0,= 0,≤ 0, < 0} there exist exact triangles

SH♥∗ (W,V) // SH♥∗ (W)

zz✉✉✉
✉✉
✉✉

SH♥∗ (V)

[−1]

ee❑❑❑❑❑❑❑

and

SH∗♥(W,V)

[+1] %%❑❑
❑❑

❑❑
❑

SH∗♥(W)oo

SH∗♥(V)

::✉✉✉✉✉✉✉

These triangles are functorial with respect to inclusions of Liouville pairs.

This theorem will be proved in Section 7.3 below.

7.1 Cofinal families of Hamiltonians

As a preparation, we now recast the definition of the symplectic homology groups

SH♥∗ (W), SH♥∗ (V) and of the transfer map f♥! : SH♥∗ (W)→ SH♥∗ (V) at chain level in

terms of some carefully chosen cofinal families of Hamiltonians. This will allow us

to further express the relative symplectic homology groups SH♥∗ (W,V) in terms of the

cone construction.

Let (W,V) be a Liouville pair with filling F .

Notational convention. Let P , Q denote sets of 1­periodic orbits of a given Hamilto­

nian H . Recall that we write Q < P if all the orbits in group Q have strictly smaller

action than all the orbits in group P , and we write Q ≺ P if there is no Floer trajectory

for H asymptotic at the positive puncture to an orbit in Q and asymptotic at the nega­

tive puncture to an orbit in P . This implies that the expression of the Floer boundary

operator on any orbit in Q does not contain any element in P . It is understood that the

Floer equation involves some almost complex structure which is not specified in the

notation.
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Similarly, given two Hamiltonians H± and a homotopy Hs , s ∈ R equal to H± near

±∞ , and given sets of 1­periodic orbits PH± for H± , we write

PH+
≺ PH−

if there is no Floer continuation trajectory for the homotopy Hs asymptotic at the

positive puncture to an orbit in PH+
and asymptotic at the negative puncture to an orbit

in PH− . This implies that the expression of the Floer continuation map on any orbit in

PH+
does not contain any element in PH− . Here it is again understood that the Floer

continuation equation involves some almost complex structure which is not specified

in the notation. In the previous context, we write

PH+
< PH−

if the H+ ­action of any orbit in PH+
is smaller than the H− ­action of any orbit in PH− .

This implies PH+
≺ PH− if H+ ≤ H− and the homotopy Hs is non­increasing with

respect to the s­variable.

Given c ∈ R , we write

PH+
< PH− − c

if the difference between the H+ ­action of any orbit in PH+
and the H− ­action of any

orbit in PH− is smaller than −c.

Lemma 7.2 Consider Hamiltonians H+ ≥ H− and a homotopy Hs which is a convex

interpolation between H+ and H− given by a non­decreasing s­dependent function,

i.e., Hs = H− + f (s)(H+ − H−) with f : R→ [0, 1], f ′ ≥ 0, f = 0 near −∞ , f = 1

near +∞ . Then PH+
< PH− − ‖H+ − H−‖∞ implies PH+

≺ PH− .

Proof If there is a continuation Floer trajectory u : R × S1 → ŴF solving ∂su +

Js,t(u)(∂tu − XHs(u)) = 0 with lims→±∞ u(s, ·) = x±(·), where x± are 1­periodic
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orbits of H± , then we have

AH+
(x+)− AH−(x−) =

∫ ∞

−∞

d

ds
AHs(u(s, ·)) ds

=

∫ ∞

−∞
dAHs(u(s, ·)) · ∂su ds −

∫ ∞

−∞

∫ 1

0

∂sHs(t, u(s, t)) dt ds

=

∫ ∞

−∞

∫ 1

0

‖∂su(s, t)‖2 dt ds

−

∫ ∞

−∞

∫ 1

0

f ′(s)
(

H+(t, u(s, t)) −H−(t, u(s, t))
)

dt ds

≥ −

∫ ∞

−∞

∫ 1

0

f ′(s) sup
t,x

(
H+(t, x) − H−(t, x)

)
dt ds

= −‖H+ −H−‖∞.

Since the domain of definition of the Hamiltonians that we use in this paper is a

noncompact manifold, it is appropriate to discuss the degree of applicability of the

previous principle: it holds for compactly supported homotopies, so that ‖H+−H−‖∞
is finite (and can be explicitly computed), but it also holds for non­compactly supported

homotopies if one knows a priori that the continuation Floer trajectories are contained

in a compact set, in which case it is enough to estimate ‖H+−H−‖∞ on that compact

set.

7.1.1 Hamiltonians for SH♥∗ (W).

Let

µ, τ > 0

be such that µ /∈ Spec(∂−W) and τ /∈ Spec(∂+W). Denote by ηµ > 0 the distance

from µ to Spec(∂−W) and let δ > 0 be such that

(37) δµ < ηµ.

We denote by

Kµ,τ = Kµ,τ,δ : ŴF → R

the Hamiltonian which is defined up to smooth approximation as follows: it is constant

equal to µ(1 − δ) on F \ [δ, 1] × ∂F , it is linear equal to µ(1 − r) on [δ, 1] × ∂F , it
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µ(1− δ)

Kµ,τ,δ

∂+W∂−Wδ

I−0+

F0+

τ
−µ

F

W

0

Figure 16: Hamiltonians Kµ,τ,δ for the definition SH♥
∗ (W)

is constant equal to 0 on W , and it is linear equal to τ (r − 1) on [1,∞) × ∂+W . See

Figure 16.

A smooth approximation of Kµ,τ will thus be of the form Kµ,τ (r, y) = k(r) on [1,∞)×

∂+W (and similarly near the negative boundary ∂−W ). The 1­periodic orbits of XKµ,τ

on {r}×∂+W correspond to Reeb orbits on ∂+W of period k′(r), and their Hamiltonian

action equals

rk′(r)− k(r).

Since we assumed that µ and τ are not equal to the period of a closed Reeb orbit on

the respective boundaries of W , it follows that Kµ,τ has no 1­periodic orbits in the

regions where it is linear.

The 1­periodic orbits of the Hamiltonian Kµ,τ naturally fall into 5 classes as follows:

(F0 ) constants in F \ [δ, 1] × ∂F .

(F+ ) orbits corresponding to negatively parameterized closed Reeb orbits on ∂F =

∂−W and located near {δ} × ∂−W .

(I− ) orbits corresponding to negatively parameterized closed Reeb orbits on ∂−W

and located near ∂−W .

(I0 ) constants in W .

(I+ ) orbits corresponding to positively parameterized closed Reeb orbits on ∂+W

and located near ∂+W .

We denote by F the group of orbits F0+ , and by I the group of orbits I−0+ . The

maximal action of an orbit in group F is −µ(1 − δ) = −µ + δµ , while the minimal
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action of an orbit in group I is −µ + ηµ . Condition (37) implies F < I , and in

particular

F ≺ I.

This last relation actually holds regardless of the choice of parameters by combining

Lemmas 2.2 and 2.3 in order to prohibit trajectories from F to I− with the relation

F < I0+ which prohibits trajectories from F to I0+ . Alternatively, the relation F ≺ I0

is also a consequence of Lemma 2.5, while F ≺ I+ is also a consequence of Lemmas 2.2

and 2.3.

Let now (µi), i ∈ Z− and (τj), j ∈ Z+ be two sequences which do not contain elements

in Spec(∂−W) ∪ Spec(∂+W) and such that µi′ > µi for i′ < i and τj < τj′ for j < j′ .

We moreover require that µi → ∞ as i → −∞ and τj → ∞ as j → ∞ . Choose

a sequence (δi), i ∈ Z− of positive numbers such that δi′ < δi for i′ < i, such that

δi → 0 as i→ −∞ , and such that condition (37) is satisfied:

δiµi < ηµi for all i ∈ Z−.

We denote

Ki,j := Kµi,τj,δi
, i ∈ Z−, j ∈ Z,

so that Ki′,j ≥ Ki,j for i′ ≤ i, and Ki,j ≤ Ki,j′ for j ≤ j′ . We consider FC∗(Ki,j) as a

doubly­directed system in Kom, inverse on i→ −∞ and direct on j→∞ , with maps

FC∗(Ki′,j)→ FC∗(Ki,j), i′ ≤ i

induced by non­decreasing homotopies, and maps

FC∗(Ki,j)→ FC∗(Ki,j′), j ≤ j′

induced by non­increasing homotopies. Denote FCF(Ki,j) the Floer subcomplex of

FC∗(Ki,j) generated by orbits in the group F , and denote FCI(Ki,j) the Floer quotient

complex generated by orbits in the group I . The groups of orbits I− , I0 , I+ are ordered

by action as I− < I0 < I+ within the group of orbits I , so that we have corresponding

sub­ and quotient complexes FCI♥(Ki,j) for ♥ ∈ {∅,≥ 0, > 0,= 0,≤ 0, < 0}, where

I♥ has the following meaning:

I∅ = I, I≤0
= I−0, I>0

= I+, I<0
= I−, I=0

= I0, I≥0
= I0+.

Lemma 7.3 The homotopies that define the doubly­directed system FC∗(Ki,j), i ∈ Z− ,

j ∈ Z+ induce doubly­directed systems

FCI♥(Ki,j), i ∈ Z−, j ∈ Z+, ♥ ∈ {∅,≥ 0, > 0,= 0,≤ 0, < 0}.
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Proof Our choice of parameters ensures that

(38) FKi′,j
≺ IKi,j , FKi,j ≺ IKi,j′

for i′ ≤ i and j ≤ j′ . To prove these relations denote µ′ = µi′ , τ
′ = τj′ , δ

′ = δi′ ,

and similarly µ, τ, δ for the corresponding numbers not decorated with primes. The

first relation follows from Lemma 7.2 and the relation FKi′,j
< IKi,j − ‖Ki′,j − Ki,j‖∞ :

the maximal action of an orbit in FKi′,j
is −µ′(1 − δ′), the minimal action of an orbit

in IKi,j is −µ+ ηµ , and the maximal oscillation of the homotopy is ‖Ki′,j − Ki,j‖∞ =

µ′(1− δ′)−µ(1− δ); the desired relation then follows from (37). The second relation

in (38) follows from FKi,j < IKi,j′
because in this case the homotopy is non­increasing.

Now we have already seen that FKi,j < IKi,j , while the action of the orbits in IKi,j′

is never smaller than the action of the orbits in IKi,j . This proves the relations (38).

They imply that we have a doubly­directed subsystem FCF(Ki,j) and a doubly­directed

quotient system FCI(Ki,j), i ∈ Z− , j ∈ Z+ .

To prove that we have doubly­directed systems FCI♥(Ki,j), i ∈ Z− , j ∈ Z+ for all

values of ♥ we need to show the relations

I−Ki′,j
≺ I0+

Ki,j
and I−0

Ki′,j
≺ I+Ki,j

for i′ ≤ i,

I−Ki,j
≺ I0+

Ki,j′
and I−0

Ki,j
≺ I+Ki,j′

for j ≤ j′.

The last two relations follow from the fact that the non­increasing homotopies which

induce maps FC∗(Ki,j) → FC∗(Ki,j′) for j ≤ j′ preserve the filtration by the action.

In contrast, this argument cannot be used to prove the first two relations since non­

decreasing homotopies typically do not preserve the action filtration. Instead we argue

using the confinement lemmas in §2.3: the first relation follows from Lemma 2.5, and

the second relation follows from Lemmas 2.2 and 2.3.

Lemma 7.4 We have isomorphisms

SH♥∗ (W) ∼=
−→
lim

j

←−
lim

i
FHI♥(Ki,j)

for ♥ ∈ {∅,≥ 0, > 0,= 0,≤ 0, < 0}.

Proof Recall that the slopes of Ki,j are −µi and τj , with −µi < 0 < τj . We claim

that

(39) SH
(−µi,τj)
∗ (W) ∼= FHI(Ki,j).

To prove (39) recall that SH
(a,b)
∗ (W) =

−→
lim

K
FH

(a,b)
∗ (K), where K ranges over the space

H(W; F) of admissible Hamiltonians on ŴF with respect to the filling F and the direct
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limit is considered with respect to non­increasing homotopies, see §2.4. Consider a

decreasing sequence ik → −∞ and an increasing sequence jk →∞ as k →∞ . The

sequence of Hamiltonians Kik,jk , k ∈ Z+ is then cofinal in H(W; F) and we have

SH
(a,b)
∗ (W) =

−→
lim

k→∞
FH

(a,b)
∗ (Kik ,jk ), where the direct limit is considered with respect

to continuation maps FH
(a,b)
∗ (Kik,jk ) → FH

(a,b)
∗ (Kik′ ,jk′ ) induced by non­increasing

homotopies. We can assume without loss of generality that −µik ≤ a and τjk ≥ b. The

smoothings of any such two Hamiltonians Kik,jk and Kik′ ,jk′ , k ≤ k′ can be constructed

so that they coincide in the neighborhood of W where the periodic orbits in group

I for Kik,jk appear. As such, the continuation map FC
(a,b)
∗ (Kik ,jk ) → FC

(a,b)
∗ (Kik′ ,jk′ ),

which is upper triangular if we arrange the generators in increasing order of the action,

has diagonal entries equal to +1 and is therefore an isomorphism. This proves that

the canonical map FH
(a,b)
∗ (Kik ,jk )→ SH

(a,b)
∗ (W) is an isomorphism for all k (such that

−µik ≤ a and τjk ≥ b).

The isomorphism (39) is proved by considering the following three isomorphisms: we

have FHI(Ki,j) = FH
(−µi+η,τj)
∗ (Ki,j) for any η > 0 such that δiµi < η < ηµi ; we have

FH
(−µi+η,τj)
∗ (Ki,j) ∼= SH

(−µi+η,τj)
∗ (W) by the above; and we have SH

(−µi+η,τj)
∗ (W) ∼=

SH
(−µi,τj)
∗ (W) since there is no periodic Reeb orbit on ∂−W with period in the interval

(µi − η, µi).

A variant of the same argument shows that, under the isomorphism (39), the con­

tinuation maps FHI(Ki′,j) → FHI(Ki,j), i′ ≤ i and FHI(Ki,j) → FHI(Ki,j′), j ≤ j′

induced by a non­decreasing homotopy, respectively by a non­increasing homotopy,

coincide with the canonical maps SH
(−µi′ ,τj)
∗ (W)→ SH

(−µi,τj)
∗ (W) and SH

(−µi,τj)
∗ (W)→

SH
(µi,τj′ )
∗ (W), respectively. From this the conclusion of the lemma follows in the case

♥ = ∅ .

The proof in the case ♥ 6= ∅ is similar in view of the isomorphisms

SH
(0+,τj)
∗ (W) ∼= FHI>0(Ki,j), SH

(0−,τj)
∗ (W) ∼= FHI≥0(Ki,j),

SH(0−,0+)
∗ (W) ∼= FHI=0(Ki,j), SH(−µi,0+)

∗ (W) ∼= FHI≤0(Ki,j),

SH(−µi,0−)
∗ (W) ∼= FHI<0(Ki,j).

Here 0− and 0+ denote a negative, respectively a positive real number which is close

enough to zero (with absolute value smaller than the minimal period of a closed Reeb

orbit on ∂−W , respectively ∂+W ).



94 Kai Cieliebak and Alexandru Oancea

δ

∂+W

III−0+ τ
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I−0+
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−µ

W
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µ(1 − δ)
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−τ

K
+

µ,τ,δ

F

Figure 17: Hamiltonians K± for the definition of SH♥
∗ (W, ∂±W)

7.1.2 Hamiltonians for SH♥∗ (W, ∂±W).

We shall need in the sequel (Lemma 7.9) alternative descriptions of the homology

groups SH♥∗ (W, ∂±W) in the spirit of the previous section, which we now explain. We

refer freely to the notation of §7.1.1.

Given µ, τ > 0 such that µ /∈ Spec(∂−W) and τ /∈ Spec(∂+W), and given δ ∈ (0, 1),

we consider Hamiltonians K± = K±µ,τ,δ : ŴF → R defined as follows:

• the Hamiltonian K−µ,τ,δ coincides with the Hamiltonian Kµ,τ,δ of §7.1.1 on

W ∪ [1,∞) × ∂+W and is equal to −Kµ,τ,δ on F . See Figure 17.

• the Hamiltonian K+

µ,τ,δ coincides with the Hamiltonian Kµ,τ,δ on F ∪W and is

equal to −Kµ,τ,δ on [1,∞)× ∂+W . See Figure 17.

The 1­periodic orbits of each of these Hamiltonians naturally fall into 5 groups, which

we denote by F0+, III−0+ for K− , and by F0+, I−0+ for K+ . We denote as usual

by ηµ, ητ > 0 positive numbers smaller than the distance from µ to Spec(∂−W),

respectively smaller than the distance from τ to Spec(∂+W). If the parameters are

chosen such that

(40) δµ < ηµ and µ− ηµ > τ − ητ

then we have F < I for K+ , respectively III < F for K− . We denote III=0 = III0 ,

III>0 = III−+ , and also I=0 = I0 , I<0 = I−+ .

This construction is well­behaved in families, just like the construction in the previous

section. Consider first an indexing parameter j ∈ Z+ . We choose sequences µj →∞ ,
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τj → ∞ , δj → 0 as j → ∞ , such that µj /∈ Spec(∂−W), τj /∈ Spec(∂+W), such that

(µj) and (τj) are increasing and (δj) is decreasing, and such that (40) is satisfied for each

j. We define K−j = K−µj,τj,δj
. Given j ≤ j′ we consider the interpolating homotopy from

K−j at +∞ to K−
j′

at −∞ which is the concatenation of the following two monotone

homotopies: first keep K−j fixed on W ∪ [1,∞) × ∂+W and interpolate between K−j
and K−µj′ ,τj,δj′

on F , then keep the Hamiltonian fixed on F∪W and interpolate between

K−µj′ ,τj,δj′
and K−

j′
on [1,∞)× ∂+W . We claim that for such a homotopy we have

III
K
−
j
≺ F

K
−

j′
, III=0

K
−
j

≺ III>0

K
−

j′

.

The proof of the first relation uses Lemma 7.2. Since the homotopy from K−j′ to K−j′ is

non­increasing on [1,∞) × ∂+W , the continuation Floer trajectories are contained in

F ∪W , where the gap between the Hamiltonians is

gap = ‖(K−j − K−j′ )|F∪W‖∞ = µj′(1− δj′)− µj(1− δj).

In view of Lemma 7.2 it is enough to show that the maximal action of an orbit in III
K
−
j

is smaller than the minimal action of an orbit in F
K
−

j′
minus the gap. This is equivalent

to the inequality µj − ηµj
< µj′(1− δj′ )−

(
µj′(1− δj′ )− µj(1− δj)

)
, which is in turn

equivalent to δjµj < ηµj
.

To prove the second relation we observe that the map induced by the homotopy is

the composition of the maps induced by each of the monotone homotopies which

constitute it. For the first homotopy, supported in F , there are no trajectories from III0

K
−
j

to III−
K
−
µ

j′
,τj,δj′

by Lemma 2.5, and there are no trajectories from III0

K
−
j

to III+
K
−
µ

j′
,τj,δj′

by Lemmas 2.2 and 2.3. For the second homotopy, there are no trajectories from

III0

K−µ
j′
,τj,δj′

to III>0

K−
j′

because the homotopy is non­increasing and III0

K−µ
j′
,τj,δj′

< III>0

K−
j′

.

This proves the second relation. (Note that one could not argue here using the gap.)

As a consequence, we obtain well­defined directed systems in Kom

FCIII♥(K−j ), j→∞, ♥ ∈ {∅,= 0, > 0}.

Consider now an indexing parameter i ∈ Z− . Given sequences µi → ∞ , τi → ∞ ,

δi → 0 as i→ −∞ , such that µi /∈ Spec(∂−W), τi /∈ Spec(∂+W), such that (µi) and

(τi) are increasing with |i| and (δi) is decreasing with |i|, and such that (40) is satisfied

for each i, we define K+
i = K+

µi,τi,δi
. Given i′ ≤ i the homotopy from K+

i′
at +∞ to

K+
i at −∞ defined as the concatenation of the two monotone homotopies from K+

i′
to

K+

µi′ ,τi,δi′
and from K+

µi′ ,τi,δi′
to K+

i is such that

F
K
+

i′
≺ I

K
+
i
, I<0

K+

i′

≺ I=0

K
+
i
.
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The proof involves arguments entirely similar to the previous ones for the Hamiltonians

K− , hence we omit the details. We obtain well­defined inverse systems in Kom

FCI♥(K+
i ), i→ −∞, ♥ ∈ {∅, < 0,= 0}.

Lemma 7.5 (a) For ♥ ∈ {∅,≥ 0, > 0,= 0,≤ 0, < 0} we have isomorphisms

SH♥∗ (W, ∂−W) ∼=
−→
lim

j
FHIII♥(K−j ).

(b) For ♥ ∈ {∅,≥ 0, > 0,= 0,≤ 0, < 0} we have isomorphisms

SH♥∗ (W, ∂+W) ∼=
←−
lim

i
FHI♥(K+

i ).

Proof The proof is similar to the one of Lemma 7.4. For part (a) observe first

that the right hand side does not depend on the choice of the family K−j subject to

conditions (40). We pick µj = τj outside the action spectra of ∂−W and ∂+W such

that ηµj
< ητj

, and then δj sufficiently small so that (40) holds for all j. Then a similar

proof to that of equation (39) yields

SH
(−∞,τj)
∗ (W, ∂−W) ∼= FH

(−∞,τj)
∗ (K−j ) ∼= FHIII(K

−
j ).

In the direct limit over j we obtain part (a) for ♥ = ∅ . The cases ♥ =′′> 0′′ and

♥ =′′= 0′′ are proved similarly, and the remaining cases are a formal consequence of

these three. The proof of part (b) is analogous, where now it suffices to treat the cases

♥ ∈ {∅,= 0, < 0}.

7.1.3 Hamiltonians for SH♥∗ (V) inside ŴF .

Heuristically, the construction presented in this section can be viewed as the “gluing"

of the three constructions presented in the two previous sections.

We consider a Liouville cobordism pair (W,V) with filling F and write W = Wbottom ◦

V ◦W top . Let

µ, ν±, τ > 0

be such that µ /∈ Spec(∂−W), ν± /∈ Spec(∂±V), τ /∈ Spec(∂+W). Let ηµ , ην± ,

ητ > 0 be positive real numbers smaller than 1/2 and smaller than the distances from

µ , ν± , τ to the corresponding action spectra. Let

δ, ǫ ∈ (0, 1), R ∈ (1,∞)



Symplectic homology and the Eilenberg–Steenrod axioms 97

be such that

(41) δµ < ηµ, ǫν− < ην− , ν+ < R ην+ ,

and

(42) R(τ − ητ ) < R(ν+ − ην+) < ν+(R− 1) < ν− − ην− < µ− ηµ.

Note that the second inequality in (42) is automatic in view of (41). Also note that the

inequalities in (42) impose relations between µ , ν+ , ν− and τ . Typically, an ordering

of the kind

τ ≤ ν+, ν+R ≤ ν−, ν− ≤ µ

is enough to ensure condition (42) if ητ > ην+ , ην− > ηµ and ν+ > 1. These last three

conditions are not in the least restrictive, since the parameters ητ , ην± , ηµ are to be

thought of as arbitrarily small, and the slope ν+ is to be thought of as large. However,

the previous three conditions on τ, ν±, µ are restrictive, and among these three the most

restrictive one is ν+R ≤ ν− : it forces ν− to be larger than ν+ , and indeed much larger,

in an uncontrolled way. This has implications on the kind of doubly directed systems

that we will construct, namely systems for which we can consider first an inverse limit

as the negative slopes go to −∞ , then a direct limit as the positive slopes go to +∞ ,

but not the other way around.

We denote by

Hµ,ν±,τ = Hµ,ν±,τ,δ,ǫ,R : ŴF → R

the Hamiltonian which is defined up to smooth approximation as follows: it is constant

equal to ǫµ(1 − δ) + ν−(1 − ǫ) on F \ [δǫ, 1] × ∂F , it is linear equal to µ(ǫ − δǫ) +

ν−(1 − ǫ) + µ(δǫ − r) on [δǫ, ǫ] × ∂F , it is constant equal to ν−(1 − ǫ) on ǫWbottom ,

it is linear equal to ν−(1− ǫ)+ ν−(ǫ− r) on [ǫ, 1]× ∂−V , it is constant equal to 0 on

V , it is linear equal to ν+(r− 1) on [1,R]× ∂+V , it is constant equal to ν+(R− 1) on

RW top , and it is linear equal to ν+(R−1)+ τ (r−R) on [R,∞)×∂+W . See Figure 18.

