
HAL Id: hal-01963830
https://hal.sorbonne-universite.fr/hal-01963830

Submitted on 21 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling and Virtual Prototyping for Embedded
Systems on Mixed-Signal Multicores

Rodrigo Cortés Porto, Daniela Genius, Ludovic Apvrille

To cite this version:
Rodrigo Cortés Porto, Daniela Genius, Ludovic Apvrille. Modeling and Virtual Prototyping for Em-
bedded Systems on Mixed-Signal Multicores. RAPIDO 2019 - 11th Workshop on Rapid Simulation
and Performance Evaluation, Jan 2019, Valencia, Spain. �10.1145/3300189.3300193�. �hal-01963830�

https://hal.sorbonne-universite.fr/hal-01963830
https://hal.archives-ouvertes.fr


Modeling and Virtual Prototyping for Embedded Systems on
Mixed-Signal Multicores

Rodrigo Cortés Porto

Technische Universität Kaiserslautern,

Germany

LIP6 - Sorbonne Université

Paris, France

Daniela Genius

LIP6 - Sorbonne Université

Paris, France

Ludovic Apvrille

LTCI - Télécom ParisTech

Université Paris Saclay, France

ABSTRACT
This paper presents a tool for the virtual prototyping of analog and

mixed-signal embedded (AMS) systems. The application and plat-

form are modeled on a high (SysML-like) level, while the prototype

is simulated on cycle-bit accurate level. In order to run software,

we combine the AMS part with a multicore platform, which acts as

initiator and controls the AMS part. The synchronization between

these different Models of Computation (MoC) can be validated be-

fore the generation of the virtual prototype. We present a larger

case study to illustrate our approach.

ACM Reference Format:
Rodrigo Cortés Porto, Daniela Genius, and Ludovic Apvrille. 2018. Modeling

and Virtual Prototyping for Embedded Systems on Mixed-Signal Multicores.

In Proceedings of Workshop (RAPIDO’19). ACM, New York, NY, USA, 7 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Due to the high complexity of today’s embedded systems, model-

driven development techniques are a usual practice for the design

and development of embedded software. These techniques rely on

high level models to create a software architecture, behavior and

allocation, and then perform model transformations to generate

software executable code.

These approaches are however generally limited to the digital

parts of the system. Yet, embedded systems are often composed of

digital and analog—analog/mixed signal (AMS) and radio frequency

(RF)—components. Typical examples are found in domains such as

IoTs, robotics, avionics, medical and automotive.

In very early design phases, fast (but less precise) allocation

exploration can be used. Assumptions and results of verifications

performed at a high level of abstraction need to be cross-checked

once models have been refined. To support this multi-level process,

heterogeneous embedded systems may require a high-level repre-

sentation including models for both AMS and RF components but

also very precise simulations techniques for late validations. Last

but not least, the possibility to execute software on digital parts is

required as soon as possible in the design process.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

RAPIDO’19, January 2019, Valencia, Spain
© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

This paper presents the integration of analog components into a

modeling and virtual prototyping framework. The synchronization

between the different Models of Computations (MoC) is performed

before a virtual prototype is generated from models. The cycle-

bit accurate prototyping environment can be used to feed back

simulation results to higher modeling levels in order to check the

taken assumptions e.g. on cache miss rate or memory access latency.

Our contribution adds analog components as targets in a MPSoC

built upon general purpose CPUs running a (light) operating system

and the application code.

The related work in the next section demonstrates the lack of

an integrated tool offering both mixed-signal system modeling and

precise simulation capabilities, as well as the possibility to run

application code.

The following section presents the foundations of the present

work: SystemC AMS extensions —in particular its Timed Data Flow

(TDF) model of computation— and a high-level modeling and virtual

prototyping tool named TTool. Our mdoeling extensions aare then

presented using relevant systems with an important proportion of

analog components.

2 RELATEDWORK
Well established tools like Ptolemy II [? ][? ] target data-flow mod-

els for heterogeneous systems by defining several sub domains [?
]. Although hierarchy is provided, instantiation of elements con-

trolling the time synchronization between domains is left to the

responsibility of designers.

