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Abstract

We review a series of quantum memory protocols designed to store the quantum information

carried by light into atomic ensembles. In particular, we show how a simple semiclassical formalism

allows to gain insight into various memory protocols and to highlight strong analogies between

them. These analogies naturally lead to a classification of light storage protocols into two categories,

namely photon echo and slow-light memories. We focus on the storage and retrieval dynamics as

a key step to map the optical information into the atomic excitation. We finally review various

criteria adapted for both continuous variables and photon-counting measurement techniques to

certify the quantum nature of these memory protocols.
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I. INTRODUCTION

The potential of quantum information sciences for applied physics is currently highlighted

by coordinated and voluntarist policies. In a global scheme of probabilistic quantum infor-

mation processing, quantum memory is a key element to synchronize independent events

[1]. Memory for light can be more generally considered as an interface between light (optical

or radiofrequency) and a material medium [2] where the quantum information is mapped

from one form (optical for example) to the other (atomic excitation) and vice versa. In this

chapter, we review quantum protocols for light storage. The objective is not to make a com-

parative and exhaustive review of the different systems or applications of interest. Analysis

along these lines can be found in many review articles [1–7] perfectly reflecting the state of

the art. Instead, we focus on pioneering protocols in atomic ensembles that we analyze with

the same formalism to extract the common features and differences.

First, we consider two representative classes of storage protocols, the photon echo in

section II and the slow-lightmemories in section III. In both cases, we first derive a minimalist

semi-classical Schrödinger-Maxwell model to describe the propagation of a weak signal in an

atomic ensemble. Two-level atoms are sufficient to characterize the photon echo protocols

among which the standard two-pulse photon echo is the historical example (section II).

On the contrary, as in the widely studied stopped-light by means of electromagnetically

induced transparency (EIT), the minimal atomic structure consists of three levels (section

III). In both cases, however, the semi-classical Schrödinger-Maxwell formalism is sufficient

to describe the optical storage dynamics and evaluate the theoretical efficiencies.

To fully replace our analysis in the context of the quantum storage, we finally derive a

variety of criteria in section IV to certify the quantum nature of optical memories. Our

approach is pragmatic in this section as we do not develop a fully quantized propagation

model mirroring our semi-classical analysis in II and III. Instead, we use an atomic chain

quantum toy model to characterize the noise of various storage protocols. Criteria depend-

ing on experimentally accessible parameters are reviewed for both continuous and discrete

variables.
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II. PHOTON ECHO MEMORIES

The photon echo technique as the optical alter ego of the spin echo has been considered

early as a spectroscopic tool [8–11]. Its extensive description can be found in many textbooks

as an example of a coherent transient light-atoms interaction [12]. Due to its coherent

nature and many experimental realizations over the last decades, the photon echo has been

reconsidered in the context of quantum storage [4]. In this section, we will first establish

the formalism describing the propagation and the retrieval of week signals in a two-level

inhomogeneous atomic medium. We then describe and evaluate the efficiency of the standard

two-pulse photon echo from the point of view of a storage protocol. The latter is not immune

to noise but has stimulated the design of noise free alternatives, namely the Controlled

reversible inhomogeneous broadening and the Revival of silenced echo that we will describe

using the same formalism.

The signal propagation and photon echo retrieval can be modeled by the Schrödinger-

Maxwell equations in one dimension (along z) with an inhomogeneously broadened two-level

atomic ensemble that we will first illustrate.

A. Two-level atoms Schrödinger-Maxwell model

On one side, the atomic evolution under the field excitation is given by the Schrödinger

equation and on the other side, the field propagation is described by the Maxwell equation

that we successively remind.

1. Schrödinger equation for two-level atoms

For two-level atoms, labeled |g〉 and |e〉 for the ground and excited states (see fig.1,

left), the rotating-wave probability amplitudes Cg and Ce respectively are governed by the

time-dependent Schrödinger equation [13, eq. (8.8)]:

i∂t




Cg

Ce



 =






0
E∗

2E
2

−∆









Cg

Ce



 (1)

where E(z, t) is the complex envelope of the input signal expressed in units of Rabi frequency.

∆ is the laser detuning.
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FIG. 1. Two-level (left) and three-level atoms (right) used to describe the photon echo (section II)

and the slow-light memories (section III).The signal E is applied on the |g〉 and |e〉 transition. For

the three-level atoms, a control field Ω is applied on the |s〉 and |e〉 transition.

The atomic variables Cg and Ce depend on z and t for a given detuning ∆. The detunings

can be made time-dependent [14, 15], position-dependent or both [16] but this is not the

case here.

Decay terms can be added by-hand by introducing a complex detuning ∆ → ∆ − iΓ

where Γ is the decay rate of the excited state |e〉 1.

2. Maxwell propagation equation

The propagation of the signal E(z, t) is described by the Maxwell equation that can be

simplified in the slowly varying envelope approximation [13, eq. (21.15)]. This reads for an

homogeneous ensemble whose linewidth is given by the decay term Γ:

∂zE(z, t) +
1

c
∂tE(z, t) = −iαΓC∗

gCe (2)

The term CgC
∗
e is the atomic coherence on the |g〉 → |e〉 transition directly proportional to

the atomic polarization. The light coupling constant is included in the absorption coefficient

α (inverse of a length unit), thus the right hand side represents the macroscopic atomic

polarization.

The Maxwell equation can be generalized to an inhomogeneously broaden ensemble [12]:

1 We do not distinguish the decay terms for the population and the coherence. This is an intrinsic limitation

of the Schrödinger model as opposed to the density matrix formalism (optical Bloch equations).
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∂zE(z, t) +
1

c
∂tE(z, t) = −iα

π

∫

∆

g (∆)C∗
gCed∆ (3)

where g (∆) is the normalized inhomogeneous distribution.

Photon echo memories precisely rely on the inhomogeneous broadening as an incoming

bandwidth. The set of equations (1&3) are then relevant in that case. The resolution

can be further simplified for weak E(z, t) signals as expected for quantum storage. This

is the so-called perturbative regime. More importantly, the perturbative limit is necessary

to ensure the linearity of the storage scheme and is then not only a formal simplification.

The perturbative expansion should be used with precaution when photon echo protocols

are considered. When strong (non-perturbative) π-pulses are used to trigger the retrieval

as a coherence rephasing, they unavoidably invert the population. This interplay between

rephasing and inversion is the essence of the photon echo technique. Population inversion

should be avoided because spontaneous emission induces noise [17]. We will nevertheless

first consider the standard two-pulse photon echo scheme because this is the ancestor and

an inspiring source for modified photon echo schemes adapted for quantum storage.

3. Coherent transient propagation in an inverted or non-inverted medium

The goal of the present section is to describe the propagation of a weak signal represent-

ing both the incoming signal and the echo. For the standard two-pulse photon echo (see

section IIB), the echo is emitted in an inverted medium so we will consider both an inverted

and a non-inverted medium corresponding to the ideal storage scheme (see IIC and IID).

The propagation is coherent in the sense that the pulse duration is much shorter than the

coherence time. The decay term (that could be introduced with a complex detuning ∆) is

fully neglected in eq.(1).

The coherent propagation is defined in the perturbative regime. This latter should be

defined with precaution if the medium is inverted or not. The coherence term P = C∗
gCe

appearing in the propagation equation (eq.2 or 3) is described by rewriting the Schrödinger

equation as

∂tP = i∆P +
(
C∗

eCe − C∗
gCg

)
i
E
2

(4)

The reader more familiar with the optical Bloch equations can directly recognize the

evolution of the coherence term (non-diagonal element of the density matrix) where the
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term
(
C∗

eCe − C∗
gCg

)
is the population difference (diagonal elements).

For a non-inverted medium, the atoms are essentially in the ground state, so in the

perturbative limit
(
C∗

eCe − C∗
gCg

)
→ −1. The population goes as the second order in field

excitation thus justifying the perturbative expansion where the coherences P goes as the

first order. Along the same line,
(
C∗

eCe − C∗
gCg

)
→ 1 for an inverted medium. The atomic

evolution reads as

∂tP = i∆P ∓ i
E
2

(5)

where ∓ indicates if the medium is non-inverted (ground state) or inverted (excited state).

This can be alternatively written in an integral form as

P(z, t) = ∓ i

2

∫ t

−∞
E (z, t′) exp (i∆(t− t′)) dt′ (6)

As given by eq.(3), the propagation in the inhomogeneous medium is described by

∂zE(z, t) +
1

c
∂tE(z, t) = −iα

π

∫

∆

g (∆)P∆(z, t)d∆ (7)

We remind by an index P∆ that the coherence term depends on the detuning ∆ as a pa-

rameter.

To avoid the signal temporal distortion, the incoming pulse bandwidth should be narrower

than the inhomogeneous broadening given by the distribution g (∆) so we can safely assume

g (∆) → 1. The double integral term

∫

∆

P∆d∆ from eq.(6) can be simplified by writing
∫

∆

exp (i∆(t− t′)) d∆ → 2πδt′=t as a representation of the Dirac peak δ0

∂zE(z, t) +
1

c
∂tE(z, t) = ∓α

2
E(z, t) (8)

Eq.(8) is the absorption law or gain if the medium is inverted. The absorption law was

at first discovered by Bouguer [18], today known as the Bouguer-Beer-Lambert law. The

description can be even more simplified by noting that the pulse length is usually much

longer the medium spatial extension. The term
1

c
∂t can be dropped leading to the canonical

version of the Bouguer-Beer-Lambert law [12].

∂zE(z, t) = ∓α
2
E(z, t) (9)
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This form can be alternatively obtained by writing the equation in the moving frame

at the speed of light. Introducing the moving frame may be a source of mistake when the

backward retrieval configuration is considered (see section IIC). Anyway, the moving frame

does not need to be introduced because the medium length L is in practice much shorter

than the pulse extension. In other words, the delay induced by the propagation L/c is

negligible with respect to the pulse duration. The term propagation is in that case arguable

when the term
1

c
∂t is absent. Propagation should be considered in the general sense. The

absorption coefficient in eq.(9) defines a propagation constant. This latter is real as opposed

to a propagation delay which would appear as a complex (purely imaginary) constant.

The Bouguer-Beer-Lambert law can be obtained equivalently with an homogeneous

medium including the coherence decay term. This is not the case here. We insist: there is

no decay and the evolution is fully coherent. To illustrate this fundamental aspect of the

coherent propagation, we can show that the field excitation is actually recorded into the

medium. On the contrary, with a decoherence term, the field excitation would be lost in

the environment. The complete field excitation to coherence mapping is a key ingredient of

the photon echo memory scheme.

4. Field excitation to coherence mapping

In the coherent propagation regime, the evolution of the atomic and optical variables

is fully coherent. Let us restrict the discussion to the case of interest, namely the photon

echo scheme of an initially non-inverted (ground state) medium. The field is absorbed

following the Bouguer-Beer-Lambert law (eq.9). This disappearance of the field is not due

to the atomic dissipative decay but to the inhomogeneous dephasing. For example, in an

homogeneous sample, the absorption of the laser beam can be due to spontaneous emission:

the beam is depleted because the photons are scattered in other modes. In an inhomogeneous

sample, the beam depletion is due to dephasing and not dissipation. In other words, the

forward scattered dipole emissions destructively interfere. Since the evolution is coherent,

the field should be fully mapped into the atomic excitation. In that case, the expression (6)

can be reconsidered by noting that after the absorption process, the integral boundary can

be pushed to +∞ as
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P∆(z, t) = − i

2
exp (i∆t)

∫ +∞

−∞
E (z, t′) exp (−i∆t′) dt′ (10)

= − i

2
exp (i∆t) Ẽ(z,∆) (11)

where Ẽ(z, ω) is the Fourier transform of the incoming pulse E (z, t′) 2. This expression tells

that the incoming spectrum is entirely mapped into the atomic excitation. More precisely,

each class P∆ in the atomic distribution actually records the corresponding part in the

incoming spectrum Ẽ(z,∆). The term exp (i∆t) simply reminds us that the coherence freely

oscillates after the field excitation. An exponential decay term could be added by-hand by

giving an imaginary part to the detuning ∆.

This mapping stage when the field is recorded into the atomic coherences of an inhomo-

geneous medium is the initial step of the different photon echo memory schemes. Various

techniques have been developed to retrieve the signal after the initial absorption stage. The

inhomogeneous dephasing is the essence of the field to coherence mapping since the field

spectrum is recorded in the inhomogeneous distribution. The retrieval is in that sense al-

ways associated to a rephasing or compensation of the inhomogeneous dephasing. This

justifies the term photon echo used to classify this family of protocols. We will start by de-

scribing the standard two-pulse photon echo (2PE). Despite a clear limitation for quantum

storage, this is an enlightening historical example. Its descendants as the so-called Con-

trolled reversible inhomogeneous broadening (CRIB) and Revival of silenced echo (ROSE)

have been precisely designed to avoid the deleterious effect of the π-pulse rephasing used in

the 2PE sequence.

B. Standard two-pulse photon echo

Inherited from the magnetic resonance technique [19], the coherence rephasing and the

subsequent field reemission is triggered by applying a strong π-pulse (fig.2). The possibility

to use the 2PE for pulse storage has been mentioned early in the context of optical processing

[20]. The retrieval efficiency can indeed be remarkably high [21–23].

2 We define the Fourier transform pairs as

f̃(ω) =

∫

t

f(t) exp(−iωt)dt (12)

f(t) =
1

2π

∫

ω

f̃(ω) exp(iωt)dω (13)
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time
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1

1.5

2

FIG. 2. Standard two-pulse photon echo sequence. Inherited from magnetic resonance, π/2 − π

sequence (delayed by τ , in magenta) produces an echo at 2τ (in red). When considered for optical

storage, the first pulse is weak (in blue) and longer than the rephasing π-pulse.

This particularity has attracted a renewed curiosity in the context of quantum information

[24, 25].

1. Retrieval efficiency

The retrieval efficiency can be derived analytically from the Schrödinger-Maxwell model.

Following the sequence in fig.2, the signal absorption is first described by the Bouguer-Beer-

Lambert law (eq.9). The initial stage is followed by a free evolution during a delay τ . The

π-pulse will trigger a retrieval. The action of a strong pulse on the atomic variables is

described by the propagator




Cg (τ

+)

Ce (τ
+)



 =




cos(θ/2) −i sin(θ/2)

−i sin(θ/2) cos(θ/2)








Cg (τ

−)

Ce (τ
−)



 (14)

which links the atomic variables just before (τ−) and after (τ+) a general θ-area pulse. This

solution of the canonical Rabi problem is only valid for a very short pulse (hard pulse).