The 1­periodic orbits of the Hamiltonian Hµ,ν±,τ fall into 11 classes as follows:

(F0 ) constants in F \ ([δǫ, 1] × ∂F),

(F+ ) orbits corresponding to negatively parameterized closed Reeb orbits on

∂F = ∂−W and located near δǫ∂−W ,

(I− ) orbits corresponding to negatively parameterized closed Reeb orbits on

∂−Wbottom = ∂−W and located near ǫ∂−W ,

(I0 ) constants in ǫWbottom ,
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+ ν−(1− ǫ)

−µ

∂−W

F0+

ǫδǫ ǫ 1 1 R R

µ(ǫ− δǫ)

0

ν−(1− ǫ)

−ν− ν+

∂+V ∂+W

III−0+

τ

Hµ,ν±,τ

II−0+

I−0+

∂−Vν+(R− 1)

Figure 18: Hamiltonian adapted to the construction of the transfer map SH♥
∗ (W)→ SH♥

∗ (V)

(I+ ) orbits corresponding to negatively parameterized closed Reeb orbits on

∂+Wbottom = ∂−V and located near ǫ∂−V ,

(II− ) orbits corresponding to negatively parameterized closed Reeb orbits on ∂−V

and located near ∂−V ,

(II0 ) constants in V ,

(II+ ) orbits corresponding to positively parameterized closed Reeb orbits on ∂+V and

located near ∂+V ,

(III− ) orbits corresponding to positively parameterized closed Reeb orbits on

∂−W top = ∂+V and located near R∂+V ,

(III0 ) constants in RW top ,

(III+ ) orbits corresponding to positively parameterized closed Reeb orbits on ∂+W

and located near R∂+W top = R∂+W .

We denote by F the group of orbits F0+ , and by J the group of orbits J−0+ for

J = I, II, III .

Lemma 7.6 For the previous choices of parameters the above groups of orbits for

Hµ,ν±,τ are ordered as

F ≺ I ≺ III ≺ II and III ≺ I,
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provided the almost complex structure is cylindrical and stretched enough on a collar

neighborhood of ∂+V in V .

Proof The relation F ≺ I holds because F < I . Indeed, the maximal action of an

orbit in F equals −ǫµ(1− δ)− ν−(1− ǫ) (and is attained on F0 ). The minimal action

of an orbit in I is larger than −ν−(1 − ǫ) + min(−ǫ(µ − ηµ),−ǫ(ν− − ην−)). The

conclusion follows in view of δµ < ηµ and µ(1− δ) > µ− ηµ > ν− − ην− .

The relation I ≺ III holds because I < III . Indeed, the maximal action of an orbit

in I equals −ν−(1 − ǫ) (and is attained on I0 ). The minimal action of an orbit in III

is equal to −ν+(R − 1) (and is attained on III0 ). The conclusion follows in view of

ν+(R− 1) < ν− − ην− < ν−(1− ǫ).

The relation F ≺ III holds because F < I < III by the above.

The relation I ≺ II holds because I < II . Indeed, the maximal action of an orbit in

I equals −ν−(1 − ǫ). The minimal action of an orbit in II is larger than −ν− + ην− .

The conclusion follows in view of ǫν− < ην− .

The relation F ≺ II holds because F < I < II by the above.

The relation III ≺ II is seen as follows. On the one hand we have III < II0+ . Indeed,

the maximal action of an orbit in III is smaller than −ν+(R − 1) + max(R(ν+ −

ην+),R(τ − ητ )). The minimal action of an orbit in II0+ equals 0, and the conclusion

follows in view of R(τ − ητ ) < R(ν+ − ην+) < ν+(R − 1). On the other hand we

have III ≺ II− by Lemma 2.4 for an almost complex structure which is cylindrical and

stretched enough within a collar neighborhood of ∂+V in V .

The relation III ≺ I (and actually also III ≺ F ) follows also from Lemma 2.4.

Remark. Lemma 7.6 should be compared to Lemma 6.1 which asserts the same

ordering of groups of orbits. The latter concerns the simpler Hamiltonians in Figure 14

and its proof crucially uses Lemmas 2.2 and 2.3. The former concerns the more

complicated Hamiltonians in Figure 18 (with two additional parameters ǫ,R) and its

proof uses only action estimates and Lemma 2.4. This has the advantage that the

ordering in Lemma 7.6 is preserved by continuation maps (see the proof of Lemma 7.7

below), whereas the one in Lemma 6.1 is not.

We now define a special cofinal family of Hamiltonians in HW(V; F) of the form

above. Besides conditions (41) and (42), we will also need a finer relation, stated

as (45) below, which will be used in order to show that the continuation maps preserve

the decomposition into groups of orbits given by Lemma 7.6. We will first choose the
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parameters ν+ , R , τ in the region with positive slopes, and then choose the parameters

ν− , ǫ , µ , δ in the region with negative slopes.

(a) Choice of the parameters in the region with positive slopes. We start with a sequence

(ν+,j), j ∈ Z+ consisting of real numbers ν+,j ≥ 1, which does not contain elements

in Spec(∂+V), such that ν+,j < ν+,j′ for j < j′ , and such that ν+,j →∞ as j→∞ .

We further consider a sequence (τj), j ∈ Z+ consisting of positive real numbers such

that τj ∈ (ν+,j/4, ν+,j/2), which does not contain elements in Spec(∂+W), and such

that τj < τj′ for j < j′ .

We choose the parameters ην+,j , ητj
∈ (0, 1/2) such that they form monotone sequences

which converge to 0.

We then choose a sequence (Rj), j ∈ Z+ consisting of numbers Rj ≥ 1, such that

Rj < Rj′ for j < j′ and Rj → ∞ , j → ∞ , and such that the last condition in (41) is

satisfied under the stronger form:

(43) Rjην+,j > 2ν+,j for all j ∈ Z+.

(This stronger form of (41) will be used in Lemma 7.8.) The first two inequalities

in (42) are then satisfied.

(b) Choice of the parameters in the region with negative slopes. We start with a

sequence (ν−,i), i ∈ Z− consisting of real numbers ν−,i ≥ 1, which does not contain

elements in Spec(∂−V), such that

(44) ν−,i−1 ≥ ν−,i + 2 for all i ∈ Z−.

This implies ν−,i′ ≥ ν−,i + 2 for i′ < i and ν−,i → ∞ as i → −∞ . We choose

the parameters ην−,i ∈ (0, 1/2) and such that they form a monotone sequence which

converges to 0. We require that the third inequality in (42) is satisfied:

ν+,j(Rj − 1) < ν−,i − ην−,i for all i ≤ −j.

This last condition is implied by ν−,i > ν+,−i(R−i−1)+1/2, i ∈ Z− , which provides

an explicit recipe for the construction.

We choose a sequence (ǫi), i ∈ Z− of numbers ǫi ∈ (0, 1/2) such that ǫi′ < ǫi for

i′ < i, such that ǫi → 0, i → −∞ , and such that the second condition in (41) is

satisfied:

ǫiν−,i < ην−,i for all i ∈ Z−.

We also require that the sequence 1/ǫi does not contain any element in Spec(∂−W),

which is a generic property.
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We then consider two sequences (µi), (δi), i ∈ Z− such that

(45) ǫiµi(1− δi) = 1 for all i,∈ Z−

and which moreover satisfy the following conditions: the sequence (µi) consists of

positive numbers and does not contain elements of Spec(∂−W), we have µi′ > µi for

i′ < i and µi →∞ , i→ −∞; the sequence (δi) is such that δi ∈ (0, 1) for all i ∈ Z− ,

we have δi′ < δi for i′ < i and δi → 0, i→ −∞; the first condition in (41) is satisfied:

δiµi < ηµi for all i ∈ Z−.

Such sequences are easily constructed by choosing µi slightly larger than 1/ǫi for all

i ∈ Z− .

These conditions imply µi > 1/ǫi > ν−,i/ην−,i ≥ 2ν−,i for all i ∈ Z− , so that the last

inequality in (42) is also satisfied since ν−,i ≥ 1.

Let now

Hi,j := Hµi,ν−,i,ν+,j,τj,δi,ǫi,Rj
, i ∈ Z−, j ∈ Z, i ≤ −j.

Then we have Hi′,j ≥ Hi,j for i′ ≤ i and Hi,j ≤ Hi,j′ for j ≤ j′ . Indeed, the first

inequality follows from conditions (44) and (45), which imply that for i′ < i the value

of Hi′,j on ǫi∂−V satisfies ν−,i′(1 − ǫi) ≥ (ν−,i + 2)(1 − ǫi) ≥ ν−,i(1 − ǫi) + 1 =

ν−,i(1 − ǫi) + ǫiµi(1 − δi) = maxF Hi,j . The second inequality follows from the

conditions ν+,j′ ≥ ν+,j ≥ τj and Rj′ ≥ Rj ≥ 1, which imply (ν+,j′ − τj)(Rj′ − 1) ≥

(ν+,j − τj)(Rj − 1), or equivalently ν+,j′(Rj′ − 1) ≥ ν+,j(Rj − 1) + τj(Rj′ − Rj), so

Hi,j′ ≥ Hi,j on Rj′∂
+W and therefore everywhere.

We consider FC∗(Hi,j) as a doubly­directed system in Kom, inverse on i → −∞ and

direct on j→∞ , with maps

FC∗(Hi′,j)→ FC∗(Hi,j), i′ ≤ i ≤ −j

induced by non­decreasing homotopies, and maps

FC∗(Hi,j)→ FC∗(Hi,j′), j ≤ j′, i ≤ −j′

induced by non­increasing homotopies. (The non­decreasing homotopies will actually

be chosen more specifically, as a composition of “small distance” homotopies, see the

proof of Lemma 7.7 below.) The choice of parameters ensures that for each Hi,j the

groups of orbits are ordered as in Lemma 7.6. Denote FCF(Hi,j) the Floer subcomplex

of FC∗(Hi,j) generated by orbits in the group F , denote FCI,II,III(Hi,j) the Floer quotient

complex generated by orbits in the groups I, II, III , and consider similarly FCI,III(Hi,j)

and FCII(Hi,j). The groups of orbits II− , II0 , II+ are ordered by the action as
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II− < II0 < II+ within the group of orbits II , so that we have corresponding sub­ and

quotient complexes FCII♥(Hi,j) for ♥ ∈ {∅,≥ 0, > 0,= 0,≤ 0, < 0}, where II♥ has

the following meaning:

II∅ = II, II≤0
= II−0, II>0

= II+, II<0
= II−, II=0

= II0, II≥0
= II0+.

Similarly, we have orderings by the action I−+ < I0 within the group I , and III0 <

III−+ within the group III , as well as orderings I ≺ III and III ≺ I from Lemma 7.6.

We thus define FC(I,III)♥(Hi,j) for ♥ ∈ {∅,≥ 0, > 0,= 0,≤ 0, < 0} via

(I, III)∅ = (I, III), (I, III)≤0
= (I, III0), (I, III)>0

= III−+,

(I, III)<0
= I−+, (I, III)=0

= (I0, III0), (I, III)≥0
= (I0, III).

Lemma 7.7 The homotopies that define the doubly­directed system FC∗(Hi,j) can be

chosen so that they induce doubly­directed systems

FCII♥(Hi,j), FCI♥(Hi,j), FCIII♥(Hi,j) and FC(I,III)♥(Hi,j)

for i ∈ Z− , j ∈ Z+ , i ≤ −j and ♥ ∈ {∅,≥ 0, > 0,= 0,≤ 0, < 0}.

Proof (1) We consider first the continuation maps

FC∗(Hi′,j)→ FC∗(Hi,j), i′ ≤ i ≤ −j

induced by non­decreasing homotopies equal to Hi′,j near +∞ and equal to Hi,j near

−∞ . The positive slopes ν+,j , τj are fixed, as well as the parameter Rj , and the

homotopy is constant outside F ◦Wbottom .

Denote for simplicity H = Hi,j , H′ = Hi′,j , and ν− = ν−,i , ν
′
− = ν−,i′ , ǫ = ǫi ,

ǫ′ = ǫi′ , µ = µi , µ
′ = µi′ . The gap ‖H − H′‖∞ between the two Hamiltonians is

equal to the biggest value among (1 − ǫ′)ν ′− − (1 − ǫ)ν− (the difference of values in

the region I0 ) and (1− ǫ′)ν ′−+ ǫ′µ′(1− δ′)− (1− ǫ)ν−− ǫµ(1− δ) (the difference of

values in the region F0 ). Condition (45) ensures that these two values are equal, hence

gap := ‖H − H′‖∞ = (1− ǫ′)ν ′− − (1− ǫ)ν− .

In the sequel we will repeatedly apply Lemma 7.2 (without further mentioning it),

which asserts that for two groups of orbits PH+
< PH− − gap implies PH+

≺ PH− .

We first prove that

FH′ , IH′ ≺ IIH,

so that we have induced maps FCII(H
′) → FCII(H). We have F0

H′ + gap < I0
H′ +

gap < II−H : the first inequality is obvious, and the second inequality is equivalent to
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−(1− ǫ)ν− < −ν− + ην− , which is implied by ǫν− < ην− . This ensures FH′ ≺ IIH

and IH′ ≺ IIH .

We now prove

IIIH′ ≺ (F, I, II)H .

Note that H and H′ coincide in the regions II0+ and III , and from the proof of

Lemma 7.6 we know that IIIH < II0+
H . The conditions IIIH′ ≺ (F, I, II−)H follow

from Lemma 2.4. To prove the condition IIIH′ ≺ II0+
H , we cannot argue directly by

action considerations as in the proof of IIIH ≺ II0+
H since the gap between H and H′

could be arbitrarily large. Instead, we use again IIIH < II0+
H , so we can find some

ǫ > 0 such that IIIH < II0+
H − ǫ . We specialize now to non­decreasing homotopies

from H to H′ which are compositions of “small distance" homotopies with gap smaller

than ǫ . (This can alway be achieved by cutting and reparametrizing a given homotopy.)

Note that all the homotopies are fixed on II0+ and III . For each of these small distance

homotopies, say running from H− at −∞ to H+ at +∞ , we then have IIIH+
≺ II0+

H−

by Lemma 7.2, and we also have IIIH+
≺ (F, I, II−)H− by Lemma 2.4. In other words

IIIH+
≺ (F, I, II)H− and the image through the continuation map of a generator in IIIH+

lies in IIIH− . As a result, the image of a generator in IIIH′ through a composition of

such “small distance" homotopies lies in IIIH and we have IIIH′ ≺ (F, I, II)H . (This

reproves in particular IIIH′ ≺ (F, I, II−)H ).

We now prove that

FH′ ≺ IH , IIIH ,

wherefrom induced maps FCI,II,III(H
′) → FCI,II,III(H) and FCI,III(H

′) → FCI,III(H).

The relation FH′ ≺ IH follows from F0
H′+gap < min(I−H , I

+
H ), which is −ǫ′(1−δ′)µ′−

(1− ǫ)ν− < −(1− ǫ)ν−+min(−ǫ(µ− ηµ),−ǫ(ν−− ην−) = −(1− ǫ)ν−− ǫ(µ− ηµ).

This is equivalent to −(1 − δ)µ < −(µ − ηµ) in view of (45), and holds in view of

δµ < ηµ . The relation FH′ ≺ IIIH follows from the previous one: indeed IH < IIIH ,

hence F0
H′ + gap < IIIH .

We also have

IH′ ≺ IIIH .

This is a consequence of I0
H′ + gap < III0

H , which is −(1− ǫ′)ν ′− + (1− ǫ′)ν ′− − (1−

ǫ)ν− < −ν+(R − 1), which is equivalent to ν+(R − 1) < (1 − ǫ)ν− and is implied

by (41) and (42). Since we already proved IIIH′ ≺ IH , we infer that the continuation

maps therefore preserve the decomposition FCI,III(H) = FCI(H)⊕ FCIII(H).

We now prove that

II−
H′
≺ II0+

H and II−0
H′
≺ II+H ,
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so that we have induced maps FCII♥(H′) → FCII♥(H) for all values of ♥ . The first

relation follows from Lemmas 2.2, 2.3, and 2.5, while the last relation follows from

Lemmas 2.2 and 2.3 (using H′ = H outside F ◦Wbottom ). Note that in this situation we

cannot argue using the action because the homotopy only preserves the action filtration

up to an error given by the gap, and the latter can be arbitrarily large.

We now prove that

I−+H′ ≺ (I0
H , IIIH) and (IH′ , III

0
H′) ≺ III−+H ,

which implies that we have induced maps FC(I,III)♥(H′)→ FC(I,III)♥(H) for all values

of ♥ .

In view of IH′ ≺ IIIH , the first relation is a consequence of I−+
H′
≺ I0

H , which is

in turn implied by I−+H′ + gap < I0
H . The latter is seen to hold as follows. Denote

by T∂−V , T∂−W the minimal period of a closed Reeb orbit on ∂−V , respectively on

∂−W , and set T− := min(T∂−V ,T∂−W ) > 0. The desired inequality is implied by

−(1 − ǫ′)ν ′− − ǫ
′T− + (1 − ǫ′)ν ′− − (1 − ǫ)ν− < −(1 − ǫ)ν− , which holds because

−ǫ′T− < 0.

In view of IH′ ≺ IIIH , the second relation is a consequence of III0
H′ ≺ III−+H . The

relation III0
H′ ≺ III+H is a consequence of Lemmas 2.2 and 2.3 in view of the fact

that the homotopy is constant outside F ◦ Wbottom . The relation III0
H′ ≺ III−H is a

consequence of Lemma 2.5. Note that in both situations we cannot argue using the

action because the homotopy only preserves the action filtration up to an error given

by the gap, and the latter can be arbitrarily large.

(2) We now consider the continuation maps

FC∗(Hi,j)→ FC∗(Hi,j′), j ≤ j′ ≤ −i

induced by non­increasing homotopies equal to Hi,j near +∞ and equal to Hi,j′ near

−∞ . The negative slopes ν−,i , µi are fixed, as well as the parameters ǫi, δi , and the

homotopy is constant on F ◦ Wbottom ◦ V . This situation is easier than the one in (1)

because here the continuation maps preserve the action filtration.

Denote again for simplicity H = Hi,j , H′ = Hi,j′ , and ν+ = ν+,j , ν
′
+ = ν+,j′ , R = Rj ,

R′ = R′j , τ = τj , τ
′ = τj′ .

The relations

FH ≺ IH′ , IIH′ , IIIH′ and IH ≺ IIH′

follow as in Lemma 7.6. On the one hand we have IH′ = IH and II−0
H′ = II−0

H , so that

FH ≺ IH′ , II
−0
H′

and IH ≺ II−0
H′

. On the other hand we have F0
H < II0

H = II0
H′ < II+

H′
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and F0
H = F0

H′ < III0
H′ < III−+H′ for i ≤ −j′ which implies FH ≺ II+H′ , IIIH′ . Finally,

we also have IH = I′H < II0
H′ < II+

H′
, which implies IH ≺ IIH′ .

The relation

IIIH ≺ IIH′

is proved as follows. We have IIIH ≺ II−
H′

as in Lemma 7.6, using Lemma 2.4. We have

III0+
H < II0+

H′
by (42), namely R(τ − ητ ) < ν+(R − 1). Finally we have III−H < II0+

H′

by (41), namely Rην+ > ν+ .

The relation

IIIH ≺ IH′

is proved as in Lemma 7.6, using Lemma 2.4.

The continuation map

FCII(H)→ FCII(H
′)

is induced by a non­increasing homotopy hence preserves the filtration by the action.

As a consequence we obtain well­defined continuation maps

FCII♥(H)→ FCII♥(H′)

for all values of ♥ .

Let us now prove that the continuation map

FCI,III(H)→ FCI,III(H
′)

induces maps

FC(I,III)♥(H)→ FC(I,III)♥(H′)

for all values of ♥ . We need to show the relations I−+H ≺ I0
H′ , IIIH′ and IH , III

0
H ≺

III−+
H′

. The first relation follows from I−+H < I0
H = I0

H′ < III0
H′ < III−+

H′
, where

the middle inequality is ensured by (41) and (42), namely ν+(R − 1) < ν− − ην− <

ν−(1− ǫi). The second relation follows from I0
H < III0

H′ < III−+
H′

.

The above shows that we actually have non­interacting doubly­directed systems

FCI♥(Hi,j) and FCIII♥(Hi,j)

for all values of ♥ and Lemma 7.7 is proved.

Lemma 7.8 We have isomorphisms

SH♥∗ (V) ∼=
−→
lim

j

←−
lim

i
FHII♥(Hi,j)

for ♥ ∈ {∅,≥ 0, > 0,= 0,≤ 0, < 0}.
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Proof The proof is very much similar to that of Lemma 7.4. Recalling that the slopes

near ∂±V for Hi,j are −ν−,i and ν+,j , the key identity is

(46) SH
(−ν−,i,ν+,j)
∗ (V) ∼= FHII(Hi,j).

To prove (46) recall from Lemma 5.1 that SH
(a,b)
∗ (V) can be expressed as a direct

limit over Hamiltonians in HW (V; F) of Floer homology groups truncated in the action

window (a, b). In particular, considering a decreasing sequence ik → −∞ and an

increasing sequence jk → ∞ as k → ∞ with ik ≤ −jk , we have SH
(a,b)
∗ (V) =

−→
lim

k→∞
FH

(a,b)
∗ (Hik ,jk ). Here the direct limit is understood with respect to continuation

maps FH
(a,b)
∗ (Hik,jk )→ FH

(a,b)
∗ (Hik′ ,jk′ ) induced by non­increasing homotopies.

We claim that for k large enough such that ν+,jk ≥ −a we have FC
(a,b)
∗ (Hik ,jk ) =

FC
(a,b)
II (Hik,jk ). The proof is similar to the proof of Lemma 5.1: We need to show that

the actions of orbits in groups F , I and III are below a. For the groups F and I this

is obvious. The actions within group III are ordered as III0 < III−+ . The maximal

action of the orbits in group III− is bounded above by −ν+(R− 1) + R(ν+ − ην+) =

ν+ − Rην+ < −ν+ ≤ a, where we have dropped the index jk and the first inequality

follows from condition (43). Similarly, the maximal action of the orbits in group III+

is bounded above by −ν+(R − 1) + R(τ − ητ ) < −ν+(R − 1) + R(ν+ − ην+) < a,

where the first inequality follows from (42) and the second one from the one for group

III− . Combining this with the previous paragraph we obtain

SH(a,b)
∗ (V) =

−→
lim

k→∞
FH

(a,b)
II (Hik,jk ).

Assume now without loss of generality that −ν−,ik ≤ a and ν+,jk ≥ b. The smoothings

of any such two Hamiltonians Hik,jk and Hik′ ,jk′ , k ≤ k′ can be constructed so that

they coincide in the neighborhood of V where the periodic orbits in group II for

Hik,jk appear. As such, the continuation map FC
(a,b)
II (Hik,jk ) → FC

(a,b)
II (Hik′ ,jk′ ), which

is upper triangular if we arrange the generators in increasing order of the action, has

diagonal entries equal to +1 and is therefore an isomorphism. This proves that we have

a canonical isomorphism FH
(a,b)
II (Hik ,jk )

∼= SH
(a,b)
∗ (V) for all k (such that −ν−,ik ≤ a

and ν+,jk ≥ b). This implies (46) by choosing a = −ν−,i and b = ν+,j .

A variant of this argument shows that, under the isomorphism (46), the continuation

maps FHII(Hi′,j)→ FHII(Hi,j), i′ ≤ i and FHII(Hi,j)→ FHII(Hi,j′), j ≤ j′ induced by

a non­decreasing homotopy, respectively by a non­increasing homotopy, coincide with

the canonical maps SH
(−ν−,i′ ,ν+,j)
∗ (V) → SH

(−ν−,i,ν+,j)
∗ (V) and SH

(−ν−,i,ν+,j)
∗ (V) →

SH
(−ν−,i,ν+,j′ )
∗ (V), respectively. The conclusion of the Lemma follows in the case

♥ = ∅ .
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The proof in the case ♥ 6= ∅ is similar, as in Lemma 7.4.

Lemma 7.9 We have isomorphisms

SH♥∗ (Wbottom, ∂+Wbottom) ∼=
−→
lim

j

←−
lim

i
FHI♥(Hi,j)

and

SH♥∗ (W top, ∂−W top) ∼=
−→
lim

j

←−
lim

i
FHIII♥(Hi,j)

for ♥ ∈ {∅,≥ 0, > 0,= 0,≤ 0, < 0}.

Proof (1) We prove the first isomorphism. Since the group of orbits I is located in

the region where the Hamiltonians Hi,j have negative slope the direct limit over j plays

no role and we can assume without loss of generality that j = j0 is constant. The Floer

trajectories involved in the differential for FCI(Hi,j) and also the relevant continuation

Floer trajectories are confined to a neighborhood of F ◦Wbottom by Lemma 2.2. We

can thus replace the Hamiltonians Hi = Hi,j0 by Hamiltonians H̃i which coincide with

Hi in F ◦Wbottom ◦V and are constant equal to 0 on V ◦W top ◦ [1,∞)×∂+W . We can

further shift these Hamiltonians to Hi = H̃i − ν−,i(1− ǫi) so that the orbits in group I

lie on level 0, and further replace Hi by Hi = ǫiHi ◦ϕ
ln 1/ǫi

Z , so that the orbits in group

I for Hi lie in a neighborhood of Wbottom , and the slopes of Hi in the linear regions

are the same as the slopes of Hi . Finally, we can further replace the Hamiltonians Hi

by H̃i defined on Ŵbottom
F which coincide with Hi on F ◦ Wbottom and continue on

[1,∞)× ∂+Wbottom linearly with the same slope −ν−,i . The resulting inverse system

is cofinal and, by Lemma 7.5(b), it computes SH♥∗ (Wbottom, ∂+Wbottom).