Metropolis [? ] is based on high level models with a clear separa-

tion between computation and communication concerns. Heteroge-

neous systems are taken into consideration, but heterogeneity can

only be represented using processes, mediums, quantities and con-

straints. Hierarchical models are not allowed: all processes should

be implemented in the same hierarchical level.

Metro II [? ] introduces hierarchy and allows Adaptors for data
synchronization as a bridge between the semantics of components

belonging to different MoCs. The model designer must cope with

the implementation of time synchronization by means of con-

straints, assertions, annotators and schedulers. As a common sim-

ulation kernel handles all process execution, MoCs are not well

separated.

There are other frameworks based on SystemC such as HetSC [?
], HetMoC [? ] and ForSyDe [? ], all having the disadvantage that
designers must handle the instantiation of elements and synchro-

nization aspects.

In the scope of [? ], a mixed analog-digital systems proof-of-

concept simulator has been developed [? ], based on the SystemC

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


RAPIDO’19, January 2019, Valencia, Spain R. Cortes Porto et al.

AMS extension standard [? ? ]. Another simulator is proposed in

[? ]. Integration with software code for general-purpose CPUs and

with an operating system is however not yet addressed in these

approaches.

Outside the analog/mixed signal domain, UML/SysML based

modeling techniques [? ? ] are popular with industry targeting

embedded systems, but are still rarely used in the domain of hetero-

geneous system design. Furthermore, with few exceptions such as

[? ? ], they do not lower the level of abstraction to cycle bit accurate

level.

3 CONTEXT
Our work is based on two foundations: the AMS extensions for

SystemC and a high-level modeling and prototyping tool (TTool)

3.1 SystemC Extensions for AMS
"SystemC AMS extensions" is a standard describing an extension of

SystemC with AMS and RF features [? ][? ]. The usual approach for

modeling the digital part of heterogeneous systems with SystemC

[? ] is to rely on its Discrete Event (DE) simulation kernel. The

Timed data Flow (TDF) model of computation (MoC) of SystemC

AMS adds support for signals where data values are sampled with

a constant time step. The Electrical Linear Networks (ELN) MoC

of SystemC AMS on the other hand relies on a continuous time

domain.

A TDF module is described with an attribute representing the

time step and a processing function. The time step is associated

to a time period during which the processing function should be

executed. The processing() function corresponds to a mathematical

function which depends on the module inputs and/or internal states.

At each time step, a TDF module first reads a fixed number of

samples from each of its input ports, then executes the processing

function, and writes a fixed number of samples to each of its output

ports. TDF modules can interact with the DE world (such as digital

MPSoC platforms) using converter ports.

Figure 1 shows a TDF cluster, where the DE modules are repre-

sented as white blocks, TDF modules as gray blocks, TDF normal

ports as black squares, TDF converter ports as black and white

squares, DE ports as white squares and TDF signals as arrows. The

TDF modules of a cluster have the following attributes:

(1) Module Timestep (Tm) denotes the period during which the

module will be activated. One module will be activated only

if there are enough samples available at its input ports.

(2) Rate (R). Each module will read or write a fixed number

of data samples each time it is activated. This number is

annotated to the ports and it is known as the port rate.
(3) Port Timestep (Tp) denotes the period during which each

port of a module will be activated. It also denotes the time

interval between two samples that are being read or written.

(4) Delay (D). A delay can be assigned to a port. As its name

suggests, this attribute will make the port to handle a fixed

number of samples each time it is activated, and read or write

them in the following activation of the port.

Despite of all these features, [? ] explains that it is hard to build a
modeling environment synchronizing DE and TDF. Indeed, the TDF

model of computation is based on the Synchronous Data Flow (SDF)

A B Y
R= 1
D= 1

Tm= 6 ms Tm= 4 ms

Tp= 4 ms

R= 3

Tp= 2 ms
D= 0

R= 2
D= 0

Tp= 2 ms

TDF Cluster

Figure 1: TDF Cluster

formalism that considers models as a network of synchronous data

flow blocks, and does not easily match the one of DE systems. Thus,

when there are interactions between the TDF and DE models of

computation, time synchronization may induce causality problems.