More precisely, in the atomic evolution eq.(1), the Rabi frequency must be much larger than

the detuning. In the 2PE scheme, this means that the atoms excited by the signal (first

pulse) are uniformly (spectrally) covered by the strong rephasing pulse. This translates in
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the time domain as a condition on the relative pulse durations: the π-pulse must be much

shorter than signal. This aspect appears as an initial condition for the pulse durations but is

also intimately related to the transient coherent propagation of strong pulses among which

π-pulses are a particular case. This will be discussed in more details in the appendix A.

Assuming the ideal situation of the uniform θ = π pulse area, the propagator takes the

simple form



0 −i
−i 0





fully defining the effect of the π-pulse on the stored coherence

P∆

(
τ+
)
= −P∗

∆

(
τ−
)
= − i

2
exp (−i∆τ) Ẽ∗(z,∆) (15)

The free evolution resumes by adding the inhomogeneous phase ∆ (t− τ)

P∆ (t > τ) = P∆

(
τ+
)
exp (i∆(t− τ)) = − i

2
exp (i∆(t− 2τ)) Ẽ∗(z,∆) (16)

In the expression (16), we see that the inhomogeneous phase ∆ (t− 2τ) is zero at the instant

t = 2τ of the retrieval thus justifying the term rephasing.

The propagation of the retrieved echo ER follows eq.(7). The source term on the right-

hand side has now two contributions. The first one gives the Bouguer-Beer-Lambert law

(eq 9) for the echo field ER itself. A critical aspect of the 2PE is the population inversion

induced by the π-pulse. The intuition can be confirmed by calculating from the propagator
(
C∗

e (τ
+)Ce (τ

+)− C∗
g (τ

+)Cg (τ
+)
)
to the first order by noting that Cg (τ

−) ≃ 1. The echo

field ER exhibits gain. The second one comes from the coherence initially excited by the

signal freely oscillating after the π-pulse rephasing. In other words, the coherences at the

instant of retrieval are the sum of the free running term due to the signal excitation from

eq.(16) and the contribution from the echo field itself.

∂zER(z, t) = +
α

2
ER(z, t)− iα

π

∫

∆

g (∆)P∆(z, t > τ)d∆ (17)

The integral source term representing the build-up of the macroscopic polarisation at the

instant of retrieval is directly related to the signal field excitation E which appears as the

inverse Fourier transform of Ẽ∗(z,∆) from eq.(16), that is
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∂zER(z, t) = +
α

2
ER(z, t)− αE∗(z, 2τ − t) (18)

Eq.(18) is simple but rich because it can be modified by-hand to describe the descendants

of the 2PE protocol that are suitable for quantum storage as we will see in sections IIC and

IID. Note that it can be adapted to account for rephasing pulse areas θ that are not π. They

lead to imperfect rephasing and incomplete medium inversion thus modifying the terms in

eq.(18) [17]. Very general expressions for the efficiency as a function of θ can be analytically

derived [21]. Knowing that the incoming signal follows the Bouguer-Beer-Lambert law (eq.9)

of absorption E(z, t) = E(0, t) exp (−αz/2) , the efficiency of the 2PE can be obtained as a

function of optical depth d = αL from the ratio between the output and input intensities

η =
|ER(L, t)|2

|E(0, 2τ − t)|2 (19)

For a π-rephasing pulse, we find

η (d) = [exp (d/2)− exp (−d/2)]2 = 4 sinh2 (d/2) (20)

At large optical depth d, the efficiency scales as exp (d) resulting in an exponential ampli-

fication of the input field. This amplification prevents the 2PE to be used as a quantum

storage protocol. The simplest but convincing argument uses the no-cloning theorem [26].

Alternatively, we can apply various criteria to certify the quantum nature of the memory on

the echo and show that none of these criteria witnesses its non-classical feature, as wee will

see section IV.

In fig.3 (bottom), we have represented this efficiency scaling (eq.20) that we compare

with a numerical simulation of a 2PE sequence solving the Schrödinger-Maxwell model. For

a given inhomogeneous detuning ∆, we calculate the atomic evolution eq.(1) by using a

fourth-order Runge-Kutta method. After summing over the inhomogeneous broadening, the

output pulse is obtained by integrating eq.(3) along z using the Euler method.

In the numerical simulation, there is no assumption on the π-pulse duration with respect

to the signal bandwidth (as needed to derive the analytical formula eq.20). The excitation

pulses are assumed Gaussian as shown for the incoming and the outgoing pulses of a 2PE

sequence after propagation though an optical depth d = 2 (fig.3, top). We consider different

durations for the π-pulse (of constant area) and a fixed signal duration.
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FIG. 3. Top: Numerical simulation of a 2PE sequence with a weak incoming signal (area π/20).

The signal and the echo fields are in blue and have been magnified by a factor 10 (shaded area).

The incoming pulses are in solid lines. The outgoing pulses after propagation though d = 2 are

in dashed line. The π-pulse is two times shorter than the signal. Bottom: Storage efficiencies

(see text for the definition) as a function of the optical depth d . The black line is the analytical

solution eq.(20). Three simulations have been performed depending on the relative duration of the

π-pulse with respect to the signal: when the π-pulse has the same duration than the signal (ratio

1), when it is 2 times (ratio 2) and 10 times shorter (ratio 10). The circle corresponds to the 2PE

sequence on top.
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From the numerical simulation, the efficiency is evaluated by integrating under the inten-

sity curves of the echo (shades area). This latter reaches 152% for the sequence of fig.3 (top),

larger than 100% as expected for an inverted medium. Still, this is much smaller than the

552% efficiency expected from eq.(20) with d = 2. This discrepancy is essentially explained

by the π-pulse distortion through propagation (magenta dashed line in fig.3,top) than can

be observed numerically. The π-pulse should stay shorter than the signal to properly ensure

the coherence rephasing. This is obviously not the case because the pulse is distorted as we

briefly analyze in appendix A with the energy and area conservation laws.

As a summary, we have evaluated numerically the efficiencies when the π-pulse has the

same duration than the signal (ratio 1), when it is 2 times and 10 times shorter (ratio 2 and

10 respectively). We see in fig.3 (bottom) than the efficiencies deviates significantly from

the prediction eq.(20). There is less discrepancy when the π-pulse is 10 times shorter than

the signal (ratio 10), especially at low optical depth. Still, for larger d, the distortions are

sufficiently important to reduce the efficiency significantly.

Despite a clear deviation from the analytical scaling (eq.20), the echo amplification is

important (efficiency > 100%). This latter comes from the inversion of the medium. As

a consequence, the amplified spontaneous emission mixes up with the retrieved signal then

inducing noise. It should be noted that the signal to noise ratio only depends on the optical

depth [17, 27, 28]. This may be surprising at first sight because the coherent emission of the

echo and the spontaneous emission seems to have completely different collection patterns

offering a significant margin to the experimentalist to filter out the noise. This is not the case.

The excitation volume is defined by the incoming laser focus. On the one hand, a tighter

focus leads to a smaller number of inverted atoms thus reducing the number spontaneously

emitted photons. On the other hand, a tight focus requires a larger collection angle of

the retrieved echo. Less atoms are excited but the spontaneous emission collection angle

is larger. The noise in the echo mode is unchanged. This qualitative argument which can

be seen as a conservation of the optical etendue is quantitatively supported by a quantized

version of the Bloch-Maxwell equations [27, 28]. This aspect will be discussed in sections

IVB and IVC using a simplified quantum model.

In any case, population inversion should be avoided. This statement motivated many

groups to conceive rephasing protocols by keeping the best of the 2PE but avoiding the

deleterious effect of π-pulses as we will see now in sections IIC and IID.

13



time
0 τ 2τ

R
a
b
i
fr
eq
.
(a
.u
.)

0

0.1

0.2

0.3

0.4

0.5

time
0 τ 2τ

d
et
u
n
in
g
(a
.u
.)

-∆

0

+ ∆

FIG. 4. CRIB echo sequence. As compared to the 2PE sequence, no rephasing pulse is applied, the

inhomogeneous broadening is reversed using a controllable electric field for example [31] (magenta

line).

C. Controlled reversible inhomogeneous broadening

The controlled reversible inhomogeneous broadening (CRIB) offers a solid alternative

to the 2PE [29–33]. The CRIB,,as represented in fig.4, has been successfully implemented

with large efficiencies [34, 35] and low noise measurements [36] validating the protocol as a

quantum memory in different systems, from atomic vapors to doped solids [37].

Fundamentally, an echo is generated by rephasing the coherences corresponding to the

cancellation of the inhomogeneous phase. As indicated by eq.(11), the accumulated phase

is ∆t. Taking control of the detuning ∆ is sufficient to produce an echo without a π-pulse.

This is the essence of the CRIB sequence, where the detuning is actively switched from ∆

for t < τ to −∆ for t > τ . We won’t focus on the realization of the detuning inversion.

This aspect has been covered already and we recommend the reading of the review papers

[3, 4]. We here focus on the coherence rephasing and evaluate the efficiency which can be

compared to other protocols. It should be noted that the gradient echo memory scheme

(GEM) [16] is not covered by our description. We will assume that the coherences undergo

the transform +∆ → −∆ independently of the atomic position z. This is not the case for

the GEM where the detuning ∆ goes linearly (or at least monotonically) with the position

z. The GEM can be called the longitudinal CRIB. This specificity of the GEM makes it

remarkably efficient [16, 34, 35].
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Assuming that ∆ → −∆ for t > τ , it should be first noted that at the switching time τ ,

the coherence term is continuous

P∆

(
τ+
)
= P∆

(
τ−
)
= − i

2
exp (i∆τ) Ẽ(z,∆) (21)

but will evolve with a different detuning afterward, that is

P∆ (t > τ) = P∆

(
τ+
)
exp (−i∆(t− τ)) = − i

2
exp (i∆(2τ − t)) Ẽ(z,∆) (22)

The latter gives the source term of the differential equation defining the efficiency similar to

eq.(18) for the 2PE

∂zER(z, t) = −α
2
ER(z, t)− αE(z, 2τ − t) (23)

Eqs (18) and (23) are very similar. The first term on the right hand side is now negative

(proportional to −α
2
) because the medium is not inverted in the CRIB sequence. This is

a major difference. Again, the incoming signal follows the Bouguer-Beer-Lambert law of

absorption E(z, t) = E(0, t) exp (−αz/2) but the efficiency defined by (19) is now given after

integration by

η (d) = d2 exp (−d) (24)

The maximum efficiency is obtained for d = αL = 2 with η (2) = 54% [33] (see fig.5).

There is no gain so the semi-classical efficiency is always smaller than one. The efficiency

is limited in the so-called forward configuration because the echo is de facto emitted in an

absorbing medium. The re-absorption of the echo limits the efficiency to 54%. Ideal echo

emission with unit efficiency can be obtained in the backward configuration. This latter

is implemented by applying auxiliary pulses, typically Raman pulses modifying the phase

matching condition from forward to backward echo emission. The Raman pulses increase

the storage time by shelving the excitation into nuclear spin state for example. This ensures

the complete reversibility by flipping the apparent temporal evolution (as shown by eq.(22))

and the wave-vector [38].

Despite its simplicity, eq.(23) can be adapted to describe the backward emission without

working out the exact phase matching condition. We consider the following equivalent

situation. The signal is first absorbed: E(z, t) = E(0, t) exp (−αz/2). We now fictitiously

flip the atomic medium: the incoming slice z = 0 becomes z = L and vice versa. The atomic

excitation would correspond to the absorption of a backward propagating field

E(z, t) = E(0, t) exp (α (z − L) /2)
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FIG. 5. Comparison of the forward (eq.24, in blue) and backward (eq.25, in red) CRIB efficiency

scaling. The standard 2PE efficiency is represented as a reference (eq.20, in black)

Eq.(23) can be integrated with this new boundary condition, giving the backward efficiency

of the CRIB

η (d) = [1− exp (−d)]2 (25)

For a sufficiently large optical depth, the efficiency is close to unity. As a comparison, we

have represented the forward (eq.24) and backward (eq.25) CRIB efficiencies in fig.5.

The practical implementation of the CRIB requires to control dynamically the detuning

by Stark or Zeeman effects. The natural inhomogeneous broadening has a static microscopic

origin and cannot be used as it is. The initial optical depth has to be sacrificed to obtain an

effective controllable broadening. This statement motivates the reconsideration of the 2PE

which precisely exploit the bare inhomogeneous broadening offering advantages in terms of

available optical depth and bandwidth.

D. Revival of silenced echo

The Revival of silenced echo (ROSE) is a direct descendant of the 2PE [39]. The ROSE

is essentially a concatenation of two 2PE sequences as represented in fig.6. In practice,

the ROSE sequence advantageously replaces π-pulses by complex hyperbolic secant (CHS)

pulses as we will specifically discuss in IID 3. For the moment, we assume that the rephasing

pulses are simply π-pulses. This is sufficient to evaluate the efficiency and derive the phase
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FIG. 6. A schematic ROSE echo sequence that can be seen as the concatenation of two 2PE

sequences (fig.2). The first echo at t = τ (in dashed red) should be silenced by the phase matching

conditions (see IID 2). A second π-pulse at t = τ ′ induces the emission of the ROSE echo at

t = 2 (τ ′ − τ) (in red).

matching conditions.

Concatenated with a 2PE sequence, a second π-pulse (at t = τ ′ in fig.6) triggers a second

rephasing of the coherences at t = 2 (τ ′ − τ). This latter leaves the medium non-inverted

avoiding the deleterious effect of a single 2PE sequence. This reasoning is only valid if the

first echo is not emitted. In that case, the coherent free evolution continues after the first

rephasing. The first echo is said to be silent (giving the name to the protocol) because the

coherence rephasing is not associated to a field emission. The phase matching conditions

are indeed designed to make the first echo silent but preserve the final retrieval of the

signal. Along the same line with the same motivation, McAuslan et al. proposed to use

the Stark effect to silence the emission of the first echo [40] by cunningly applying the

tools developed for the CRIB to the 2PE, namely by inducing an artificial inhomogeneous

reversible broadening. The AC-Stark shift (light shift) also naturally appeared as a versatile

tool to manipulate the retrieval [41]. We will discuss the phase matching conditions latter.