(2) We prove the second isomorphism. Since the group of orbits III is located in

the region where the Hamiltonians Hi,j have positive slope, the inverse limit over i

plays no role. Consider the Hamiltonian H̃j which coincides with Hi,j on V ◦W top ◦

[1,∞)× ∂+W , and is constant equal to 0 on F ◦Wbottom ◦ V . The complex FCIII(H̃j)

is well­defined by the same action considerations which show that IIIHi,j < II0+
Hi,j

.

Consider a non­increasing homotopy from Hi,j at −∞ to H̃j at +∞ , and also the

reverse non­decreasing homotopy from H̃j at −∞ to Hi,j at +∞ . We claim that these

homotopies induce chain maps between FCIII(Hi,j) and FCIII(H̃j) which are homotopy

inverses to each other. We first prove that III
H̃j
≺ (F, I, II)Hi,j and IIIHi,j ≺ (F, II)

H̃j
,

where in the latter case F stands for critical points in F ◦Wbottom and II = II0+ . The

first relation follows from Lemma 2.4 for (F, I, II−)Hi,j and from action considerations

for II0+
Hi,j

since the homotopy is non­increasing. The second relation follows from

Lemmas 2.2 and 2.3 for III−Hi,j
, from Lemma 2.5 for III0

Hi,j
, and it also follows for III+Hi,j
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by specializing to homotopies which are compositions of “small distance" homotopies

as in the proof of Lemma 7.7. As a result, the induced chain maps between FC(Hi,j)

and FC(H̃j) preserve the subcomplexes generated by IIIHi,j and III
H̃j

. These chain

maps are homotopy inverses of each other, and a similar argument shows that the

corresponding chain homotopies also preserve the subcomplexes generated by IIIHi,j

and III
H̃j

. This proves the claim.

We can now further shift these Hamiltonians H̃j to Hj = H̃j − ν+,j(Rj − 1) so that the

orbits in group III lie on level 0, and further replace Hj by Hj = RjHj ◦ ϕ
ln 1/Rj

Z , so

that the orbits in group III for Hj lie in a neighborhood of W top . The resulting direct

system is cofinal and, by Lemma 7.5(a), it computes SH♥∗ (W top, ∂−W top).

Lemmas 7.8 and 7.9 imply that for all flavors ♥ we have isomorphisms

SH♥∗ (W top, ∂−W top)⊕ SH♥∗ (Wbottom, ∂+Wbottom) ∼=
−→
lim

j

←−
lim

i
FH(I,III)♥(Hi,j).

On the other hand, by the Excision Theorem 6.8 we have isomorphisms

SH♥∗ (W,V) ∼= SH♥∗ (Wbottom, ∂−V)⊕ SH♥∗ (W top, ∂+V).

Combining these isomorphisms we obtain

Corollary 7.10 We have isomorphisms

SH♥∗ (W,V) ∼=
−→
lim

j

←−
lim

i
FH(I,III)♥(Hi,j)

for ♥ ∈ {∅,≥ 0, > 0,= 0,≤ 0, < 0}. �

7.1.4 The transfer map revisited

Consider again a Hamiltonian H = Hµ,ν±,τ as in Figure 18 above. We associate to it a

new Hamiltonian L ≤ H defined as follows: it is constant equal to µ(ε−δε)+ν−(1−ε)

on F \ [δε, 1] × ∂F , it is linear of slope −µ on [δε, ξ] × ∂F , it is constant equal to 0

on [ξ, 1]× ∂F ∪W ∪ [1,R]× ∂+W , and it is linear of slope τ on [R,∞)× ∂+W . See

Figure 19.

Here the constant ξ is determined by the construction and given by

ξ =
ν−
µ

(1− ε) + ε ∈ (ε, 1).

The orbits of the Hamiltonian L fall as usual into 5 groups F0+, I−0+ and we have

F < I− < I0 < I+ . Indeed, the smallest action of an orbit in group I− is −ξ(µ− ηµ),
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Figure 19: Hamiltonian L for the construction of the transfer map

whereas the largest action of an orbit in group F is −µ(ξ − δǫ), and we have −µ(ξ −

δǫ) < −ξ(µ− ηµ), which is equivalent to µδε < ξηµ , in view of µδ < ηµ and ǫ < ξ .

Arguing differently, for the Hamiltonian L we have F ≺ I regardless of the choice of

parameters using Lemmas 2.2, 2.3 and 2.5, and the orbits within each of the groups F

and I are naturally ordered by the action as F+ < F0 and I− < I0 < I+ .

Consider now a Hamiltonian K := Kµ,τ,δ′ as in Figure 16, with δ′ ∈ (0, 1) such that

µδ′ < ηµ and µ(1 − δ′) > µ(ξ − δε), i.e. the maximal level of K is larger than the

maximal level of L . We then have L ≤ K .

Lemma 7.11 The homotopy from K to L given by slow convex interpolation induces

for all flavors ♥ homotopy equivalences

FCI♥(L)
∼
−→ FCI♥(K).

Proof Although the homotopy is decreasing in the convex end, the Floer equation

remains unchanged in the region {r ≥ R} where the Hamiltonians L and K have the

same slope. So the maximum principle applies and the continuation map FC(L) →

FC(K) is well­defined. It is a homotopy equivalence with homotopy inverse given by

the continuation map induced by the reverse homotopy from L to K .

We assume without loss of generality that L has no critical points in [ξ, 1] × ∂F ∪

[1,R]× ∂+W and that it coincides with K on W .
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It is useful to define the following Hamiltonians: LK is equal to L on F and is equal to K

on W∪[1,∞)×∂+W , and KL is equal to K on F◦W and is equal to L on [1,∞)×∂+W .

We accordingly have chain homotopy equivalences FC(L) → FC(KL)→ FC(K) and

also FC(L) → FC(LK) → FC(K) induced respectively by homotopies supported in

the positive/negative end. We will show that we have corresponding chain homotopy

equivalences FCI♥(L)→ FCI♥(KL)→ FCI♥(K) for all flavors ♥ . The same statement

holds if we replace KL with LK , but we will not use it.

We first consider the homotopies connecting L and KL , supported in the negative

end, and show that they induce chain maps FCI♥(L) → FCI♥(KL) and FCI♥(KL) →

FCI♥(L) which are homotopy inverses of each other for all flavors ♥ . We first consider

the non­decreasing homotopy from L to KL , constant on W ∪ [1,∞) × ∂+W . Each

element in the homotopy is of the following form: outside F it coincides with L , and

inside F it is linear of slope −µ in some region [a, b] × ∂F with 0 < a < b ≤ 1

depending continuously on the Hamiltonian; it is constant equal to 0 on {b ≤ r ≤ 1}

and it is constant equal to µ(b − a) on {r ≤ a}. Also, each element in the homotopy

satisfies F < I− < I0 < I+ . We can decompose the homotopy into “small distance"

homotopies of gap e > 0 small enough so that, at the endpoints L± of each such

homotopy, we have FL+
< IL− − e, I−L+

< I0+
L−
− e, I0

L+
< I+L− − e. This ensures that

we have induced chain maps FCI♥(L+)→ FCI♥(L−) for all flavors ♥ , and the result

of the composition is a continuation chain map FCI♥(KL)→ FCI♥(L). By considering

the reverse homotopy, the same argument produces a chain map FCI♥(L)→ FCI♥(KL).

The same argument applied in 1­parametric families shows that each of the small

distance chain maps FCI♥(L+)→ FCI♥(L−) is a chain homotopy equivalence, and so

is their composition.

The same arguments show that we have chain homotopy equivalences FCI♥(KL) →

FCI♥(K) for all flavors ♥ . By composition we obtain chain homotopy equivalences

FCI♥(L)→ FCI♥(K) for all flavors ♥ .

Remark. We have used an argument based on “small distance" isomorphisms also in

the proof of Lemma 7.7. It is likely that it can be used in order to simplify further the

proof of Lemma 7.7.

Consider now a doubly­directed system Hi,j as in Section 7.1.3. Let Li,j and Ki,j be the

Hamiltonians associated to Hi,j as in the previous paragraph. We turn Li,j into a doubly

directed system in Kom by composing the continuation maps FC(Ki′,j) → FC(Ki,j)

and FC(Ki,j) → FC(Ki,j′) with the canonical maps in Lemma 7.11 and their inverses.

(Note that in general we do not have Li′,j ≥ Li,j for i′ ≤ i ≤ −j.) Then all the results

for the system Ki,j in §7.1.1 carry over to the system Li,j .
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Recall that Li,j ≤ Hi,j and the orbits in group F for Li,j and Hi,j coincide. Therefore,

by Lemma 7.6 the actions of the orbit groups satisfy FLi,j < (I, II, III)Hi,j . We thus

obtain induced chain maps

fi,j : FCI(Li,j)→ FCI,II,III(Hi,j)→ FCII(Hi,j)

which define a morphism of doubly­directed systems in Kom. Here the first map is

the continuation map and the second one the projection onto the quotient complex in

view of Lemma 7.6. Since these maps preserve the filtration by action, we also have

induced chain maps

f♥i,j : FCI♥(Li,j)→ FCII♥(Hi,j)

for ♥ ∈ {∅,≥ 0, > 0,= 0,≤ 0, < 0}, which define morphisms of doubly­directed

systems in Kom. We denote (f♥i,j )∗ the maps induced in homology.

Lemma 7.12 Under the isomorphisms of Lemmas 7.4, 7.8 and 7.11 we have

f♥! =
−→
lim

j

←−
lim

i
(f♥i,j )∗,

where f♥! : SH♥∗ (W)→ SH♥∗ (V) is the transfer map from Definition 5.3.

Proof Recall from (39) and Lemma 7.11 the isomorphisms

SH
(−µi,τj)
∗ (W) ∼= FHI(Ki,j) ∼= FHI(Li,j).

Recall also from (46) the isomorphism

SH
(−ν−,i,ν+,j)
∗ (V) ≃ FHII(Hi,j).

Recall that µi ≥ ν−,i and τj ≤ ν+,j . It follows from the proofs of Lemmas 7.4 and 7.8

that the continuation map (fi,j)∗ : FHI(Li,j) → FHII(Hi,j) coincides via the above

isomorphisms with the composition of the transfer map f
(−µi,τj)

! : SH
(−µi,τj)
∗ (W) →

SH
(−µi,τj)
∗ (V) with the canonical map given by enlarging/restricting the action window

SH
(−µi,τj)
∗ (V)→ SH

(−ν−,i,ν+,j)
∗ (V), i.e.

SH
(−µi,τj)
∗ (W)

(fi,j)∗ //

f
(−µi,τj)

!
''❖❖

❖❖
❖❖

❖❖
❖❖

❖
SH

(−ν−,i,ν+,j)
∗ (V)

SH
(−µi,τj)
∗ (V)

66♥♥♥♥♥♥♥♥♥♥♥♥

.

Since −ν−,i → −∞ as i → −∞ and τj → +∞ as j → +∞ , and since the

continuation maps in the doubly­directed systems for Li,j and Hi,j correspond under
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the previous isomorphisms to enlarging/restricting the action windows (Lemmas 7.4

and 7.8), we obtain

f! =
−→
lim

j

←−
lim

i
(fi,j)∗.

This proves the lemma for ♥ = ∅ . The proof for the other values of ♥ is entirely

analogous.

7.2 Symplectic homology of a pair as a homological mapping cone

Let f♥i,j be the chain maps constructed in §7.1.4. The discussion in §4 shows that

the cones C(f♥i,j ) form a doubly­directed system, and we define (compare with Corol­

lary 7.10)

SH♥,cone
∗ (W,V) :=

−→
lim

j

←−
lim

i
H∗(C(f♥i,j )).

The goal of this section is to prove the following proposition.

Proposition 7.13 Let (W,V) be a cobordism pair. Then we have an isomorphism

SH♥,cone
∗ (W,V) ∼= SH♥∗ (W,V)[−1]

for ♥ ∈ {∅,≥ 0, > 0,= 0,≤ 0, < 0}.

Proof In view of Corollary 7.10 it will be enough to prove

(47)
−→
lim

j

←−
lim

i
H∗(C(f♥i,j )) =

−→
lim

j

←−
lim

i
FH(I,III)♥(Hi,j)[−1]

for all values of ♥ .

We recall the notation W = Wbottom ◦ V ◦W top . Recall the families of Hamiltonians

Hi,j and Li,j from §7.1.4. For a fixed value of the double index (i, j) we denote for

readability H = Hi,j and L = Li,j .

Let ♥ = ∅ . We claim that any monotone homotopy from L to H induces a homotopy

equivalence

FCI(L)
∼
−→ FCI,II,III(H).

To see this, consider for t ∈ [0, 1] the non­increasing homotopy of Hamiltonians Ht

as in Figure 19 from H0 = H to H1 = L . Each Ht has the shape considered in

Section 7.1.3 with parameters

µt
= µ, ν t

− ∈ [0, ν−], ν t
+ ∈ [0, ν+], τ t

= τ, δt > 0, εt ∈ [ε, ξ], Rt
= R
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satisfying

δtεt
= δε, ν t

−(1− εt) = µ(ξ − εt).

Thus εt increases with t , while δt and ν t
− decrease with t . The actions of orbits in the

regions I , II and III are bounded below by −µ(ξ − εt) − εt(µ − ηµ) = −µξ + εtηµ ,

−ν̃ t
− and −ν t

+(R − 1), respectively, all of which increase with t . Here ν̃ t
− denotes

ν− − ην− for ν t
− ≥ ν− − ην− and ν t

− otherwise. Since the action of orbits in region

F is independent of t and the actions satisfy F < I, II, III for t = 0, it follows

that F < I, II, III holds for all t ∈ [0, 1]. Considering a moving action window

separating the orbit group F from the groups I, II, III , we see that the continuation

map FHI(L)→ FHI,II,III(H) is a composition of small distance homotopy equivalences

and thus an isomorphism. This proves the claim.

Let us consider the commutative diagram

FCI(L)
f //

∼

h.e. &&▼▼
▼▼

▼▼
▼▼

▼▼
▼

FCII(H)

FCI,II,III(H)

p

88♣♣♣♣♣♣♣♣♣♣♣

in which p is the projection induced by the ordering I, III ≺ II . By Lemma 4.3(ii) we

have an isomorphism in Kom

C(f ) ∼= C(p) ∼= FCI,III(H)[−1].

This isomorphism is compatible with continuation maps, and hence with the structure

of a doubly­directed system. In the first­inverse­then­direct limit this yields (47) for

♥ = ∅ .

Let ♥ = “ = 0". The orbits of L in the group I0 are constants, and we separate them

as I0 = I0bottom ⊔ I0V ⊔ I0top , according to whether they lie in Wbottom , V , respectively

W top , with the orbits lying in Wbottom∪W top forming a subcomplex, and the orbits lying

in V forming a quotient complex (this is achieved by perturbing L along W by a Morse

function whose restriction to V is smaller than its restriction to Wbottom ∪W top ). The

Floer complex reduces to the Morse complex by symplectic asphericity [66], and we

therefore have canonical identifications FCI0bottom(L) ≡ FCI0(H), FCI0V (L) ≡ FCII0(H),

and FCI0top(L) ≡ FCIII0(H).

The continuation map f=0 : FCI0(L) → FCII0(H) is identified with the projection

FCI0(L)→ FCI0V (L), and by Lemma 4.3(ii) we have an isomorphism in Kom

C(f=0) ∼= FCI0bottom,0top(L)[−1] ≡ FCI0,III0 (H)[−1].
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This identification is compatible with continuation maps, and hence with the structure

of a doubly­directed system. In the first­inverse­then­direct limit this yields (47) for

♥ = “ = 0".

Let ♥ = “ < 0". We denote FCI0bottom(L) the complex generated by the critical points

of L inside Wbottom , and we recall the canonical identification FCI0bottom(L) ≃ FCI0(H)

which we already discussed in the case ♥ = “ = 0" above. We claim that any

monotone homotopy from L to H induces a homotopy equivalence

FCI−,0bottom(L)
∼
−→ FCI,II−(H).

To see this, consider the composition

g : FCI−,0bottom(L) −→ FCI,II−,III(H) −→ FCI,II−(H),

where the first map is the continuation map and the second one is the quotient projection

according to Lemma 7.6. Note that the subcomplexes FCI−,0bottom(L) and FCI,II−,III(H)

correspond to the negative action parts if we choose the perturbing Morse functions

to be positive on Wbottom and negative on V ∪W top . Since the homotopy is constant

on V , Lemma 2.2 shows that the Floer cylinders counted by the map g lie entirely

in F ∪Wbottom . Therefore, the map g agrees with the continuation map FC<0(L̃) →

FC<0(H̃), where L̃, H̃ are the Hamiltonians that agree with L , H on F∪Wbottom and are

equal to zero on V ∪W top . The argument in the case ♥ = ∅ , setting the Hamiltonians

Ht also to zero on V ∪ W top , shows that this map is a homotopy equivalence. This

proves the claim.

Consider now the commutative diagram

FCI−,0bottom(L)
ϕ //

∼

h.e. ''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

FCII−(H)

FCI,II−(H)

p

88♣♣♣♣♣♣♣♣♣♣♣

in which p is the projection determined by the ordering I ≺ II− . It follows from

Lemma 4.3(ii) that we have an isomorphism in Kom

C(ϕ) ∼= C(p) ∼= FCI(H)[−1].



Symplectic homology and the Eilenberg–Steenrod axioms 115

We then consider the diagram of short exact sequences of complexes

FCI−(L) //

f<0

��

FCI−,0bottom(L) //

ϕ

��

FCI0bottom(L)

��
FCII−(H)

��

FCII−(H) //

��

0

��
C(f<0) C(ϕ) ∼= FCI(H)[−1]

∼= proj[−1] // C(0) ∼= FCI0(H)[−1]

The top right square commutes up to homotopy by Proposition 4.4 because the cone

of the identity map on the second line is homotopic to zero. The cone of ϕ has been

identified above, and the bottom right map induced between the cones is homotopic to

the projection FCI(H)[−1]
proj[−1]
−→ FCI0(H)[−1]. It then follows from Proposition 4.4

and Lemma 4.3(ii) that we have isomorphisms in Kom

C(f<0) ∼= C(proj[−1])[1] ∼= C(proj) ∼= FCI−+(H)[−1].

For the middle isomorphism see (23). The identification C(f<0) ∼= FCI−+(H)[−1] is

compatible with continuation maps, and hence with the structure of a doubly­directed

system. In the first­inverse­then­direct limit this yields (47) for ♥ = “ < 0".

Let ♥ = “ ≥ 0". This is a consequence of the cases ♥ = ∅ and ♥ = “ < 0". For this,

we consider the diagram

FCI−(L) //

f<0

��

FCI(L) //

f

��

FCI0+(L)

f≥0

��
FCII−(H) //

��

FCII(H) //

��

FCII0+(H)

C(f<0) ∼= FCI−+(H)[−1]
∼= incl[−1] // C(f ) ∼= FCI,III(H)[−1]

The cones of f<0 and f have been identified above, and the map induced between

the cones is homotopic to the inclusion FCI−+(H)[−1]
incl[−1]
−→ FCI,III(H)[−1]. It then

follows from Proposition 4.4 and Lemma 4.3(ii) that we have isomorphisms in Kom

C(f≥0) ∼= C(incl[−1]) ∼= C(incl)[−1] ∼= FCI0,III(H)[−1].

For the middle isomorphism see (23). The identification C(f≥0) ∼= FCI0,III(H)[−1] is

compatible with continuation maps, and hence with the structure of a doubly­directed

system. In the first­inverse­then­direct limit this yields (47) for ♥ = “ ≥ 0".

Let ♥ = “ > 0". This is a consequence of the cases ♥ = “ = 0" and ♥ = “ ≥ 0".

The proof is similar to that of the case ♥ = “ ≥ 0".
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Let ♥ = “ ≤ 0". This is a consequence of the cases ♥ = “ > 0" and ♥ = ∅ . The

proof is similar to that of the case ♥ = “ ≥ 0".

Remarks on the proof of Proposition 7.13. It is worth noting that we really needed to

consider only three cases: ♥ = ∅ , ♥ = “ = 0", and ♥ = “ < 0", the other three

cases being in a sense formal consequences. As a matter of fact, given ♥ = ∅ and

♥ = “ = 0", any of the four remaining cases suffices in order to deal with the other

remaining three. A strategy that would have worked is to have considered the case

♥ = “ > 0", i.e. work our way from the convex end throughout the cobordism (instead

of starting from the concave end as in the proof). Should one wish to start with one

of the cases ♥ = “ ≤ 0" or ♥ = “ ≥ 0", an additional argument would be needed,

related to excision, that would allow to decouple I from III0 , respectively I0 from III .

We can see a posteriori that the proof consists in a suitable iterative application of the

following two elementary steps. (i) Identify suitable complexes for L and H which are

homotopy equivalent via the continuation map. (ii) Embed the maps f♥ whose cone

we wish to compute inside grid diagrams of the type considered in Proposition 4.4,

in which the other maps are either some of the homotopy equivalences of Step (i), or

maps f♥ whose cones have been already computed, or natural projections/inclusions

for which the cones are known via Lemma 4.3.

7.3 The exact triangle of a pair

The homotopy invariance of the transfer map, together with the identification between

the dynamical definition of the relative symplectic homology groups and the definition

using cones given by Proposition 7.13 implies that for any exact inclusion of pairs

(W,V)
f
−→ (W ′,V ′) and for any ♥ ∈ {∅,≥ 0, > 0,= 0,≤ 0, < 0} we have an

induced transfer map

SH♥∗ (W ′,V ′)
f!−→ SH♥∗ (W,V).

The following proposition establishes Theorem 7.1 (the case of symplectic cohomology

is completely analogous to that of symplectic homology).

Proposition 7.14 Let (W,V) be a cobordism pair for which we denote the inclusions

V
i
−→ W

j
−→ (W,V). Given ♥ ∈ {∅,≥ 0, > 0,= 0,≤ 0, < 0} the following hold.



Symplectic homology and the Eilenberg–Steenrod axioms 117

(i) For any Liouville structure λ there exists an exact triangle

SH♥∗ (W,V;λ)
j! // SH♥∗ (W;λ)

i!xxqqq
qq
qq
q

SH♥∗ (V;λ)

∂

[−1]
gg❖❖❖❖❖❖❖❖

where the various symplectic homology groups are understood to be computed with

respect to the Liouville structure λ .

(ii) Given a homotopy of Liouville structures λt , t ∈ [0, 1], there are induced iso­

morphisms hW : SH♥∗ (W;λ0) → SH♥∗ (W;λ1), hV : SH♥∗ (V;λ0) → SH♥∗ (V;λ1), and

hW,V : SH♥∗ (W,V;λ0)→ SH♥∗ (W,V;λ1) which define a morphism between the exact

triangles in (i) corresponding to λ0 and λ1 .

(iii) Given an exact inclusion of pairs (W,V)
f
−→ (W ′,V ′), the transfer maps f! :

SH♥∗ (V ′)→ SH♥∗ (V), f! : SH♥∗ (W ′)→ SH♥∗ (W), and f! : SH♥∗ (W ′,V ′)→ SH♥∗ (W,V)

define a morphism between the exact triangles of the pairs (W ′,V ′) and (W,V).

Proof The existence of the exact triangle in (i) is a consequence of the tautological ho­

mology exact triangle of a cone (20) and of the identification between SH♥∗ (W,V)[−1]

and SH
♥,cone
∗ (W,V) proved in Proposition 7.13.

Part (ii) follows from the naturality of the homology exact triangle of a cone with respect

to chain maps, and from the naturality of the absolute transfer map SH♥∗ (W;λ) →

SH♥∗ (V;λ) with respect to homotopies of Liouville structures.

Part (iii) follows from the naturality of the homology exact triangle of a cone and from

the functoriality of transfer maps (Proposition 5.4).

The Excision Theorem 6.11 can also be reinterpreted using transfer maps. The proof

uses the same kind of arguments as above and we shall omit it.

Proposition 7.15 Given a Liouville cobordism triple (W,V,U), denote the inclusion

(W \ U,V \U)
i
−→ (W,V).

The excision isomorphism in Theorem 6.11 is induced by the transfer map i! .

�
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7.4 Exact triangle of a triple and Mayer­Vietoris exact triangle

Proposition 7.16 (Exact triangle of a triple) Let U ⊂ V ⊂ W be a triple of Liou­

ville cobordisms with filling, meaning that (V,U) and (W,V) are pairs of Liouville

cobordisms with filling, and denote the inclusions by (V,U)
i
−→ (W,U)

j
−→ (W,V).

For ♥ ∈ {∅,≥ 0, > 0,= 0,≤ 0, < 0} there exists an exact triangle

SH♥∗ (W,V)
j! // SH♥∗ (W,U)

i!xxqqq
qq
qq
q

SH♥∗ (V,U)

∂

[−1]
ff▼▼▼▼▼▼▼▼

which is functorial with respect to inclusions of triples, and which is invariant under

homotopies of the Liouville structure that preserve the triple.

