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High-order staggered schemes for compressible hydrodynamics.
Weak consistency and numerical validation

Gautier Dakina, Bruno Desprésb, Stéphane Jaouena

aCEA, DAM, DIF, F-91297 Arpajon, France
bUPMC, LJLL, Paris, France

Abstract

Staggered grids schemes, formulated in internal energy, are commonly used for CFD applications in industrial context.
Here, we prove the consistency of a class of high-order Lagrange-Remap staggered schemes for solving the Euler
equations in 1D and 2D. The main result of the paper is that using an a posteriori internal energy corrector, the
Lagrangian schemes are proved to be conservative in mass, momentum and total energy and to be weakly consistent
with the 1D Lagrangian formulation of the Euler equations. Extension in 2D is done using directional splitting
methods and face-staggering. Numerical examples in both 1D and 2D illustrate the accuracy, the convergence and the
robustness of the schemes.

Keywords: Finite Volume, internal energy corrector, weak consistency, Lagrange-remap, Euler equations,
face-staggering, high-order accuracy

1. Introduction

Historically the first shock capturing scheme was formulated in internal energy and based on staggered grids [44].
Still, staggered grids schemes are routinely used for CFD applications in industrial context [41, 34, 16, 11, 18, 25, 5]:
seminal references are [39, 6, 7, 49]. Two reasons can be argued which are that staggered schemes often need less
degrees of freedom than colocated ones to obtain the same accuracy for acoustic propagation [1], and they naturally
capture low Mach regimes [11] which is not so easy for standard colocated schemes (see [15] and references therein).
However, solid mathematical foundations are scarcely available for such schemes, for many reasons. In this work,
we concentrate on three reasons which are: firstly, the staggered structure is an obstacle for a natural use of Lax
theorem [23] which establishes the weak consistency for colocated finite volume schemes for shock calculations;
secondly, internal energy equation is not in divergence form which is mandatory for the Lax theorem; thirdly, the
development of high-order accurate schemes, which is now a standard trend for industrial CFD codes, is even more
challenging due to the first two points. In this paper, we aim at tackling these three issues.

The model problem are the Euler compressible hydrodynamics equations for the description of inviscid compress-
ible flows in the absence of source terms

∂t

 ρρu
ρe

 + ∇ ·

 ρu
ρu ⊗ u + pI
(ρe + p)u

 = 0. (1)

The variables are the density ρ, the velocity field u and the total energy e. It is convenient to use also kinetic energy
ekin = 1

2‖u‖
2, internal energy ε = e − ekin and specific volume τ = 1

ρ
. The system is closed with an equation of

state which links pressure, internal energy and specific volume with p = EOS(τ, ε). In this work we will rather
use another hyperbolic system written in non-conservative form which is representative of the equations solved in
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staggered Lagrange+remap and Lagrange+ALE numerical methods. Without restriction, the equations are hereafter
written in dimension one (extended to multi dimension with directional splitting)

Dtρ0τ − ∂Xu = 0,
Dtρ0u + ∂X p = 0,
Dtρ0ε + p∂Xu = 0,
Dtρ0ekin + u∂X p = 0,

(2)

where ρ0 is the initial density and Dt is the material derivative. Equation (2) is non conservative. The terms p∂Xu and
u∂X p are well-defined for smooth enough functions, but are not in general in the sense of distributions. Discretization
of non-conservative products has tremendous consequences for schemes solving eq. (2) [42, 31]: such discretizations
are the key to build high-order accurate schemes that able to capture correctly shocks and discontinuities. An issue
which is not discussed in our work is the entropy condition for system (1) and system (2). Although extremely
important on the theoretical level [33, 12], the entropy condition is technically much too difficult to address in the
context of high-order schemes analyzed in this work. Moreover, all our numerical experiments, and in particular the
ones reported at the end of this work, show that numerical solutions are in accordance with the entropy principle. This
fact leads us to think that the entropy principle is not a practical issue in our context.