Before that, we will evaluate the retrieval efficiency applying the method developed for the

2PE and CRIB.
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1. Retrieval efficiency

Following the procedure in section IIB, we assume that a second π-pulse is applied at

t = τ ′. Starting from eq.(16), we can track the inhomogeneous phase at t = τ ′ when the

π-pulse is applied (similar to eq.15) as

P∆

(
τ ′+
)
= −P∗

∆

(
τ ′−
)
= − i

2
exp (−i∆(τ ′ − 2τ)) Ẽ∗(z,∆) (26)

freely evolving afterward as

P∆ (t > τ ′) = − i

2
exp (i∆(t− 2τ ′ + 2τ)) Ẽ(z,∆) (27)

There is indeed a rephasing at t = 2 (τ ′ − τ). The retrieval follows the common differential

equation (as eqs. (18) and (23))

∂zER(z, t) = −α
2
ER(z, t)− αE(z, t− 2τ ′ + 2τ) (28)

As compared to the 2PE, the ROSE echo is not emitted in an inverted medium. One can

note that the signal is not time-reversed as in the 2PE and CRIB, so the efficiency is defined

as

η =
|ER(L, t)|2

|E(0, t− 2τ ′ + 2τ)|2 (29)

The ROSE efficiency is exactly similar to CRIB due to the similarity of eqs.(23) and (28).

It is limited to 54% in the forward direction because the medium is absorbing. Complete

reversal can be obtained in the backward direction by precisely designing the phase matching

condition, the latter being a critical ingredient of the ROSE protocol.

Even if there is no population inversion at the retrieval, the use of strong pulses for the

rephasing is a potential source of noise. First of all, any imperfection of the π-pulses may

leave some population in the excited state leading to a partial amplification of the signal.

Secondarily, the interlacing of strong and weak pulses within the same temporal sequence

is like playing with fire. This is a common feature of many quantum memory protocols

for which control fields may leak in the signal mode. Many experimental techniques are

combined to isolate the weak signal: different polarization, angled beams (spatial selection)

and temporal separation. Encouraging demonstrations of the ROSE down to few photons per

pulses have been performed by combining theses techniques [42], thus showing the potentials

of the protocol.
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FIG. 7. ROSE Phase matching conditions. Left: canonical experimental situation where the two

π-pulses are on the same beam. The echo ~k is in the signal mode ~k1 (forward). The angle between

the signal and the rephasing can be large for a good isolation of the echo as recently tested in the

orthogonal configuration [45]. Right: backward retrieval of the ROSE echo ~k. The signal ~k1 and

two rephasing beams forms a equilateral triangle in that case: the echo is emitted backward.

2. Phase matching conditions

Phase matching can be considered in a simple manner by exploiting the spectro-spatial

analogy. Each atom in the inhomogeneous medium is defined by its detuning (frequency) and

position (space), both contributing to the inhomogeneous phase. In that sense, the instant

of emission can be seen as a spectral phase matching condition. Following this analogy, the

spatial phase matching condition can be derived from the photon echo time sequence [43].

Let us take the 2PE as an example (fig.2). The 2PE echo is emitted at t = t1+2τ = 2t2−t1
where t1 is the arrival time of the signal (first pulse) and t2 the π-pulse (second pulse). In

fig.2, we have chosen t1 = 0 and τ = t2 − t1 for simplicity . By analogy, the echo should be

emitted in the direction
−→
k = 2

−→
k2 −

−→
k1 where

−→
k1 and

−→
k2 are the wavevectors of the signal

and π-pulse respectively. In that case, if
−→
k1 and

−→
k2 are not collinear (

−→
k1 6= −→

k2), the phase

matching cannot be fulfilled: there is no 2PE echo emission.

Following the same procedure, the ROSE echo is emitted at t = t1 + 2(τ ′ − τ) = t1 +

2(t3 − t2) where t3 is the arrival time of the second π-pulse (third pulse). The ROSE echo

should be emitted if the
−→
k =

−→
k1 + 2(

−→
k3 −

−→
k2) direction (

−→
k3 is the direction of the second π-

pulse). The canonical experimental situation satisfying the ROSE phase matching condition

corresponds to
−→
k1 6= −→

k2 (not collinear) but keeping
−→
k3 =

−→
k2 [44, 45]. There is no 2PE in

that case because
−→
k1 6= −→

k2 but the ROSE echo is emitted in the direction
−→
k1 of the signal as

represented in fig.7.
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The backward retrieval configuration is illustrated as well in fig.7 (right). The efficiency

can reach 100% because the reversibility of the process is ensured spatially and temporally.

3. Adiabatic pulses

Even if the protocol can be understood with π-pulses, the rephasing pulses can be advan-

tageously replaced by complex hyperbolic secant (CHS) in practice [44, 45]. The CHS are

another heritage from the magnetic resonance techniques [46]. As representative of the much

broad class of adiabatic and composite pulses, CHS produce a robust inversion because for

example the final state weakly depends on the pulse shape and amplitude. Within a spin

or photon echo sequence, they must be applied by pairs because each CHS adds an inho-

mogeneous phase due to the frequency sweep. This latter can be interpreted as a sequential

flipping of the inhomogeneous ensemble. Two identical CHS produce a perfect rephasing

because the inhomogeneous phases induced by the CHS cancel each other [47, 48].

CHS additionally offers an advantage that is somehow underestimated. As we have just

said, CHS must be applied by pairs. It means that the first echo in the ROSE sequence is

also silenced because it would follow the first CHS, as opposed to the second echo which

follows a pair of CHS. How much the first echo is silenced depends on the parameters of the

CHS, namely the Rabi frequency and the frequency sweep. This degree of freedom should

not be neglected when the phase matching conditions cannot be modified as in the cavity

case in the optical or RF domain [49].

To conclude about the ROSE and because of its relationship with the 2PE, it is important

to question the strong pulse propagation that we pointed out as an important efficiency

limitation of the 2PE (with π-pulses) by analyzing fig.3 (see appendix A for a more detailled

discussion). In that sense as well, the CHS are superior to π-pulses. CHS are indeed very

robust to propagation in absorbing media so their preserve their amplitude and frequency

sweep [50, 51]. CHS are not constrained by the McCall and Hahn Area Theorem (eq.A1).

The latter isn’t valid for frequency swept pulses [52]. This robustness to propagation can be

explained qualitatively by considering the energy conservation [39].

The different advantages of the CHS as compared to π-pulses have been studied accurately

using numerical simulations in [53], confirming both their versatility and robustness.
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E. Summary and perspectives

We have described the variations from the well-known photon echo technique adapted for

quantum storage. We haven’t discussed in details the gradient echo memory scheme (GEM)

[16] (sometimes called longitudinal CRIB) which can be seen as an evolution of the CRIB

protocol. The GEM is remarkable for its efficiency [16, 34, 35] allowing demonstrations

in the quantum regime of operation [54]. The scheme has been enriched by processing

functions as a pulse sequencer [55, 56]. More importantly, the GEM has been considered for

RF storage in an ensemble of spins thus covering different physical realities and frequency

ranges [57, 58]. As previously mentioned, the GEM is not covered by our formalism because

the scheme couples the detuning and the position z. An analytical treatment is possible but

is beyond the scope of our paper [59].

The specialist reader may be surprised because we did not discussed the atomic frequency

comb (AFC) protocol [60] despite an undeniable series of success. The early demonstration of

weak classical field and single photon storage [61–68] has been pushed to a remarkable level of

integration [69–71]. The main advantage of the AFC is a high multimode capacity [60, 72]

which has been identified as an critical feature of the deployment of quantum repeaters

[73, 74]. Despite a clear filiation of the AFC with the photon echo technique [75], there are

also fundamental differences. For the AFC, there is no direct field to coherence mapping as

discussed in section 11. The AFC is actually based on a population grating. Without going

to much into a semantic discussion, the AFC is a descendant of the three-pulse photon echo

and not the two-pulse photon echo [43] that we analyze in this section II. As a consequence,

the AFC can be surprisingly linked to the slow-light protocols [76] that we will discuss in

the next section III

III. SLOW-LIGHT MEMORIES

Since the seminal work of Brillouin [77] and Sommerfeld [78], slow-light is a fascinating

subject whose impact has been significantly amplified by the popular science-fiction culture

[79]. The external control of the group velocity reappeared in the context of quantum

information as a mean to store and retrieve optical light while preserving its quantum

features [80–82]. The rest is a continuous success story that can only be embraced by
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review papers [7].

We will start this section by deriving the Schrödinger-Maxwell equations used to describe

the signal storage and retrieval. Our analysis is based on the following classification. We

first consider the fast storage and retrieval scheme as introduced by Gorshkov et al. [83]. In

other words, the storage is triggered by brief Raman π-pulses [83, 84]. We then consider the

more established electromagnetically induced transparency (EIT) and the Raman schemes.

In theses cases, the storage and retrieval are activated by a control field that is on or off. The

difference between EIT and Raman is the control field detuning: on-resonance for the EIT

scheme and off-resonance for the Raman. Both lead to very different responses of the atomic

medium. In the EIT scheme, the presence of the control field produces the so-called dark

atomic state. As a consequence, absorption is avoided and the medium is transparent. On

the contrary, in the Raman scheme, the control beam generates an off-resonance absorption

peak (Raman absorption): the medium is absorbing.

To give a common vision of the fast storage (Raman π-pulses) and the EIT/Raman

schemes, we first introduce a Lorentzian susceptibility response as an archetype for ab-

sorption and its counterpart the inverted-Lorentzian that describes a generic transparency

window. We will define the different terms in IIIB.

A. Three-level atoms Schrödinger-Maxwell model

Following the same approach as in section II, the pulse propagation and storage can be

modeled by the Schrödinger-Maxwell equations in one dimension (along z). We now give

these equations for three level atoms.

1. Schrödinger equation for three-level atoms

For three-level atoms, labeled |g〉, |e〉 and |s〉 for the ground, excited and spin states

(see fig.1, right), the rotating-wave probability amplitudes Cg, Ce and Cs respectively are
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governed by the time-dependent Schrödinger equation similar to eq.(1) [13, eq. (13.29)]:
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(30)

where E(z, t) and Ω(t) are the complex envelopes of the input signal and the Raman field

respectively (units of Rabi frequency). If we consider the spin level |s〉 as empty, the Raman

field is not attenuated (nor amplified) by the propagation so Ω(t) doesn’t depend on z. The

parameters ∆ and δ are the one-photon and two-photon detunings respectively (see fig.1,

right).

The atomic variables Cg, Ce and Cs depend on z and t for given detunings ∆ and δ. As

in section II, the detunings are chosen position and time independent. Again, decay terms

can be added by-hand by introducing complex detunings for ∆ and δ.

2. Maxwell propagation equation

Eqs (2) (homogeneous ensemble) and (3) (inhomogeneous) still describe the propagation

of the signal in the slowly varying envelope approximation.

The two sets of equations (30&2) or (30&3) depending if the ensemble is homogeneous

or inhomogeneous are sufficient to describe the different situations that we will consider. As

already mentioned in section II, the equations of motion can be further simplified for weak

E(z, t) signals (perturbative regime).

3. Perturbative regime

The linearisation of the Schrödinger-Maxwell equations (30, 2 &3) corresponds to the

so-called perturbative regime. To the first order in perturbation, the atoms stays in the

ground, Cg ≃ 1 because the signal is weak. The atomic evolution (eq.30) is now only given

by Ce and Cs that we write with P ≃ Ce and S ≃ Cs to describe the optical (polarization

P) and spin (S) excitations [83]. The atoms dynamics from eq.(30) becomes:
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∂tP = (i∆− Γ)P − i
Ω

2
S − i

E
2

(31)

∂tS = −iΩ
∗

2
P + iδS (32)

We have introduced the optical homogeneous linewidth Γ that will be used later. The

decay of the spin is neglected which would correspond to an infinite storage time when the

excitation in shelved into the spin coherence. This is an ideal case.

The Raman field Ω(t) is unaffected by the propagation if the spin state is empty. The

Raman pulse keeps its initial temporal shape so there is no differential propagation equation

governing Ω(t). This a major simplification especially when a numerical integration (along

z) is necessary. We will only consider real envelope Ω(t) for the Raman field. Nevertheless,

a complex envelope can still be used if the Raman field is chirped for example [47]. The

exact same set of equations can alternatively be derived from the density matrix formalism

in the perturbative regime, the terms P and S representing the off-diagonal coherences of

the |g〉-|e〉 and |g〉-|s〉 transitions respectively owing to the Cg ≃ 1 hypothesis.

Using the polarization P(t,∆), the Maxwell equations (2) and (3) are rewritten as:

∂zE(z, t) +
1

c
∂tE(z, t) = −iαΓP(t) (33)

or for inhomogeneous ensembles as:

∂zE(z, t) +
1

c
∂tE(z, t) = −iα

π

∫

∆

g (∆)P(t,∆)d∆ (34)

This formalism is sufficient to describe the different situations we will consider now.

The simplified perturbative set of coupled equations (31&32) cannot be solved analytically

when Ω(t) is time-varying, thus acting as a parametric driving. A numerical integration is

usually necessary to fully recover the outgoing signal shape after the propagation given by

eqs.(33) or (34). Simpler situations can still be examined to discuss the dispersive properties

of a slow-light medium. When Ω(t) = Ω is static, the susceptibility describing the linear

propagation of the signal field E(z, t) can be explicitly derived. This is a very useful guide

for the physical intuition.
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B. Inverted-Lorentzian and Lorentzian responses: two archetypes of slow-light

Before going into details, we would like to describe qualitatively two archetypal situations

without specific assumption on the underlying level structure or temporal shapes of the

field. From our point of view, slow-light propagation should be considered as the precursor

of storage. We use the term precursor as an allusion to the work of Brillouin [77] and

Sommerfeld [78].

The first situation corresponds to the well-known slow-light propagation in a transparency

window. More specifically, we will assume that the susceptibility is given by an inverted-

Lorentzian shape. The Lorentzian should be inverted to obtain transparency and not ab-

sorption at the center. The susceptibility is defined as the proportionality constant between

the frequency dependent polarization and electric field (including the vacuum permittivity

ǫ0). This latter can be directly identified from the field propagation equation as we will see

later in III B 1 and IIIB 2.

The second situation is the complementary. A Lorentzian (non-inverted) can also be

considered to produce a retarded response. This is useful guide to described certain storage

protocols and revisit the concept of slow-light. The Lorentzian response naturally comes

out of the Lorentz-Lorenz model when the electron is elastically bound to the nucleus when

light-matter interaction is introduced to the undergraduate students. These two archetypes

represent a solid basis to interpret the different protocols we will detail in section IIIC and

IIID.