A TDF module is connected to a DE module through converter

ports. When the TDF module accesses its input converter port, the

DE simulation time advances until it is equal to the TDF simulation

time of the input converter port. If later an access to an output

converter port occurs whose TDF simulation time is less than the

new DE simulation time, a time synchronization issue will occur:

the TDF simulation time of the output converter ports needs to be

always greater or equal than the DE simulation time.

In the work mentioned above, this synchronization is modeled

with the help of colored timed Petri Nets derived from the SystemC

AMS code. Causality issues between TDF and DE MoC are then

automatically checked.

3.2 TTool
TTool [? ] is a SysML based, free and open-source software ini-

tially conceived for model-based engineering of (digital) embedded

systems at different abstraction levels: functional, partitioning, soft-

ware design and deployment. The method associated to these levels

[? ] details how to take hardware/software partitioning decisions

at a high level of abstraction and to regularly (re)validate these

decisions during software development. Software tasks for the par-

titioning model are captured within the functional abstraction level,

and software tasks used in deployments are captured in the soft-

ware design abstraction level. In both partitioning and deployment

models, the computation part of tasks is allocated to processors

(which can be hardware accelerators in the partitioning level), and

the communication and storage part is allocated to buses andmemo-

ries. An important advantage of TTool is that it offers an automated

approach for formal verification and fast simulation for the digital

part. Formal verification is based on internal model-checkers, or on

external tools like UPPAAL [? ].
From deployment diagrams, TTool can generate a virtual proto-

type that can be simulated with a cycle bit accurate simulator for

Multi Processor Systems on Chip (MPSoC) [? ]. Processor models

stem from the SoCLib [? ] public domain library written in SystemC.

SoCLib targets shared-memorymultiprocessor-on-chip system archi-

tectures based on the Virtual Component Interconnect [? ] standard
which separates the components’ functionality from their commu-

nication. Software code is cross-compiled for a general purpose

processor and runs under a micro kernel on the digital MPSoC.

However, while sensors, GPS, radar, etc. can be approximately

modeled with highly abstracted digital blocks, the accuracy and



Virtual Prototyping on Mixed-Signal Multicores RAPIDO’19, January 2019, Valencia, Spain

verification would benefit from more realistic models taking into

account the AMS part.

4 INTEGRATION OF ANALOG COMPONENTS
INTO TTOOL

For the analog part, we focus on the Timed Data Flow (TDF) Model

of Computation (MoC) which is based on the timeless Synchronous

Data Flow (SDF) [? ]. So-called converter ports serve as interface

between the TDF and DE MoC, raising potential causality issues.

4.1 Representing Analog Components
The graphical interface of TTool has been extended by SystemC

AMS DE and TDF blocks. Analog and digital parts are designed on

different views. Also, there is one view per TDF cluster.

Figure 2: Extension of TTool: SystemC-AMS Diagram

Figure 2 shows a panel for the design of the introductory example.

Each TDF cluster is designed in its own panel (or view) using a

dedicated toolbar.

When a TDF module is created, it is possible to modify its at-

tributes and parameters e.g. the name and Timestep or Period (Tm)

of a module can be defined and time resolution selected. The pa-

rameters of a TDF module such as its internal variables or template

parameters can be also set up, as shown in Figure 3.

Analog components are difficult to parameterize since they are

specifically designed for one given purpose. We thus decided to pro-

vide a specific dialog window where SystemC-AMS processing()
functions can be entered, e.g. see Figure 4.

From these diagrams, we can generate SystemC AMS TDF code

of the components, the top cells of the mixed graphical/textual

descriptions, and a Makefile.

4.2 Connecting AMS Components to the
MPSoC

SoCLib is based on the shared memory paradigm, where compo-

nents are interconnected based on the VCI [? ] protocol. These

components can be initiators which issue requests (e.g. CPUs) and

targets that respond to these requests (e.g. RAM memory). The

main idea for the integration of SystemC-AMS and SoCLib compo-

nents into TTool is that the analog components will act as targets
for the SoCLib initiator digital components (CPUs, hardware ac-

celerators, DMA, . . . ). The generated topcell is thus composed of

SoCLib modules and interfaces to the SystemC-AMS clusters. It

Figure 3: TDF module parameters

Figure 4: TDF module process code

is also important to mention that a TDF cluster may contain DE

modules which are not part of the SoCLib library.