Before describing our main results for the discretization of system (2), we give an overview of the literature
on such topics. Staggered schemes originate from the vNR scheme [44], based on a node staggering which is a
priori not conservative in total energy. Furthermore, without any artificial viscosity, the scheme is unable to correctly
capture strong shocks. The main difficulty for schemes formulated in internal energy is that this is not any longer a
conservation law. On a mathematical continuous level, the term appearing in the internal energy evolution is not
defined in the sense of distributions, for velocity and pressure as bounded functions ((u, p) ∈ L∞). The use of
artificial viscosity solves this problem by smoothing the pressure. With an appropriate definition of artificial viscosity,
the internal energy evolution term becomes well-defined. The default of total energy conservation was highlighted
in 1961 by Trulio and Trigger [42]. Indeed, for non-constant time-steps, the vNR scheme is not conservative in
total energy. An implicit conservative version of the vNR scheme was proposed in [42], still formulated in internal
energy. The spatial staggering of variables was kept but not the temporal one. Similarly, works done by Popov
and Samarskii [31] developed a similar staggered scheme with implicitation in time. In the early 1970s, DeBar
used a Lagrange-remap formalism for the Trulio–Trigger scheme [6, 7]. At the end of each Lagrangian phase, the
variables were projected on the original grids. He identified a lack of conservation due to this procedure. In fact,
the projection of momentum highly dissipates kinetic energy, and so leads to a dissipation of the reconstructed total
energy. A correction in internal energy to recover global total energy conservation and ensure correct shock capturing
was proposed. Later, and using the earlier works by DeBar, several multifluid Eulerian hydrocodes with interface
reconstruction on 2D Cartesian grids [39] were developed, based on a face-staggering of variables. Those hydrocodes
relied on the Trulio-Trigger implicit Lagrangian scheme, making use of a Lagrange-remap approach with Strang
splitting. The splitting was made to consider first a 1D Lagrange-remap scheme in the x-direction, and then in
the y-direction. This kind of directional splitting yields the advantage of an easy extension from one dimensional
problems to multi-dimensional ones. Later, a strictly explicit predictor-corrector conservative version of the Trulio-
Trigger scheme was reported by Woodward and Colella in [46]. This version was called the BBC scheme. It is a 2D
Lagrange-remap scheme on staggered Cartesian grids based on a 1D Lagrange-remap setting with Strang dimensional
splitting. The total energy conservation result has been credited to Noh [29]. The retained staggering of variables is
the C-type one, based on Arakawa classification system. Caramana in 1998 [3] introduced the so-called compatible
Lagrangian hydrodynamics for node-staggering schemes. The idea of compatible Lagrangian method is to discretize
properly the internal energy evolution in order to automatically satisfy the conservation of total energy. In [2], the
authors highlight the properties of such a discretization. Mainly, the emphasis is laid on accuracy, consistency and
stability of the compatible Lagrangian scheme. Simultaneously, Youngs developed a staggered scheme in which the
velocity components were based on the node of the grids [49, 41, 34]. The scheme, although formulated in internal
energy, is conservative in total energy, using a similar internal energy corrector as DeBar during the remapping phase.
Recently for unstructured grids, Herbin, Gallouet et al. [16, 11, 18] developed similar procedures to recover local
conservation of total energy for the compressible Navier–Stokes and Euler equations for a face-staggering. Very
recently, a paper by Llor et al. proposed a conservative, compatible and entropic version of the original vNR schemes
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[25] staggered in both time and space whereas Dakin et al. proposed conservative and high-order accurate schemes
using face-staggering in space and no staggering in time [5].

Our main theoretical results, developed for simplicity for the high-order schemes recently announced in [5], are
twofolds. The theoretical results are described for system (2) which contains all the difficulties. Firstly, we prove in
Proposition 1 that the high-order staggered schemes are weakly consistent in the sense of Lax for the barotropic case.
Secondly, we prove in Theorem 1 the weak consistency for the remaining total energy equation: the technical difficulty
is solved with a new high-order accurate internal energy corrector (called in [5] kinetic energy synchronization). In
particular, we develop an original full treatment of internal energy correctors for general high-order methods. To our
knowledge, these results are original with respect to the literature cited above. The remap or ALE phase yields no
additional difficulty so is not described, although it is mandatory to transfer the good properties obtained for (2) to
the full Eulerian system (1). The interest of our theoretical results for numerical purposes is assessed in a second part
with extensive Lagrange+remap numerical tests in 1D and 2D for smooth flows and for shock/discontinuity regimes.
The general behavior and the convergence of the internal energy corrector is shown for a high-order discretization of
the Sod problem.

The paper is organized as follows. Section 2 is devoted to 1D Lagrange-remap staggered schemes and especially
to the a posteriori internal energy corrector which enables both conservation of total energy and weak consistency.
Section 3 details the extension of the 1D schemes to 2D problems via directional splitting methods. Last, section 4
provides numerical examples and results to illustrate the high-order accuracy of the schemes as well as their ability to
handle shocks and discontinuities.

2. Explicit consistent and conservative high-order staggered schemes in 1D

The objective of this section is to present the machinery involved to build high-order schemes on face-staggered
schemes and to study their properties.

2.1. Formulation of Runge–Kutta Lagrangian finite volume schemes
We detail the path to build high-order schemes using face-staggering discretization.

2.1.1. Semi-discrete formulation of the Lagrangian finite volume schemes
To get the semi-discrete formulation of the Lagrangian finite volume schemes, system (2) is integrated in time

between tn and tn+1 over a cell
[
xi− 1

2
, xi+ 1

2

]
for the thermodynamics variables ρ0τ and ρ0ε and over a cell [xi, xi+1] for

the ρ0u and ρekin. It yields 

∆X(ρ0τ
n+1
i − ρ0τ

n
i ) =

∫ tn+1

tn ui+ 1
2
(θ) − ui− 1

2
(θ)dθ,

∆X(ρ0un+1
i+ 1

2
− ρ0un

i+ 1
2
) =

∫ tn+1

tn pi+1(θ) − pi(θ)dθ,

∆X(ρ0ε
n+1
i − ρ0ε

n
i ) =

∫ tn+1

tn

∫ xi+ 1
2

xi− 1
2

(p∂Xu)(y, θ)dydθ,

∆X(ρ0ekin
n+1
i+ 1

2
− ρ0ekin

n
i+ 1

2
) =

∫ tn+1

tn

∫ xi+1

xi
(u∂X p)(y, θ)dydθ,

pi = EOS (τi, εi).

(3)

Notations pδui and uδpi+ 1
2

are introduced as pδui =
∫ xi+ 1

2
xi− 1

2
(p∂Xu)(y, θ)dy and uδpi+ 1

2
=

∫ xi+1

xi
(u∂X p)(y, θ)dy. Equa-

tion (3) rewrites 

∆X(ρ0τ
n+1
i − ρ0τ

n
i ) =

∫ tn+1

tn ui+ 1
2
(θ) − ui− 1

2
(θ)dθ,

∆X(ρ0un+1
i+ 1

2
− ρ0un

i+ 1
2
) =

∫ tn+1

tn pi+1(θ) − pi(θ)dθ,

∆X(ρ0ε
n+1
i − ρ0ε

n
i ) =

∫ tn+1

tn pδui(θ)dθ,

∆X(ρ0ekin
n+1
i+ 1

2
− ρ0ekin

n
i+ 1

2
) =

∫ tn+1

tn uδpi+ 1
2
(θ)dθ,

pi = EOS (τi, εi).