1. Transparency window of an inverted-Lorentzian

We assume that the susceptibility is given by an inverted-Lorentzian. This is the simplest

case because a group delay can be explicitly derived. Whatever is the exact physical situa-

tion, the source term on the right-hand sides of eqs (33) or (34) can be replaced by a linear

response in the spectral domain (linear susceptibility) when Ω(t) is static. The propagation

equation would read in the spectral domain [12, p.12]

∂Ẽ(z, ω)
∂z

+ i
ω

c
Ẽ(z, ω) = −α

2

[

1− 1

1 + iω/Γ0

]

Ẽ(z, ω) (35)

where Ẽ(z, ω) is the Fourier transform of E(z, t). The left-hand side simply describes the
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free-space propagation of the slowly varying envelope. The right-hand side is proportional

to the inverted-Lorentzian susceptibility defining the complex propagation constant as:

α̃ (ω) = −α
2

[

1− 1

1 + iω/Γ0

]

(36)

The different terms can be analyzed as follows. α
2
is the far-off resonance (or back-

ground) absorption coefficient for the amplitude Ẽ such as the intensity |Ẽ |2 decays expo-

nentially with a coefficient α following the Bouguer-Beer-Lambert absorption law. The term
[

1− 1

1 + iω/Γ0

]

represents the Lorentzian shape of a transparency window (width Γ0) that

we choose as an archetype. With this definition, the susceptibility χ can be written as

χ (ω) = −2i

k
α̃ (ω) where k is the wavevector 3.

At the center ω = 0, there is no absorption (complete transparency). We choose a complex

Lorentzian
1

1 + iω/Γ0
and not a real one

1

1 + ω2/Γ2
0

because the complex Lorentzian satisfies

de facto the Kramers-Kronig relation so we implicitly respect the causality. The propagation

within the transparency window is given by a first-order expansion of the susceptibility when

ω ≪ Γ0 leading to

∂Ẽ(z, ω)
∂z

+ i
ω

c
Ẽ(z, ω) ≃ −α

2
i
ω

Γ0
Ẽ(z, ω) (37)

and after integration over the propagation distance L

Ẽ(L, ω) ≃ Ẽ(0, ω) exp
(

−iωL
c

)

exp

(

−iωαL
2Γ0

)

(38)

or equivalently in the time domain

E(L, t) ≃ E(0, t− L

c
− αL

2Γ0

) (39)

where
L

c
+

d

2Γ0
is the group delay with the optical depth d = αL. If the incoming pulse

bandwidth fits the transparency window or in other words if the pulse is sufficiently long,

the pulse is simply delayed by
d

2Γ0

. This latter defines the group delay.

Shorter pulses are distorted and partially absorbed when the bandwidth extends beyond

the transparency window. In that case, eq.(35) can be integrated analytically to give the

general formal solution:

3 With our definitions, the real part of the propagation constant α̃ gives the absorption and the imaginary

part, the dispersion. For the susceptibility, this is the other way around.
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Ẽ(L, ω) = Ẽ(0, ω) exp
(

−iωL
c

)

exp

(

−d
2

iω

Γ0 + iω

)

(40)

The outgoing pulse shape E(L, t) is given by the inverse Fourier transform of Ẽ(L, ω). As
an example, we plot the outgoing pulse in fig.8 for a Gaussian input E(0, t) = exp

(

− t2

2σ2

)

.

We choose Γ0 = 1 and a pulse duration σ =
d

2Γ0
corresponding to the expected group delay.

We take d = 20 for the optical depth, which corresponds to realistic experimental situations.

The outgoing pulse is essentially delayed by
d

2Γ0
= 10 and only weakly absorbed through

the propagation. A longer pulse would lead to less absorption but the input and output

would be much less separated. As we will see later, this point is critical for slow-light

storage protocols.

2. Dispersion of a Lorentzian

We now consider a Lorentzian as a complementary situation. This may sound surprising

for the reader familiar with the EIT transparency window. However, the Lorentzian is a

useful reference to interpret the Raman memory that will be discussed in section IIID 2.

We consider a propagation constant given by

α̃ (ω) = −α
2

1

1 + iω/Γ0

(41)

This is a quite simple case corresponding to the transmission of an homogeneous ensemble

of dipoles. To take the terminology of the previous case, one could speak of an absorption

window as opposed to a transparency window. To follow up the analogy, there is no slow-

light at the center of an absorption profile. The susceptibility is inverted thus leading to

fast-light (negative group delay). A retarded response can still be expected but on the wings

(off-resonance) of the absorption profile. As represented on fig.9, the slope is negative at

the center (fast-light) but it changes sign out of resonance leading to a distorted version of

slow-light. Distortion are indeed expected because the dispersion cannot be considered as

linear. Still, what comes out of the medium after the incoming pulse can be interpreted as

a precursor for light storage.

By inverted analogy with the previous case, the propagation can be solved to the first

order when the pulse bandwidth is much larger than the absorption profile (off-resonant
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FIG. 8. Slow-light in a Lorentzian transparency window. Top: real and imaginary part of the

propagation constant α̃ (ω). The real part represents the absorption and the imaginary part the

refractive index (dispersion) whose slope is the group delay. The shaded area corresponds to the

slow-light region, the positive slope of the imaginary part leads to a positive group delay. Bottom:

Slow-light propagation of a Gaussian incoming pulse (in blue) producing a delayed output pulse

(in red) calculated from eq.(40).

excitation of the wings). The Lorentzian
1

1 + iω/Γ0
simplifies to the first order in

Γ0

iω
leading

to the solution in the spectral domain:

Ẽ(L, ω) ≃ Ẽ(0, ω) exp
(

−iωL
c

)

exp

(

−αLΓ0

2iω

)

(42)
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or alternatively in the time domain

E(L, t) ≃ E(0, t) ∗ F (L, t) (43)

where F (L, t) is the impulse response convoluting (∗) the incoming pulse shape and analyt-

ically given by [85]:

F (L, t) = δt=0 − αLΓ0

J1
(√

2dΓ0t
)

√
2dΓ0t

for t>0 and 0 elsewhere (44)

J1 is the Bessel function of the first kind of order 1 with the optical depth d = αL.

δt=0 is the Dirac peak. The time
1

dΓ0

appears as a typical delay due to propagation. The

output shape will be distorted by the strong oscillations of the Bessel function. This can be

investigated by considering the following numerical example without first order expansion.

The output shape is indeed more generally given by the inverse Fourier transform of the

integrated form:

Ẽ(L, ω) = Ẽ(0, ω) exp
(

−iωL
c

)

exp

(

−d
2

Γ0

Γ0 + iω

)

(45)

Again we plot the outgoing pulse in fig.9 for a Gaussian input E(0, t) = exp

(

− t2

2σ2

)

whose duration is now σ =
1

dΓ0
(Γ0 = 1) corresponding to the expected generalized group

delay. As before, the optical depth is d = 20. Two lobes appear at the output (fig.9) as

expected from the approximated expression eq.(43) involving the oscillating Bessel function.

Still, a significant part of the incoming pulse is retarded in the general sense whatever is the

exact outgoing shape.

As will see now, what is retarded can be stored.

3. A retarded response as a precursor for storage

Slow-light is a precursor of storage called stopped-light in that case. The transition from

slow to stopped-light is summarized in fig.10.

When input and output are well separated in time, storage is possible in principle. If

we look at the standard situation of slow-light in a transparency window (fig.10, top), we

choose a frontier between input and output at half the group delay
d

4Γ0
= 5. At this

given moment, most of the output pulse has entered the atomic medium. There is only
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FIG. 9. Slow-light from a Lorentzian absorption window. Top: real and imaginary part of the

propagation constant α̃ (ω). The shaded area corresponds to the slow-light region (positive group

delay). Bottom: Slow-light propagation of a gaussian incoming pulse (in blue) producing a retarded

output pulse (in red) calculated from eq.(45).

a small fraction of the input pulse (blue shaded area) that leaks out. This part will be

lost. Concerning the output pulse, the red shaded area (subtracted from the blue area)

is essentially contained inside the medium and de facto stored into the atomic excitation

[86, 87]. The same qualitative description also applies to the retarded response from a

Lorentzian absorption window (fig.10, bottom). Storage can be expected as well but at the

price of temporal shape distortion.
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FIG. 10. Top: Slow-light in a transparency window as in fig. 8. The shaded area after half of

the group delay
d

4Γ0
= 5 represents the separation between the input and the outgoing pulses.

Bottom: Retarded response from a Lorentzian absorption window as in fig. 9. We choose for the

separation between input and output the expected generalized group delay
1

dΓ0
= .05.

Following our interpretation, as soon as input and output are well separated, there is a

moment when a fraction of the light is contained in the atomic excitation. This fraction

defines the storage efficiency. The transition from slow to stopped-light requires to detail the

specific storage protocols by giving a physical reality to the (inverted-)Lorenzian suscepti-

bility. Slow-light ensures that the optical excitation is transiently contained in the atomic

medium. For permanent storage and on-demand readout, it is necessary to act dynamically

on the atomic excitation as we will see now. More precisely, the shelving of the excitation

into the spin (by a brief Raman π-pulses or by switching off the control field as we will see in

IIIC and IIID respectively) prevents the radiation of the retarded response. The excitation

is trapped in the atomic ensemble. The evolution is resumed at the retrieval stage by the
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reversed operation (by a second brief Raman pulses or by switching on the control field).

Before going into details of the storage schemes, we briefly show that the correct orders

of magnitude for the efficiencies can be derived from our simplistic vision. From fig.10,

we can roughly evaluate the efficiency by subtracting the blue from the red area assuming

the incoming energy (integral of the incoming pulse) is one. We find for slow-light in a

transparency window (inverted-Lorentzian profile) a potential efficiency of 43% and for the

retarded response of an absorption window (Lorentzian profile) 32%.

We will keep these numbers as points of comparison for specific protocols that we will first

explicitly connect to the slow-light propagation from an inverted-Lorentzian or a Lorentzian

and then numerically simulate with the previously established Schrödinger-Maxwell equa-

tions.

C. Fast storage and retrieval with brief Raman π-pulses

Our approach is based on the fact that slow-light is associated with the transient storage of

the incoming pulse into the atomic excitation. A simple method to store more permanently

the excitation is to convert instantaneously the optical excitation into a spin wave. This can

be done by a Raman π-pulse as proposed in different protocols. We will now go into details

and properly define the level structure and the temporal sequence required to implement the

previously discussed archetypes (sections III B 1 and IIIB 2). We will consider two specific

protocols: the spectral hole memory and the free induction decay memory proposed in [88]

and [89] respectively.

1. Spectral hole memory

The spectral hole memory has been proposed by Lauro et al. in [88] and partially investi-

gated experimentally in [90]. The protocol has been successfully implemented in [91] at the

single photon level with a quite promising efficiency of 31%. An inhomogeneously broaden

ensemble is first considered. A spectral hole is then burnt into the inhomogeneous distri-

bution. This situation is realistic and corresponds to rare-earth doped crystals for which

the spectral hole burning mechanism, as spectroscopic tool, can be efficiently used to sculpt

the absorption profile [92]. When the hole profile is Lorenztian, the propagation of a weak
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signal pulse precisely corresponds to the situation IIIB 1 as we will see now.

The atomic evolution is described by eqs.(31&32) and the propagation by eq.(34). The

signal E(z, t) propagates initially through the atomic distribution described by

g (∆) =

[

1− 1

1 + (∆/Γ0)
2

]

(46)

where Γ0 is the spectral hole width.

The Raman field is initially off and is only applied for the rapid conversion into the spin

wave. When the Raman field is off, the evolution eq.(31) reads as ∂tP = (i∆ − Γ)P − i
E
2
.

The coherence lifetime 1/Γ (inverse of the homogeneous linewidth) is assumed to be much

longer than the time of the experiment such as in the spectral domain we write in the limit

Γ → 0

P̃(∆, ω) =
Ẽ(z, ω)

2 (∆− ω)
(47)

So the propagation reads as

∂Ẽ(z, ω)
∂z

+ i
ω

c
Ẽ(z, ω) = −α

2
Ẽ(z, ω) i

π

∫

∆

g (∆)

∆− ω
d∆ (48)

The term
i

π

∫

∆

g (∆)

∆− ω
d∆ represents the susceptibility. The integral over ∆ ensures that

the Kramers-Kroning relations are satisfied. This last term is then given by the Hilbert

transform of the distribution g (∆) so we have
i

π

∫

∆

g (∆)

∆− ω
d∆ =

[

1− 1

1 + iω/Γ0

]

. The

propagation of the signal is indeed given by eq.(35) as described in section IIIB 1 and as

represented in figs.8 and 10 (top). The delayed pulse (or at least the fraction which is

sufficiently separated from the input) can be stored as represented by shaded areas in fig.10

(top). As proposed in [88], a Raman π-pulse can be used to shelve the optical excitation

into the spin. A second Raman π-pulse triggers the retrieval. They are applied on resonance

(|s〉-|e〉 transition) so δ = 0 in eq.(32).

When the input and the output overlap as in many realistic situations or in other words

when the signal cannot be fully compressed spatially into the medium, the storage step

cannot be solved analytically. A numerical simulation of the Schrödinger-Maxwell equations

is necessary (eqs.31&32 with Γ = 0 and δ = 0 and eq.(34) for the propagation). For a

given inhomogeneous detuning ∆, we calculate the atomic evolution eqs.(31&32) by using

a fourth-order Runge-Kutta method. After summing over the inhomogeneous broadening,

the output pulse is given by integrating eq.(34) along z using the Euler method. A good
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test for the numerical simulation is to calculate the output pulse without Raman pulses and

compare it to the analytic expression from the Fourier transform of eq.(40).

The Raman π-pulses defined by Ω(t) are taken as two Gaussian pulses whose area is π.

Following the insight of fig.10 (top), we choose to apply the first Raman pulse at half the

group delay
d

4Γ0
= 5. The second Raman pulse is applied later to trigger the retrieval. The

result of the storage and retrieval sequence is presented in fig.11.

As parameters for the simulation, we choose the same as in III B 1 meaning Γ0 = 1, an

optical depth of d = 20 and σ =
d

2Γ0
= 10 for the incoming pulse duration. The Raman

pulses should be ideally short to uniformly cover the signal excitation bandwidth. In our

case, we choose Gaussian Raman pulses with a duration σπ = 1 (ten times shorter than the

signal).