GPIO2VCI

p_rdata_ams

p_wdata_ams

TDF_Module

p_clk

p_resetn

p_vci

VCI_Bus

TDF Cluster SoCLib DE 
Components

Figure 5: GPIO2VCI component

Our solution is to propose a new generic adaptor module as an

interface between the SystemC-AMS modules and the the SoCLib

interconnect components. This adaptor is modeled as a general-

purpose input/output (GPIO) adaptor to VCI.We called itGPIO2VCI.



RAPIDO’19, January 2019, Valencia, Spain R. Cortes Porto et al.

SRC SENSOR

CTRL

R
out 

= 1
D

out 
= 0

Tm
ADC 

= 10us

R
out 

= 1
D

out 
= 0

inout out in

x_sig v_sig
R

in 
= 1

D
in 

= 0

PGA

R
in 

= 1
D

in 
= 0

R
out 

= 1
D

out 
= 0

R
kin 

= 1
D

kin 
= 0

vamp_sig

ADC
R

in 
= 10

D
in 

= 0

TDF2DE
R

in 
= 1

D
in 

= 0
R

out 
= 1

D
out

in

adc_sig

AAVG

R
clk 

= 1
D

clk

R
in 

= 64
D

in 
= 0

amp

in

out

kin

k_sig

in
R

out 
= 1

D
out 

= 0

out out

R
amp 

= 1
D

amp

clk

amp_sig

clk_sig

clk

in
out

out_sig

Figure 6: Vibration sensor model from [? ]

It fulfills the rules for writing cycle-bit precise SystemC simulation

models of SoCLib. Figure 5 shows the model of this component and

how it works as an interface between the SystemC-AMS modules

(TDF_Module belonging to a TDF Cluster) and the SoCLib VCI

interconnect component (VCI_Bus). The component is manually

inserted in the graphical interface of the panel, then its instantiation

and connection, in particular the required lines in the topcell, are

automatically generated.

5 CASE STUDY: VIBRATION SENSOR
The model of a vibration sensor, taken from the H-Inception project

[? ], is shown in Figure 6. It consists of six TDF modules and one

DE module.

decrease_gainkeep_gain

increase_gain

low_threshold <= amp_sig < high_threshold

amp_sig < low_threshold

amp_sig < high_threshold

amp_sig >= high_threshold

amp_sig >= high_threshold

amp_sig < high_threshold

amp_sig >= high_threshold

Figure 7: CTRL module state machine

The SRC module represents the vibration source, modeled as

a generator of harmonic sinusoidal waves which represent a dis-

placement signal (x_sig) caused by the vibration.

The SENSOR module represents a vibration sensor. It takes as

input the displacement signal (x_sig) and yields a voltage signal

(v_sig) which is proportional to the vibration velocity.

The programmable gain amplifier (PGA) amplifies the voltage

input signal (v_sig) by a factor of 2ˆk, where k is the input value

from signal k_sig. This signal is controlled by the gain controller

DE module CTRL. It yields an amplified voltage signal vamp_sig.
The ADC module represents an analog to digital converter with

a resolution of 5 (Nbits). The ADC has a rate of 10 in its input

port. Hence, it takes 10 samples from the amplified voltage signal

vamp_sig and produces a digitized integer value of N-bits (adc_sig)

where the most significant bit corresponds to the sign. The Module-

Timestep is assigned to this module as 10us.

TheTDF2DEmodule is a converter from the TDF signal adc_sig
to a DE signal out_sig. The delayD_out, shown in red, of its output
converter port out has not been set yet.

The AAVG module represents an absolute amplitude averager.

It calculates and outputs to the amp_sig the absolute average am-

plitudes of the received samples from the adc_sig. Its input port
has a rate of 64, meaning that it will receive 64 samples int oder

to calculate the absolute average amplitude. This module also gen-

erates a clock signal clk_sig at its output port clk, which has a

rate of 2, meaning that a clock edge will be generated twice per

activation of the module. Note that the delays D_clk and D_amp,

shown in red, of its output converter ports have not been set yet.