(4)

Before performing any kind of time integration, one must first address the issue of computing with high-order accuracy
the point-wise values of p, u, τ and ε.
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2.1.2. Very high-order in space
To achieve high-order resolution, it is mandatory to compute with high-order accuracy the point-wise (resp. av-

erage) values from the average (resp. point-wise) ones. Tables 1 to 4 give the coefficients for centered symmetric
polynomial reconstructions using eq. (5). Although other reconstructions may be used, centered and symmetric ones
are retained here and are sufficient on uniform Cartesian grids.

φξ(i) =
∑

k

Ckφξ(i)+k,

φξ(i) =
∑

k

Ĉkφξ(i)+k,

δφξ(i) =
∑
k≥0

dk

(
φξ(i)+k+ 1

2
− φξ(i)−k− 1

2

)
,

φξ(i) =
∑

k

rk(φξ(i)+k+ 1
2

+ φξ(i)−k− 1
2
),

φξ(i) =
(ρ0φ)ξ(i)
(ρ0)ξ(i)

,

with ξ(i) =

{
i on primal grid,

i + 1
2 on dual grid, (5)

The non-conservative terms ψδφ (with (ψ, φ) = (u, p) and (ψ, φ) = (p, u)) of eq. (4) are computed by

1. Applying the δ operator defined in (5) to point-wise values of φ using coefficients in table 3.
2. Multiplying by point-wise values of ψ, then reconstructing average values using coefficients in table 2 and

second equation of (5).

Order C0 C±1 C±2 C±3 C±4

2nd 1 0 0 0 0

3rd 13
12

−1
24 0 0 0

4th and 5th 1067
960

−29
480

3
640 0 0

6th and 7th 30251
26880

−7621
107520

159
17920

−5
7168 0

8th and 9th 5851067
5160960

−100027
1290240

31471
2580480

−425
258048

35
294912

Table 1: Coefficients for the finite volume computation of point-wise values from cell-average ones.

Order Ĉ0 Ĉ±1 Ĉ±2 Ĉ±3 Ĉ±4

2nd 1 0 0 0 0

3rd 11
12

1
24 0 0 0

4th and 5th 863
960

77
1440

−17
5760 0 0

6th and 7th 215641
241920

6361
107520

−281
53760

367
967680 0

8th and 9th 41208059
46448640

3629953
58060800

−801973
116121600

49879
58060800

−27859
464486400

Table 2: Coefficients for the finite volume computation of average values from point-wise ones.

2.1.3. Runge–Kutta based time discretization
We consider Nth order explicit schemes with s sub-cycles with the following notations for Runge-Kutta sequences:

αm is the time step for the mth sub-cycle, am,l the m, l term of the Butcher table and θl the lth reconstruction coefficient
for the last step. It is given by table 5. The system (6) details one Runge-Kutta sub-cycle at time tn+αm .
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Order d0 d1 d2 d3 d4

2nd 1 0 0 0 0

3rd 9
8

−1
24 0 0 0

4th and 5th 75
64

−25
384

3
640 0 0

6th and 7th 1225
1024

−245
3072

49
5120

−5
7168 0

8th and 9th 19845
16384

−735
8192

567
40960

−405
229376

35
294912

Table 3: Coefficients for the δ operator.

Order r0 r1 r2 r3 r4

2nd 1
2 0 0 0 0

3rd 9
16

−1
16 0 0 0

4th and 5th 75
128

−25
256

3
256 0 0

6th and 7th 1225
2048

−245
2048

49
2048

−5
2048 0

8th and 9th 19845
32768

−2205
16384

567
16384

−405
65536

35
65536

Table 4: Coefficients for the interpolation of cell-centered values from staggered ones and vice-versa.



ρ0τ
n+αm
i =ρ0τ

n
i + ∆t

∆X

m−1∑
l=0

am,ldun+αl
i ,

ρ0un+αm

i+ 1
2

=ρ0un
i+ 1

2
− ∆t

∆X

m−1∑
l=0

am,ldpn+αl

i+ 1
2
,

ρ0ε
n+αm
i =ρ0ε

n
i −

∆t
∆X

m−1∑
l=0

am,l pδu
n+αl

i ,

pn+αm
i =EOS (τn+αm

i , εn+αm
i ).

(6)

Here, dφ is the difference between two consecutive point-wise values: dφi = φi+ 1
2
− φi− 1

2
and dφi+ 1

2
= φi+1 − φi. Note

that in (6), meaning for intermediate Runge–Kutta time-step, there is no need to compute the evolution of the kinetic

α1 a1,0 0 0 0 · · ·

α2 a2,0 a2,1 0 0 · · ·

...
...

...
. . . · · · · · ·

αs as,0 · · · · · · as,s−1 0
1 θ0 θ1 · · · θs−1 θs

Table 5: Example of Butcher table for explicit Runge–Kutta sequence with s sub-cycles.
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energy, nor the position of the cells face xi+ 1
2
. System (7) details the final step at time tn+1.

ρ0τ
n+1
i =ρ0τ

n
i + ∆t

∆X

s∑
l=0

θldun+αl
i ,

ρ0un+1
i+ 1

2
=ρ0un

i+ 1
2
− ∆t

∆X

s∑
l=0

θldpn+αl

i+ 1
2
,

ρ0ε
n+1
i =ρ0ε

n
i −

∆t
∆X

s∑
l=0

θl pδu
n+αl

i ,

ρ0ekin
n+1
i+ 1

2
=ρ0ekin

n
i+ 1

2
− ∆t

∆X

s∑
l=0

θluδp
n+αl

i+ 1
2
,

xn+1
i+ 1

2
=xn

i+ 1
2

+ ∆t
s∑

l=0

θlu
n+αl

i+ 1
2
,

pn+1
i =EOS (τn+1

i , εn+1
i ).