In fig.11 (middle), we clearly see that the first Raman pulse somehow clips the slow-light

pulse corresponding to the shelving of the optical excitation into the spin wave. At this

moment, since part of the input pulse is still present, a small replica is generated leaving

the medium at time 20 in our units. The second Raman π-pulse (at time 60) triggers the

retrieval that we shaded in pale red. A realistic storage situation cannot be fully described

by our qualitative picture in fig.10 where the slow-light signal would be clipped, frozen,

delayed and retrieved later on. The complex propagation of clipped Gaussian excitations in

the medium can only be accurately embraced by a numerical simulation. The naive picture

gives nonetheless a qualitative guideline to understand the storage. A quantitative analysis

can be performed by evaluating the stored energy corresponding to the pale red shaded area

under the intensity curve. From the simulation, we obtain 36% to be compared with the 43%

obtained from fig.10. The agreement is satisfying given the numerical uncertainties and the

complexity of the propagation process when the Raman pulses are applied. We now turn to

the complementary situation described in section IIIB 2 by following the same procedure.

2. Free induction decay memory

Free induction decay memory to take the terminology of the article by Caprara Vivoli et

al. [89] has not been yet implemented in practice despite a connection with the extensively

studied slow-light protocols. The situation actually corresponds to our description in section

IIIB 2 where the response of a Lorenztian to a pulsed excitation is considered. This response
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FIG. 11. Spectral hole memory protocol. Top: Absorption profile from the inhomogeneous distri-

bution g defined by eq.(46). Middle: Incoming signal (in blue) and outgoing stored pulse (in red).

We have also represented the slow-light pulse (dashed red) as a reference when there is no Raman

pulse. Bottom: Two Raman π-pulses. The first one is applied at half the group delay
d

4Γ0
= 5

and the second later on to trigger the retrieval.
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has been analyzed as a generalization of the free induction decay phenomenon (FID) by

Caprara Vivoli et al. [89]. The FID is usually observed in low absorption sample after

a brief excitation. The analysis in terms of FID is perfectly valid. The response that

we considered with eq.(44) with a first order expansion of the susceptibility falls into this

framework. We analyze the same situation in different terms recovering the same reality.

The excitation produces a retarded response that we consider as a generalized version of

slow-light. This semantically connects slow-light and FID in the context of optical storage.

For the FID memory, the transition can be inhomogeneously or homogeneously broad-

ened. Both lead to the same susceptibility. We assume the medium homogenous with a

linewidth Γ thus simplifying the analysis and the numerical simulation, the propagation

being given by eq.(33).

As in the spectral hole memory, the Raman field is initially off and serves as a rapid

conversion into the spin wave by the application of a π-pulse. When the Raman field is off,

the evolution (eq.31) reads as ∂tP = −ΓP − i
E
2
. The signal is directly applied on resonance

so ∆ = 0. We then obtain for the polarization

P̃(∆, ω) =
−iẼ(z, ω)
2 (iω + Γ)

(49)

and the propagation

∂Ẽ(z, ω)
∂z

+ i
ω

c
Ẽ(z, ω) = −α

2
Ẽ(z, ω) Γ

iω + Γ
(50)

whose solution is indeed given by eq.(45). The output pulse is distorted and globally affected

by a typical delay
1

dΓ
. A first Raman π-pulse can be applied at this moment. A second

Raman π-pulse triggers the retrieval. As in the spectral hole memory (section IIIC 1), they

are applied on resonance so δ = 0 in eq.(32).

The complete protocol (when Raman pulses are applied) can only be simulated numeri-

cally from the Schrödinger-Maxwell equations (eqs.31&32 with ∆ = 0 and δ = 0 and eq.(33)

for the propagation in an homogeneous sample). Following fig.10 (bottom), we choose to

apply the first Raman pulse at the generalized group delay
1

dΓ
. The second Raman pulse is

applied later on to trigger the retrieval.

For the simulation, we again choose the parameters used in section IIIB 2 namely a

linewdith Γ = 1 and a signal pulse duration of σ =
1

dΓ
= 0.05 corresponding to the expected

generalized group delay for an optical depth d = 20. The Raman pulses have a duration
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σπ = 0.005 (ten times shorter than the signal) and a π-area. The result is presented in

fig.12.

We retrieve the tendencies of the spectral hole memory. The first Raman pulse clips the

slow-light pulse by storing the excitation into the spin state. As opposed to the propagation

in the spectral hole, there is no replica after the first Raman pulse. This replica is strongly

attenuated (slightly visible in fig.12) because it propagates through the absorption window.

We trigger the retrieval at time 0.8 by a second Raman π-pulse. The temporal output shape

cannot be compared to a clipped version of the input or the slow-light pulse. This situation

is clearly more complex than the spectral hole memory. That being said, the resemblance of

the output shape with a exponential decay somehow a posteriori justifies the term FID for

this memory scheme. The red pale shaded area represents an efficiency of 42% with respect

to the input pulse energy. This numerical result has to be compared with 32% obtained

from fig.10. The agreement is not satisfying even if it is difficult to have a clear physical

vision of the pulse distortion induced by the propagation at large optical depth. The order

of magnitude is nevertheless correct.

The FID protocol can be optimally implemented by using an exponential rising pulse for

the incoming signal (instead of a Gaussian in fig.12, middle) as analyzed in the reference

paper [89]. In that case, input (rising exponential) and output (decaying exponential) pulse

shapes are time-reversed corresponding to the optimization procedures defined in [83, 93]

and implemented in the EIT/Raman memories [94–96]

Starting from two representative situations in III B 1 and IIIB 2 where the dispersion

produces a retarded response from the medium, we have analyzed two related protocols in

IIIC 1 and IIIC 2 that qualitatively corresponds to the storage of this delayed response.

Except in a recent implementation [91], these protocols have not been much considered in

practice despite a clear connection with the archetypal propagation through the Lorentzian

susceptibility of an atomic medium. On the contrary, electromagnetically induced trans-

parency and Raman schemes are well-known and extensively studied experimentally. We

will show now that they follow the exact same classification thus enriching our comparative

analysis.
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FIG. 12. Free induction decay memory. Top: Lorentzian absorption profile from an homogeneous

sample. Middle: Incoming signal (in blue) and outgoing stored pulse (in red). We have also

represented the slow-light pulse (dashed red) as a reference when there is no Raman pulse. Bottom:

Two Raman π-pulses. The first one is applied at
1

dΓ
= 0.05 and the second later on to trigger the

retrieval.
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D. Electromagnetically induced transparency and Raman schemes

Starting from two pioneer realizations [97, 98], the implementation of the electromagnet-

ically induced transparency (EIT) scheme has been continuously active in the prospect of

quantum storage. As opposed to the spectral hole (section IIIC 1) and the free induction

decay (section IIIC 2) memories and recalling to the reader the main difference, EIT is not

based on the transient excitation of the optical transition that is rapidly transfered into

the spin by a Raman π-pulse. In EIT, the direct optical excitation is avoided by precisely

using the so-called dark state in a Λ-system [81, 82]. Practically, a control field is initially

applied on the Raman transition to obtain slow-light from the Λ-system susceptibility4. As a

first cousin, the Raman memory scheme has been proposed and realized afterward [99, 100].

EIT and Raman memories are structurally related by a common Λ-system which is weakly

excited by the signal on one branch and controlled by a strong laser on the Raman branch

(see fig.1). The main difference comes from the excited state detuning. For EIT scheme,

the control field is on resonance. For the Raman scheme, the control field is off resonance.

As we will see now, these two situations actually corresponds to the archetypal dispersive

profiles described in IIIB 1 and IIIB 2 respectively.

1. Electromagnetically induced transparency memory

The atomic susceptibility in a Λ-system is derived from eqs.(31&32). Initially, the Raman

field Ω is on and assumed constant in time. In EIT, the signal and control fields are on

resonance so ∆ = δ = 0. The medium is assumed homogeneous even if the calculation can

be extended to the inhomogeneously broaden systems [101]. The propagation is here given

by eq.(33).

In the spectral domain, eqs.(31&32) read as

P̃(∆, ω) =
−iẼ(z, ω)

2

(

iω + Γ− i
Ω2

4ω

) (51)

We have assumed the control field to be real so the intensity is written as Ω2 which can

be generalized to Ω∗Ω for complex values (chirped Raman pulses for example).

4 Inversely, for the spectral hole in III C 1 and the free induction decay in III C 2 memory, the Raman field

is initially off.
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The linear susceptibility for the signal field is defined by the propagation equation in the

spectral domain
∂Ẽ(z, ω)
∂z

+ i
ω

c
Ẽ(z, ω) = −α

2
Ẽ(z, ω) Γ

iω + Γ− i
Ω2

4ω

(52)

The term i
Ω2

4ω
induces the transparency when the control field is applied. Without control,

the susceptibility is Lorentzian and the signal would be absorbed following the Bouguer-

Beer-Lambert absorption law (eq.9). On the contrary, when the control field is on, the

susceptibility is zero when ω → 0. This corresponds to the resonance condition because we

assumed ∆ = δ = 0. The analysis can be further simplified by considering a first order

expansion within the transparency window.

The width of the transparency window is ΓEIT =
Ω2

4Γ
which is usually much narrower

than Γ. So, in the limit ω ≪ ΓEIT ≪ Γ, the propagation constant reads as

− α

2

Γ

iω + Γ− i
Ω2

4ω

≃ −α
2

[

1− 1

1 + iω/ΓEIT

]

(53)

The EIT window is locally an inverted-Lorentzian that we have analyzed in IIIB 1. The

slow-light propagation is precisely due to the presence of the control field. The so-called

dark state corresponds to a direct spin wave excitation whose radiation is mediated by the

control field. The storage simply requires the extinction of the control field. The excitation

is then frozen in the non-radiating Raman coherence because of the absence of control. The

retrieval is triggered by switching the control back on.

The stopped-light experimental sequence can be simulated numerically from eqs.(31&32)

and eq.(33). For the parameters, we choose the same as in III B 1 and IIIC 1, meaning

ΓEIT = 1 so the width of the inverted-Lorentzian is 1. We opt for Ω = 4 and Γ = 4

so the condition ΓEIT ≪ Γ is vaguely satisfied. Again the optical depth is d = 20 and

σ =
d

2ΓEIT
= 10 is the incoming pulse duration. At time

d

4ΓEIT
= 5, half the group delay,

the control field is switched off (Ω = 0). The result is plotted in fig.13.

Although the condition ΓEIT = 1 ≪ Γ = 4 is only roughly satisfied so the absorption

profile is not a pure inverted-Lorenzian, this has a minor influence on the slow and stopped-

light pulses. The resemblance with fig.11 is striking even if the spectral hole and EIT

memories cover different physical realities. From fig.13, we can estimate the efficiency (red

pale area) to 42% thus retrieving the same expected efficiency as the spectral hole memory.
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FIG. 13. Electromagnetically induced transparency memory. Top: EIT absorption profile. Middle:

Incoming signal (in blue) and outgoing stored pulse (in red). We have also represented the slow-

light pulse (dashed red) as a reference from eq.(52) when the control field is always on. Bottom:

The control is initially on with Ω2 = 16. It is switched off at half of the group delay
d

4ΓEIT
= 5

and back on later to trigger the retrieval.
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One difference between fig.11(middle) and fig.13(middle) is worth being commented: there

is not slow-light replica after the time
d

4ΓEIT

= 5 for the EIT situation. This replica is

absorbed in that case because when the control field is switched off, the absorption is fully

restored. The presence or the absence of replicas does not change the efficiency because they

correspond to a fraction of the incoming pulse that is not compressed in the medium. This

leaks out and is lost anyway.

We will now complete our picture by considering the Raman memory and emphasize the

resemblance with the free induction decay discussed in IIIC 2.

2. Raman memory

The Raman memory scheme is based on the same Λ-structure when a control field is

applied far off-resonance on the Raman branch [99, 100, 102] (see fig.1). The condition

∆ ≫ Γ defines literally the Raman condition as opposed to EIT where the control is on

resonance (∆ = 0). The absorption profile exhibits the so-called Raman absorption peak.

This Lorentzian profile is the basis for a retarded response that we introduced in IIIB 2.

We first verify that the far off-resonance excitation of the control leads to a Lorenztian

susceptibility for the signal. As in the EIT case (see IIID 1), the atomic evolution in a

Λ-system is given by eqs.(31&32) and the propagation by eq.(33). The polarization is

P̃(∆, ω) =
−iẼ(z, ω)

2

(

iω − i∆+ Γ− i
Ω2

4(ω − δ)

) (54)

The two-photon detuning δ is not zero in that case because the Raman absorption peak

in shifted by the AC-Stark shift (light shift). The signal pulse has to be detuned by δ =
Ω2

4∆
,

the light-shift, to be centered on the Raman absorption peak. Following the same approach

as in the EIT case, the analysis can be simplified by a first order expansion is ω. Assuming

the incoming pulse bandwidth ω smaller than the light shift δ, the latter being smaller than

the detuning ∆, that is ω ≪ δ ≪ ∆, the propagation constant reads to the first order in ω

as

− α

2

Γ

iω − i∆+ Γ− i
Ω2

4(ω − δ)

≃ −α
2

ΓR

ΓR + iω
(55)

where ΓR =
Ω2Γ

4∆2
is the width of the Raman absorption profile. This Lorentzian absorption
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profile can be used for storage as discussed in III B 2 and IIIC 2. As in the EIT case,

the storage is triggered by the extinction of the Raman control field. To fully exploit the

analogy with IIIB 2 and IIIC 2, we will choose ΓR = 1. To satisfy the far off resonance

Raman condition, we choose Γ = 10 and ∆ = 1000 thus imposing Ω = 200
√
10 and δ = 100.

We run a numerical simulation of eqs.(31&32) and eq.(33) with a Gaussian incoming pulse

whose duration is again σ =
1

dΓR
= 0.05 and with an optical depth d = 20. The result is

presented in fig.14 where the control Raman field is switched off at time
1

dΓR
= 0.05 (the

typical delay) and switched back on later to trigger the retrieval.

The resemblance with fig.12 is noticeable. Transient rapid oscillations appears when the

control is abruptly switched, this is a manifestation of the light-shift. Without surprise, the

expected efficiency (red-pale area) is 42% as the free induction decay memory with the same

intensive parameters (see IIIC 2).

E. Summary and perspectives

We have given in this section a unified vision of different slow-light based protocols. In this

category, the ambassador is certainly the EIT scheme which has been particularly studied

in the last decade with remarkable results in the quantum regime [7]. The linear dispersion

associated with the EIT transparency window allows to define unambiguously a slow group

velocity whose reduction to zero produces stopped-light. We have extended this concept to

any retarded response that can be seen as a precursor for storage. This approach allows us

to interpret the Raman scheme within the same framework. In that case, the group velocity

cannot be defined per se but the dispersion profile still produces a retarded response that

can be stored by shelving the excitation into a long lived spin state. The price to pay at

the retrieval step is a significant pulse distortion even if the efficiency (input/output energy

ratio) is quite satisfying. The pulse distortion at the retrieval is somehow a false problem.