Proof The proof is a formal consequence of the functorial properties of the long exact

sequence of a pair. The proof of Theorem I.10.2 in [35] holds verbatim.

Theorem 7.17 (Mayer­Vietoris exact triangle) Let U,V ⊂ W be Liouville cobor­

disms such that W = U ∪ V and Z := U ∩ V is a Liouville cobordism such that

U = Ubottom ◦ Z, V = Z ◦ V top, W = Ubottom ◦ Z ◦ V top,

with Ubottom = U \ Z , V top = V \ Z . We denote the inclusion maps by

U
jU

))❚❚❚
❚❚❚

❚❚❚
❚❚

Z

iU
55❦❦❦❦❦❦❦❦❦❦❦

iV ))❙❙❙
❙❙❙

❙❙❙
❙❙ W

V
jV

55❥❥❥❥❥❥❥❥❥❥❥

There is a functorial Mayer­Vietoris exact triangle

SH♥∗ (W)
(jU!,jV!) // SH♥∗ (U)⊕ SH♥∗ (V)

iU!−iV!vv❧❧❧
❧❧
❧❧
❧❧
❧

SH♥∗ (Z)

[−1]

δ

ff▲▲▲▲▲▲▲▲

For SH=0 this exact triangle is isomorphic to the Mayer­Vietoris exact triangle in

singular cohomology.
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︸ ︷︷ ︸
U

ZUbottom V top ∂+W∂−W

W︷ ︸︸ ︷

︸ ︷︷ ︸
V

Figure 20: Cobordisms for the Mayer­Vietoris theorem

Proof The Mayer­Vietoris exact triangle follows by a purely algebraic argument from

the exact triangle of a pair and its naturality, and from the Excision Theorem 6.11. The

idea is to consider the following commutative diagram.

SH♥∗−1(W)
HH

δ′

SH♥∗−1(V,Z) SH♥∗−1(W,U)

OO

excision

∼=
oo

SH♥∗−1(U,Z) SH♥∗ (Z)oo

OO

SH♥∗ (U)oo

OO

SH♥∗ (U,Z)oo SH♥∗+1(Z)oo

SH♥∗−1(W,V)

excision∼=

OO

SH♥∗ (V)oo

OO

SH♥∗ (W)oo

OO

ss δ′′

II

δ′

SH♥∗ (W,V)oo

∼= excision

OO

SH♥∗ (V,Z)

OO

SH♥∗ (W,U)
excision

∼=
oo

OO

SH♥∗+1(Z)

OO

The isomorphism SH♥∗ (W,V)
∼
−→ SH♥∗ (U,Z) follows from the Excision Theorem 6.11

for the exact triple (W,V,V top). Similarly, we have an isomorphism SH♥∗ (W,U)
∼
−→

SH♥∗ (V,Z). The maps δ′ and δ′′ are obtained by inverting the corresponding excision

isomorphisms, and we actually have δ′′ = −δ′ by the “hexagonal lemma" of Eilenberg

and Steenrod [35, Lemma I.15.1] which we recall below. We define the map δ in the

statement of Theorem 7.17 to be equal to δ′′ , and a direct check by diagram chasing

shows that the Mayer­Vietoris triangle is exact, see [35, § I.15] for details.
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Lemma 7.18 [35, Hexagonal Lemma I.15.1] Consider the following diagram of

groups and homomorphisms

G0
ℓ1

vv♥♥♥
♥♥
♥♥
♥♥
♥♥
♥

ℓ2

((PP
PP

PP
PP

PP
PP

i0

��

G′1 G′2

G

j1
hh◗◗◗◗◗◗◗◗◗◗◗◗

j2
66♠♠♠♠♠♠♠♠♠♠♠♠

j0

��

G2

∼=k1

OO

i2
66♠♠♠♠♠♠♠♠♠♠♠♠

h1 ((PP
PP

PP
PP

PP
PP G1

∼= k2

OO

i1
hh◗◗◗◗◗◗◗◗◗◗◗◗

h2vv♥♥♥
♥♥
♥♥
♥♥
♥♥
♥

G′0

Assume that each triangle is commutative, that k1 and k2 are isomorphisms, that the two

diagonal sequences are exact at G , and that j0i0 = 0. Then the two homomorphisms

from G0 to G′0 obtained by skirting the sides of the hexagon differ in sign only. �

The hexagonal lemma of Eilenberg and Steenrod is applied in the proof of Theorem 7.17

to the following configuration.

SH♥∗+1(Z)

ℓ1

vv❧❧❧
❧❧❧

❧❧❧
❧❧ ℓ2

((❘❘
❘❘❘

❘❘❘
❘❘❘

i0

��

SH♥∗ (V,Z) SH♥∗ (U,Z)

SH♥∗ (W,Z)

j1
ii❘❘❘❘❘❘❘❘❘❘❘

j2
55❧❧❧❧❧❧❧❧❧❧❧

j0

��

SH♥∗ (W,U)

∼=k1

OO

i2
55❧❧❧❧❧❧❧❧❧❧❧

h1 ))❘❘
❘❘❘

❘❘❘
❘❘❘

❘
SH♥∗ (W,V)

∼= k2

OO

i1
ii❘❘❘❘❘❘❘❘❘❘❘

h2uu❧❧❧❧
❧❧❧

❧❧❧
❧❧

SH♥∗ (W)

The vertical isomorphisms k1 and k2 are the excision isomorphisms. The connecting

homomorphism δ in the Mayer­Vietoris exact sequence, or the homomorphism δ′′ in

the notation of the proof of Theorem 7.17, is defined to be h2k−1
2 ℓ2 .

7.5 Compatibility between exact triangles

In this section we use the notation (♥,♥′,♥′/♥) for any one of the triples (< 0,∅,≥

0), (≤ 0,∅, > 0), (< 0,≤ 0,= 0), or (= 0,≥ 0, > 0). To any such triple there
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corresponds a tautological exact triangle (see Propositions 2.12 and 2.18)

SH♥∗
// SH♥

′

∗

{{✇✇
✇✇
✇✇
✇✇
✇✇

SH
♥′/♥
∗

[−1]

cc❋❋❋❋❋❋❋❋❋❋

Proposition 7.19 Let (W,V) be a Liouville pair of cobordisms with filling. Let

(♥,♥′,♥′/♥) be a triple as above.

(i) The transfer maps f♥WV , f♥
′

WV , and f
♥′/♥
WV induce a morphism between the tautological

exact triangles corresponding to (♥,♥′,♥′/♥) for W and V .

(ii) The exact triangles of the pair (W,V) for ♥,♥′,♥′/♥ determine “triangles of

triangles" together with the corresponding tautological exact triangles. More precisely,

upon expanding the exact triangles of a pair and the tautological ones into long exact

sequences, we obtain the following diagram in which all squares are commutative,

except the bottom right one which is anti­commutative

SH♥∗ (W,V) //

��

SH♥∗ (W)
f♥
! //

��

SH♥∗ (V) //

��

SH♥∗−1(W,V)

��

SH♥
′

∗ (W,V) //

��

SH♥
′

∗ (W)
f
♥′

! //

��

SH♥
′

∗ (V) //

��

SH♥
′

∗−1(W,V)

��

SH
♥′/♥
∗ (W,V) //

��

SH
♥′/♥
∗ (W)

f
♥′/♥
! //

��

SH
♥′/♥
∗ (V)

−

//

��

SH
♥′/♥
∗−1 (W,V)

��

SH♥∗−1(W,V) // SH♥∗−1(W)
f
♥
! // SH♥∗−1(V) // SH♥∗−2(W,V)

(iii) The exact triangle of a pair (W,V) for SH=0
∗ is isomorphic to the exact triangle of

the pair (W,V) in singular cohomology Hn−∗ .

Proof Assertion (i) follows from the fact that continuation maps induced by increasing

homotopies respect the action filtration.

Assertion (ii) follows from Lemma 4.6, and from our identification of the relative sym­

plectic homology groups with limit homology groups of mapping cones corresponding

to chain level continuation maps (Proposition 7.13).
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Lemma 4.6 is applied to the following morphism between action filtration short exact

sequences given by the chain level continuation maps:

0 // FCI♥(Ki,j) //

f♥i,j
��

FC
I♥
′ (Ki,j) //

f♥
′

i,j

��

FC
I♥
′/♥(Ki,j) //

f
♥′/♥
i,j

��

0

0 // FCII♥(Ki,j) // FC
II♥
′ (Hi,j) // FC

II♥
′/♥(Hi,j) // 0

Assertion (iii) is proved mutatis mutandis like [29, Proposition 1.4]. We omit the

details.

Finally, we prove the following compatibility between the tautological exact triangles.

Proposition 7.20 For every filled Liouville pair (W,V) the four tautological exact

triangles fit into the commuting diagram

SH>0
∗+1(W,V)

��

SH>0
∗+1(W,V)

��
SH<0
∗ (W,V) // SH

≤0
∗ (W,V) //

��

SH=0
∗ (W,V) //

��

SH<0
∗−1(W,V)

SH<0
∗ (W,V) // SH∗(W,V) //

��

SH
≥0
∗ (W,V) //

��

SH<0
∗−1(W,V)

SH>0
∗ (W,V) SH>0

∗ (W,V)

Proof Fix ǫ > 0 small enough. For any choice of real numbers a, b such that

−∞ < a < −ǫ < ǫ < b < ∞ , and for any choice of admissible Hamiltonian and

almost complex structure, we have a commutative diagram of short exact sequences

0 // FC
(a,−ǫ)
∗

// FC
(a,ǫ)
∗

//

��

FC
(−ǫ,ǫ)
∗

//

��

0

0 // FC
(a,−ǫ)
∗

// FC
(a,b)
∗

// FC
(−ǫ,b)
∗

// 0

in which the various maps are inclusions or projections. This induces a commutative

diagram between the corresponding long exact sequences in homology, and by passing

to the limit on the Hamiltonian and then on a → −∞ , b → ∞ as in Section 2.5
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we obtain the commutativity of the diagram formed by the two horizontal lines in the

statement.

The commutativity of the diagram formed by the two vertical lines in the statement is

proved analogously.

We conclude this subsection with a compatibility result between the exact triangle of a

triple and Poincaré duality.

Proposition 7.21 (Poincaré duality and long exact sequence of a triple) For every

triple (W,V,U) of filled Liouville cobordisms and ♥ ∈ {∅, > 0,≥ 0,= 0,≤ 0, < 0}

there exists a commuting diagram

SH♥
∗ (W,V) //

∼=exc

��

SH♥
∗ (W,U) //

∼=exc

��

SH♥
∗ (V,U) //

∼=exc

��

SH♥
∗−1(W,V)

∼=exc

��
SH♥

∗ (W \ V, ∂V) //

∼=PD

��

SH♥
∗ (W \ U, ∂U) //

∼=PD

��

SH♥
∗ (V \ U, ∂U) //

∼=PD

��

SH♥
∗−1(W \ V, ∂V)

∼=PD

��
SH−∗

♥ (W \ V, ∂W) // SH−∗
♥ (W \ U, ∂W) // SH−∗

♥ (V \ U, ∂V) //

∼=exc

��

SH1−∗
♥ (W \ V, ∂W)

SH−∗
−♥(W \ V, ∂W) // SH−∗

−♥(W \ U, ∂W) // SH1−∗
−♥ (W \ U,W \ V) // SH1−∗

−♥ (W \ V, ∂W)

where the first and last row are the long exact sequences of the triples (W,V,U) and

(W \U,W \ V, ∂W), respectively, and the vertical arrows are the Poincaré duality and

excision isomorphisms from Theorem 3.4 and Theorem 6.8. (The remaining horizontal

maps are defined by this diagram.)

Proof The conclusion follows directly from the definition of the Poincaré duality

isomorphism in Theorem 3.4 and the observation that for a Hamiltonian G as in

Figure 13 adapted to the triple (W,V,U), the Hamiltonian −G is adapted to the triple

(W \U,W \ V, ∂W).

Alternatively, one can reduce the general case by a purely algebraic argument to the

case U = ∅ , as in the proof of Proposition 7.16. The case U = ∅ is in turn treated by

noting that for a Hamiltonian H as in Figures 12 or 18 adapted to the pair (W,V), the

Hamiltonian −H is adapted to the triple (W,W \ V, ∂W).
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7.6 The exact triangle of a pair of Liouville domains revisited

The exact triangle

SH♥∗ (W,V) // SH♥∗ (W)

zz✉✉✉
✉✉
✉✉

SH♥∗ (V)

∂

[−1]
ee❑❑❑❑❑❑❑

can be established in a more direct way for a pair (W,V) of Liouville domains since

there is no need to first identify the symplectic homology of the pair with a homological

mapping cone. Instead, one can argue directly on the chain complexes using truncation

by the action. We find it instructive to spell out the argument. This proof is only

apparently simpler: since the transfer maps induced by the inclusions V →֒ W and

W →֒ (W,V) are only implicitly constructed, this proof would require additional

arguments in order to incorporate it into the larger framework that we discuss in this

paper, and these additional arguments would essentially amount to reinterpret this

diagram in terms of transfer maps.

For a pair of Liouville domains we only need to consider three flavors ♥ ∈ {∅,=

0, > 0}. We prove below the compatibility of the exact triangle of the pair with the

tautological exact triangle relating these three flavors.

Let V ⊆ W be an inclusion of Liouville domains and denote by Ŵ the symplectic

completion of W . Let H = Hν,τ , ν > 0, τ > 0 be a one step Hamiltonian on Ŵ ,

defined up to smooth approximation as follows (Figure 21):

• H = 0 on W \ V ,

• H is linear of slope τ on Ŵ \W ,

• H is linear of slope ν on a collar ]δ, 1] × ∂V ⊆ V for some 0 < δ < 1,

• H is constant equal to −ν(1− δ) on the complement of this collar in V .

For ν and τ not lying in the action spectrum of ∂V , respectively ∂W , the 1­periodic

orbits of H fall into five classes:

(II0 ) constants in the complement of the collar in V ,

(II+ ) orbits corresponding to characteristics on ∂V and located in the region {δ}×∂V ,

(III− ) orbits corresponding to characteristics on ∂V and located in the region ∂V ,

(III0 ) constants in W \ V ,

(III+ ) orbits corresponding to characteristics on ∂W and located in the region ∂W .
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III0

Hµ,ν

∂V ∂W

III−

µ

II+

II0

ν

III+

Figure 21: Hamiltonian for a pair of Liouville domains

Suitable choices of the parameters τ and δ as a function of ν ensure that the various

classes of orbits are ordered according to the action as follows:

III0 < III−, III+ < II0 < II+.

As ν → ∞ we can allow τ → ∞ . In general we need to let δ → 0 if we wish to

acquire III− < II0 . However, by Lemmas 2.3 and 2.2 we have

III− ≺ II0, II+

for any fixed choice of δ > 0, independently of the choice of ν . Also, by Lemma 2.3

we have

III− ≺ III+, II0, II+ ≺ III+.

The outcome is that for suitable choices of the parameters we have

III0 < III− ≺ II0 < II+ ≺ III+

and

III0 < III− ≺ III+ < II0 < II+.

Let FCtot be the total Floer complex for the Hamiltonian H . For a subset I ⊂

{II0, II+, III−, III0, III+} denote by FCI the complex generated by the orbits in

the classes belonging to I . For example, FCIII−,III0,III+ stands for the subcomplex

generated by the orbits in the classes III−, III0, III+ , and FCIII−,III+ stands for its

quotient complex modulo FCIII0 etc. We will also abbreviate FCII = FCII0,II+ and

FCIII = FCIII−,III0,III+ .

Let us consider the following diagram whose first two rows and first two columns are
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exact

0

��

0

��
0 // FCIII0

//

��

FCII,III−,III0
//

��

FCII,III−
//

p

��

0

0 // FCIII
//

��

FCtot
//

��

FCII
//

f

��

0

FCIII−,III+ q
//

��

FCIII+ g
//

��

FCIII−[−1]

0 0

Here the chain maps f : FCII → FCIII−[−1] and g : FCIII+ → FCIII−[−1] are

uniquely determined so that we have natural identifications

FCII,III− = C(f )[1], p = β(f ), FCIII−,III+ = C(g)[1], q = β(g).

Proposition 4.4 and its proof ensure that the bottom right square in the above diagram

is commutative in Kom, and moreover the diagram can be completed to a diagram in

Kom whose lines and columns are distinguished triangles, and all of whose squares

are commutative except the bottom­right one which is anti­commutative:

(48) FCIII0
//

��

FCII,III−,III0
//

��

FCII,III−
//

p

��

FCIII0 [−1]

��
FCIII

//

��

FCtot
//

��

FCII
//

f

��

FCIII[−1]

��
FCIII−,III+ q

//

��

FCIII+ g
//

��

FCIII−[−1]

−

//

��

FCIII−,III+[−1]

��
FCIII0[−1] // FCII,III−,III0 [−1] // FCII,III−[−1] // FCIII0 [−2]

Indeed, the term FCIII−[−1] is isomorphic in Kom to C(p)[−1] on the one hand, and

to C(−q)[−1] on the other hand, and these two complexes are isomorphic as seen in

the proof of Proposition 4.4.

We now remark that we have a homotopy equivalence that is well­defined up to

homotopy

FCIII−[−1] ∼= FCII+ .
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This follows again from Proposition 4.4. For the proof we consider a homotopy from

a Hamiltonian K = Kτ which is zero on W and coincides with Hν,τ outside W

to the Hamiltonian H . We denote FCV(K) the subcomplex of FC(K) generated by

critical points inside the domain V , so that the continuation map induces a homotopy

equivalence FCV(K) ≃ FCII,III− . On the other hand we have a canonical identification

FCV(K) ≡ FCII0 , and a commutative diagram up to homotopy

FCV(K)

≃ h.e.
��

FCII0

incl

��
FCII,III− proj

// FCII .

Then Proposition 4.4 yields the desired homotopy equivalence FCIII−[−1] ∼= FCII+ .

Remark 7.22 This chain homotopy equivalence provides one point of view on the

vanishing of SH∗(I × ∂V, ∂−(I × ∂V)) proved in Proposition 9.3.

Diagram (48) can now be used as a building block to prove the existence of a diagram

with exact lines and columns and in which all squares are commutative except the one

marked “−”, which is anti­commutative.

(49) Hn−∗(W,V) //

��

Hn−∗(W) //

��

Hn−∗(V) //

��

Hn−∗+1(W,V)

��
SH∗(W,V) //

��

SH∗(W) //

��

SH∗(V) //

��

SH∗−1(W,V)

��
SH>0
∗ (W,V) //

��

SH>0
∗ (W) //

��

SH>0
∗ (V)

−

//

��

SH>0
∗−1(W,V)

��
Hn−∗+1(W,V) // Hn−∗+1(W) // Hn−∗+1(V) // Hn−∗+2(W,V)

This grid diagram expresses the compatibility between the exact triangle of a pair of

Liouville domains (W,V) and the tautological exact triangle involving singular co­

homology, symplectic homology, and positive symplectic homology. One relevant

ingredient here is the chain homotopy equivalence CIII[−1] ∼= CII . The other ingre­

dient is that all the above homological constructions are compatible with continuation

maps and with direct limits.
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8 Variants of symplectic homology groups

8.1 Rabinowitz­Floer homology

Given a pair of Liouville domains (W,V), Rabinowitz­Floer homology RFH∗(∂V,W)

was defined in [27] as a Floer­type theory associated to the Rabinowitz action functional

ÃH : LŴ × R→ R, ÃH(γ, η) = AηH(γ),

where H : Ŵ → R is a Hamiltonian such that ∂V = H−1(0) is a regular level, H|V ≤ 0,

and H|
Ŵ\V ≥ 0. The dynamical significance of Rabinowitz­Floer homology is that it

counts leafwise intersection points of ∂V under Hamiltonian motions [5], and one of

its most useful properties is that Hamiltonian displaceability of ∂V (and hence of V )

implies vanishing.

It was proved in [29] that RFH∗(∂V,W) does not depend on W , so we will denote it

by RFH(∂V) (it does however depend on the filling V of ∂V ). The main result of [29]

is that, with our current notation, we have an isomorphism

(50) RFH∗(∂V) ∼= SH∗(∂V),

i.e. Rabinowitz­Floer homology is the symplectic homology of the trivial cobordism

over ∂V . As such, Rabinowitz­Floer homology is naturally incorporated within the

setup that we develop in this paper.

8.2 S1­equivariant symplectic homologies

The circle S1 = R/Z acts on the free loop space by shifting the parametrisation. As

such, one can define S1 ­equivariant flavors of symplectic homology groups. In the

case of Liouville domains relevant instances have been defined in [70, 67, 18, 73, 4].

Following Seidel [67] and [18, 73], the relevant structure is that of an S1 ­complex,

meaning a Z­graded chain complex (C∗, ∂) together with a sequence of maps ∂i :

C∗ → C∗+2i−1 , i ≥ 0 such that ∂0 = ∂ and

(51)
∑

i+j=k

∂i∂j = 0

for all k ≥ 0. An S1 ­complex for which ∂i = 0 for i ≥ 2 is called a mixed complex in

the literature on cyclic homology. One should view S1 ­complexes as being ∞­mixed

complexes, or mixed complexes up to homotopy, see [18] and the references therein.

Given a Hamiltonian H one can endow FC
(a,b)
∗ (H) with the structure of an S1 ­complex
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that is canonical up to homotopy equivalence. Moreover, a homotopy of Hamiltonians

induces a morphism between the S1 ­complexes defined on the Floer chain groups at

the endpoints.

Recall that we work with coefficients in a field K . Denote by u a formal variable of

degree −2. Given an S1 ­complex C = (C∗, {∂i}i≥0) we define following Jones [53]

and Zhao [73] the periodic cyclic chain complex

C∗[u, u
−1], ∂u =

∑

i≥0

ui∂i, |u| = −2.

Here elements in C∗[u, u
−1] of degree k are by definition Laurent polynomials∑N

j=−N xju
j with xj ∈ Ck+2j . Then ∂2

u = 0 as a consequence of (51) and the map ∂u

is K[u]­linear. We consider the sub/quotient complexes

C∗[u], C∗[u
−1] = C∗[u, u

−1]/uC∗[u]

with differential induced by ∂u and the induced K[u]­module structure. The homolo­

gies

HC[u]
∗ (C) := H∗(C∗[u]), HC[u,u−1]

∗ (C) := H∗(C∗[u, u
−1]),

HC∗(C) := HC[u−1]
∗ (C) := H∗(C∗[u

−1])

correspond to certain versions of the negative cyclic homology, periodic (or Tate)

cyclic homology, respectively cyclic homology of the S1 ­complex C in the literature.

We will not use these names but rather indicate in the notation which version of

(Laurent) polynomials we are using. Due to the short exact sequence of complexes of

K[u]­modules

0→ C∗[u]→ C∗[u, u
−1]→ C∗[u, u

−1]/C∗[u] ∼= C∗[u
−1][−2]→ 0,

these homology groups fit into the fundamental exact triangle

HC
[u]
∗ (C) // HC

[u,u−1]
∗ (C)

[−2]xxqqq
qq
qq
qq
qq

HC∗(C) .

[+1]

ee❑❑❑❑❑❑❑❑❑❑

Example 8.1 Given an S1 ­space X , its singular chain complex with arbitrary coeffi­

cients C∗ = (C∗(X), ∂) carries the structure of a mixed complex C = (C∗, ∂, ∂1) such

that [51, 50]

HC∗(C) ∼= HS1

∗ (X).
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Here HS1

∗ (X) = H∗(X ×S1 ES1) is the usual S1 ­equivariant homology group of X

defined by the Borel construction. The map ∂1 : C∗ → C∗+1 is defined by inserting a

suitable representative of the fundamental class of the oriented circle S1 into the first

argument of the composite map C∗(S
1) ⊗ C∗(X)

EZ
−→ C∗(S

1 × X)
µ∗
−→ C∗(X), where

µ : S1×X → X is the S1 ­action and EZ is the Eilenberg­Zilber equivalence, explicitly

described by the Eilenberg­McLane shuffle map [34, p.64]. Define the homology

groups

H[u,u−1]
∗ (X) = HC[u,u−1]

∗ (C), H[u]
∗ (X) = HC[u]

∗ (C).

While these groups cannot be described as homology groups of a topological space in

the manner of HS1

∗ (X) – they typically have infinite support in the negative range – they

are nevertheless unavoidable should one wish to formulate duality. More precisely, let

us assume that X is an oriented manifold of dimension n with boundary preserved

by the S1 ­action. Denoting by H∗
S1(X) = H∗(X ×S1 ES1) the usual S1 ­equivariant

cohomology groups, Poincaré duality in the S1 ­equivariant setting takes the form

Hi
S1(X) ∼= H

[u]
n−i(X, ∂X).

More generally, dualizing the mixed complex structure on C∗(X) and changing the

degree of u to +2, one can define two other versions H∗
[u,u−1]

(X) and H∗
[u−1]

(X) of

S1 ­equivariant cohomology, with Poincaré duality isomorphisms

Hi
[u,u−1](X) ∼= H

[u,u−1]
n−i (X, ∂X), Hi

[u−1](X) ∼= H
[u−1]
n−i (X, ∂X) = HS1

n−i(X).