(7)

2.2. Properties of the staggered schemes (6)-(7)
The objective of this section is to study different properties of the schemes (6)-(7) and to give some preliminary

results to the proof of the main theorem.

Definition 1 (Consistency of a flux in a conservative finite volume approximation [12]). Consider a finite volume
scheme which writes under the form

Un+1
i − Un

i +
tn+1 − tn

∆x

[
f?
i+ 1

2
− f?

i− 1
2

]
= 0. (8)

Let Φ be a Lipschitz continuous function and let f?
i+ 1

2
= Φ(Un

i−p+1, ...,U
n
i+r), ∀i ∈ Z, ∀n ∈ N with (r, p) ∈ N2. The

flux is said consistent if Φ satisfies Φ(U, ...,U) = f(U).

Definition 2 (Weak consistency, inspired from [8, 17, 18, 19]). Consider a given numerical scheme. Assume that
numerical solutions U∆x are bounded in (L∞)N and BVN . Assume that numerical solutions converge, as ∆x → 0, in
(L1

loc)N toward a limit Û ∈ (L∞)N . If we can prove that Û is a weak solution, then the scheme is said weakly consistent.

Remark 1. A practical and simple criterion for weak consistency is to show that the flux is consistent [23, 8, 12].

The main difficulty in the analysis of schemes (6)-(7) is precisely that they do not have a natural divergence
structure like (8). In particular, there is no natural flux for the internal and kinetic energies equations.

2.2.1. Conservation properties of the schemes
In this section, we focus on proving that the schemes preserve some quantities, among which mass and momentum.

Two definitions of total energies are introduced in order to study the schemes properties concerning the conservation
of total energy.

Definition 3. A first total energy, based on the kinetic energy reconstructed from the momentum, of the system at time
t = tn, denoted En, is defined as

En = ∆X

∑
i

ρ0ε
n
i +

∑
i

ρ0u2
n
i+ 1

2

 . (9)

Definition 4. A second total energy, based on the discretized kinetic energy, of the system at time t = tn, denoted En,
is defined as

En = ∆X

∑
i

ρ0ε
n
i +

∑
i

ρ0ekin,u
n
i+ 1

2

 . (10)
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A desired feature is that the mass, momentum and the total energy En defined in definition 3 are conserved for
periodic or wall boundary conditions. A first result is summarized in the following lemma.

Lemma 1 (Mass and momentum conservation). For all explicit Runge–Kutta sequences, all spatial reconstructions,
the schemes (6)-(7) are conservative in mass and momentum.

Proof. Conservation of mass writes
∑

i

ρ0τ
n+1
i − ρ0τ

n
i =

∑
i

∆t
∆X

∑
l

θl

(
un+αl

i+ 1
2
− un+αl

i− 1
2

)
=

∆t
∆X

∑
l

θl

∑
i

(
un+αl

i+ 1
2
− un+αl

i− 1
2

)
.

Hence for wall or periodic boundary conditions, it yields
∑

i

ρ0τ
n+1
i − ρ0τ

n
i = 0. The conservation for momentum is

very similar. Indeed,
∑

i

ρ0un+1
i+ 1

2
− ρ0un

i+ 1
2

=
∑

i

−
∆t
∆X

∑
l

θl

(
pn+αl

i+1 − pn+αl
i

)
= −

∆t
∆X

∑
l

θl

∑
i

(
pn+αl

i+1 − pn+αl
i

)
. Hence

for periodic boundary conditions, it yields
∑

i

ρ0un+1
i+ 1

2
− ρ0un

i+ 1
2

= 0.

A second result is that the schemes conserve the total energy En defined in definition 4.

Lemma 2 (E global conservation). For all explicit Runge-Kutta sequences, all spatial reconstructions, the schemes
(6)-(7) formulated in internal energy conserve the quantity E, meaning En+1 − En.

Proof.

En+1 − En =
∑

i

(
ρ0ε

n+1
i − ρ0ε

n
i

)
+

∑
i

(
ρ0ekin

n+1
i+ 1

2
− ρ0ekin

n
i+ 1

2

)
= −

∆t
∆X

∑
i

s∑
l=1

θl

(
pδu

n+αl

i + uδp
n+αl

i+ 1
2

)
= −

∆t
∆X

∑
i

s∑
l=1

∑
k

∑
k′
θlĈkdk′ (pn+αl

i+k un+αl

i+k+k′+ 1
2

+ un+αl

i+k+ 1
2
pn+αl

i+k+k′+1 − pn+αl
i+k un+αl

i+k−k′− 1
2
− un+αl

i+k+ 1
2
pn+αl

i+k−k′ ).

Making the change of index i ← i + k′ in the first term and i ← i + k′ + 1 in the second term of the RHS we get the
result for wall (with non-trivial definitions of ghost-cell values) or periodic boundary conditions.

En+1 − En = −
∆t
∆X

∑
i

s∑
l=1

∑
k

∑
k′
θlĈkdk′ (pn+αl

i+k−k′u
n+αl

i+k+ 1
2

+ un+αl

i+k−k′− 1
2
pn+αl

i+k − pn+αl
i+k un+αl

i+k−k′− 1
2
− un+αl

i+k+ 1
2
pn+αl

i+k−k′ ) = 0.