Distortions are more or less always present. Even in the more favorable EIT scheme, the

pulse can be partially clipped because of a limited optical depth. It should be kept in mind

that quantum repeater architectures use interference between outgoing photons [1, 74, 103].

As soon as the different memories induce the same distortion, the retrieved outgoing fields

can perfectly interfere. In that sense, the deformation can also be considered as an unitary

transform between temporal modes without degrading the quantum information quality
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FIG. 14. Raman memory. Top: Raman absorption profile. Middle: Incoming signal (in blue) and

outgoing stored pulse (in red). We have also represented the slow-light pulsed (dashed red) as a

reference from eq. (55) when the Raman control field is always on. Bottom: The control is initially

on with Ω = 200
√
10 and is switched later on to trigger the retrieval.
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[104, 105].

The signal temporal deformation also raises the question of the waveform control through

the storage step. We have used a simplistic model for the control field (on/off or π-pulses).

A more sophisticated design of the control actually allows a build-in manipulation of the

temporal and frequency modes of the stored qubit [106, 107]. A quantum memory can

be also considered a versatile light-matter interface with a enhanced panel of processing

functions. Waveform shaping is not considered anymore as a detrimental experimental

limitation but as new degree of freedom whose first benefit is the storage efficiency [94,

96] when specific optimization procedures are implemented [83, 93, 95]. The optimization

strategy by temporal shaping is beyond the scope of this chapter but would certainly deserve

a review paper by itself.

The fast storage schemes and the EIT/Raman sequences that we analyzed in parallel

in sections IIIC and IIID respectively, both rely on a Raman coupling field that control

the storage and retrieval steps. The fast storage schemes depend on π-pulses and the

EIT/Raman sequence on a control on/off switching. A three-level Λ-system seems to be

necessary in that case. This is not rigorously true even if the Λ-structure is widely ex-

ploited for quantum storage. Stopped-light can indeed be obtained in two-level atoms by

dynamically controlling the atomic properties [108–110]. Despite a lack of experimental

demonstrations, these two-level alternative approaches conceptually extend the protocols

away from the well-established atomic Λ-structure.

To close the loop with the previous section II on photon echo memories, we would like to

discuss again the atomic frequency comb (AFC) protocol [60]. Despite its historical connec-

tion with the three-pulse photon echo sequence, it has been argued that the AFC falls in the

slow-light memories [76]. A judicious periodic shaping of the absorption profile, forming a

comb, allows to produce an efficient echo. This latter can alternatively be interpreted as an

undistorted retarded response using the terminology of section III. This retarded part is a

precursor that can be stored by shelving the excitation into spin states by a Raman π-pulse,

thus definitely positioning the AFC in the fast storage schemes (section IIIC).
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IV. CERTIFYING THE QUANTUM NATURE OF LIGHT STORAGE PROTO-

COLS

The question that we address in this section is how to prove that a storage protocol

operates in the quantum regime. The most natural answer is: by demonstrating that the

quantum nature of a light beam is preserved after storage. There are, however, several ways

for a memory to output light beams that show quantum features. It can simply be a light

pulse, like a single photon, that cannot be described by a coherent state or a statistical

mixture of coherent state [111].

Alternatively, a state can be qualified as being quantum when it leads to correlations

between measurement results that cannot be reproduced by classical strategies based on

pre-agreements and communications, as some entanglement states do. What is thus the

difference between showing the capability of a given memory to store and retrieve single

photons and entangled states ?

Faithful storage and retrieval of single photons demonstrates that the noise generated by

the memory is low enough to preserve the photon statistics, even when these statistics cannot

be reproduced by classical light. It does not show, however, that the memory preserves

coherence. Furthermore, it does not prove that the memory cannot be reproduced by a

classical strategy, that is, a protocol which would first measure the incoming photon and

create another photon when requested.

On the other hand, the storage and retrieval of entangled states can be implemented to

show that the memory outperforms any classical measure-and-prepare strategy. This is true

provided that the fidelity of the storage protocol is high enough. For example, if a memory

is characterized by storing one part of a two-qubit entangled state, the fidelity threshold is

given by the fidelity of copies that would be created by a cloning machine taking one qubit

and producing infinitely many copies. This is known to be one of the optimal strategies for

determining an unknown qubit state [112].

Note that the fidelity reference can also be taken as the fidelity that would be obtained by

a cloning protocol producing only one copy of the output state [113]. In this case, the goal

is to ensure that the memory delivers the state with the highest possible fidelity, that is, if a

copy exists, it cannot have a higher overlap with the input state. This condition is relevant

whenever one wants to show the suitability of the memory for applications related to secure
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communications, where third parties should not obtain information about the stored state

[114].

The suitability of a memory for secure communications can ultimately be certified by Bell

tests [115]. In this case, the quality of the memory can be estimated without assumptions

on the input state or on the measurements performed on the retrieved state. This ensures

that the memory can be used in networks where secure communications can be realized over

long distances with security guarantees holding independently of the details of the actual

implementation.

We show in the following sections how these criteria can be tested in practice, describing

separately benchmarks based on continuous and discrete variables. Various memory pro-

tocols are used as examples, including protocols such as the two-pulse photon echo (2PE)

[17] or the classical teleporter, which are known to be classical. In order to prove it, we

first show how to compute the noise inherent to classical protocols by moving away from

the semi-classical picture. While a fully quantized propagation model can be found in the

literature [83] mirroring the semi-classical Schrdinger-Maxwell equations that we use in the

previous sections, we present a toy model using an atomic chain to characterize memory pro-

tocols together with their noise (section IVA). Criteria are then derived first for continuous

(section IVB) and then for discrete variables (section IVC).

A. Atomic chain quantum model

The aim is to derive a simple quantum model allowing to characterize different storage

protocols including the noise. Although quantum, the model is very simple and uses the

basic tools of quantum optics.

1. Jaynes-Cummings propagator

We consider an electromagnetic field described by the bosonic operators a and a† reso-

nantly interacting with a single two-level atom (with levels |g〉 and |e〉) thought the Jaynes-
Cummings Hamiltonian

Hint = iκ(a†σ− − aσ+). (56)
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Here, σ± are atomic operators corresponding to the creation σ+ = |e〉〈g| and annihilation

σ− = |g〉〈e| of an atomic excitation. The first term in (56) is thus associated to the emis-

sion of a photon while the second term corresponds to its absorption. The corresponding

propagator

U(τ) = eκτ(a
†σ−−aσ+) =

∑

n≥0

(κτ)n

n!
(a†σ− − aσ+)

n (57)

can be written as

U(τ) = cos(κτ
√
a†a)|g〉〈g| − a sin(κτ

√
a†a)/

√
a†a|e〉〈g|

+cos(κτ
√
aa†)|e〉〈e|+ a† sin(κτ

√
aa†)/

√
aa†|g〉〈e|

by noting that

(a†σ− − aσ+)
2k = (−1)k

((
a†a
)k |g〉〈g|+

(
aa†
)k |e〉〈e|

)

,

and

(a†σ− − aσ+)
2k+1 = (−1)k

(

a†
(
aa†
)k
σ− − a

(
a†a
)k
σ+

)

.

Hence, the following initial states read

U(τ)|g, 0〉 → |g, 0〉,

U(τ)|g, 1〉 → cos(κτ)|g, 1〉 − sin(κτ)|e, 0〉,

U(τ)|e, 0〉 → cos(κτ)|e, 0〉+ sin(κτ)|g, 1〉.

2. Absorption

Let us now consider a collection of N atoms, all prepared in the ground state |g〉 and

each interacting with a single photon through the Jaynes-Cummings interaction. The state

of the atoms associated with a successful absorption is given by

ρcond = Trlight

[

|0〉 〈0| ⊗ 1 UN . . . U1|g . . . g, 1〉〈g . . . g, 1|U †
1 . . . U

†
N

]

and takes the form ρcond = |Ψcond〉〈Ψcond| when applying explicitly the N propagators, where

|Ψcond〉 = cN−1s|g . . . ge〉+ cN−2s|g . . . eg〉+ . . .+ s|eg . . . g〉.

Note that we have introduced the shorthands c = cos(κτ) and s = sin(κτ). The normaliza-

tion of Ψcond, that is 1 − cos2N (κτ), gives the probability of a successful absorption. For a
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small absorption amplitude per atom κτ =
√

d/N ≪ 1 where d = αL is the total optical

depth of the atomic chain and a large atom number, we have

lim
N→∞

cos2N(κτ) ≈ lim
N→∞

(

1− d

2N

)2N

→ e−d (58)

which corresponds to the Bouguer-Beer-Lambert absorption law (eq.9). Similarly, the ab-

sorption probability 1− cos2N(κτ) tends to 1− e−d.

3. Storage and retrieval probability

The overall efficiency including the storage and retrieval probabilities is obtained by

calculating

|〈g . . . g, 1|UN . . . U1|Ψcond〉|2.

Note that we here consider a forward emission in which the retrieved photon is emitted in

the same direction that the input photon. We obtain

|〈g . . . g, 1|UN . . . U1|Ψcond〉|2 = N2s4c2N−2

≈ d2
(

1− d

N

)2N−2

→ d2e−d when N → ∞ (59)

and thus retrieve the semi-classical forward efficiency eq.(24).

For a backward emission, we obtain

|〈g . . . g, 1|U1 . . . UN |Ψcond〉|2 → (1− e−d)2 when N → ∞ (60)

corresponding to the semi-classical backward efficiency eq.(25).

4. Amplification through an inverted atomic ensemble

This simple model allows us to compute the expected noise of protocols for which the

excited states are significantly populated when the stored excitation is released as in the two-

pulse photon echo (2PE) protocol described in section IIB. Consider first the case where all

the atoms are in |e〉 and the field is in the vacuum state |0〉. The mean photon number after

an interaction time τ is given by

〈e . . . e, 0|U †
N(τ) . . . U

†
1 (τ)a

†aU1(τ) . . . UN(τ)|e . . . e, 0〉
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which can be seen as the square of the norm of aU1(τ) . . . UN(τ)|e . . . e, 0〉. In the regime

where the population remains essentially in the excited state, the atomic operators σ± verifies

[σ+, σ−] = |e〉〈e| − |g〉〈g| ≈ 1. (61)

In this case, the Hamiltonian (56) is a squeezing operator between two bosonic modes and

the formula eBAe−B =
∑

n≥0
1
n!
[B, . . . [B,A] . . .]
︸ ︷︷ ︸

n times

can be used to prove that

aU1 = U1

(

cosh(κτ)a+ sinh(κτ)σ
(1)
−

)

. (62)

Commuting a with U2 . . . UN , we obtain

aU1 . . . UN = U1 . . . UN

(

cosh(κτ)Na (63)

+ cosh(κτ)N−1 sinh(κτ)σ
(N)
− + . . .+ sinh(κτ)σ

(1)
−

)

where σ
(i)
− is the atomic operator σ− for the ith atom. This leads to

||aU1(τ) . . . UN (τ)|e . . . e, 0〉||2

= sinh(κτ)2
N∑

j=1

cosh(κτ)2j−2 = cosh(κτ)2N − 1.

Using κτ =
√

d/N ≪ 1 and taking the limit of large N , the mean photon number is

ed − 1. (64)

This corresponds to the number of photons emitted in a single mode by an inverted ensemble

[27, 28].

More generally, eq.(63) shows that in the regime where the atoms are mainly in the

excited state, the atomic ensemble operates as a classical amplifier, the gain G depend-

ing exponentially on the optical depth via G = ed. Such an amplifier transforms the field

operators according to

Ū †aŪ =
√
Ga+

√
G− 1 σ†

c (65)

Ū †a†Ū =
√
Ga† +

√
G− 1 σc (66)

where Ū †aŪ = U †
N(τ) . . . U

†
1(τ)aU1(τ) . . . UN(τ). The bosonic operators σc and σ

†
c annihilates

and creates collectively atoms in the ground state

σ†
c =

1√
M

(cosh(κτ)N−1 sinh(κτ)σ
(N)
− + . . .+ sinh(κτ)σ

(1)
− )
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with the normalization coefficient M = cosh(κτ)2N − 1.

Equations (65)&(66) allow one to derive expectations values for the field when the atoms

are mostly excited. Let us consider for example a 2PE where the first pulse is a single

photon Fock state and the second pulse is a π-pulse. We can compute the response of a

non-photon number resolving detector with dectection efficiency η at the echo time. If the

photon has been successfully absorbed, at the echo time, the atoms are well described by a

single excitation |1〉 in the collective mode σc and the field a is in the vacuum state. The

probability that the photon detector clicks is given by

〈01|Ū †(1− (1− η)a
†a
)
Ū |01〉 = 1− 〈01|Ū † : e−ηa†a : Ū |01〉

= 1− 〈01|Ū †(1− ηaa† +
η2

2
a†a†aa− . . .)Ū |01〉.

Using eqs.(65)&(66), we easily show that

〈Ū † a† . . . a†
︸ ︷︷ ︸

k times

a . . . a
︸ ︷︷ ︸

k times

Ū〉 = (k + 1)!(G− 1)k.

Therefore

〈01|Ū †(1− (1− η)a
†a
)
Ū |01〉 = 1−

∑

k≥0

(−1)kηk(G− 1)k(k + 1)

= 1− 1
(
1 + η(G− 1)

)2 . (67)

This formula shows that no click is obtained when the detection efficiency is null while the

detectors clicks with unit probability as long as ηG≫ 1.

5. Beamsplitter interaction in a non-inverted ensemble

In the regime where the atoms are and remain essentially in the ground state, the atomic

operators σ± verifies

[σ+, σ−] = |e〉〈e| − |g〉〈g| ≈ −1. (68)

As in the previous paragraph, the formula eBAe−B =
∑

n≥0
1
n!
[B,A]n can thus be used to

prove that in this regime

aUN = UN

(

cos(κτ)a+ sin(κτ)σ
(N)
−

)

. (69)
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We thus have

aUN . . . U1 = UN . . . U1

(

cos(κτ)Na (70)

+ cos(κτ)N−1 sin(κτ)σ
(1)
− + . . .+ sin(κτ)σ

(N)
−

)

.