See [52, 23] for proofs of related statements. We shall use below the following simple

instance of duality: Consider an oriented manifold X of dimension n with boundary

viewed as an S1 ­space with trivial action. Then

HS1

i (X) =
⊕

j≥0

Hi−2j(X)

and

(52) Hi
[u−1](X, ∂X) =

∏

j≥0

Hi+2j(X, ∂X) =
⊕

j≥0

Hi+2j(X, ∂X),

so that we indeed have HS1

i (X) ∼= Hn−i
[u−1]

(X, ∂X) as a consequence of classical Poincaré

duality.

In order to define S1 ­equivariant symplectic homology and cohomology groups, we use

the structure of an S1 ­complex on each truncated Floer chain complex C := FC
(a,b)
∗ (H)

and cochain complex C∨ := FC∗(a,b)(H) constructed in [18, 73]. We set

FH(a,b),S1

∗ (H) = HC∗(C), FH(a,b),[u,u−1]
∗ (H) = HC[u,u−1]

∗ (C),

FH(a,b),[u]
∗ (H) = HC[u]

∗ (C)



Symplectic homology and the Eilenberg–Steenrod axioms 131

and

FH∗(a,b),S1(H) = HC∗(C∨), FH∗(a,b),[u,u−1](H) = HC∗[u,u−1](C
∨),

FH∗(a,b),[u−1](H) = HC∗[u−1](C
∨)

and use these groups in formulas (5), (8), (9), (11), and (12), as well as in Definitions 2.8,

2.13, 2.15, 3.1, and 3.2. The outcome for a pair (W,V) of Liouville cobordisms with

filling are S1 ­equivariant symplectic homology groups

SHS1,♥
∗ (W,V), SH[u,u−1],♥

∗ (W,V), SH[u],♥
∗ (W,V),

and S1 ­equivariant symplectic cohomology groups

SH∗
S1,♥(W,V), SH∗[[u,u−1]],♥(W,V), S∗[[u−1]],♥(W,V),

with ♥ ∈ {∅, > 0,≥ 0,= 0,≤ 0, < 0} as usual.

Remark 8.2 The notation [[u]] and [[u, u−1]] in the equivariant symplectic cohomol­

ogy groups is a reminder that, in the case of a Liouville domain, the inverse limit in

the definition leads in general to formal power series rather than polynomials. It also

indicates the analogy to the S1 ­equivariant cohomology groups defined by Jones and

Petrack [54]. Indeed, it is proved in [73, 4] that for a Liouville domain W and with

rational coefficients the second group satisfies fixed point localization

(53) SH∗[[u,u−1]](W;Q) ∼= Hn+∗(W, ∂W;Q)⊗Q Q[u, u−1].

One can define several other potentially interesting versions of S1 ­equivariant sym­

plectic homology by applying the direct/inverse limit over the bounds of the action

window (a, b), the homology functor, and the completions with respect to u, u−1 in

different orders [4]. In particular, this gives rise to a version of periodic/Tate symplec­

tic cohomology of a Liouville domain that equals the localization of S1 ­equivariant

cohomology and obeys Goodwillie’s theorem [46]. This can also serve as a motivation

to phrase the theory of symplectic homology at chain level, see also the discussion of

coefficients in the Introduction regarding this point.

The equivariant symplectic (co)homology groups are connected to each other by fun­

damental exact triangles similar to the one for cyclic homology above, namely

SH
[u],♥
∗

// SH
[u,u−1],♥
∗ ,

[−2]zzttt
tt
tt

SH
S1,♥
∗

[+1]

bb❋❋❋❋❋❋

SH∗
S1,♥

// SH∗
[[u,u−1]],♥

.

[+2]xxqqq
qq
qq
q

SH∗
[[u−1]],♥

[−1]

dd■■■■■■■
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The non­equivariant and equivariant theories are connected by Gysin exact triangles

SH♥∗
// SH

S1,♥
∗ ,

[−2]xx♣♣♣
♣♣
♣

SH
S1,♥
∗

[+1]

ee▲▲▲▲▲

SH∗
S1,♥

[+2] // SH∗
S1,♥

,

xxqqq
qq

SH∗♥
[−1]

ff▲▲▲▲▲

respectively

SH
[u],♥
∗

[−2] // SH
[u],♥
∗ ,

xxqqq
qq
q

SH♥∗
[+1]

ff▼▼▼▼▼▼

SH∗♥
// SH∗

[[u−1]],♥
.

[+2]vv❧❧❧❧
❧❧

SH∗
[[u−1]],♥

[−1]

gg❖❖❖❖❖❖❖

By construction, all S1 ­equivariant symplectic homology and cohomology groups

are modules over K[u]. Moreover, the periodic versions are actually modules over

the larger ring K[u, u−1]. In particular, this module structure induces periodicity

isomorphisms

SH[u,u−1],♥
∗

∼= SH
[u,u−1],♥
∗+2 , SH∗[[u,u−1]],♥

∼= SH∗+2
[[u,u−1]],♥

.

All the exact triangles above are obtained at the level of truncated Floer homology

by writing the complex that computes HC
[u,u−1]
∗ (C) as the product total complex of a

multicomplex of the form

�� �� �� ��
C3

oo

∂
��

C2
oo

��

C1
∂1

oo

∂
��

C0
∂1

oo

∂2

ii❘ ❘ ❘ ❘ ❘ ❘ ❘ ❘ ❘

C2
oo

��

C1
oo

∂

��

C0
∂1

oo

∂2

ggP
P
P
P
P
P
P
P

∂3

ee

uuu−1

C1
oo

∂

��

C0
∂1

oo

∂2

gg◆
◆
◆
◆
◆
◆
◆
◆

uuu0

C0
oo uuu1

and considering natural subcomplexes and quotient complexes, see [53, 18]. The [u−1]­

complex sits on the right half­plane with respect to the 0­th column, the [u]­complex

sits on the left half­plane, and the non­equivariant theory sits on the 0­th column. For
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cohomology the arrows need to be reversed. The resulting exact triangles for truncated

Floer (co)homology pass to the limit in symplectic (co)homology due to our choice

of order in the first­inverse­then­direct limit. Note that, since for a given Hamiltonian

H and finite action window (a, b) the complex FC
(a,b)
∗ (H) has finite rank, it actually

does not matter whether we consider the product total complex or the direct sum total

complex to compute HC
[u,u−1]
∗ (C).

Here are some further properties of these symplectic (co)homology groups.

(1) At action level zero we have

SHS1,=0
∗ (W,V) ∼= Hn−∗

[u−1]
(W,V), SH[u],=0

∗ (W,V) ∼= Hn−∗
S1 (W,V),

and

SH[u,u−1],=0
∗ (W,V) ∼= Hn−∗

[u,u−1]
(W,V).

In particular, for a Liouville domain W of dimension 2n we have

SHS1,=0
∗ (W) ∼= Hn−∗

[u] (W) ∼= HS1

∗+n(W, ∂W).

This formula appears already in [70]. We interpret in the Introduction this formula as

a motivation for viewing the transfer maps as shriek maps.

(2) For a Liouville domain W , it is proved in [18] that SH
S1,>0
∗ (W) is isomorphic

over Q to linearized contact homology of ∂W whenever the latter is defined, see

also [48, 49, 57] for applications.

(3) The arguments in [18] carry over to the setting of pairs of Liouville cobordisms with

filling in order to show that there is a spectral sequence converging to SH
S1,♥
∗ (W,V)

with second page given by E2 = SH♥∗ (W,V)⊗K[u−1]. In combination with the Gysin

exact triangle this yields the fact that the non­equivariant symplectic homology of a

pair (W,V) vanishes if and only if its S1 ­equivariant symplectic homology vanishes.

The fixed point localization (53) shows that this is not true anymore for SH
[u,u−1]
∗ .

(4) The above flavors of S1 ­equivariant symplectic homology satisfy Poincaré duality

in the following general form: given a Liouville cobordism W and A ⊂ ∂W an

admissible union of boundary components, for any ♥ ∈ {∅, > 0,≥ 0,= 0,≤ 0, < 0}

we have isomorphisms

SHS1,♥
∗ (W,A) ∼= SH−∗

[[u−1]],−♥
(W,Ac), SH[u],♥

∗ (W,A) ∼= SH−∗
S1,−♥

(W,Ac),

SH[u,u−1],♥
∗ (W,A) ∼= SH−∗

[[u,u−1]],−♥
(W,Ac),

where the notation −♥ has the same meaning as in §3.2. There are also algebraic

dualities over the ring K[u] analogous to those in [52] which pair SH∗
S1,♥

with SH
[u],♥
∗ ,

SH∗
[[u−1]],♥

with SH
S1,♥
∗ , and SH∗

[[u,u−1]],♥
with SH

[u,u−1],♥
∗ .
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Each of the these flavors of S1 ­equivariant symplectic homology groups obeys the same

set of Eilenberg­Steenrod type axioms as their nonequivariant counterparts. Transfer

maps and invariance for the case of Liouville domains were previously discussed in [70,

73, 48]. Moreover, it follows from the construction that the Gysin and fundamental

exact triangles are functorial with respect to the tautological exact triangles and also

with respect to the exact triangles of pairs, see also [17, 18] for a basic instance of this

phenomenon.

8.3 Lagrangian symplectic homology, or wrapped Floer homology

Let W be a Liouville cobordism. An exact Lagrangian cobordism in W or, for short, a

Lagrangian cobordism, is an exact Lagrangian L ⊂ W which intersects the boundary

∂W transversally along a Legendrian submanifold ∂L = L∩∂W . This means that λ|L
is an exact 1­form which vanishes when restricted to ∂L . We denote ∂±L = L∩∂±W .

Up to applying a Hamiltonian isotopy that fixes ∂W one can assume without loss of

generality that L is invariant under the Liouville flow near the boundary [3, §3a]. This

means that near its negative or positive boundary we can identify L via the Liouville

flow with [1, 1 + ǫ] × ∂−L , respectively with [1 − ǫ, 1] × ∂+L . We interpret L as

a cobordism from ∂+L to ∂−L . We refer to ∂−L and ∂+L as being the positive,

respectively negative (Legendrian) boundary of L .

Let F be a Liouville filling of ∂−W . An exact Lagrangian filling of ∂−L or, for

short, a filling of ∂−L , is a Lagrangian cobordism FL ⊂ F whose positive Legendrian

boundary is ∂−L (and which has empty negative boundary).

One can associate to a Lagrangian cobordism L with filling FL Lagrangian symplectic

homology groups

SH♥∗ (L), ♥ ∈ {∅, > 0,≥ 0,= 0,≤ 0, < 0}.

Similarly, given a pair of Lagrangian cobordisms K ⊂ L inside a pair of Liouville

cobordisms V ⊂ W , with Lagrangian filling FL inside a Liouville filling F , we define

Lagrangian symplectic homology groups of the pair (L,K):2

SH♥∗ (L,K), ♥ ∈ {∅, > 0,≥ 0,= 0,≤ 0, < 0}.

These are “open string analogues" of the symplectic homology groups defined for the

filled Liouville cobordism W , respectively for the pair of Liouville cobordisms (W,V)

2Not to be confused with the (wrapped) Lagrangian intersection Floer homology of a pair

of Lagrangians.
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with filling. They are defined using exactly the same shape of Hamiltonian as in the

“closed string" case. Given such a Hamiltonian, the generators of the corresponding

chain complexes are Hamiltonian chords with endpoints on L

γ : [0, 1]→ W, γ({0, 1}) ⊂ L, γ̇ = XH ◦ γ,

and the Floer differential counts strips with Lagrangian boundary condition on L which

are finite energy solutions of the Floer equation

u : R× [0, 1]→ W, u(R× {0, 1}) ⊂ L, ∂su + J(u)(∂tu− XH ◦ u) = 0.

The theory is naturally defined over Z/2, and an additional assumption on the La­

grangian is needed (e.g. relatively spin) in order to define the theory with more general

coefficients.

Example 8.3 Let L be a Lagrangian cobordism inside a Liouville domain W , so that L

has empty negative boundary and empty filling. The Lagrangian symplectic homology

group SH∗(L) coincides with the wrapped Floer homology group of L introduced

in [3, 44]. The Lagrangian symplectic homology group SH>0
∗ (L) is isomorphic to

the linearized Legendrian contact homology group of ∂+L [36, 39]. The Lagrangian

symplectic homology group SH=0
∗ (L) is isomorphic to the singular cohomology group

Hn−∗(L) of L . The Lagrangian symplectic homology group of the trivial cobordism

I×∂+L ⊂ I×∂+W , with I a closed interval in (0,∞[, is isomorphic to the Lagrangian

Rabinowitz­Floer homology group of ∂+W [61, 11].

The Lagrangian symplectic homology groups obey the same formal properties as

their closed counterparts, reminiscent of the Eilenberg­Steenrod axioms: functoriality,

homotopy invariance, exact triangle of a pair, excision. Also, the various flavors

SH♥∗ (L,K) fit into tautological exact triangles, which are compatible with the exact

triangles of pairs. The proofs of all these properties are word for word the same as

for Liouville cobordisms, using Lagrangian analogues of our confinement lemmas 2.2,

2.3, 2.4, see also [40].

Open­closed theory. Let (W,V) be a pair of Liouville cobordisms with filling F , and

(L,K) ⊂ (W,V) be a pair of Lagrangian cobordisms with filling FL . One can define

open­closed symplectic homology groups

SH♥∗ ((W,V), (L,K)), ♥ ∈ {∅, > 0,≥ 0,= 0,≤ 0, < 0}

by simultaneously taking into account closed Hamiltonian orbits in W and Hamiltonian

chords with endpoints on L , using the same shape of Hamiltonians as in the closed or
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open setting (see also [40]). These homology groups fit into exact triangles

SH♥∗ (W,V) // SH♥∗ ((W,V), (L,K))

vv♠♠♠
♠♠♠

♠♠♠
♠

SH♥∗ (L,K)

[−1]

ff▼▼▼▼▼▼▼▼

and can be thought of as the homology groups of the cone of the open­closed map,

defined by the count of solutions of a Hamiltonian Floer equation on a disk with one

interior negative puncture and one boundary positive puncture. The Eilenberg­Steenrod

package holds in this extended setup as well.

9 Applications

9.1 Ubiquity of the exact triangle of a pair

A certain number of previous computations in the literature can be reinterpreted from

a unified point of view and generalized from our perspective.

(1) One of our original motivations for the definition of the symplectic homology

groups of a Liouville cobordism was the exact triangle relating symplectic homology

and Rabinowitz­Floer homology [29]

SH−∗(V) // SH∗(V)

xxqqq
qq
qq
qq
q

RFH∗(∂V)

[−1]

ff◆◆◆◆◆◆◆◆◆◆◆

In view of Poincaré duality SH−∗(V) ∼= SH∗(V, ∂V) and the isomorphism (50), this is

just the exact triangle of the pair (V, ∂V). See Theorem 9.1 below for a more detailed

discussion of this triangle.

(2) The subcritical and critical handle attaching exact triangles from [24] and [13]

are special instances of the exact triangle of a pair, see Sections 9.6 and 9.7 below.

Moreover, the surgery exact triangles for linearized contact homology appear as formal

consequences of the corresponding triangles for symplectic homology, via the relations

between equivariant and non­equivariant symplectic homologies; see Section 9.8 below.

(3) Let L ⊂ V be an exact Lagrangian in a Liouville domain V satisfying SH∗(L) = 0.

For example, by a straightforward adaptation of the vanishing results in [27, 55] this



Symplectic homology and the Eilenberg–Steenrod axioms 137

is the case if the completion L̂ is displaceable from V in the completion V̂ . Then the

tautological sequence yields the isomorphism

SH>0
∗ (L) ∼= SH

≤0
∗−1(L) ∼= Hn−∗+1(L),

which was previously conjectured by Seidel, see [36, Conjecture 1.2], and proved from

a Legendrian contact homology perspective by Dimitroglou Rizell [31, Theorem 2.5].

This isomorphism implies the refinement of Arnold’s chord conjecture given in [38],

see Corollary 9.14 below. A combination of the tautological sequence with the exact

sequence of the pair (L, ∂L) and Poincaré duality yields the Poincaré duality long exact

sequence for Legendrian contact homology in [38]

Hn−∗(∂L) // SH−∗+2
>0 (∂L)

xx♣♣♣
♣♣
♣♣
♣♣
♣♣

SH>0
∗ (∂L)

[−1]

ff▲▲▲▲▲▲▲▲▲▲▲

as well as its refinement in [36, Corollary 1.3] and [31, Corollary 2.6]; see Proposi­

tion 9.15 below.

(4) The results of Chantraine, Dimitroglou Rizell, Ghiggini, and Golovko from [22, 45]

can also be reinterpreted from the perspective of the exact triangle of a pair. As an

example, consider the following setup: L is an exact Lagrangian cobordism, ∂−L

has an exact Lagrangian filling FL , and we assume that F̂L ◦ L is displaceable from

the Liouville domain which contains FL ◦ L in the symplectic completion of the

ambient exact symplectic manifold. Then SH∗(FL ◦ L) = 0 and SH∗(FL) = 0 (cf.

Theorems 9.11 and 9.13), hence also SH∗(L, ∂
−L) = 0. The second long exact

sequence in [45, Theorem 1.2] is the exact triangle of the pair (FL ◦ L,FL) for SH∗>0 .

The setup considered in [22] is that in which L is a Lagrangian concordance, so that

the transfer map SH=0
∗ (FL ◦ L)

∼=
−→ SH=0

∗ (FL) is an isomorphism. In view of the

commutative diagram given by the compatibility of tautological exact triangles with

the exact triangle of the pair (FL ◦ L,FL),

SH>0
∗ (FL ◦ L) //

��

SH>0
∗ (FL)

��
SH=0
∗−1(FL ◦ L)

∼= // SH=0
∗−1(FL)

the vertical arrows being isomorphisms since SH∗(FL ◦ L) and SH∗(FL) vanish, we

obtain that the top transfer map is an isomorphism. This is the content of the main

result of [22] in the case of linearized Legendrian contact homology, see also [45]. The

more general bilinearized setup in [22] can be reinterpreted in a similar way.
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This circle of ideas should be compared with the results of Biran and Cornea [9], and

also with the results of Dimitroglou Rizell and Golovko [32].

9.2 Duality results

The following consequence of the long exact sequence of a pair and Poincaré duality

is proved in [29]. For convenience, we provide the short proof in our framework.

Theorem 9.1 (duality sequence [29]) For a Liouville domain V there is a commuting

diagram with exact upper row

(54) · · · SH−∗(V)

��

φ // SH∗(V)
ψ // SH∗(∂V) // SH1−∗(V) · · ·

Hn+∗(V) // Hn−∗(V)

OO

Here the horizontal maps come from the long exact sequences of the pair (V, ∂V) in

view of Poincaré duality SH∗(V, ∂V) ∼= SH−∗(V) and Hn+∗(V) ∼= Hn−∗(V, ∂V), and

the vertical maps are given by the compositions

SH−∗(V)→ SH−∗≤0 (V) = SH−∗
=0 (V) ∼= Hn+∗(V),

Hn−∗(V) ∼= SH=0
∗ (V) = SH≤0

∗ (V)→ SH∗(V).

Proof Commutativity of the diagram (54) follows from commutativity of the diagram

SH−∗(V)

��

∼= // SH∗(V, ∂V)

��

// SH
≥0
∗ (V) = SH∗(V)

SH−∗
≤0 (V) = SH−∗

=0 (V)

∼=

��

∼= // SH=0
∗ (V, ∂V) = SH

≥0
∗ (V, ∂V)

∼=

��

//

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐
SH=0

∗ (V)

OO

Hn+∗(V)
∼= // Hn−∗(V, ∂V) // Hn−∗(V).

∼=

OO

Here the left horizontal maps are Poincaré duality isomorphisms and the lower right

square commutes by Proposition 7.19. The commutativity of the upper right square

can be interpreted as follows: by definition of the symplectic homology groups, the

composition of the three maps around the upper square is obtained by considering a

Hamiltonian vanishing on V and increasing its slope near ∂V from large negative to

small negative to small positive to large positive, which yields the upper horizontal

map.
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Here is a computational application of the Poincaré Duality Theorem 3.4, which will

be needed for the discussion of products in Section 10.

Proposition 9.2 Let W be a Liouville cobordism with Liouville filling F . Then we

have a canonical isomorphism

SH<0
∗ (W) ∼= SH−∗+1

>0 (F).

Proof We successively have

SH<0
∗ (W) ∼= SH<0

∗−1(F ∪W,W) ∼= SH<0
∗−1(F, ∂F) ∼= SH−∗+1

>0 (F).

The first isomorphism follows from the exact triangle of the pair (F ∪ W,W) for

SH<0
∗ (cf. §7) taking into account that SH<0

∗ (F ∪W) = 0 because F ∪W has empty

negative boundary. The second isomorphism is the Excision Theorem 6.8. The third

isomorphism is Poincaré duality.

For further duality results we will need the following vanishing result.

Proposition 9.3 Let V be a Liouville domain. Then

SH♥∗ ([0, 1] × ∂V, 0× ∂V) = 0.

for ♥ ∈ {∅, > 0,≥ 0,= 0,≤ 0, < 0}.

Proof We are computing the symplectic homology group of a cobordism relative to the

concave part of the boundary and therefore the relevant Floer complexes do not involve

orbits with negative action. Thus SH
(a,b)
∗ ([0, 1] × ∂V, 0 × ∂V) = SH

(−ǫ,b)
∗ ([0, 1] ×

∂V, 0× ∂V) for all a < 0, b > 0 and ǫ > 0 smaller than the period of a closed Reeb

orbit on ∂V . In the definition of symplectic homology the inverse limit over a→ −∞

therefore stabilizes and we have SH∗([0, 1] × ∂V, 0 × ∂V) =
−→
lim

b→∞
SH

(−ǫ,b)
∗ ([0, 1] ×

∂V, 0× ∂V).

The point now is that SH
(−ǫ,b)
∗ ([0, 1] × ∂V, 0 × ∂V) = 0 for all b > 0. Indeed, for

b > 0 not lying in the action spectrum of ∂V , this homology group is computed using

the Floer complex generated by closed orbits near [0, 1]×∂V for a Hamiltonian which

vanishes on [0, 1] × ∂V , which has positive slope b near {0, 1} × ∂V , and which is

constant in V away from [0, 1]× ∂V . But such a Hamiltonian can be deformed to one

which has constant slope equal to b all over [0, 1]×∂V and for which the corresponding

chain complex is zero. See Figure 22, in which the deformed Hamiltonian is drawn
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with a dashed line. The conclusion follows using the homotopy invariance of the

homology under compactly supported deformations.

This proves SH
≥0
∗ ([0, 1]× ∂V, 0× ∂V) = 0. Vanishing of SH=0

∗ ([0, 1]× ∂V, 0× ∂V)

follows from vanishing of relative singular cohomology, and vanishing of SH>0
∗ ([0, 1]×

∂V, 0 × ∂V) then follows from the truncation exact triangle. Since there are no other

versions to consider, this proves the proposition.

0× ∂V

b

1× ∂V

Figure 22: Symplectic homology relative to the negative boundary for a trivial cobordism

Theorem 9.4 (Poincaré duality for a trivial cobordism) For every Liouville domain V

there exist canonical isomorphisms between the symplectic homology and cohomology

groups of the trivial cobordism over ∂V ,

PD : SH♥∗ (∂V)
∼=
−→ SH1−∗

−♥ (∂V)

for ♥ ∈ {∅, > 0,≥ 0,= 0,≤ 0, < 0}.

Proof We consider the trivial cobordism W = I × ∂V and apply Proposition 7.21 to

the triple (W, ∂W, ∂+W) to obtain the commuting diagram

SH♥∗ (W, ∂+W) // SH♥∗ (∂W, ∂+W)
∼= //

∼=exc

��

SH♥∗−1(W, ∂W) //

∼=PD

��

SH♥∗−1(W, ∂+W)

0 // SH♥∗ (W)
∼= //

∼=PD

��

SH1−∗
♥ (W) //

∼=exc

��

0

SH−∗−♥(W, ∂−W) // SH1−∗
−♥ (W, ∂W)

∼= // SH1−∗
−♥ (∂W, ∂−W) // SH−∗−♥(W, ∂−W)

where the first and last row are the long exact sequences of the triples (W, ∂W, ∂+W)

and (W, ∂W, ∂−W), respectively, and the vertical arrows are the Poincaré duality
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and excision isomorphisms. The groups SH♥∗ (W, ∂+W) and SH−∗−♥(W, ∂−W) van­

ish by Proposition 9.3. The middle horizontal map defined by this diagram is the

desired Poincaré duality isomorphism from SH♥∗ (∂V) = SH♥∗ (W) to SH1−∗
−♥ (W) =

SH1−∗
−♥ (∂V).