Remark 2. However, one observes numerically that the schemes (6)-(7) do not preserve the quantity E as defined in
definition 3. More details about the non-conservation of E are given in the following.

An internal energy corrector detailed in section 2.3 has been developed to tackle the conservation of E. The design
of the internal energy corrector is based on the schemes conservation of E.

2.2.2. Weak consistency of the barotropic version
In order to greatly simplify the proof of the main theorem, we lay first the stress on the weak consistency of the

schemes barotropic version. Intermediate stages write

ρ0τ
n+αm
i =ρ0τ

n
i + ∆t

∆X

m−1∑
l=0

am,l(u
n+αl

i+ 1
2
− un+αl

i− 1
2

),

ρ0un+αm

i+ 1
2

=ρ0un
i+ 1

2
− ∆t

∆X

m−1∑
l=0

am,l(pn+αl
i+1 − pn+αl

i ),

pn+αm
i =EOS (τn+αm

i ),

(11)
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and the final stage writes 

ρ0τ
n+1
i =ρ0τ

n
i + ∆t

∆X

s∑
l=0

θl(u
n+αl

i+ 1
2
− un+αl

i− 1
2

),

ρ0un+1
i+ 1

2
=ρ0un

i+ 1
2
− ∆t

∆X

s∑
l=0

θl(pn+αl
i+1 − pn+αl

i ),

xn+1
i+ 1

2
=xn

i+ 1
2

+ ∆t
s∑

l=0

θlu
n+αl

i+ 1
2
,

pn+1
i =EOS (τn+1

i ).

(12)

Proposition 1 (Weak consistency of the barotropic Lagrangian staggered schemes (11)-(12)). For all explicit Runge–
Kutta sequences, all consistent spatial reconstructions, the schemes (11)-(12) are weakly consistent.

Proof. Here we use the fact that a scheme whose flux is consistent (definition 1) is weakly consistent (definition 2).
This is why we have to verify that the scheme can be rewritten under the form (8). From equation (12), one defines
the natural flux

f ?
i+ 1

2
=

s∑
l=0

θl

−un+αl

i+ 1
2

pn+αl
i+1

 . (13)

Intermediate fluxes are defined from (11) as f αm

i+ 1
2

=

m−1∑
l=0

am,l

−un+αl

i+ 1
2

pn+αl
i+1

 . The proof is done by induction on the inter-

mediate time-steps. First one proves that the intermediate (resp. natural as defined in (13)) flux can be written as
Φm(Ui−mr+1, ...,Ui+mr+1) (resp. Φ?(Ui−(s+1)r+1, ...,Ui+(s+1)r+1)) . Second, one proves that Φm (resp. Φ?) satisfies for
constant state (ρ0τ, ρ0, ρ0u, ρ̂0)t 

Φm



ρ0τ
ρ0
ρ0u
ρ̂0

 , ...,

ρ0τ
ρ0
ρ0u
ρ̂0


 = αm

(
−u
p

)
,

Φ?



ρ0τ
ρ0
ρ0u
ρ̂0

 , ...,

ρ0τ
ρ0
ρ0u
ρ̂0


 =

(
−u
p

)
.

We start the proof considering the first intermediate time-step. One has f α1

i+ 1
2

= a1,0

−un
i+ 1

2

pn
i+1

, α1 = a1,0 where

un
i+ 1

2
=

r∑
k=−r

Ckρ0un
i+ 1

2 +k

r∑
k=−r

Ckρ0i+ 1
2 +k

and pn
i = p



r∑
k=−r

Ckρ0τ
n
i+k

r∑
k=−r

Ckρ0i+k

 .
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Hence, one can write f α1

i+ 1
2

as a function Φ1 with f α1

i+ 1
2

= Φ1



ρ0τ

n
i−r+1

ρ0i−r+1
ρ0un

i+ 1
2−r

ρ0i+ 1
2−r

 , ...,

ρ0τ

n
i+r+1

ρ0i+r+1
ρ0un

i+ 1
2 +r

ρ0i+ 1
2 +r


 . The function Φ1 writes

Φ1



ρ0τ

n
i−r+1

ρ0i−r+1
ρ0un

i+ 1
2−r

ρ0i+ 1
2−r

 , ...,

ρ0τ

n
i+r+1

ρ0i+r+1
ρ0un

i+ 1
2 +r

ρ0i+ 1
2 +r


 = a1,0



−

r∑
k=−r

Ckρ0un
i+ 1

2 +k

r∑
k=−r

Ckρ0i+ 1
2 +k

p


r∑

k=−r

Ckρ0τ
n
i+k

r∑
k=−r

Ckρ0i+k




.

Hence, for constant state (ρ0τ, ρ0, ρ0u, ρ̂0)t

Φ1



ρ0τ
ρ0
ρ0u
ρ̂0

 , ...,

ρ0τ
ρ0
ρ0u
ρ̂0


 = a1,0



−

r∑
k=−r

Ckρ0u

r∑
k=−r

Ckρ̂0

p


r∑

k=−r

Ckρ0τ

r∑
k=−r

Ckρ0




,

using the fact that
∑

k

Ck = 1, it leads to Φ1



ρ0τ
ρ0
ρ0u
ρ̂0

 , ...,

ρ0τ
ρ0
ρ0u
ρ̂0


 = a1,0

(
−
ρ0u
ρ̂0

p( ρ0τ
ρ0

)

)
= a1,0

(
−u
p(τ)

)
. In particular, still for

constant states (ρ0τ, ρ0, ρ0u, ρ̂0)t, one obtains that ρ0τ
n+α1
i = ρ0τ

n
i = ρ0τ and ρ0un+α1

i+ 1
2

= ρ0un
i+ 1

2
= ρ0u. Then by

straightforward induction on the intermediate time-steps, any f αm

i+ 1
2

writes as a function Φm as

f αm

i+ 1
2

= Φm



ρ0τ

n
i−mr+1

ρ0i−mr+1
ρ0un

i+ 1
2−mr

ρ0i+ 1
2−mr

 , ...,

ρ0τ

n
i+mr+1

ρ0i+mr+1
ρ0un

i+ 1
2 +mr

ρ0i+ 1
2 +mr


 .