By introducing the collective operator

σ̄c =
1√
M

(cos(κτ)N−1 sin(κτ)σ
(N)
− + . . .+ sin(κτ)σ

(1)
− ) (71)

with M = 1− cos(κτ)2N , the atom-light interaction can be seen as a standard beamsplitter-

type interaction

Ū †aŪ =
√
e−da+

√

1− e−d σ̄c (72)

Ū †a†Ū =
√
e−da† +

√

1− e−d σ̄†
c . (73)

The formulas derived from this simple quantum model will be helpful to characterize the

quantum nature of different storage protocols as we will see now.

B. Continuous variable criterion

Here, we study the propagation and read-out of a pulse with quantum noise through

different memories and review a criterion to evaluate if the output state is the best cloned

copy of the input, that is, to guarantee that no better copy of the input state is available.

We analyze generic storage protocols in a continuous variable perspective to estimate the

amount of noise and loss that can be tolerated to fulfill this criterion.

1. The stored quantum states

A quantum memory should be able to store and retrieve any state while preserving its

quantum features. The state can be a classical state but its quantum statistics should be

preserved. In continuous variable quantum information, the variables of interest are the field

quadratures, defined as

X+ = a + a† (74)

and

X− = −i(a− a†) (75)
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where a and a† are the creation and annihilation operators of the field, as in the previous

section. As they satisfy the canonical commutation relations [a, a†] = 1, it follows that

[X+, X−] = 2i and that

n =
1

4

[
(X+)2 + (X−)2

]
− 1

2
(76)

where n = a†a is the photon number operator.

The signal at the output of a quantum memory can be decomposed into a classical

amplitude α and a fluctuating noise term δX̂±. Formally, for a gaussian state, we write the

amplitude and phase quadratures of the field as

X̂± = α± + δX̂± (77)

To avoid writing the propagators when describing the field at the output of the memory,

we now introduce the subscript out defined as aout = U
†
aU for example. Similarly, the

subscript in is used to describe the input of the memory. The measured output signal is

generally the power spectral density, given by the Fourier transform of the autocorrelation

function. It reads as

S±
out = 〈(X̂±

out)
2〉 (78)

and the noise as

V ±
out = 〈δ(X̂±

out)
2〉 (79)

We thus obtain

S±
out = (α±

out)
2 + V ±

out. (80)

We will estimate α±
out and V

±
out at the output of the optical memories and identify the values

that enable entering the quantum memory regime.

2. Quantum memory criterion

Generally, optical memories are benchmarked against quantum information criteria. In

particular, the performance of a given quantum memory can be evaluated similarly to a

quantum teleportation scheme by quantifying the quality of the output state with respect

to the input.

Figure 15 shows the schematics of the quantum memory benchmark. The optimal classi-

cal measure and prepare strategy for optical memory consists in measuring the input state
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jointly on two conjugate quadratures using two homodyne schemes [116]. The measured in-

formation is stored before fed-forward onto an independent beam. In this classical scheme,

the storage time can be arbitrarily long without additional degradation. However, two con-

jugate observables cannot be simultaneously measured and stored without paying a quantum

of duty. Moreover, the encoding of information onto an independent beam will also intro-

duce another quantum of noise. In total, the entire process will incur two additional quanta

of noise onto the output optical state [117].

Characterizing quantum memory using the state-dependent fidelity as a measure can be

complicated for exotic mixed states. Alternatively, we use the signal transfer coefficients

T and the input-output conditional variances Vcv to establish the efficiency of a process

[118, 119]. The conditional variances and signal transfer coefficients are defined as

V ±
cv = V ±

out −
|〈X±

inX
±
out〉|2

V ±
in

(81)

and

T± =
R±

out

R±
in

(82)

where R±
out/in is defined as

R±
out/in =

4(α±
out/in)

2

V ±
out/in

. (83)

We now define two parameters that take into account the performances of the system on

both conjugate observables as

V =
√

V +
cvV

−
cv (84)

and

T = T+ + T− (85)

It can be shown that a classical memory based on the measure and prepare scheme

described before cannot overcome the T > 1 or V < 1 limits [119]. With a pair of entangled

beams, it is possible to have an output state with V < 1 or T > 1, hence demonstrating

that the memory outperforms the optimal measure and prepare strategy. In case where the

output state satisfies both V < 1 and T > 1, the output is the best possible cloned copy of

the input state [120]. A perfect quantum memory would satisfy both T = 2 and V = 0.
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FIG. 15. General scheme for characterizing an optical memory. A pair of EPR entangled beams

with a mean signal amplitude is prepared. One of these beams is injected into, stored, and readout

from the optical quantum memory (QM) while the other is being propagated in free space. A joint

measurement with appropriate delay is then used to measure the quantum correlations between

the quadratures of the two beams.

3. Slow-light memory

 
β β βα

Probe
α

FIG. 16. Field propagating in a medium with gain α and loss β.

We now present a general theory for amplification and attenuation of a traveling wave and

use the TV diagram to quantify the amount of excess noise that is tolerated. This theory

is well adapted to slow-light memories [117] but can be carried over to other memories, like

Raman (section IIID 2) or CRIB (section IIC) memories. Gain can indeed be present if, for

instance, population has been transferred to other states during the mapping and read-out

stages.

As discussed in the previous section, and in particular in eqs.(65)&(66), the output of an

ideal linear amplifier with a gain factor G > 1, relates to the input field via this relation :

aout =
√
Gain +

√
G− 1σ†

c (86)

where σ†
c is a bosonic operator in the vacuum state. The power spectrum at the output of

an ideal phase-insensitive amplifier is then given by

Sout = GSin +G− 1 (87)

where Sin is input spectrum.

By concatenating m amplifying and attenuating infinitesimal slices with linear amplifi-

cation 1 + αδz and attenuation 1 − βδz where δz = z/m, as represented in fig.16, we will

calculate the noise properties of the field.
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The power spectrum of the field at a slice m is

Sm = (1 +
(α− β)z

m
)m(Sin − 1) + 1 + 2α

∑

(1 +
(α− β)z

m
)m−j (88)

In the infinitesimal slice width limit, we obtain

Sout = ηSin + (1− η)(1 +Nf) (89)

where Nf = 2α/(β − α) and η = exp ((−β + α)L) where L is the length of the medium.

Using standard memory protocols, one can find a relationship between α, β and the memory

parameters. One can then show that

V = 1− η + Vnoise (90)

and

T = 2η/(1 + Vnoise), (91)

where Vnoise = 1 + (1 − η)Nf . Figure 17 shows a TV diagram for a memory with varying

loss (arrows) and three different gain values.

If there is no mean intensity of the field at the input, the output field is simply the

memory output noise. It reads as

Sout = η + (1− η)(1 +Nf ) (92)

If we further assume that all the atoms are in the excited state, that is the atomic medium

operates as an amplifier (β=0), Nf = −2, now we obtain

Sout = 1− 2(1− η) = 2η − 1 (93)

Assuming that the noise is the same on both quadratures, and the relation between the

mean number of photons and the field quadratures leads to

〈n〉 = 1

2

[
〈X2〉 − 1

]
=

1

2

[
Sout − 1

]
= η − 1 (94)

The mean number of photon is thus

ed − 1 (95)

where d = αL in the optical depth, as was found in the previous section.
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FIG. 17. TV diagram for a CRIB memory with varying gain and loss. The dashed line shows the

evolution of the standard 2PE memory performance as a function of optical depth.

4. Photon echo memories

Standard photon echo protocols that use long lived excited state transitions are generally

not immune to noise. If the emission takes place while population remains in the excited

state, gain will be present so the memory will not enter the quantum regime.

a. Controlled reversible inhomogeneous broadening The CRIB scheme can be modeled

using arrays of beam-splitters. In its most efficient form, namely using the gradient echo

memory scheme (GEM) [16] (sometimes called longitudinal CRIB) or using (transverse-)

CRIB with a backward write pulse (section IIC), the write and read stages can be seen as

two beam-splitters with a reflectivity that depends on the optical depth [59], as depicted

in fig.18. Let us note that without a backward pulse, more beam-splitters are needed to

describe the output field of the CRIB memory [59]. In these scheme, the population remains

mainly in the ground state so that gain, and thus noise, will be absent.

For the write stage, the transmitted pulse field intensity is attenuated according to the
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FIG. 18. Beam splitter description of photon echo memories.

Bouguer-Beer-Lambert law by e−d. In terms of quadratures, including the ”vacuum port”

modeling atomic fluctuations, we deduce from eqs.(72)&(73) the expressions for the light

and spin quadratures at the two output ports as defined in fig.18

Xt =
√
e−dXin −

√

1− e−dXc1 (96)

and

Xs =
√

1− e−dXin +
√
e−dXc1 (97)

The vacuum contribution ensures preservation of the commutation relations of the field

and atomic operators.

In the case of CRIB with backward propagation or GEM (forward), the beam-splitter

reflectivity is ”inverted” and the output field can be written simply as

Xout =
√

1− e−dXs +
√
e−dXc2. (98)

In the absence of signal, the input is in the vacuum state Vin = 1, so that Vout = 1. We thus

find a conditional variance

V ±
cv = 1− (1− e−d)2 (99)
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and transfer coefficient.

T = 2(1− e−d)2. (100)

So for the present case of CRIB and in the limit of large optical depth, T → 2 and V → 0,

the CRIB memory is a quantum memory, as represented by the green area in fig.17.

b. Standard two-pulse photon echo Let us now consider the 2PE memory described in

section IIB. The difference between the 2PE memory and the CRIB is that the atoms are in

the excited state during the read-out retrieval stage. This inversion implies that the input

light will be amplified, which will invariably add noise.

Considering again the two-beam-splitter approach depicted in fig.18, the writing stage is

the same as CRIB, so a fraction
√
ηR =

√
1− e−d of the field is written in the memory. The

output field however is amplified by a quantity
√
ηW =

√
ed − 1 as discussed in the slow-light

section IVB3. In total, the transmission thus reads

ηRηW = (1− e−d)(ed − 1) = 4 sinh2(d/2) (101)

We here retrieve the semi-classical 2PE efficiency eq.(20).

In terms of the field quadratures, we have

Xs =
√

1− e−dXin +
√
e−dXc1 (102)

and

Xout =
√

ed − 1Xs +
√
edXc2 (103)

just like for a linear amplifier (eqs.72&73).

The product of the conditional variances is thus

V = 1− e−d + ed (104)

and the sum of the two signal-to-noise transfer coefficients is

T =
4sinh(d/2)2

2ed − 1
(105)

These two quantities are plotted in fig.17 (dotted line), showing the 2PE memory does not

enter the quantum regime for any optical depth. We have checked that a better performance

(a lower V and larger T) can be obtained if the optical depth is lowered during the writing

stage but the memory would still operate in the classical domain.
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C. Photon counting criteria

We now present various criteria for certifying the quantum nature of storage protocols

based on photon counting, including the autocorrelation measurement, the Cauchy-Schwarz

criterion and the Bell test.

1. Autocorrelation measurement

Let us consider a single-mode of the electromagnetic field with bosonic operators a and a†

and described by the state ρa. This state is said classical if it can be represented as a mixture

of coherent states |α〉, that is, one can find a quasi-probability distribution P (α) ≥ 0 such

that

ρa =

∫

d2αP (α)|α〉〈α|. (106)

The autocorrelation of this field defined as

g(2)a =
〈a†2a2〉
〈a†a〉2 (107)

is at least equal to 1 [121]. Conversely, if the result of an autocorrelation measurement is

smaller than 1, one can conclude that the measured state is non-classical. A single photon

Fock state for example, is a non-classical state because its autocorrelation is 0. A simple

way to certify the quantum nature of a given memory is thus to store a single photon and

to check that the result of an autocorrelation measurement after retrieval is smaller than 1.

This shows that the memory preserves the non-classical feature of light.

Note that in practice, non photon-number resolving detectors can be used to certify the

non-classical nature of a single-mode field: it is sufficient to put two of these detectors after

a 50/50 beamsplitter and to check that the probability of a twofold coincidence is smaller

than the product of probabilities of singles [122]. Let us thus consider the experiment

represented in fig.19 where a source produces a single photon that is subsequently stored in

a memory. The photon is then released and an autocorrelation measured with non photon-

number resolving detectors (da and d̄a) with efficiency ηd each. Let ηm be the efficiency of

the memory and pdc the probability to get a dark count, that is a click on one detector when

the photon source is switched off. Obviously, ηm can include the non-unit efficiency of the

source and the loss from the source to the memory. ηd also accounts for the loss between
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FIG. 19. Certifying the quantum nature of a memory by checking that it can preserve the non-

classical property of a single-mode field. A single photon Fock state is stored and an autocorrelation

measurement is performed on the retrieved photon.

the 50/50 beamsplitter and each detector. pdc includes the detector dark counts and various

sources of noise operating independently on each detector. We assume that pdc is the same

for both detectors (da and d̄a). To obtain twofold coincidences smaller than the product of

singles, these parameters has to fulfill the following inequality (see appendix B for details)

g(2)a =
1− 2(1− pdc)(1− ηdηm/2) + (1− pdc)

2(1− ηdηm)

(1− (1− pdc)(1− ηdηm/2))
2 < 1. (108)

Note that in the absence of noise (pdc = 0), this ratio is zero independently of the efficiency.

In other words, for an ideal implementation of a memory protocol without noise, there

is no constraint on the memory efficiency to prove that it can preserve the result of an

autocorrelation measurement performed on a single photon. For unit efficiencies ηdηm = 1,

the ratio eq.(108) tends to 1 − ǫ2/4 for pdc ≈ 1 − ǫ. For low efficiencies ηdηm ≪ 1, the

inequality (108) is fulfilled as long as pdc ≤ 3ηdηm.

It is worth mentioning that the here proposed criterion does not allow to conclude that the

memory outperforms classical strategies for storage as a device that would throw the photon

emitted by the source and create a photon afterward would lead to a zero autocorrelation

measurement. However, under the assumption that memory under test indeed operates as a

storage/retrieval protocol, this criterion shows that this memory is in the quantum regime,

in the sense that it preserves the non-classical nature of a single mode field.

It is interesting to compute the result of an autocorrelation measurement that would be

obtained by storing a single photon in an atomic ensemble using the 2PE technique. In the

ideal scenario where there is no loss before and inside the memory and the photon absorption

is successful, we find for the autocorrelation

1− 2
(1+

ηd
2
(ed−1))2

+ 1
(1+ηd(ed−1))2

(

1− 1
(1+

ηd
2
(ed−1))2

)2 (109)
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which tends to 3/2 for small optical depth d ≪ 1 and to 1 when η/2(ed − 1) ≥ 1. Even in

an ideal scenario, we conclude that a storage technique based on a two-pulse photon echo

does not preserve the non-classical nature of a single photon.