Theorem 9.5 (Poincaré duality and exact triangle of (V, ∂V)) For every Liouville

domain V and ♥ ∈ {∅, > 0,≥ 0,= 0,≤ 0, < 0} there exists a commuting diagram

(55) SH♥∗ (V, ∂V) //

∼=PD

��

SH♥∗ (V) //

∼=PD

��

SH♥∗ (∂V) //

∼=PD

��

SH♥∗−1(V, ∂V)

∼=PD

��

SH−∗−♥(V) // SH−∗−♥(V, ∂V) // SH1−∗
−♥ (∂V) // SH1−∗

−♥ (V)

where the rows are the long exact sequences of the pair (V, ∂V) and the vertical

arrows are the Poincaré duality isomorphisms from Theorem 9.4 (the third one) and

Theorem 3.4 (the other ones). Moreover, the Poincaré duality isomorphisms are

compatible with filtration exact sequences.

Proof Denote by W the trivial cobordism given by a collar neighborhood of the

boundary ∂V in V . Denote U = V \W , so that ∂+W = ∂V and ∂−W = ∂U ≃ ∂V .

Consider the following diagram.

SH♥
∗ (V, ∂V) //

∼=PD

��

SH♥
∗ (V) //

∼=PD

��

SH♥
∗ (∂V) //

∼=PD

��

SH♥
∗−1(V, ∂V)

∼=PD

��
SH−∗

−♥(V) //

∼=exc.

��

SH−∗
−♥(V, ∂V) // SH−∗

−♥(V,U ∪ ∂V) // SH1−∗
−♥ (V)

∼=exc.

��
SH−∗

−♥(U ∪ ∂V, ∂V) // SH−∗
−♥(V, ∂V) //

..

SH−∗
−♥(V,U ∪ ∂V) // SH1−∗

−♥ (U ∪ ∂V, ∂V)

SH−∗
−♥(W, ∂W)

∼=exc.

OO

∼= //

((❘❘
❘❘❘

❘❘
❘❘

❘❘❘
❘

SH−∗+1
−♥ (∂W, ∂+W)

OO

SH−∗+1
−♥ (∂−W)

∼=exc.

OO

The diagram is commutative. The first three rows with their vertical maps correspond to

the commutative diagram in Proposition 7.21 applied to the triple (V,W,∅), so the first

and third rows are the long exact sequences of the triples (V,W,∅) ∼= (V, ∂V,∅) and
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(V,U ∪ ∂V, ∂V), respectively. The right bottom most square is commutative because

the maps are induced by the inclusion of triples (W, ∂W, ∂+W) →֒ (V,U ∪ ∂V, ∂V).

The bottom right triangle is commutative by definition.

The third column vertical downward composition

SH♥
∗ (∂V) // SH−∗

−♥(V,U ∪ ∂V) // SH−∗
−♥(W, ∂W) // SH−∗+1

−♥ (∂−W) ≃ SH−∗+1
−♥ (∂V)

is the Poincaré duality isomorphism of Theorem 9.4 (by inspection of the diagram in

its proof). The bottom arrow composition

SH−∗
−♥(V, ∂V) // SH−∗

−♥(V,U ∪ ∂V) // SH−∗
−♥(W, ∂W) // SH−∗+1

−♥ (∂−W) ≃ SH−∗+1
−♥ (∂V)

is the connecting homomorphism in the cohomology long exact sequence of the pair

(V, ∂V). Finally, the fourth column vertical upward composition

SH1−∗
−♥ (∂V) ≃ SH1−∗

−♥ (∂−W) // SH1−∗(∂W, ∂+W) // SH1−∗(U ∪ ∂V, ∂V) // SH1−∗
−♥ (V)

is the cohomology transfer map for the inclusion ∂V →֒ V .

Remark 9.6 Upon considering the triple (W, ∂W, ∂+W) in the proof of Theorem 9.4

and the triple (V,U ∪∂V, ∂V) in the proof of Theorem 9.5 we formally enter the setup

of multilevel cobordisms discussed in §2.6. While we have not explicitly provided

proofs for the excision theorem and for the existence of the homology long exact

sequences of pairs/triples in that setup, the particular situations that we consider in

Theorems 9.4 and 9.5 are the simplest possible and the proofs of those results clearly

follow from the corresponding theorems for cobordisms with one level. See also the

discussion at the end of §2.6.

Recall that at action zero symplectic homology specialises to singular cohomology,

SH=0
∗ (V) ∼= Hn−∗(V), and similarly for the other versions. Therefore, we obtain

Corollary 9.7 The commuting diagram in Theorem 9.5 specialises at action zero to

(56) Hn−∗(V, ∂V) //

∼=PD

��

Hn−∗(V) //

∼=PD

��

Hn−∗(∂V) //

∼=PD

��

Hn−∗+1(V, ∂V)

∼=PD

��
Hn+∗(V) // Hn+∗(V, ∂V) // Hn+∗−1(∂V) // Hn+∗−1(V)

where the rows are the long exact sequences of the pair (V, ∂V) and the vertical arrows

are the Poincaré duality isomorphisms for the closed manifold ∂V (the third one) and

the manifold­with­boundary V (the other ones). �
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We conclude this subsection with an example illustrating that full symplectic homol­

ogy and cohomology do not obey any kind of algebraic duality for general Liouville

cobordisms.

Example 9.8 Let V be the canonical Liouville filling of a Brieskorn manifold {z ∈

Cn+1 |
∑n

j=0 zaj = 0, |z| = 1} with n ≥ 3 and integers aj ≥ 2 satisfying
∑n

j=0
1
aj
= 1.

P. Uebele [68] has shown that with Z2 ­coefficients its symplectic homology in degrees

n and 1− n is an infinite direct sum

SHk(V;Z2) ∼=
⊕

N

Z2 for k = n and k = 1− n.

By algebraic duality, it follows that its symplectic cohomology in these degrees is an

infinite direct product

SHk(V;Z2) ∼= SHk(V;Z2)∨ ∼=
∏

N

Z2 for k = n and k = 1− n.

In view of the exact sequence (54) with the map φ of finite rank, SHk(∂V;Z2) agrees

with SHk(V)⊕ SH1−k(V) up to an error of finite dimension, hence

SHk(∂V;Z2) ∼=
⊕

N

Z2 ⊕
∏

N

Z2 for k = n and k = 1− n.

By Theorem 9.4, the symplectic cohomology groups in these degrees are the same,

SHk(∂V;Z2) ∼=
⊕

N

Z2 ⊕
∏

N

Z2 for k = n and k = 1− n.

Since the dual of the infinite direct product is not the infinite direct sum, this shows

that for k = n, 1 − n neither SHk(∂V;Z2) = SHk(∂V;Z2)∨ nor SHk(∂V;Z2) =

SHk(∂V;Z2)∨ .

9.3 Vanishing and finite dimensionality

In this subsection we give some conditions under which symplectic homology groups

are zero or finite dimensional. We begin with a simple consequence of the duality

sequence (54).

Corollary 9.9 For a Liouville domain V the following hold using field coefficients:

(a) If one among SHn(V), SH−n(V), SHn(∂V), or SHn(V, ∂V) vanishes, then all of

SH∗(V), SH−∗(V), SH∗(∂V), and SH∗(V, ∂V) vanish.

(b) If one among SH∗(V), SH∗(V), SH∗(∂V), or SH∗(V, ∂V) is finite dimensional,

then so are the other three.
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Proof Part (a) is [65, Theorem 13.3], except for the statement involving SH∗(V, ∂V),

which is a consequence of Poincaré duality. For part (b), in view of Poincaré duality

SH∗(V, ∂V) ∼= SH−∗(V) we only need to deal with SH∗(V), SH∗(V), and SH∗(∂V).

Since SHk(V) ∼= Hom
(
SHk(V),K

)
in each degree, SH∗(V) is finite dimensional iff

SH∗(V) is. If both are finite dimensional, then two out of three terms in the exact

sequence (54) are finite dimensional, so the third term SH∗(∂V) is finite dimensional

as well. Conversely, suppose that dim SH(∂V) < ∞ . Then the map ψ in (54)

has finite rank, as does the map φ (because it factors through singular homology),

and thus dim SH∗(V) < ∞ . Alternatively, one could argue by contradiction: If

dim SH(∂V) < ∞ and SH∗(V), SH∗(V) were infinite dimensional, then the long

exact sequence (54) would imply dim SH∗(V) = dim SH∗(V), which is impossible by

Remark 9.10 below.

Remark 9.10 A K­vector space is isomorphic to its dual space if and only if it is

finite dimensional (see [33] for a nice proof – we thank I. Blechschmidt for pointing

this out). Hence for a pair of Liouville cobordisms with filling (W,V) and using field

coefficients we obtain that SHk
♥(W,V) is isomorphic to SH♥k (W,V) for ♥ ∈ {< 0 ≤

0,= 0,≥ 0, > 0} if and only if both vector spaces are finite dimensional.

We say that a subset of a symplectic manifold is displaceable if it can be displaced

from itself by a compactly supported Hamiltonian isotopy. It has been known for a

while that displaceability implies vanishing of Rabinowitz­Floer homology [27] and

symplectic homology [55] of a Liouville domain. In the context of this paper, these

appear as special cases of the following general vanishing result, whose proof is a

straightforward adaptation of the ones in [27] and [55].

Theorem 9.11 (displaceability implies vanishing)

(a) Let (W,V) be a Liouville cobordism pair with filling F such that V is displaceable

in the completion of F ◦W . Then SH∗(V) = 0.

(b) Let L ⊂ V be an exact Lagrangian in a Liouville domain V whose completion L̂ is

displaceable from V in the completion V̂ . Then SH∗(L) = 0. �

For example, the displaceability hypothesis in (a) is always satisfied if the completion

of F ◦W is a subcritical Stein manifold, or more generally the product of a Liouville

manifold with C .

Remark 9.12 (i) If in Theorem 9.11(a) the cobordism V as well as its filling E =

F ∪Wbottom are connected, then displaceability of V implies displaceability of E ∪ V
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and the vanishing of SH∗(V) follows from the vanishing of symplectic homology of

the Liouville domains E and E ∪ V .

(ii) In the situation of Theorem 9.11(a), displaceability of V implies that of ∂V ,

so we also have SH∗(∂±V) = SH∗(∂V) = 0 and (via exact sequences of triples)

SH∗(V, ∂±V) = SH∗(V, ∂V) = 0.

Another condition that ensures vanishing of SH∗(V) is the vanishing of SH∗(W) for a

pair (W,V). This was observed for Liouville domains by Ritter [65] as a consequence

of the product structure: vanishing of SH∗(W) implies that its unit 1W vanishes, hence

so does its image 1V under the transfer map SH∗(W) → SH∗(V), which implies

SH∗(V) = 0. In view of Theorem 10.2, the same argument proves

Theorem 9.13 (vanishing is inherited) Let (W,V) be a Liouville cobordism pair.

Then SH∗(W) = 0 implies SH∗(V) = 0. �

Again, the hypothesis SH∗(W) = 0 is satisfied if the completion of F ◦ W is a

subcritical Stein manifold, or more generally the product of a Liouville manifold with

C . However, there exist Liouville domains W that are not of this type and still have

vanishing symplectic homology, e.g. flexible Stein domains [25] as well as certain

non­flexible Stein domains [60, 2, 62, 64]. Conversely, there exist many examples of

Liouville pairs (W,V) with V displaceable and SH∗(W) 6= 0. So neither of the two

Vanishing Theorems 9.11 and 9.13 implies the other.

9.4 Consequences of vanishing of symplectic homology

Suppose that V is a Liouville domain with SH∗(V) = 0. Then the tautological sequence

yields

(57) SH>0
∗ (V) ∼= SH

≤0
∗−1(V) ∼= Hn−∗+1(V) 6= 0.

Similarly, if L ⊂ V is an exact Lagrangian with SH∗(L) = 0, then

(58) SH>0
∗ (L) ∼= SH

≤0
∗−1(L) ∼= Hn−∗+1(L) 6= 0.

This has the following dynamical consequences [70, 65].

Corollary 9.14 (a) Let V be a Liouville domain with SH∗(V) = 0 (e.g., this is the

case if ∂V is displaceable in V̂ ). Then there exists at least one closed Reeb orbit.

(b) Let L be an exact Lagrangian L ⊂ V with SH∗(L) = 0 (e.g., this is the case if L̂ is

displaceable from V in V̂ ). Then there exists at least one Reeb chord with boundary

on ∂L . If all the Reeb chords are nondegenerate their number is bounded from below

by rk H∗(L) ≥ rk H∗(∂L)/2.
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Proof The assertion in (a) follows immediately from (57) because SH>0
∗ (V) is gener­

ated by closed Reeb orbits. Similarly, the first assertion in (b) follows from (58).

The second assertion in (b) also follows from (57) because, if all Reeb chords are

nondegenerate, their number is bounded from below by rk SH>0
∗ (V) = rk H∗(V). The

estimate rk H∗(V) ≥ rk H∗(∂V)/2 follows readily from the long exact sequence of the

pair (V, ∂V) in singular homology and Poincaré duality.

Vanishing of symplectic homology also implies the following refinement of the duality

sequence (54).

Proposition 9.15 (duality sequence for positive symplectic homology) (a) Let V be

a Liouville domain with SH∗(V) = 0 (e.g., this is the case if ∂V is displaceable in V̂ ).

Then there exists a commuting diagram with exact rows

Hn−∗(∂V)
σ //

=

��

SH2−∗
>0 (∂V)

τ // SH>0
∗ (∂V)

ρ //

g ∼=
��

Hn−∗+1(∂V)

=

��
Hn−∗(∂V)

σ0 // Hn−∗+1(V, ∂V)
τ0 //

f∼=

OO

Hn−∗+1(V)
ρ0 // Hn−∗+1(∂V)

(b) Let L ⊂ V be an exact Lagrangian in a Liouville domain with SH∗(L) = 0 (e.g.,

this is the case if L̂ is displaceable from V in V̂ ). Then there exists a commuting

diagram with exact rows

Hn−∗(∂L)
σ //

=

��

SH2−∗
>0 (∂L)

τ // SH>0
∗ (∂L)

ρ //

g ∼=
��

Hn−∗+1(∂L)

=

��
Hn−∗(∂L)

σ0 // Hn−∗+1(L, ∂L)
τ0 //

f∼=

OO

Hn−∗+1(L)
ρ0 // Hn−∗+1(∂L)

Proof For part (a) consider the commuting diagram whose columns are the exact

sequences of the pair (V, ∂V) and whose rows are the tautological sequences

SH=0
∗ (V) //

��

SH
≥0
∗ (V) //

��

SH>0
∗ (V) //

��

SH=0
∗−1(V)

��
SH=0
∗ (∂V) //

��

SH
≥0
∗ (∂V) //

��

SH>0
∗ (∂V) //

��

SH=0
∗−1(∂V)

��
SH=0
∗−1(V, ∂V) //

��

SH
≥0
∗−1(V, ∂V) // SH>0

∗−1(V, ∂V) // SH=0
∗−2(V, ∂V)

SH=0
∗−1(V)
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We replace the groups SH=0
∗ by the corresponding singular cohomology groups, and

insert SH
≥0
∗ (V) = SH∗(V) = 0 (which holds by hypothesis) and SH>0

∗−1(V, ∂V) =

0 (which always holds). Moreover, we replace SH
≥0
∗−1(V, ∂V) by the isomorphic

group SH
≥0
∗−1(V, ∂V) ∼= SH<0

∗−2(V, ∂V) ∼= SH2−∗
>0 (V) = SH2−∗

>0 (∂V), where the first

isomorphism comes from the tautological sequence in view of SH∗(V, ∂V) = 0 (which

follows from the hypothesis SH∗(V) = 0 via Corollary 9.9) and the second one is

Poincaré duality. Then the diagram becomes

Hn−∗(V) //

��

0 //

��

SH>0
∗ (V)

∼= //

∼=
��

Hn−∗+1(V)

ρ0

��
Hn−∗(∂V) //

σ0

��
σ ''❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
SH
≥0
∗ (∂V) //

∼=
��

SH>0
∗ (∂V) ρ

//

��

g

∼=

77♦♦♦♦♦♦♦♦♦♦♦♦
Hn−∗+1(∂V)

��
Hn−∗+1(V, ∂V)

f

∼= //

τ0

��

SH2−∗
>0 (∂V) //

τ

88qqqqqqqqqqq

0 // Hn−∗+2(V, ∂V)

Hn−∗+1(V)

From this we read off the commuting diagram in Proposition 9.15(a). Part (b) is proved

analogously.

Corollary 9.14(b) and the upper long exact sequence in Proposition 9.15(b) were proved

in [38] in the context of contact manifolds of the form P×R (compare also with [65]).

The commuting diagram in Proposition 9.15(b) appears in [36, Corollary 1.3] and [31,

Corollary 2.6].

9.5 Invariants of contact manifolds

We describe in this subsection how to obtain invariants of contact manifolds from

the various symplectic homology groups that we defined in this paper. Recall that a

contact manifold with chosen contact form (M2n−1, α) is called hypertight if it has

no contractible closed Reeb orbits. Following [69] we call (M, α) index­positive if

ξ = kerα satisfies either

(i) c1(ξ)|π2(M) = 0 and the Conley­Zehnder index of every contractible closed Reeb

orbit γ in M satisfies CZ(γ) + n− 3 > 1, or

(ii) (M, α) admits a Liouville filling F with c1(F)|π2(F) = 0 such that CZ(γ) + n−

3 > 0 for every closed Reeb orbit γ in M which is contractible in F .
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We will call a (as always, cooriented) contact manifold (M, ξ) hypertight resp. index­

positive if it admits a defining contact form with this property.

Remark 9.16 Condition (ii) is in particular satisfied if (M, α) admits a subcritical

Stein filling F of dimension 2n ≥ 4 with c1(F)|π2(F) = 0. Indeed, M = ∂F then

admits a contact form so that all Conley­Zehnder indices of closed Reeb orbits which

are contractible in ∂F are > 1 [72], and therefore > 3− n provided that n ≥ 2. Since

F is Stein subcritical, the map π1(∂F) → π1(F) induced by the inclusion is injective.

Indeed, the subcritical skeleton has codimension ≥ n+ 1 ≥ 3 and a generic homotopy

of paths will avoid it, so that it can afterwards be pushed by the Liouville flow to the

boundary. Thus any loop in ∂F which is contractible in F is also contractible in ∂F

and the condition on the indices therefore holds for all loops which are contractible in

F .

The following result follows in the index­positive case (ii) from the arguments of

[15], as remarked in [29, 18]. For the hypertight case or the index­positive case (i)

see [69, 18]. For another instance in the S1 ­equivariant case see [48]. We sketch below

a short unified proof.

Proposition 9.17 Given a Liouville cobordism W whose negative boundary ∂−W is

hypertight or index­positive, the symplectic homology groups

SH♥∗ (W) and SHS1,♥
∗ (W), ♥ ∈ {∅, > 0,≥ 0,= 0,≤ 0, < 0}

are defined, independent of the contact form α on ∂−W in the given class, and

independent of the filling in case (ii).

Proof We will discuss the case SH♥∗ (W), the equivariant case being analogous.

In case (ii) we define SH♥∗ (W) as the usual symplectic homology group with respect

to a filling F in the given class. To show independence of the filling, fix a finite action

window (a, b) and consider a Hamiltonian H on the completion ŴF as in Figure 8. We

perform neck stretching as described in the proof of Lemma 2.4, inserting cylindrical

pieces [−Rk,Rk] × M with Rk → ∞ , at the hypersurface M := {δ} × ∂−W where

H ≡ c for a constant c > −a. We claim that for k sufficiently large, Floer cylinders

appearing in the differential between 1­periodic orbits x± of H of types I−, I0, I+ with

action in (a, b) do not enter the region F \ [δ, 1] × ∂F . Then it follows that all these

Floer cylinders can be viewed as lying in the 2­sided completion Ŵ , so FH
(a,b)
∗ (H)

is independent of the filling. By the same claim applied to continuation morphisms,
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we deduce independence of the filling for the filtered symplectic homology groups

SH
(a,b)
∗ (W) and the groups SH♥∗ (W).

To prove the claim, we argue by contradiction and suppose that for all k there exist

Floer cylinders uk as above entering F \ [δ, 1]×∂F . In the limit k→∞ they converge

in the SFT sense [14, 30] to a broken holomorphic curve C with punctures asymptotic

to closed Reeb orbits on M . Here it is understood that the almost complex structure

is chosen to be cylindrical and time­independent in the neck [−Rk,Rk] × M that is

inserted near the hypersurface M = {δ} × ∂−W . We first observe that C can have

only one component in Ŵ . This follows by the argument in the proof of Lemma 2.4:

Otherwise there would exist for large k a separating loop δk on the domain R × S1 ,

winding around in the negative S1 ­direction, such that uk(δk) is C1 ­close to a (positively

parameterized) closed Reeb orbit γ on M , and the resulting estimate AH(x−) ≤ −c < a

would contradict the condition AH(x−) > a. It follows that C consists of a Floer

cylinder C+ in Ŵ with p ≥ 1 negative punctures asymptotic to closed Reeb orbits

γi and holomorphic planes Ci in F̂ asymptotic to γi . In particular, the orbits γi are

contractible, and this already leads to a contradiction in the hypertight case. To reach

a contradiction in the index­positive case, we remark that the component C+ belongs

to a moduli space which is transversely cut out. Indeed, the equation is perturbed

by an S1 ­dependent Hamiltonian term near the punctures where C+ converges to

Hamiltonian periodic orbits, and the almost complex structure is chosen to be generic

and time­dependent in the region where all the Hamiltonian orbits are located, hence

transversality follows as in Hamiltonian Floer theory, see e.g. [66]. If non­empty, the

moduli space to which C+ belongs has dimension at least 1 (due to R­translations in

the domain), so the Fredholm index of C+ satisfies ind(C+) ≥ 1. On the other hand,

the index of C+ is given by

ind(C+) = CZ(x+)− CZ(x−)−

p∑

i=1

(
CZ(γi) + n− 3

)
,

which in view of CZ(x+) − CZ(x−) = 1 for contributions to the Floer differential

yields
p∑

i=1

(
CZ(γi) + n− 3

)
≤ 0.

Now the assumption of index­positivity and the fact that the orbits γi are contractible

implies CZ(γi) + n− 3 > 0. This contradicts the fact that p ≥ 1, and proves case (ii).

The proof in case (i) is very similar. We again consider (a, b) and H as above, where

H is now defined on the 2­sided completion Ŵ rather than ŴF . We define the Floer
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differential for H by counting Floer cylinders between orbits x± in Ŵ . This is well­

defined because SFT type breaking of Floer cylinders at the negative end of Ŵ is ruled

out by exactly the same argument as in case (ii). In contrast to case (ii) where this

was automatic, we now must also show that the Floer differential squares to zero. For

this, we must rule out SFT type breaking of Floer cylinders connecting orbits x± of

index difference 2. If such breaking occurs the argument in case (ii) directly leads to a

contradiction in the hypertight case, while in the index­positive case it leads to p ≥ 1

contractible orbits γi satisfying

p∑

i=1

(
CZ(γi) + n− 3

)
≤ 1.

Under the stronger hypothesis CZ(γi) + n − 3 > 1 this is again a contradiction and

case (i) is proved.

This proposition leads to the definition of homological invariants of hypertight or

index­positive contact manifolds,

SH[S1,]♥
∗ (M, ξ) = SH[S1,]♥

∗ (I ×M), ♥ ∈ {∅, > 0,≥ 0,= 0,≤ 0, < 0},

where I = [0, 1] and I × M is the trivial Liouville cobordism. Here the notation

SH
[S1,]♥
∗ means that the symbol S1 is optional.

Example 9.18 In view of [29], the group SH∗(M, ξ) can be interpreted as the

Rabinowitz­Floer homology group of (M, ξ). A construction of Rabinowitz­Floer

homology for hypertight contact manifolds has been recently carried out in [6].

These contact invariants satisfy various functoriality relations, as dictated by our func­

toriality relations for Liouville cobordisms. The general picture is the following: Given

a Liouville cobordism W whose negative boundary is hypertight or index­positive, we

have maps

SH[S1,]♥
∗ (∂−W)←− SH[S1,]♥

∗ (W) −→ SH[S1,]♥
∗ (∂+W)

determined by the embedding of trivial cobordisms

I × ∂−W ⊂ W ⊃ I × ∂+W.

Since I × ∂−W and W share the same negative boundary we have an isomorphism

SH
[S1,]<0
∗ (∂−W)

∼=
←− SH

[S1,]<0
∗ (W), and since W and I×∂+W share the same positive

boundary we have an isomorphism SH
[S1,]>0
∗ (W)

∼=
−→ SH

[S1,]>0
∗ (∂+W). In particular

we obtain maps

SH[S1,]>0
∗ (∂−W)←− SH[S1,]>0

∗ (∂+W)
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and

SH[S1,]<0
∗ (∂−W) −→ SH[S1,]<0

∗ (∂+W).

In the equivariant case and under slightly different assumptions the first of these two

maps was previously constructed by Jean Gutt in [48]. Such direct maps do not exist

for the other versions ♥ ∈ {∅,≥ 0,= 0,≤ 0}. In general the cobordism W has to be

interpreted as providing a correspondence, and this holds in particular for the case of

Rabinowitz­Floer homology.