The function Φm writes

Φm



ρ0τ

n
i−mr+1

ρ0i−mr+1
ρ0un

i+ 1
2−mr

ρ0i+ 1
2−mr

 , ...,

ρ0τ

n
i+mr+1

ρ0i+mr+1
ρ0un

i+ 1
2 +mr

ρ0i+ 1
2 +mr


 =

m−1∑
l=0

am,l



−

r∑
k=−r

Ckρ0un+αl

i+ 1
2 +k

r∑
k=−r

Ckρ0i+ 1
2 +k

p


r∑

k=−r

Ckρ0τ
n+αl
i+k

r∑
k=−r

Ckρ0i+k




.
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Then for constant state (ρ0τ, ρ0, ρ0u, ρ̂0)t and by induction on the previous intermediate time-steps

Φm



ρ0τ
ρ0
ρ0u
ρ̂0

 , ...,

ρ0τ
ρ0
ρ0u
ρ̂0


 =

m−1∑
l=0

am,l

(
−
ρ0u
ρ̂0

p( ρ0τ
ρ0

)

)
=

m−1∑
l=0

am,l

(
−u
p(τ)

)
= αm

(
−u
p(τ)

)
.

And in particular, still for constant states, one obtains that ρ0τ
n+αm
i = ρ0τ

n
i = ρ0τ and ρ0un+αm

i+ 1
2

= ρ0un
i+ 1

2
= ρ0u.

Therefore, by induction, the natural flux f ?
i+ 1

2
writes as a vector values function Φ? as

f ?
i+ 1

2
= Φ?



ρ0τ

n
i−(s+1)r+1

ρ0i−(s+1)r+1
ρ0un

i+ 1
2−(s+1)r

ρ0i+ 1
2−(s+1)r

 , ...,

ρ0τ

n
i+(s+1)r+1

ρ0i+(s+1)r+1
ρ0un

i+ 1
2 +(s+1)r

ρ0i+ 1
2 +(s+1)r


 ,

where Φ? satisfies

Φ?



ρ0τ

n
i−(s+1)r+1

ρ0i−(s+1)r+1
ρ0un

i+ 1
2−(s+1)r

ρ0i+ 1
2−(s+1)r

 , ...,

ρ0τ

n
i+(s+1)r+1

ρ0i+(s+1)r+1
ρ0un

i+ 1
2 +(s+1)r

ρ0i+ 1
2 +(s+1)r


 =

s∑
l=0

θl



−

r∑
k=−r

Ckρ0un+αl

i+ 1
2 +k

r∑
k=−r

Ckρ0i+ 1
2 +k

p


r∑

k=−r

Ckρ0τ
n+αl
i+k

r∑
k=−r

Ckρ0i+k




.

Thus for constant states, Φ?



ρ0τ
ρ0
ρ0u
ρ̂0

 , ...,

ρ0τ
ρ0
ρ0u
ρ̂0


 =

s∑
l=0

θl

(
−
ρ0u
ρ̂0

p( ρ0τ
ρ0

)

)
=

s∑
l=0

θl

(
−u
p(τ)

)
. Using the fact that

s∑
l=0

θl = 1, it leads

to Φ?



ρ0τ
ρ0
ρ0u
ρ̂0

 , ...,

ρ0τ
ρ0
ρ0u
ρ̂0


 =

(
−u
p(τ)

)
. Hence, the scheme is weakly consistent for the barotropic equations in the sense of

definition 1.

2.3. A new local internal energy corrector
Compared to the barotropic schemes, an additional theoretical difficulty shows up with the energy equation for the

hydrodynamics case (6)-(7). It is related to the fact that, even if mass and momentum are conserved (see lemma 1)
and also that the total energy E is preserved (see lemma 2), it is not the case for the total energy E. Experimentally, as
shown on the left picture in figure 1 and stated in [42, 22]), we observe that the schemes (6)-(7) are unable to capture
the shocks correctly, in the sense that the Rankine–Hugoniot jump relations are not recovered.

The idea is then to recouple E and E using a correction of the internal energy at the end of the Lagrangian phase
(6)-(7). The difference between the computed kinetic energy and the kinetic energy reconstructed from the velocity is
reversed in the internal energy. This is very similar to what is done in works by Herbin, Latché and al. [17, 18, 19].
The main difference is that they perform the correction a priori, whereas here in our case the correction is applied a
posteriori.

2.3.1. Internal energy corrector
The idea of the internal energy corrector is to force the conservation of the quantity E, using the already proved

conservation of E (see lemma 2). The difference between the computed kinetic energy and the kinetic energy re-
constructed from the velocity is computed as follows. As the scheme is high-order accurate, the result is not so

10



straightforward. It follows the steps described hereafter. First the point-wise kinetic energy reconstructed from the

velocity is defined by ( 1
2ρ0u2)n+1

i+ 1
2

= 1
2

∑
k

Ckρ0un+1
i+k+ 1

2

2

/
∑

k

Ckρ0
n
i+k+ 1

2
. Second it is averaged over a cell using the

coefficients Ĉk presented in table 1, that is ( 1
2ρ0u2)n+1

i+ 1
2

=
∑

k

Ĉk(
1
2
ρ0u2)n+1

i+k+ 1
2
. The difference between the two kinetic

energies is ∆Kn+1
i+ 1

2
= ρ0ekin

n+1
i+ 1

2
−( 1

2ρ0u2)n+1
i+ 1

2
. Third, linear interpolation is made to compute ∆Kn+1

i = 1
2 (∆Kn+1

i+ 1
2

+∆Kn+1
i− 1

2
).