The CTRL DE module represents the gain controller. This con-

troller is modelled based on the state machine diagram shown in

Figure 7. It controls the output signal k_sig based on the calcu-

lated absolute average amplitude given by amp_sig, and two given
thresholds low_threshold and high_threshold.

5.1 Solving Causality Problems
The following algorithm detects causality issues and suggests how

to fix them with extra delays. This algorithm is meant to be called

before the generation of the virtual prototype.

1: procedure detectTimeSyncIssues
2: for each Module in Static Schedule do
3: for each Converter Port do
4: if Input Converter Port then
5: advance tDE
6: computemax_tDE
7: else if Output Converter Port then
8: compute tTDF of port
9: if !(tTDF ≥ max_tDE) then
10: Time synchronization issue detected

11: Suggest port delay to fix it

12: end if
13: end if
14: end for
15: end for
16: end procedure

Based on the static schedule for one complete TDF cluster pe-

riod, each time a TDF module is executed, for each accessed input



Virtual Prototyping on Mixed-Signal Multicores RAPIDO’19, January 2019, Valencia, Spain

Figure 8: Vibration sensor model in TTool

converter port, the DE simulation time (tDE) will advance as shown
in line 5, and the maximum tDE will be stored, as shown in line 6.

Then, for each accessed output converter port, the TDF simulation

time (tTDF) is computed on line 8. The tTDF of each port should be

greater than or equal to the maximum stored DE simulation time, as

shown in line 9. If this condition fails, it means there is a causality

problem with the time synchronization and a delay in the output

converter port where the issue was detected will be suggested in

order to solve the problem
1
.

For a first validation, the three output converter port delays

shown in red (see Figure 6) were set to 0. The vibration sensor

was modeled in TTool, as shown in Figure 8. Figure 9 shows the

output of the validation tab of the code generation window. As

time synchronization issues are found, modifications for the three

delays are suggested.

Figure 9: Code generation window with suggested delays

For the output converter port out of the TDF2DE module, we

use a delay equal to 1. For the output converter port amp of the

AAVG module, the delay is equal to 1. Finally, 2 is used for the

delay of the output converter port clk of the same AAVG module.

The vibration sensor model is already included in the SystemC-

MDVP (Multi Domain Virtual Prototyping) simulator, developed

1
A more detailed version of the algorithm is shown in [? ].

in the context of [? ], as part of the model examples. The model

was simulated without giving any delays to its output converter

ports. As displayed, it also suggests the three same delays as the

ones suggested by TTool in order to solve the causality problems.

Finally the SystemC-AMS model taken from [? ] was modified

to include the same parameters as the ones used in TTool and

SystemC-MDVP, i.e. the same port rates and ADC Nbits resolution.
At first, the simulation was executed without assigning any delays

to the output converter ports.

Synchronization issues are detected by the simulator each time

the simulation runs, and delays referring to time units are suggested

to solve the causality problems. First time the simulation was run,

a delay of 9 µs in port tdf2de.out was suggested, corresponding
to a delay of 1 since the propagated timestep of this port is 10 µs.
After setting this delay, the simulation was run again; another syn-

chronization problem was found, and a delay of 639 µs is suggested
to the aavg.clk port. Since the timestep of this port is of 320 µs,
a delay of 2 is needed. Finally, after setting this new delay, the

simulation was run for the third time. This time, another causality

problem was detected, and a delay of 639 µs is suggested to the port
aavg.amp. The timestep of this port is of 640 µs, thus a delay of 1

is required.

All the delays suggested by the SystemC-AMS simulator are

the same as the ones suggested by TTool and the SystemC-MDVP

simulator from [? ]. But on its side, TTool can identify causality

problems before code generation and execution. In SystemC-MDVP,

synchronization issues are found in the pre-simulation phase. That

means that the SystemC-MDVP model needs to be executed only

once to find any synchronization problems. In SystemC-AMS, these

issues are found during the simulation phase, meaning that the sim-

ulation needs to be executed once per identified causality problem.

In our case study, it needed to be executed three times.