Invariants of Legendrian submanifolds. Let (M2n−1, α) be a manifold with chosen

contact form and Λn−1 ⊂ M a Legendrian submanifold. Extending the earlier defi­

nitions to the open case, we call Λ hypertight if (M, α) is hypertight and Λ has no

contractible Reeb chords. We call Λ index­positive if (M, α) is index­positive and in

addition

(i) in case (i) the Maslov class of Λ vanishes on π2(M,Λ) and every Reeb chord c

that is trivial in π1(M,Λ) satisfies CZ(c) > 1;

(ii) in case (ii) Λ admits an exact Lagrangian filling L ⊂ F in the filling F whose

Maslov class vanishes on π2(F,L) such that CZ(c) > 0 for every Reeb chord c

for Λ that is trivial in π1(F,L).

We call a Legendrian submanifold in a contact manifold (M, ξ) hypertight resp. index­

positive if it admits a defining contact form with this property.

The arguments given in the closed case adapt in a straightforward way in order to define

invariants of hypertight or index­positive Legendrian submanifolds by

SH♥∗ (Λ) = SH♥∗ (I × Λ), ♥ ∈ {∅, > 0,≥ 0,= 0,≤ 0, < 0}.

9.6 Subcritical handle attaching

In this subsection we compute the symplectic homology groups corresponding to a

subcritical handle in the sense of [24], with coefficients in a field K .

Proposition 9.19 Let W2n be a filled Liouville cobordism corresponding to a subcrit­

ical handle of index k < n. Then

SH∗(W, ∂−W) = 0, SH∗(W, ∂+W) = 0,

SH=0
∗ (W, ∂−W) ∼= SH=0

−∗(W, ∂+W) =

{
K ∗ = n− k,

0 else,

and the restriction maps induce isomorphisms

SH∗(∂
−W)

∼=
←− SH∗(W)

∼=
−→ SH∗(∂

+W).
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Proof The vanishing of SH∗(W, ∂−W) is proved in [24] with arbitrary coefficients as

a consequence of the following fact: for each degree i there exists bi > 0 such that

SH
(a,b)
i (W, ∂−W) = 0 for any a < 0 and b ≥ bi .

Since SH∗(W, ∂−W) = SH
≥0
∗ (W, ∂−W), we can apply the algebraic duality Proposi­

tion 3.5 to obtain SH∗(W, ∂−W) = SH∗≥0(W, ∂−W) = 0, which implies by Poincaré

duality SH−∗(W, ∂+W) = 0.

Since H∗(W, ∂−W) equals K in degree k and vanishes in all the other degrees, we

obtain

SH=0
∗ (W, ∂−W) ∼= Hn−∗(W, ∂−W) =

{
K ∗ = n− k,

0 else.

The remaining two isomorphisms follow from the long exact sequences

0 = SH∗(W, ∂−W)→ SH∗(W)→ SH∗(∂
−W)→ SH∗−1(W, ∂−W) = 0,

0 = SH∗(W, ∂+W)→ SH∗(W)→ SH∗(∂
+W)→ SH∗−1(W, ∂+W) = 0.

Remark 9.20 (a) From Proposition 9.19 and the tautological sequence we can com­

pute the remaining relevant symplectic homology groups of the pair (W, ∂±W), namely

SH>0
∗ (W, ∂−W) ∼= SH<0

−∗(W, ∂+W) =

{
K ∗ = n− k + 1,

0 else.

Note that the symplectic homology groups relative to one boundary component only

depend on the index k , whereas the group SH∗(W) depends on the whole hypersurface

∂−W and its filling.

(b) In view of (50), the last statement in Proposition 9.19 gives in particular the

isomorphism of Rabinowitz Floer homology groups

RFH(∂+W) ∼= RFH(∂−W).

(c) Suppose that (W,V,U) is a Liouville cobordism triple such that W \V is subcritical.

Then Proposition 9.19 implies SH∗(W,V) = 0, which together with the exact sequence

of the triple (Proposition 7.16) yields the isomorphism

SH∗(W,U)
∼=
−→ SH∗(V,U).

In particular, for U = ∅ we recover by induction the vanishing of symplectic homology

for subcritical Stein domains.

(d) The computation of Proposition 9.19 is valid more generally with coefficients in

an abelian group, but the proof uses filtered symplectic homology and a more general

universal coefficients theorem.



Symplectic homology and the Eilenberg–Steenrod axioms 153

Together with the exact triangle of a pair, these computations provide a complete un­

derstanding of the behaviour of all the flavors of non­equivariant symplectic homology

groups under subcritical handle attachment, as a consequence of the exact triangle of

the pair (V ◦W,V), where V is a Liouville domain. The equivariant case is discussed

in Section 9.8 below.

9.7 Critical handle attaching

Recall that we use coefficients in a field K . In the previous section we saw that the

key computation was that of SH∗(W, ∂−W), and the key exact triangle was the exact

triangle of the pair (V ′,V), where V is the filling of ∂−W and V ′ = V ◦ W is the

Liouville domain obtained after attaching the handle. These same objects form the

relevant structure in the case of a critical handle attachment.

Let V be a Liouville domain, let Λ = Λ1⊔· · ·⊔Λℓ be a collection of disjoint Legendrian

spheres in ∂V , denote by W the cobordism obtained by attaching ℓ critical handles

(of index n) along these spheres, and denote V ′ = V ◦ W . Bourgeois, Ekholm, and

Eliashberg [13] assert the existence of surgery exact triangles3

(59) LHHo(Λ)∗ // SH∗(V
′)

zz✉✉
✉✉
✉✉
✉

SH∗(V)
[−1]

ee❑❑❑❑❑❑❑❑

LHHo+(Λ)∗ // SH>0
∗ (V ′)

yysss
ss
ss

SH>0
∗ (V)

[−1]

ff▲▲▲▲▲▲▲▲

in which LHHo
∗ (Λ) and LHHo+(Λ)∗ are homology groups of Legendrian contact ho­

mology flavour, see also [41, §2.8] [37]. More precisely, LHHo+(Λ)∗ is defined as the

homology of a complex LHHo+(Λ)∗ whose generators are words in Reeb chords on

∂V with endpoints on Λ , and whose differential counts certain pseudo­holomorphic

curves in the symplectization of ∂V with boundary on the conical Lagrangian SΛ de­

termined by Λ , with a certain number of interior and boundary punctures at which rigid

pseudo­holomorphic planes in V̂ , respectively rigid pseudo­holomorphic half­planes

in V̂ with boundary on SΛ are attached (following the terminology of [13] we call

such curves anchored in V ). The homology group LHHo
∗ (Λ) is defined as the cone of a

map LCHo+(Λ)∗ → Cn−∗+1 , where Cn−∗+1 is the cohomological Morse complex for

the pair (W, ∂−W), which has rank ℓ in degree n−∗+ 1 = n and vanishes otherwise,

and with zero differential. This map counts curves of the type taken into account

3Since at the time of writing this article the proof of this result is not yet completed, we

formulate its consequences below as conjectures.
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in LHHo+(Λ)∗ , rigidified by imposing an intersection with an unstable manifold of a

critical point in W . The exact sequence of the cone of a map reads in this case

(60) Hn−∗(W, ∂−W) // LHHo(Λ)∗

xx♣♣♣
♣♣
♣♣
♣♣
♣♣

LHHo+(Λ)∗

[−1]

hhPPPPPPPPPPPP

The surgery exact triangles of Bourgeois, Ekholm, and Eliashberg can be reinterpreted

in our language as follows.

Conjecture 9.21 Let W be a filled Liouville cobordism corresponding to attaching

ℓ ≥ 1 critical handles of index k = n along a collection Λ of disjoint Legendrian

spheres. With field coefficients we have isomorphisms

SH>0
∗ (W, ∂−W) ∼= LHHo+(Λ)∗, SH∗(W, ∂−W) ∼= LHHo(Λ)∗

such that the following hold:

(i) the tautological exact triangle involving SH=0
∗ , SH∗ , and SH>0

∗ for the pair

(W, ∂−W) is isomorphic to (60);

(ii) the exact triangles (59) are isomorphic to the exact triangles of the pair (V ′,V) for

SH∗ , respectively SH>0
∗ .

Let us explain how this conjecture would follow from the surgery exact triangle

in [13]. To establish the first two isomorphisms, the first step is to give a descrip­

tion of SH∗(W, ∂−W) and SH>0
∗ (W, ∂−W) in terms of pseudo­holomorphic curves in

a symplectization; this is similar to the description of SH>0
∗ (V) as a non­equivariant

linearized contact homology group given in [15] and used in [13] as a definition of

SH>0
∗ (V). The second step is to apply to this formulation of SH♥∗ (W, ∂−W) with

♥ = {∅, > 0} the methods of [13]. The proof of (i) is then straightforward, since SH∗

can naturally be expressed as the homology of a cone using the action filtration.

To prove (ii), the main step is to establish an isomorphism between the transfer map

SH♥∗ (V ′)→ SH♥∗ (V) and the map with the same source and target that appears in (59)

for ♥ ∈ {∅, > 0}. The latter map is described in terms of anchored pseudo­

holomorphic curves in the symplectization of the cobordism W , and the proof of

the isomorphism between these maps follows the same ideas as those in [15], applied

to the monotone homotopies which induce in the limit the transfer map. The claim in

(ii) then follows from the results of [13] because, up to rotating a triangle, the groups

LHHo+(Λ)∗ and LHHo(Λ)∗ can be expressed as homology groups of cones of such

maps induced by cobordisms.
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Remark 9.22 Following [15, 18], all the constructions that we describe in the setup

of symplectic homology can be replicated in the language of symplectic field theory,

or SFT (with the usual caveat regarding the analytical foundations of the latter). One

outcome of this parallel is that our six flavors of symplectic homology provide some new

linear SFT­type invariants (the group SH∗(∂V) for V a Liouville domain is the most

prominent of these). It is a general fact that the Viterbo transfer maps for symplectic

homology correspond to the well­known SFT cobordism maps.

As in the proof of Proposition 9.19, Conjecture 9.21 would imply

Conjecture 9.23 With coefficients in a field K the following isomorphisms hold:

(i) SH−∗(W, ∂+W) ∼= LHHo(Λ)∗ and

SH−∗(W, ∂+W) ∼= SH∗(W, ∂−W) ∼= (LHHo(Λ)∗)
∨.

(ii) SH−∗<0 (W, ∂+W) ∼= LHHo+(Λ)∗ and

SH<0
−∗(W, ∂+W) ∼= SH∗>0(W, ∂−W) ∼= (LHHo+(Λ)∗)

∨.

We also have the obvious

SH=0
∗ (W, ∂−W) ∼= SH=0

−∗(W, ∂+W) =

{
K ∗ = 0,

0 else.

Together with the long exact sequence of a pair, these computations provide a theoreti­

cally complete understanding of the behaviour of all the flavors of symplectic homology

groups under critical handle attachment.

A particular case of interest is that of comparing SH∗(∂
−W) and SH∗(∂

+W). The

answer does not take the form of a long exact sequence because these groups do not sit

naturally in a long exact sequence of a pair. The best answer that one can give in such

a generality is that we have a correspondence

SH∗(∂
−W)←− SH∗(W) −→ SH∗(∂

+W)

in which the kernel and cokernel of each arrow can be described in terms of the groups

SH∗(W, ∂−W), respectively SH∗(W, ∂+W), which in turn are described in terms of

the groups LHHo(Λ) as above, using the long exact sequences of the pairs (W, ∂−W)

and (W, ∂+W). This situation parallels the one encountered when comparing the

singular cohomology groups of a manifold before and after surgery (in this case ∂+W

is obtained by surgery of index n on ∂−W ).
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9.8 Handle attaching and S1 ­equivariant symplectic homologies

The discussion in §9.6 and §9.7 has S1 ­equivariant analogues. We treat here only S1 ­

equivariant symplectic homology, since negative S1 ­equivariant symplectic homology

and also (negative) S1 ­equivariant symplectic cohomology can be reduced to the former

using Poincaré and algebraic duality.

Subcritical handle attaching.

Proposition 9.24 Let W be a Liouville cobordism corresponding to a subcritical

handle of index k < n. Then with K­coefficients we have

SHS1

∗ (W, ∂±W) = 0,

SHS1,=0
∗ (W, ∂−W) =

{
K ∗ = n− k + 2N,

0 else,
,

SHS1,=0
∗ (W, ∂+W) =

{
K ∗ = k − n + 2N,

0 else,

SHS1,>0
∗ (W, ∂−W) =

{
K ∗ = n− k + 1 + 2N,

0 else,
,

SHS1,<0
∗ (W, ∂+W) =

{
K ∗ = k − n− 1 + 2N,

0 else,

and the restriction maps induce isomorphisms

SHS1

∗ (∂−W)
∼=
←− SHS1

∗ (W)
∼=
−→ SHS1

∗ (∂+W).

Proof The vanishing of SHS1

∗ (W, ∂±W) follows from that of SH∗(W, ∂±W) using

the spectral sequence from non­equivariant to equivariant symplectic homology. The

statement concerning SH
S1,=0
∗ (W, ∂±W) is a direct computation, using the fact that the

Floer complex reduces in low energy to the Morse complex, see also [70, 18]:

SHS1,=0
∗ (W, ∂±W) ∼= Hn−∗

S1 (W, ∂±W) ∼= Hn−∗(W, ∂±W)⊗K[u−1].

The statement concerning SH
S1,>0
∗ (W, ∂−W) and SH

S1,<0
∗ (W, ∂+W) follows from tau­

tological exact triangles in view of the fact that, by definition, SHS1

∗ (W, ∂−W) =

SH
S1,≥0
∗ (W, ∂−W) and SHS1

∗ (W, ∂+W) = SH
S1,≤0
∗ (W, ∂+W). The last statement fol­

lows from the exact triangles of the pairs (W, ∂±W).
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Remark 9.25 Let D2n be the unit ball in R2n . Then SHS1

∗ (D2n) = 0 and a direct

computation, together with the tautological exact triangle, shows that

SHS1,=0
∗ (W, ∂−W) ∼= SHS1,=0

∗ (D2(n−k))

and

SHS1,>0
∗ (W, ∂−W) ∼= SHS1,>0

∗ (D2(n−k)).

These isomorphisms are not just algebraic or formal, but have the following geometric

interpretation [24]: for any given finite action window there exists a Liouville structure

on W for which the periodic Reeb orbits on ∂−W in the given action window survive to

∂+W , and the new periodic Reeb orbits which are created after handle attachment are

in one­to­one bijective correspondence with the periodic Reeb orbits on the boundary

of the symplectic reduction of the coisotropic cocore disk in the handle, which is a

symplectic ball D2(n−k) .

Corollary 9.26 Let V be a Liouville domain of dimension 2n and V ′ be obtained

from V by attaching a subcritical handle of index k < n. We then have an exact

triangle

SH
S1,>0
∗ (D2(n−k)) // SH

S1,>0
∗ (V ′)

xxqqq
qq
qq
qq
q

SH
S1,>0
∗ (V)

[−1]

gg❖❖❖❖❖❖❖❖❖❖❖

in which the map SH
S1,>0
∗ (V ′)→ SH

S1,>0
∗ (V) is the transfer map.

Proof This is simply a reformulation of the exact triangle of the pair (V ′,V), using

excision and the computation of SH
S1,>0
∗ (W, ∂−W) above, with W = V ′ \ V .

This statement can be interpreted as a subcritical surgery exact triangle for linearized

contact homology in view of [18]. In that formulation, the case k = 1 of contact con­

nected sums was proved using different methods by Bourgeois and van Koert [19]. Also

in that formulation, the exact triangle implies Espina’s formula [42, Corollary 6.3.3] for

the behaviour of the mean Euler characteristic of linearized contact homology under

subcritical surgery. By induction over the handles, it yields M.­L. Yau’s formula for

the linearized contact homology of subcritical Stein manifolds [72].

Critical handle attaching. We restrict to rational coefficients, and recall the geometric

setup of section §9.7: V ⊂ V ′ is a pair of Liouville domains of dimension 2n such
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that V ′ is obtained by attaching ℓ ≥ 1 handles of index n to ∂V along a collection

Λ of ℓ disjoint embedded Legendrian spheres. Following [13] we denote CH(V) the

linearized contact homology of ∂V . One of the main statements in [13] is the existence

of a surgery exact triangle

(61) LHcyc(Λ)∗ // CH(V ′),

zztt
tt
tt
tt
t

CH(V)

[−1]

ee❑❑❑❑❑❑❑❑❑❑

where LHcyc(Λ)∗ is a homology group of Legendrian contact homology flavour. More

precisely, LHcyc(Λ)∗ is defined as the homology of a complex LHcyc(Λ)∗ whose

generators are cyclic words in Reeb chords on ∂V with endpoints on Λ , and whose

differential counts certain pseudo­holomorphic curves in the symplectization of ∂V ,

anchored in V , with boundary on the conical Lagrangian SΛ determined by Λ . This

exact triangle can be reinterpreted in our language as follows.

Conjecture 9.27 Let W be a Liouville cobordism corresponding to attaching ℓ ≥ 1

critical handles of index k = n along a collection Λ of disjoint Legendrian spheres.

With rational coefficients we have an isomorphism

SHS1,>0
∗ (W, ∂−W) ∼= LHcyc(Λ)∗

such that the exact triangle (61) is isomorphic to the exact triangle of the pair (V ′,V)

for SH
S1,>0
∗ .

The proof should go along the same lines as the one of Conjecture 9.21, adding on top

the isomorphism between SH
S1,>0
∗ (V) and CH(V) whenever the latter is defined [18].

There is also an S1 ­equivariant counterpart of Conjecture 9.23(ii), which involves

duality and hence the groups SH
[u],>0
∗ .

Remark 9.28 One can also give a Legendrian interpretation of SHS1

∗ (W, ∂−W).

This can be obtained either formally algebraically by computing ranks from the

S1 ­equivariant tautological exact triangle of the pair (W, ∂−W) using the fact that

SH
S1,=0
∗ (W, ∂−W) is supported in positive degrees, or geometrically along the lines

of [18], where a linearized contact homology counterpart of SHS1

∗ (V) is defined.
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10 Product structures

10.1 TQFT operations on symplectic homology

As before, we use coefficients in a field K . Recall from [67, 65] the definition of

TQFT operations on the Floer homology of a Hamiltonian H on a completed Liouville

domain V̂ . We freely use in this section the terminology therein, namely “negative

punctures", “positive punctures", “cylindrical ends", “weights", see also [40]. Consider

a punctured Riemann surface S with p negative and q positive punctures. Pick positive

weights Ai,Bj > 0 and a 1­form β on S with the following properties:

(i) H dβ ≤ 0;

(ii) β = Aidt in cylindrical coordinates (s, t) ∈ R− × S1 near the i­th negative

puncture;

(iii) β = Bjdt in cylindrical coordinates (s, t) ∈ R+ × S1 near the j­th positive

puncture.

Note that β and the weights are related by Stokes’ theorem

p∑

i=1

Ai −

q∑

j=1

Bj = −

∫

S

dβ.

Conversely, if the quantity on the left­hand side is nonnegative (zero, nonpositive), then

we find a 1­form β with properties (ii) and (iii) such that dβ ≤ 0 (= 0, ≥ 0). Thus

we can arrange conditions (i)–(iii) in the following situations:

(a) H arbitrary, dβ ≡ 0, p, q ≥ 1;

(b) H ≥ 0, dβ ≤ 0, p ≥ 1;

(c) H ≤ 0, dβ ≥ 0, q ≥ 1.

Note that the condition H ≥ 0 is satisfied for admissible Hamiltonians on a Liouville

cobordism.

We consider maps u : S→ V̂ that are holomorphic in the sense that (du−XH⊗β)0,1 =

0 and have finite energy E(u) = 1
2

∫
S
|du − XH ⊗ β|2volS . They converge at the

negative/positive punctures to 1­periodic orbits xi, yj and satisfy the energy estimate

(62) 0 ≤ E(u) ≤

q∑

j=1

ABjH(yj)−

p∑

i=1

AAiH(xi)
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(beware that our action is minus that in [65]). The signed count of such holomorphic

maps yields an operation

ψS :

q⊗

j=1

FH∗(BjH)→

p⊗

i=1

FH∗(AiH).

of degree n(2−2g−p−q) which does not increase action. These operations are graded

commutative if degrees are shifted by −n and satisfy the usual TQFT composition rules.

Let us pick real numbers aj < bj , j = 1, . . . , q and a′i < b′i , i = 1, . . . , p satisfying

(63)
∑

i

a′i = max
j

(
aj +

∑

j′ 6=j

bj′

)
, b′i =

∑

j

bj −
∑

i′ 6=i

a′i′ .

Consider a term x1⊗· · ·⊗xp appearing in ψS(y1⊗· · ·⊗yq). If ABjH(yj) ≤ aj for some

j and ABj′H
(yj′ ) ≤ bj′ for all j′ 6= j, then the energy estimate and the first condition

in (63) yield
p∑

i=1

AAiH(xi) ≤ aj +
∑

j′ 6=j

bj′ ≤
∑

i

a′i,

thus AAiH(xi) ≤ a′i for at least one i. This shows that ψS is well­defined as an operation

ψS :

q⊗

j=1

FH
(aj,bj]
∗ (BjH)→

p⊗

i=1

FH
(a′i ,∞)
∗ (AiH).

Similarly, if ABjH(yj) ≤ bj for all j and AAiH(xi) > a′i for all i (so that a1⊗· · ·⊗ap 6= 0

in the quotient space), then for each i the energy estimate yields

AAiH(xi) +
∑

i′ 6=i

a′i′ ≤ AAiH(xi) +
∑

i′ 6=i

AAiH(xi′ ) ≤
∑

j

bj,

thus AAiH(xi) ≤ b′i by the second condition in (63). It follows that ψS induces an

operation on filtered Floer homology

ψS :

q⊗

j=1

FH
(aj,bj]
∗ (BjH)→

p⊗

i=1

FH
(a′i ,b

′
i ]

∗ (AiH).

To proceed further, let us first assume p, q ≥ 1, so we are in case (a) above. We

specialise the choice of actions to aj = a, bj = b for all i and a′i = a′ , b′i = b′ for all

i. Then (63) becomes

(64) pa′ = a + (q− 1)b, b′ = qb− (p− 1)a′,

and under these conditions ψS induces an operation

ψS :

q⊗

j=1

FH(a,b]
∗ (BjH)→

p⊗

i=1

FH(a′,b′]
∗ (AiH).
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We now apply this to admissible Hamiltonians for a Liouville cobordism W relative

to some admissible union A of boundary components as in §2.4. The map ψS is

compatible with continuation maps for H ≤ H′ in the obvious way, and therefore

passes through the inverse and direct limit to define a map on filtered symplectic

homology

ψS :

q⊗

j=1

SH(a,b]
∗ (W,A)→

p⊗

i=1

SH(a′,b′]
∗ (W,A).

Let us first consider the case p = 1. Then a′ → −∞ and b′ = qb remains constant as

a→ −∞ , so we can pass to the inverse limits to obtain an operation

ψS :

q⊗

j=1

SH(−∞,b]
∗ (W,A)→ SH(−∞,qb]

∗ (W,A).

In the direct limit as b→∞ this yields an operation

ψS :

q⊗

j=1

SH∗(W,A)→ SH∗(W,A).

Taking instead limits as b ց 0 and b ր 0, respectively, we see that this operation

restricts to operations

ψS :

q⊗

j=1

SH≤0
∗ (W,A)→ SH≤0

∗ (W,A),

ψS :

q⊗

j=1

SH<0
∗ (W,A)→ SH<0

∗ (W,A).

In the case p > 1 this procedure fails because b′ →∞ as a→ −∞ , so we cannot take

the inverse limits a, a′ → −∞ keeping b, b′ fixed. If all actions are nonnegative, as

in the case of a Liouville domain or a pair (W, ∂−W), then there is no need to take the

inverse limit a, a′ → −∞ , but we can simply fix a, a′ < 0 and take the direct limits

b, b′ →∞ to obtain operations ψS on all symplectic homology groups.

Next consider the case q = 0, p ≥ 1, which is possible for H ≥ 0 (and thus A = ∅)

according to case (b) above. Pick a′ ≤ 0 and consider the associated map

ψS : K→

p⊗

i=1

SH(a′,∞)
∗ (W),

with K the ground field. For a nonzero term x1⊗ · · · ⊗ xp appearing in ψS(1) we have

AAiH(xi) > a′ for all i, so the energy estimate yields

AAiH(xi) + (p− 1)a′ ≤ AAiH(xi) +
∑

i′ 6=i

AAiH(xi′ ) ≤ 0,
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thus AAiH(xi) ≤ −(p− 1)a′ . So we obtain a map

ψS : K→

p⊗

i=1

SH(a′,−(p−1)a′]
∗ (W).

If p = 1, then we take the inverse limit as a′ → −∞ to obtain the unit

ψS : K→ SH≤0
∗ (W).

If p > 1, then we set a′ = 0 to obtain the operation

ψS : K→

p⊗

i=1

SH=0
∗ (W).