Last, the difference ∆Kn+1
i is added to the internal energy ρ0ε

n+1
i whereas ∆Kn+1

i+ 1
2

is subtracted to the kinetic ones. It
writes as an a posteriori correction ρ0ε

n+1,?
i = ρ0ε

n+1
i + ∆Kn+1

i

ρ0ekin
n+1,?
i+ 1

2
= ρ0ekin

n+1
i+ 1

2
− ∆Kn+1

i+ 1
2

= ( 1
2ρ0u2)n+1

i+ 1
2

(14)

The internal energy corrector can be applied at the end of each Runge–Kutta sub-cycle or only at the end of the
time-step. Commonly, the internal energy corrector is performed only at the end of the time-step, to save CPU.

2.3.2. Properties of the internal energy corrector
Lemma 3 (High-order accuracy of the internal energy corrector). The internal energy corrector is high-order accurate
in both time and space.

Proof. Assume that the solution is smooth enough. Assume that the coefficients Ĉk and Ck yield Nth order of accuracy
in space, and that the Lagrange phase is also of order N in both time and space. Then in particular, one has

∆Kn+1
i+ 1

2
= ρ0ekin

n+1
i+ 1

2
− (

1
2
ρ0u2)n+1

i+ 1
2

= O(∆XN).

And then trivially, one gets that ∆Kn+1
i = 1

2 (∆Kn+1
i+ 1

2
+ ∆Kn+1

i− 1
2
) = O(∆XN). As the Lagrange phase is assumed to be

high-order accurate, one has that ρ0ε
n+1
i = ρ0ε(xi, tn+1) + O(∆XN), And then, one gets ρ0ε

n+1,?
i = ρ0ε

n+1
i + ∆Ki =

ρ0ε(xi, tn+1) + O(∆XN), which concludes the proof, yielding high-order accuracy for the internal energy.

The following lemma gives conservation of total energy when applying the internal energy corrector.

Lemma 4 (E-conservation of the internal energy corrector). The internal energy corrector satisfies En+1,? = En+1.

Proof. One has that En+1,? − En+1 = ∆X

∑
i

∆Ki −
∑

i

∆Ki+ 1
2

. Then, using ∆Ki = 1
2 (∆Ki+ 1

2
+ ∆Ki− 1

2
), it leads

to En+1,? − En+1 = ∆X

∑
i

1
2

(∆Ki+ 1
2

+ ∆Ki− 1
2
) −

∑
i

∆Ki+ 1
2

 . Performing change of discrete variables in the first

summation, and assuming wall or periodic boundary conditions, it yields En+1,? − En+1 = 0.

Lemma 5 (E-Conservation of the staggered schemes (6)-(7)-(14)). The schemes (6)-(7) with the internal energy cor-
rector (14) satisfy En+1,? = En (cf definition 3).

Proof. We have En+1,? − En = ∆X
∑

i

(
ρ0ε

n+1,?
i − ρ0ε

n
i

)
+ ∆X

∑
i

(
ρ0u2

n+1,?
i+ 1

2
− ρ0u2

n
i+ 1

2

)
. Introducing the term at time

t = tn+1, it becomes

En+1,? − En = ∆X
∑

i

(
ρ0ε

n+1,?
i − ρ0ε

n+1
i + ρ0ε

n+1
i − ρ0ε

n
i

)
+ ∆X

∑
i

(
ρ0u2

n+1,?
i+ 1

2
− ρ0ekin,u

n+1
i+ 1

2
+ ρ0ekin,u

n+1
i+ 1

2
− ρ0u2

n
i+ 1

2

)
= ∆X

∑
i

(
ρ0ε

n+1,?
i − ρ0ε

n+1
i

)
− ∆X

∑
i

(
ρ0u2

n+1,?
i+ 1

2
− ρ0ekin,u

n+1
i+ 1

2

)
+ En+1 − En.

11



Using the fact that ρ0u2
n+1,?
i+ 1

2
= ρ0ekin,u

n+1,?
i+ 1

2
, it leads to En+1,? − En = En+1,? − En+1 + En+1 − En. Then, using lemma

2, one gets that En+1 − En = 0 and using lemma 4, that En+1,? − En+1 = 0. Hence, En+1,? − En = 0. Thus, applying the
internal corrector gives conservation of the energy E between time t = tn+1,? and time t = tn.

2.4. Proof of the main theorem

We state what we consider as the main theoretical contribution of this work and detail its proof.

Theorem 1 (Weak consistency of the staggered schemes (6)-(7)-(14) ). For all explicit Runge–Kutta sequences, for co-
efficients Ck, Ĉk, dk, rk defined in tables 1 to 4, the schemes (6)-(7)-(14) are weakly consistent with the Euler equations
in Lagrangian coordinates with the regularity assumptions of definition 2.

Remark 3. The proof for weak consistency of the two first equations, specific volume and momentum conservations
which show up in (6)-(7) is essentially similar to the one of proposition 1 for the barotropic case, so is not detailed.
Instead we focus on the energy equation. However, due to the very intricate structure of the discrete energy equation,
no explicit natural fluxes for total energy have been exhibited so far for any order in both space and time.