5.2 Simulation
A simple SoC model was created as shown in Figure 10, where

one SystemC-AMS Cluster block representing the vibration sensor

was created, with trace file generation enabled. Such a model can

potentially contain a larger number of processor cores, their number

being limited only by the interconnect.



RAPIDO’19, January 2019, Valencia, Spain R. Cortes Porto et al.

Figure 10: Deployment Diagram model including the vibra-
tion sensor TDF cluster

In order to compare the results of our approach with SystemC-

AMS and SystemC-MDVP, simulations were run with the same

delays and trace files with models signals were produced. Figure 11

shows the analog waveforms in blue, resulting from the simulation

of the SystemC-AMS model. Figure 12 shows the analog waveforms

in green, resulting from the simulation of the SystemC-MDVP

model. Figure 13 shows the analog waveforms in red, resulting from

the simulation of the SystemC model created from TTool. It can be

seen that the outputs match, specially for the fourth signal, which

corresponds to the digitized output from the ADC component.

The first waveform corresponds to the signal x_sig which carries

the output of the harmonic sinusoidal wavelets generator SRC,
simulating a vibration source. The second waveform is from the

signal v_sig, which is the voltage output from the vibration sensor

module SENSOR. The third waveform corresponds to the v_amp
signal, which is the signal being amplified by the PGAmodule. The

fourth signal adc_sig is the digitized output from theADCmodule.

The fifth signal amp_sig corresponds to the output of the absolute

amplitude averager AAVG module which is connected to the DE

controllerCTRL. This controller emits the sixth signal k_sigwhich
carries the factor that will be used by the PGA module to amplify

the voltage signal v_sig. The last signal is the clk_sig used as clock
signal for the controller CTRLmodule. Note that the amp_sig and

k_sig signals from the SystemC-MDVP simulation look different:

this is due to the generated trace file that didn’t create values when

they were repeated. So only the value changes are shown, but they

still correspond to the outputs from the other traces.

This case study demonstrates that the solution implemented in

TTool to detect time synchronization issues yields the same results

as the ones suggested by the SystemC-AMS and the SystemC-MDVP

simulators. Moreover, the time synchronization issues detection is

performed at the design level, before the virtual prototype or the

software code are generated, thus giving the designer the possibility

to adapt their design before simulation.

6 CONCLUSION AND PERSPECTIVES
We integrate SystemC-AMS (TDF) components into a High-level

modeling tool for complex embedded systems and show how ap-

plication code can be run in such systems by combining the AMS

part with a prototype built out of SoCLib components. Contrary to

other approaches, we detect causality issues between the two parts

of the simulation before any code is generated, which is one of the

major strength of our approach.

To do so, we created a library to provide read and write func-

tions to the GPIO2VCI component, which can be used in the State

Machine Diagrams of TTool. The AMS hardware components are

considered to be targets inside the MPSoC platform. In the future,

we suggest to authorize these components to act as initiators, or

to support interrupts. Also, the static schedule computed by TTool

could be optimized, so that the suggested delays to solve time syn-

chronization issues are minimum.

The Electrical Linear Networks (ELN) model of computation of

System-C AMS relies on a continuous time domain. We plan to

push our studies further by integrating ELN into our tool.

Finally, even if analog components tend to be unique, for typical

components such as filters, analog/digital converters, sine sources,

we plan to provide a library of parametrizable building blocks.



Virtual Prototyping on Mixed-Signal Multicores RAPIDO’19, January 2019, Valencia, Spain

Figure 11: Vibration sensor trace signal from SystemC-AMS simulation

Figure 12: Vibration sensor trace signal from SystemC-MDVP simulation

Figure 13: Vibration sensor trace signal generated from TTool’s simulation


	Abstract
	1 Introduction
	2 Related Work
	3 Context
	3.1 SystemC Extensions for AMS
	3.2 TTool

	4 Integration of Analog Components into TTool
	4.1 Representing Analog Components
	4.2 Connecting AMS Components to the MPSoC

	5 Case Study: Vibration Sensor
	5.1 Solving Causality Problems
	5.2 Simulation

	6 Conclusion and Perspectives