So we have proved

Proposition 10.1 For a filled Liouville cobordism W and an admissible union A of

boundary components, there exist operations

ψS :

q⊗

j=1

SH♥∗ (W,A)→

p⊗

i=1

SH♥∗ (W,A), ♥ ∈ {∅,≤ 0, < 0}

of degree n(2 − 2g − p − q) associated to punctured Riemann surfaces S with p

negative and q positive punctures, graded commutative if degrees are shifted by −n

and satisfying the usual TQFT composition rules, in each of the following situations:

(i) ∂−W = A = ∅, p ≥ 1, q ≥ 0;

(ii) A = ∂−W , p ≥ 1, q ≥ 1;

(iii) A = ∅, p = 1, q ≥ 0;

(iv) A arbitrary, p = 1, q ≥ 1. �

As a consequence, we have

Theorem 10.2 (a) For a filled Liouville cobordism W and an admissible union A

of boundary components, the pair­of­pants product on Floer homology induces a

product on SH∗(W,A). The product has degree −n, and it is associative and graded

commutative when degrees are shifted by −n.

(b) The symplectic homology groups SH
≤0
∗ (W,A) and SH<0

∗ (W,A) also carry in­

duced products which are compatible with the tautological maps SH<0
∗ (W,A) →

SH
≤0
∗ (W,A)→ SH∗(W,A). The image of the map SH<0

∗ (W,A)→ SH
≤0
∗ (W,A) is an

ideal in SH
≤0
∗ (W,A).
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(c) The symplectic homology group SH=0
∗ (W,A) carries a product, which coincides

with the cup product in cohomology via the isomorphism SH=0
∗ (W,A) ∼= Hn−∗(W,A).

The map SH
≤0
∗ (W,A)→ SH=0

∗ (W,A) is compatible with the product structures.

(d) In the case A = ∅, the products on SH
≤0
∗ (W), SH∗(W), and SH=0

∗ (W) have units,

and the tautological maps SH
≤0
∗ (W) → SH∗(W) and SH

≤0
∗ (W) → SH=0

∗ (W) are

morphisms of rings with unit.

(e) For a filled Liouville cobordism pair (W,V), the transfer map SH♥∗ (W)→ SH♥∗ (V)

is a morphism of rings for ♥ ∈ {< 0,≤ 0,∅}, and a morphism of rings with unit for

♥ ∈ {≤ 0,∅}.

Proof Parts (a)–(d) follow directly from the preceding discussion, so it remains to

prove part (e). For this, fix a finite action interval (a, b) and consider two Hamiltonians

K ≤ H for the Liouville cobordism pair (W,V) as in Figure 12.

Let us first describe more explicitly the transfer map from Section 5.1. For this, let

χ : R → [0, 1] be a smooth nondecreasing function with χ(s) = 0 for s ≤ 0 and

χ(s) = 1 for s ≥ 1 and define the s­dependent Hamiltonian

Ĥ :=
(
1− χ(s)

)
H + χ(s)K,

where (s, t) are coordinates on the cylinder R × S1 . Then ∂sĤ ≤ 0 and the count of

Floer cylinders for Ĥ defines a chain map f : FC(a,b](K)→ FC(a,b](H).

Now we describe the products. Let S be the Riemann sphere with two positive punctures

and one negative puncture. Let τ : S → R × S1 be a degree 2 branched cover with

τ (s, t) = (s, t) in cylindrical coordinates (s, t) ∈ [1,∞)×S1 near the positive punctures

and τ (s, t) = (s, t) in cylindrical coordinates (s, t) ∈ (−∞,−1]× S1 near the negative

puncture. We use the 1­form β := τ∗dt on S (with dβ = 0) and weights B1 = B2 = 1

and A1 = 2 at the positive/negative punctures to define the pair­of­pants product

µK : FC(a,b](K)⊗ FC(a,b](K)→ FC(a+b,2b](2K),

and similar µH . Next, consider for σ ∈ R the function χσ(s, t) := χ(s − σ) and the

Hamiltonian

Ĥσ := (1− χσ ◦ τ )H + χσK

depending on points z ∈ S. Since H dβ = 0 and dzH ∧ β ≤ 0 as 2­forms on S,

the maximum principle holds for the Floer equation of Ĥσ (see e.g. [3, 40, 65]). It

follows that the moduli spaces Mσ(y1, y2; x1) of pairs­of­pants for Ĥσ are compact

modulo breaking, where y1, y2 and x1 are 1­periodic orbits of K and 2H , respectively.
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Considering for index CZ(y1)+CZ(y2)−CZ(x1)−n = 0 the natural compactifications

of the 1­dimensional moduli spaces
⋃
σ∈R{σ}×Mσ(y1, y2; x1), we obtain the relation

(65) µH(f ⊗ f )− f2µK = ∂2Hθ − θ∂K .

Here ∂K and ∂2H are the Floer boundary operators for K and 2H , respectively, f2 :

FC(a,b](2K)→ FC(a,b](2H) is the chain map defined by 2Ĥ , and

θ : FC(a,b](K)⊗ FC(a,b](K)→ FC(a+b,2b](2H)

counts index −1 pairs­of­pants for Ĥσ occurring at isolated values of σ .

Let us now choose K,H such that the orbits in group F for K and in groups F, I, III0+

for H have actions below a, so that FC(a,b](K) = FH
(a,b]
I (K) and FC(a,b](H) =

FH
(a,b]

II,III−
(H). By Lemma 2.2 and Lemma 2.3, FH

(a,b]

III−
(H) is a 2­sided ideal for the

product µH , so the latter passes to the quotient as a product

µH : FC
(a,b]
II (H)⊗ FC

(a,b]
II (H)→ FC

(a+b,2b]
II (2H).

It follows that relation (65) persists when we compose the maps f and f2, θ with their

projections to FC
(a,b]
II (H) and FC

(a,b]
II (2H), respectively (keeping the same notation for

the new maps). Passing to homology and the direct limit over K,H we obtain the

commuting diagram on filtered symplectic homology

SH(a,b](W)⊗ SH(a,b](W)
µW //

f⊗f

��

SH(a+b,2b](W)

f

��
SH(a,b](V)⊗ SH(a,b](V)

µV // SH(a+b,2b](V) .

Passing to the limits a → −∞ and b ր 0, b ց 0, or b → ∞ , we conclude that the

transfer map SH♥∗ (W) → SH♥∗ (V) preserves the product for ♥ ∈ {< 0,≤ 0,∅}. A

similar argument shows that the transfer map preserves the unit for ♥ ∈ {≤ 0,∅} and

Theorem 10.2 is proved.

In particular, Theorem 10.2 provides a product of degree −n with unit and a coproduct

of degree −n (without counit) on SH∗(W) for every filled Liouville cobordism W .

Applied to the trivial cobordism, this yields via the isomorphism (50) a corresponding

product and coproduct on Rabinowitz–Floer homology. We refer to Uebele [69] and

Appendix A for a discussion of conditions under which the product is defined in the

absence of a filling if the negative boundary is index­positive.

If W is a Liouville cobordism with filling and L ⊂ W is an exact Lagrangian cobordism

with filling, then the preceding discussion shows that Lagrangian symplectic homology

SH♥∗ (L) is a module over SH♥∗ (W) for ♥ ∈ {< 0,≤ 0,∅}, see also [65].
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10.2 Dual operations

Combining Proposition 10.1 with the Poincaré duality isomorphism S∗♥(W,A) ∼=

SH−♥−∗ (W,Ac), we obtain

Proposition 10.3 Consider a filled Liouville cobordism W and an admissible union

A of boundary components. Then there exist operations

ψS :

q⊗

j=1

SH∗♥(W,A)→

p⊗

i=1

SH∗♥(W,A), ♥ ∈ {∅,≥ 0, > 0}

of degree −n(2 − 2g − p − q), graded commutative if degrees are shifted by n and

satisfying the usual TQFT composition rules, in the following situations:

(i) ∂−W = ∅, A = ∂+W , p ≥ 1, q ≥ 0;

(ii) A = ∂+W , p ≥ 1, q ≥ 1;

(iii) A = ∂W , p = 1, q ≥ 0;

(iv) A arbitrary, p = 1, q ≥ 1. �

Note that in Propositions 10.1 and 10.3 the conditions on p, q are the same, whereas

♥ is replaced by −♥ and A by Ac .

Suppose now that the filled Liouville cobordism W has vanishing first Chern class

and that ∂W carries only finitely many closed Reeb orbits of any given Conley­

Zehnder index. Using field coefficients Corollary 3.6 yields canonical isomorphisms

SH♥k (W,A) ∼= SHk
♥(W,A)∨ for all A and all flavors ♥ . The dualization of the opera­

tions in Proposition 10.3 then yields

Corollary 10.4 Consider a filled Liouville cobordism W with vanishing first Chern

class and an admissible union A of boundary components. Suppose that ∂W carries

only finitely many closed Reeb orbits of any given Conley­Zehnder index. Then with

field coefficients there exist operations (note the reversed roles of p and q)

ψ∨S :

p⊗

i=1

SH♥∗ (W,A)→

q⊗

j=1

SH♥∗ (W,A), ♥ ∈ {∅,≥ 0, > 0}

of degree n(2 − 2g − p − q), graded commutative if degrees are shifted by −n and

satisfying the usual TQFT composition rules, in the following situations:

(i) ∂−W = ∅, A = ∂+W , p ≥ 1, q ≥ 0;

(ii) A = ∂+W , p ≥ 1, q ≥ 1;

(iii) A = ∂W , p = 1, q ≥ 0;

(iv) A arbitrary, p = 1, q ≥ 1. �
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10.3 A coproduct on positive symplectic homology

Consider a Liouville cobordism W filled by a Liouville domain V . The choice of W will

be irrelevant, so we can take e.g. W = I×∂V . Proposition 10.1(iii) provides a product

of degree −n on SH<0
∗ (W). In view of the isomorphism SH<0

∗ (W) ∼= SH−∗+1
>0 (V) from

Proposition 9.2, this gives a product of degree n − 1 on the symplectic cohomology

group SH∗>0(V). Note that this cannot be the product arising from Proposition 10.3(iv)

(with V in place of W and A = ∅) because the latter has degree n. Under the finiteness

hypothesis in Corollary 10.4, this gives a coproduct of degree 1− n on the symplectic

homology group SH>0
∗ (V).

Remark 10.5 Following Seidel, there is another coproduct of degree 1−n on SH>0
∗ (V)

obtained as a secondary operation in view of the fact that the natural coproduct given

by counting pairs of pants with one input and two outputs vanishes, see also [40] for a

generalization and [47] for a topological version of it. These two coproducts of degree

1 − n agree. The isomorphism between them is part of a larger picture related to

Poincaré duality and will be the topic of another paper.

A An obstruction to symplectic cobordisms

(joint with Peter Albers)

In this joint appendix we use the results of this paper to define an obstruction to

Liouville cobordisms between contact manifolds.

Consider a Liouville cobordism W whose negative end ∂−W is hypertight, index­

positive, or Liouville fillable. As explained in Section 9.5, in these cases one can

define symplectic homology groups SH♥∗ (W), ♥ ∈ {∅,≤ 0, < 0,= 0,≥ 0, > 0}

which will be independent of a filling in the first two cases but may depend on the

filling in the Liouville fillable case. We would like to show that vanishing of SH∗(∂+W)

implies vanishing of SH∗(∂−W). However, it is unclear how to deduce this from the

functoriality under cobordisms, which only gives correspondences

SH♥∗ (W)

xxqqq
qq
qq
qq
q

&&▼▼
▼▼

▼▼
▼▼

▼▼

SH♥∗ (∂−W) SH♥∗ (∂+W).

Instead, we will consider the following property (using coefficients in a field K).
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Definition A.1 A Liouville cobordism W is called SAWC if 1W is mapped to zero

under the map H0(W) ∼= SH=0
n (W)→ SH

≥0
n (W), where 1W is the unit in H0(W).

For a connected Liouville domain W , this agrees with the “Strong Algebraic Weinstein

conjecture” property of Viterbo [70]. As usual, we define the SAWC property for ∂±W

via the trivial cobordism [0, 1] × ∂±W , where SH∗(∂+W) is defined with respect to

the partial filling W . Then this property is inherited under cobordisms:

Proposition A.2 Let W be a Liouville cobordism with vanishing first Chern class

whose negative end ∂−W is hypertight, index­positive, or Liouville fillable. If ∂+W

is SAWC, then so are W and ∂−W .

Proof If the first Chern class of W vanishes the symplectic homology groups SH♥∗
are canonically graded in the component of constant loops. Consider thus the diagram

with commutative squares and exact rows

SH>0
n+1(∂−W) // SH=0

n (∂−W) ≃ H0(∂−W) // SH≥0
n (∂−W) // SH>0

n (∂−W)

SH>0
n+1(W) //

≃

��

OO

SH=0
n (W) ≃ H0(W) //

injective1W 7→1∂+W

��

1W 7→1∂−W

OO

SH≥0
n (W) //

⇒ injective
��

OO

SH>0
n (W)

≃

��

OO

SH>0
n+1(∂+W) // SH=0

n (∂+W) ≃ H0(∂+W) // SH≥0
n (∂+W) // SH>0

n (∂+W).

The lower vertical arrows at the extremities are isomorphisms since W and I × ∂+W

share the same positive boundary. The map H0(W) → H0(∂+W) is injective because

every component of W has a positive boundary component. Injectivity of the vertical

map SH
≥0
n (W) → SH

≥0
n (∂+W) then follows from the 5­lemma as in [71, Exercise

1.3.3].

Suppose now that 1∂+W is sent to zero by the map H0(∂+W) → SH
≥0
n (∂+W). Then

commutativity of the lower middle square implies that 1W goes to zero under the map

H0(W)→ SH
≥0
n (W), and commutativity of the upper middle square implies that 1∂−W

goes to zero under the map H0(∂−W)→ SH
≥0
n (∂−W).

Note that Proposition A.2 uses the product structure on singular cohomology but not on

symplectic homology. Using the latter we will now reformulate the SAWC condition.

As observed by Uebele in [69], the pair­of­pants product · in Section 10 makes SH∗(W),

SH
≤0
∗ (W) and SH=0

∗ (W) unital graded commutative rings for W as in Proposition A.2,
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provided that in the index­positive case we require the following stronger condition

(called “product index­positivity” in [69]):

(i) c2(W)|π2(∂−W) = 0 and π1(∂−W) = 1, and

(66) CZ(γ) > 3 for every closed Reeb orbit γ in ∂−W,

or

(ii) denoting ξ− the contact distribution on ∂−W , there exists a trivialisation of the

square of the canonical bundle Λmax
C ξ⊗2

− such that, with respect to that trivialisation, all

closed Reeb orbits γ in ∂−W satisfy (66). In addition, we require that the trivialization

of Λmax
C TW|⊗2

∂−W
determined by the trivialization of Λmax

C ξ⊗2
− extends over W .

Remark. Since the homotopy classes of trivializations of a line bundle are classified

by the first integral cohomology group, the extension property in (ii) above is automatic

if the map H1(W;Z)→ H1(∂−W;Z) is surjective.

Remark. Examples in which (i) is satisfied are unit cotangent bundles of spheres Sn

of dimension n ≥ 5, and more generally Milnor fibers of Ak ­singularities {zk
0 + z2

1 +

· · ·+ z2
n = 0} for n ≥ 5, see [57, Appendix A] and also [69].

The proof of this observation is similar to that of Proposition 9.17. The new feature is

that a pair­of­pants with inputs x1, x2 and output x− might break into a Floer cylinder

C1 connecting x1 and x− with a negative puncture asymptotic to a closed Reeb orbit

γ1 , a Floer plane C2 with input x2 and a negative puncture at a closed Reeb orbit γ2 ,

and a holomorphic cylinder with two positive punctures asymptotic to γ1, γ2 . The first

two components are regular, so their indices satisfy

ind(C1) = CZ(x1)− CZ(x−)−
(
CZ(γ1) + n− 3

)
≥ 0,

ind(C2) = CZ(x2) + n−
(
CZ(γ2) + n− 3

)
≥ 0.

When showing well­definedness of the product (resp. commutativity with the boundary

operator) we consider orbits satisfying

CZ(x1) + CZ(x2)− CZ(x−)− n = 0 (resp. 1).

Adding the two inequalities and inserting this relation yields
(
CZ(γ1)− 3

)
+
(
CZ(γ2)− 3

)
≤ 0 (resp. 1),

contradicting condition (66).

Let us fix a Liouville form λ on W and consider for b ∈ R the filtered symplectic

homology groups SH
(−∞,b)
∗ (W) defined in Section 2 (which also exist under the above

assumptions on W ). We define the spectral value of a class α ∈ SH∗(W) by

c(α) := inf{b ∈ R | α ∈ im(SH(−∞,b)
∗ (W)→ SH∗(W))} ∈ [−∞,∞).
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Here c(α) < ∞ follows from the definition of SH∗(W) =
−→
lim

b→∞
SH

(−∞,b)
∗ (W). The

fundamental inequality satisfied by spectral values is

c(α · β) ≤ c(α) + c(β),

as a consequence of the fact that the pair­of­pants product decreases action (see in­

equality (62) with A1 = 2 and B1 = B2 = 1).

The unit 1W ∈ SHn(W) plays a particular role. Indeed, we have c(1W ) ≤ 0 since

SH
≤0
∗ (W)→ SH∗(W) is a map of rings with unit, but also

c(1W ) = c(1W · 1W ) ≤ 2c(1W ).

Thus either c(1W ) = 0 or c(1W ) = −∞ (note that these conditions are independent

of the Liouville form λ). The condition c(1W ) = −∞ is equivalent to the fact that

the unit belongs to the image of the map SH<0
n (W) → SHn(W). In the latter case we

also obtain c(α) = −∞ for all α ∈ SH∗(W) since c(α) ≤ c(1W ) + c(α). This is

in particular the case if SH∗(W) = 0, and the converse is also true. Indeed, assume

c(1W ) = −∞ and represent 1W as the image of an element αb ∈ SH
(−∞,b)
∗ (W) for

some b < 0. By definition of the inverse limit, such an element is the equivalence

class of a sequence αb
n ∈ SH

(−n,b)
∗ (W) for n > |b|. We claim that each such element

αb
n is zero, hence 1W = 0. Indeed, for any given n we can choose b′ < −n and

represent by assumption 1W by an element βb′ ∈ SH
(−∞,b′)
∗ (W), given by a sequence

βb′

n′ ∈ SH
(−n′,b′)
∗ (W) for n′ > |b′|. But then αb

n must be the image of βb′

n′ under the

map SH
(−n′,b′)
∗ (W)→ SH

(−n,b)
∗ (W), which is zero for b′ < −n.

We thus obtain:

Lemma A.3 Let W be a Liouville cobordism whose negative end ∂−W is hypertight,

Liouville fillable, or index­positive with the stronger index condition (66). Then W is

SAWC if and only if SH∗(W) = 0.

Proof Proposition 7.20 yields the commuting diagram with exact rows and columns

SH>0
n+1(W)

f

��

SH>0
n+1(W)

g

��
SH<0

n (W)
h // SH

≤0
n (W)

i //

j

��

SH=0
n (W)

k

��

SH<0
n (W)

ℓ // SHn(W)
m // SH

≥0
n (W) ,



170 Kai Cieliebak and Alexandru Oancea

where i and j are maps of unital rings. We will denote all units by 1W . We prove that

W is SAWC if and only if c(1W ) = −∞ , which by the discussion above is equivalent to

SH∗(W) = 0. Suppose first that c(1W ) = −∞ , i.e. 1W = ℓα for some α ∈ SH<0
n (W).

Then 1W − hα = fβ for some β ∈ SH>0
n+1(W), hence 1W = i(1W − hα) = gβ is

mapped to zero under k , which means that W is SAWC. The converse implication is

proved similarly.

Corollary A.4 There is no Liouville cobordism W with ∂−W hypertight and such

that SH∗(∂+W) = 0 (where SH∗(∂+W) is defined with respect to the partial filling

W ).

Proof If ∂−W is hypertight then the map SH=0
n (∂−W) → SH

≥0
n (∂−W) is an iso­

morphism, so ∂−W is not SAWC. On the other hand, SH∗(∂+W) = 0 implies by

Lemma A.3 that ∂+W is SAWC. This is impossible by Proposition A.2.

Corollary A.5 There is no Liouville cobordism W of dimension 2n ≥ 4 with vanish­

ing first Chern class such that ∂−W is hypertight, ∂+W is fillable by a subcritical Stein

manifold with vanishing first Chern class, and the map π1(∂+W) → π1(W) induced

by inclusion is injective.

Proof Let F be such a subcritical Stein filling of ∂+W . Denote FSH∗(∂+W) the

symplectic homology computed with respect to the filling F , and WSH∗(∂+W) the

symplectic homology computed with respect to the partial filling W . Since SH∗(F) = 0,

we also have FSH∗(∂+W) = 0 by Corollary 9.9. By Remark 9.16, one can choose on

∂+W a contact form so that all Conley­Zehnder indices of closed Reeb orbits which

are contractible in ∂+W are > 3− n. The injectivity of the map π1(∂+W) → π1(W)

implies that the same condition on the indices holds for all closed Reeb orbits which are

contractible in W . Hence by Proposition 9.17 we have WSH∗(∂+W) = FSH∗(∂+W) =

0, and the conclusion follows from Corollary A.4.

Corollary A.6 There is no Weinstein cobordism W of dimension 2n ≥ 6 with

vanishing first Chern class such that ∂−W is hypertight and ∂+W is fillable by a

subcritical Stein manifold with vanishing first Chern class.

Proof Indeed, in this situation the skeleton of W has codimension ≥ n ≥ 3 and a

generic homotopy of paths will avoid it and can be subsequently pushed by the Liouville

flow to ∂+W . Thus any loop in ∂+W which is contractible in W is also contractible

in ∂+W , i.e., the map π1(∂+W) → π1(W) induced by the inclusion is injective. We

then conclude via Corollary A.5.
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Examples.

(1) Many examples of contact manifolds M with SH∗(M) = 0 arise as boundaries

of Liouville domains with vanishing symplectic homology, e.g. subcritical or flexible

Stein manifolds [25].

(2) Examples of hypertight contact manifolds are the unit cotangent bundles of Rie­

mannian manifolds of nonpositive curvature. Other examples are the 3­torus T3 with

a Giroux contact structure ξk = ker
(
cos(ks)dθ+ sin(ks)dt

)
and its higher­dimensional

generalizations (T2 × N, ξk) by Massot–Niederkrüger–Wendl [58]. The latter are not

strongly symplectically fillable (so in particular not Liouville fillable) for k ≥ 2. There­

fore, it appears that Corollary A.4 with ∂−W one of these manifolds cannot be obtained

by more classical tools such as symplectic homology of Liouville domains.

(3) Let us mention in the same vein the fact that there is no Liouville cobordism W

with ∂−W hypertight and ∂+W overtwisted. This is proved in the same way as non­

fillability of overtwisted contact manifolds [10, 21], using filling by holomorphic discs

in the symplectic manifold (0, 1)×∂−W ∪ W . However, this seems to fall outside the

scope of our methods, while at the same time the case that we address in Corollary A.4

seems to fall outside the scope of the method of filling by holomorphic discs.

(4) A contact manifold (M, ξ) fails to satisfy the Weinstein conjecture if there exists a

contact form whose Reeb vector field has no periodic orbit. In the simply connected

case this is equivalent to the fact that (M, ξ) is cobordant via a trivial cobordism to

a hypertight contact manifold. Turning this around, (M, ξ) satisfies the Weinstein

conjecture if and only if it is not cobordant by a trivial Liouville cobordism to a

hypertight manifold. From this perspective, obstructing the existence of Liouville

cobordisms with hypertight negative end can be seen as a geometric generalisation of

the Weinstein conjecture.

References

[1] M. Abouzaid. Symplectic cohomology and Viterbo’s theorem. In Free loop spaces in

geometry and topology, volume 24 of IRMA Lect. Math. Theor. Phys., pages 271–485.

Eur. Math. Soc., Zürich, 2015.

[2] M. Abouzaid and P. Seidel. Altering symplectic manifolds by homologous recombina­

tion. arXiv:1007.3281, 2010.

[3] M. Abouzaid and P. Seidel. An open string analogue of Viterbo functoriality. Geom.

Topol., 14(2):627–718, 2010.



172 Kai Cieliebak and Alexandru Oancea

[4] P. Albers, K. Cieliebak, and U. Frauenfelder. Symplectic Tate homology. Proc. London

Math. Soc., 112(1):169–205, 2016.

[5] P. Albers and U. Frauenfelder. Leaf­wise intersections and Rabinowitz Floer homology.

J. Topol. Anal., 2(1):77–98, 2010.

[6] P. Albers, U. Fuchs, and W. J. Merry. Orderability and the Weinstein conjecture.

Compos. Math., 151(12):2251–2272, 2015.

[7] D. Ayala and J. Francis. Factorization homology of topological manifolds. J. Topol.,

8(4):1045–1084, 2015.

[8] A. A. Beilinson, J. Bernstein, and P. Deligne. Faisceaux pervers. In Analysis and

topology on singular spaces, I (Luminy, 1981), volume 100 of Astérisque, pages 5–171.
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