2. Cauchy-Schwarz criterion

The Cauchy-Schwarz parameter R can be used to reveal non-classical correlations between

two fields [123]. Consider two single-mode fields and their respective bosonic operators a, a†

and b, b†. We say that these fields are classically correlated if their state ρab can be written

as a mixture of coherent states |α〉, |β〉, that is, there exists a non negative function P (α, β)

such that

ρab =

∫

d2αd2βP (α, β)|α, β〉〈α, β|. (110)

The Cauchy-Schwarz parameter defined as

R =
〈a†b†ba〉

〈a†2a2〉〈b†2b2〉 (111)

is at most equal to 1 when calculated on classically-correlated states. R > 1 is a witness of

non-classical correlations.

As for the autocorrelation measurement, the Cauchy-Schwarz parameter can be measured

with non photon-number resolving detectors [122], see fig.20. It is sufficient to take the ratio

between the square of twofold coincidences between detectors da&db and the product of

coincidences between da&d̄a and db&d̄b. Let us consider the experiment shown in fig.20 with

a source producing two-mode vacuum squeezed states, that is

(1− p)
1

2 e
√
pa†b† |00〉. (112)

Further consider the storage and release of the mode a into a memory with efficiency ηm.

Let ηad (ηbd) be the efficiency of detectors da and d̄a (db and d̄b) and p
a
dc (p

b
dc) the probability

to get a click on the detector da or d̄a (db or d̄b) when the source is switched off (dark

counts). As before, the memory efficiency includes the loss from the source to the memory.

The efficiency of detectors da and d̄a includes the loss from the beamsplitter to the detector

while the efficiency of the detectors db and d̄b includes the loss from the source to the detector

(without the transmission of the beamsplitter). padc which we assume to be the same for the

two detector da and d̄a, includes various source of noise that can be modeled as detector
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FIG. 20. Setup to certify the quantum nature of a memory by checking that it can preserve the

non-classical correlations between two fields. A photon pair source is used to produce two-mode

squeezed vacuum states. One of the two modes (mode a) is stored in a memory and the Cauchy-

Schwarz parameter is measured between the mode a after retrieval and the mode b.

dark counts. In this scenario, the Cauchy-Schwarz parameter is given by (see appendix B

for details)

R =

[

1− (1− padc)(1− p)

1− p(1− ηa
d
ηm
2

)
− (1− pbdc)(1− p)

1− p(1− ηb
d

2
)

+
(1− padc)(1− pbdc)(1− p)

1− p(1− ηa
d
ηm
2

)(1− ηb
d

2
)

]2

/

[(

1− 2
(1− padc) (1− p)

1− p(1− ηa
d
ηm
2

)
+

(1− padc)
2 (1− p)

1− p(1− ηadηm)

)

×
(

1− 2

(
1− pbdc

)
(1− p)

1− p(1− ηb
d

2
)

+

(
1− pbdc

)2
(1− p)

1− p(1− ηbd)

)]

(113)

and has to be larger than 1 to certify that the tested memory preserves non-classical cor-

relations. In the ideal case with unit efficiencies and no dark count, the Cauchy-Schwarz

parameter tends to 1
4
(1 + 1

p
)2 for p ≪ 1. Note that p can be written as a function of the

mean photon-number emitted in one mode (a or b) as p = n/(n+ 1).

The Cauchy-Schwarz criterion leads to similar conclusions than the autocorrelation mea-

surement. If the memory under test is a device that throws the incoming field away and

produces a single photon at a later time, the Cauchy-Schwarz parameter would tend to

infinity, independently of the state of mode b. However, assuming that the tested mem-

ory indeed operates as a storage/retrieval protocol, the Cauchy-Schwarz criterion allows to

conclude that the memory preserves non-classical correlations between two fields.
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3. Bell test

The two criteria presented previously do not test the capability of a memory to preserve

the coherence. This can be done by storing a part of an entangled state and by checking

that the entanglement is preserved using, for example, a Bell test. A possible realization

would use a photon pair source emitting entangled photon pairs, for example, in polarization.

The spatial mode a is stored in a memory and subsequently released. Measurements are

finally performed combining wave-plates, polarizing beamsplitters and one detector on each

side. The twofold coincidences are recorded. Two interference patterns are obtained, one by

rotating the analyzer on the left side, the other one by rotating the analyzer on the right side.

If the mean visibility of this interference patterns is larger than 1/3, one can conclude about

the presence of entanglement under the assumption that the state is a mixture between the

singlet state and white noise. As the memory operates as a local operation, which cannot

increase entanglement, a high interference visibility witnesses the presence of entanglement

between the photon in b and the excitation stored in the memory. Note that there is no need

to close the detection and locality loopholes here as the Bell test is used as an entanglement

witness, not as non-locality Bell test.

Let us consider the experimental realization shown in fig.21 with a source based on

spontaneous parametric down conversion, that is, photon pairs described by

|ψ−
ahavbhbv

〉 = (1− p)e
√
p(a†

h
b†v−a†vb

†
h
)|00〉. (114)

Let ηa and ηb be the detector efficiency on side a and b respectively and padc and pbdc the

corresponding noise. As before, the memory efficiency is labeled ηm. The visibility of the

interference V is given by (see appendix B for details)

V =

[

(1− p)(1− padc)(1− pbdc)

1− p(1− ηa)(1− ηb)
− (1− p)2(1− padc)(1− pbdc)

(1− p(1− ηa))(1− p(1− ηb))

]

/

[

2− 2
(1− padc)(1− p)

1− p(1− ηa)
− 2

(1− pbdc)(1− p)

1− p(1− ηb)
+

(1− p)(1− padc)(1− pbdc)

1− p(1− ηa)(1− ηb)
+

(1− p)2(1− padc)(1− pbdc)

(1− p(1− ηa))(1− p(1− ηb))

]

. (115)

As before, p can be written as a function of the mean photon number in one mode (ah, av,

bh or bv) as p = n/(n+ 1).
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FIG. 21. Setup to certify the quantum nature of a memory by checking that it can preserve

entanglement between two fields. A photon pair source is used to produce entangled photon

pairs in polarization. Two of the four modes (mode ah and av) are stored in a memory and a

Bell inequality violation can be inferred from the visibility of the interference that is obtained by

recording the twofold coincidences while rotating the measurement settings locally.

Interestingly, one can conclude from such a Bell test that the memory performs better

that any possible classical strategies using for example a measure and prepare strategy or

cloning followed by measurements in different basis. In this case, entanglement would be

broken and the visibility would be limited to 1/3 assuming that the classical strategies

introduce white noise on the singlet state.

Note that it has been shown recently that a device-independent certification is possible in

the setup presented in fig.21 [124]. In other words, it is possible to certify that the memory

is a unitary operation and applies the identity on the qubits independently of the details

and imperfections of the actual implementation by performing Bell tests with and without

storage.

We have derived and analyzed complementary criteria, both for continuous and discrete

variables. They can be used as a benchmark to certify the quantum nature of the memory

outcome. Our goal was to relate quantum optics measurements to experimentally accessible

quantities that can be evaluated independently. This explicit criteria can be alternatively

considered as a guide to anticipate the result of quantum measurements, to identify the

limitations of an experimental setup and/or as an analytical tool for modeling a posteriori.

V. CONCLUSION

We have reviewed a series of quantum optical memory protocols conceived to store in-

formation in atomic ensembles. Without providing an exhaustive review of the different
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systems and techniques, we propose to put the protocols into two categories, namely photon

echo and slow-light memories. Our analysis is based on the significant differences of stor-

age and retrieval dynamics. We have used a minimalist semi-classical Schrödinger-Maxwell

model to describe the signal propagation and to evaluate the storage efficiency in atomic en-

sembles. The efficiency scaling allows to compare the different memory types but represents

only one figure of merit.The applications in quantum information processing go beyond the

simple analogy with classical memories where the signal is stored and retrieved. The differ-

ent figures of merit should be considered in that prospect as the storage time, the bandwidth

and the multimode capacity that we only superficially address when discussing the storage

dynamics. In that sense, our contribution is mainly an introduction that can be pushed

further to give a more complete comparison of the memories’ performance.

Our objective was essentially to give a fundamental vision of few protocols that we con-

sider as archetypes and hopefully stimulate the proposition of new architectures. We have

finally replaced our analysis in the context of the quantum storage by deriving a variety of

criteria adapted for both continuous and discrete variables. We have developed a toy model

for the interaction of light with an atomic ensemble to evaluate the outcome of various

quantum optics measurements that can serve as benchmarks to certify the quantum nature

of optical memories.

We haven’t insisted on the different material systems that physically represent the mem-

ory support. They all have in common to exhibit long lived (optical or spin) coherent states

but they can cover different realities going from cold atomic vapors to luminescent impuri-

ties in solids as rare-earth doped insulators or excitons in semi-conductors holding a lot of

promises in terms of integration. The portability of each protocol to a specific system would

deserve a discussion by itself for which our analytic review of protocols can be seen as an

introductory basis.
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Appendix A: Strong pulse propagation

Even if the standard 2PE presented in section IIB is not appropriate for quantum stor-

age, as an example, it illustrates a potential issue when strong pulses are used in echo

sequences. The π-pulse as an element of the toolbox for quantum memories should be used

with precaution. The best anticipated answer is certainly not to use the π-pulse as proposed

in the controlled reversible inhomogeneous broadening protocol detailed section IIC. We

here briefly discuss the propagation of strong π-pulses which appeared as critical element to

understand the 2PE efficiencies as simulated in fig.3.

We have assumed the π-pulse sufficiently short to have a well-defined action of the stored

coherence. In practice, the rephasing pulse should be much shorter than the signal. This

condition should be maintained all along the propagation which is far from guaranteed. π-

pulses are very singular in that sense because they maximally invert the atoms irremediably

associated to the lost energy from the pulse. The requirement of energy conservation actually

imposes a distortion of the pulse. There is no analytical solution to the propagation of strong

pulses in absorbing media. Numerical simulations are then necessary to predict the exact

pulse shape. That being said, the qualitatively analysis can be reinforced by invoking the

McCall and Hahn Area Theorem [12, 52, 125]. This latter gives a remarkable conservation

law for the pulse area though propagation as

∂zθ(z) = −α
2
sin (θ(z)) (A1)

In the weak signal limit (small area [126]), one retrieves the Bouguer-Beer-Lambert law

for the area (eq.9) as expected in the perturbative regime. A 2π-pulse typically undergo

the so-called self-induced transparency (SIT) [125]. The shape preserving propagation [12]

is not surprising in the light of the energy and area conservations of 2π-pulses. Indeed, a

2π Rabi flopping of the atoms doesn’t leave any energy in the population. Additionally, the

2π-area is unaffected by the propagation as given by the singularities of eq.(A1) (for any

area as multiple of π).

Along the same lines, a π-pulse conserves its area but not its energy. Pulse distortions

are then expected to satisfy two contradictory conditions on the energy and the area. The

pulse amplitude is reduced as the duration increases to preserve the total area. The energy

scales as the pulse amplitude (multiplied by the area which is constant in that case) is
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then reduced. Theses considerations should not be underestimated when strong and more

specifically π-pulses are used. To illustration the pulse distortion, we question the expression

(20) by performing a numerical simulation with different π-pulse durations (see fig.3). The

deviation for the expected scaling precisely comes the π-pulse distortion as observed in fig.3

(top). This is an intrinsic limitation of π-pulse when used in absorbing ensemble. This

latter is fundamental and cannot be avoided by using a cavity to enhance the interaction

with a weakly absorbing sample. Same distortions are expected in cavities [127]. The real

alternative is the complex hyperbolic secant (CHS) pulse as discussed in section IID 3. This

latter is not only robust under the experimental imperfections (as power fluctuation) but is

also much less sensitive to propagation distortions [53]. Following our analysis, there is no

constraint, as the area theorem, on the CHS as frequency swept pulses.

Appendix B: Photon counting measurements

We here give the detailed derivation of the formulas (108), (113) and (115) used in

section IVC. We consider non photon-number resolving detectors with noise. Let Da(ηd) be

the POVM element (positive-operator valued measure) associated to the event click when

such a detector operates on a single mode of the electromagnetic field characterized by the

annihilation a and creation a† operators. Let ηd be the efficiency of the detector and pdc the

probability of a dark count. We have

Da(ηd) = 1− (1− pdc)(1− ηd)
a†a. (B1)

We first focus on the setup presented in fig.19 by assuming that the noise and efficiency of

the two detectors are the same. The ratio between the twofold coincidences and the product

of singles is given by

g(2)a =
〈Dda(ηd)Dd̄a(ηd)〉
〈Dda(ηd)〉〈Dd̄a(ηd)〉

. (B2)

Basic algebra using the relation between the modes a, da and d̄a shows thatDda(ηd)Dd̄a(ηd) =

1− 2(1− pdc)(1− ηd/2)
a†a + (1− pdc)

2(1− ηd)
a†a and Dda(ηd) = Da(ηd/2). By including the

memory efficiency in the detector efficiency, the ratio g
(2)
a can be computed from

g(2)a =
〈1|1− 2(1− pdc)(1− η/2)a

†a + (1− pdc)
2(1− η)a

†a|1〉
〈1|1− 2(1− pdc)(1− η/2)a†a|1〉2 (B3)
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with η = ηdηm. Using an exponential form for (1 − η)a
†a and expanding as a Taylor series,

we find

〈n|(1− η)a
†a|n〉 = (1− η)n. (B4)

Eq. (108) is obtained by combining (B3) and (B4).

The expression for the Cauchy-Schwarz parameter is obtained from

R =
〈Dda(ηd)Ddb(ηd)〉2

〈Dda(ηd)Dd̄a(ηd)〉〈Ddb(ηd)Dd̄b
(ηd)〉

(B5)

which leads to (113) by using the following results

tr(ρax
a†a) =

1− p

1− px
,

tr(ρabx
a†a+b†b) =

1− p

1− px2
(B6)

where ρab is the density matrix associated to a two-mode vacuum squeezed state and ρa =

trbρab.

The expression for the visibility of the interference pattern observed in the Bell test

experiment is obtained by noting that twofold coincidences are maximum between orthogonal

polarizations while the minimum is obtained between identical polarizations. Hence, the

numerator of eq.(115) can be obtained by taking the difference between

〈ψ−
ahavbhbv

|Dah(ηd)Dbv(ηd)|ψ−
ahavbhbv

〉

and

〈ψ−
ahavbhbv

|Dah(ηd)Dbh(ηd)|ψ−
ahavbhbv

〉

while the denominator comes from the sum of these two expectation values.
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F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten,
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