For instance, let us consider first order Euler forward scheme with second order in space. Discrete total energy is
defined as ρei = ρεi + 1

2 (ρekin,ui+ 1
2

+ ρekin,ui− 1
2
). Then we get the following total energy evolution equation

ρen+1
i − ρen

i = −
∆t
∆X

( pi+1 + pi

2
ui+ 1

2
−

pi + pi−1

2
ui− 1

2

)
, (15)

which is trivially written under flux form. However generalization is not obvious. Generally, it means that the energy
equation is not rewritten under conservative fluxes form. Hence the criterion of flux consistency of Lax–Wendroff is
not directly applicable, this is why the proof is detailed hereafter in full length, starting directly from definition 2.

Proof. The assumptions presented in definition 2 for weak consistency are done. We first detail the proof for a forward
Euler, second order in space scheme because it highlights the key elements of the method. The general case with a
forward Euler and any order in space will be dealt with in a second stage. The most general case with any explicit
Runge–Kutta sequences will not be detailed because it would add no new technical ideas and the notations are too
heavy. For the sake of simplicity, in the following the time step tn+1,? is denoted by tn+1.
First stage. For a forward Euler, second order in space scheme, the internal and kinetic energies discrete equations
write  ρ0ε

n+1
i − ρ0ε

n
i = − ∆t

∆X pn
i (un

i+ 1
2
− un

i− 1
2
) + ∆Kn+1

i ,

ρ0ekin
n+1
i+ 1

2
− ρ0ekin

n
i+ 1

2
= − ∆t

∆X un
i+ 1

2
(pn

i+1 − pn
i ) − ∆Kn+1

i+ 1
2
,

The idea is to take a test function φ ∈ C∞0 with compact support. Denote φn
i = φ(i∆X, tn) and φn

i+ 1
2
((i + 1

2 )∆X, tn).

Multiply the first equation by ∆Xφn+1
i and the second by ∆Xφn+1

i+ 1
2

then sum over the n and i and combine both. It leads
to ∑

n

∑
i

∆X
[
(ρ0ε

n+1
i − ρ0ε

n
i )φn+1

i + (ρ0ekin
n+1
i+ 1

2
− ρ0ekin

n
i+ 1

2
)φn+1

i+ 1
2

]
+

∑
n

∑
i

∆t
[
pn

i φ
n+1
i (un

i+ 1
2
− un

i− 1
2
) + un

i+ 1
2
φn+1

i+ 1
2
(pn

i+1 − pn
i )
]

−
∑

n

∑
i

∆X
[
∆Kn+1

i φn+1
i − ∆Kn+1

i+ 1
2
φn+1

i+ 1
2

]
= 0.

(16)

Denote h = max(∆X,∆t). Introducing the notation

T h
1 =

∑
n

∑
i

∆X
[
(ρ0ε

n+1
i − ρ0ε

n
i )φn+1

i + (ρ0ekin
n+1
i+ 1

2
− ρ0ekin

n
i+ 1

2
)φn+1

i+ 1
2

]
,

T h
2 = −

∑
n

∑
i

∆X
[
∆Kn+1

i φn+1
i − ∆Kn+1

i+ 1
2
φn+1

i+ 1
2

]
,

T h
3 =

∑
n

∑
i

∆t
[
pn

i φ
n+1
i (un

i+ 1
2
− un

i− 1
2
) + un

i+ 1
2
φn+1

i+ 1
2
(pn

i+1 − pn
i )
]
,

(17)
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eq. (16) rewrites simply under the form T h
1 + T h

2 + T h
3 = 0. We study separately the three terms.

• Terms T h
1 is reordered into

T h
1 = −

∑
n

∆t
∑

i

∆X

ρ0ε
n
i
φn+1

i − φn
i

∆t
+ ρ0ekin

n
i+ 1

2

φn+1
i+ 1

2
− φn

i+ 1
2

∆t

 .
We will use the natural definition/notation for staircase functions with the indicator function (23)

ψh(x, t) =
∑

i

∑
n

χ]tn,tn+1[(t)χ]xi−1/2,xi+1/2[(x)ψn
i and ψh,stag(x, t) =

∑
i

∑
n

χ]tn,tn+1[(t)χ]xi,xi+1[(x)ψn
i+ 1

2
.

Then, using the internal energy corrector, it yields that ρ0ekin
n
i+ 1

2
= 1

2 (ρ0u2)n
i+ 1

2
and so

T h
1 = −

∫ T

0

∫
Ω

(ρ0ε)h∂tφhdxdt −
∫ T

0

∫
Ω

(
1
2
ρ0u2)h,stag∂tφh,stagdxdt +

∫
Ω

(ρ0ε)0
hφ

0
hdx +

∫
Ω

(
1
2
ρ0u2)0

h,stagφ
0
h,stagdx.

Using the convergence hypothesis of definition 2 and the regularity of the test function φ, one can pass to the limit as
∆X and ∆t tend to 0. It leads to

lim
h→0
T h

1 = −

∫ T

0

∫
Ω

ρ̂0ε∂tφdxdt −
∫ T

0

∫
Ω

̂1
2
ρ0u2∂tφdxdt +

∫
Ω

ρ̂0ε(x, 0)φ(x, 0)dx +

∫
Ω

̂1
2
ρ0u2(x, 0)φ(x, 0)dx.

Using ρ0e = ρ0ε + 1
2ρ0u2, one gets lim

h→0
T h

1 = −

∫ T

0

∫
Ω

ρ̂0e∂tφdxdt +

∫
Ω

ρ̂0e(x, 0)φ(x, 0)dx.

• Now, focus on T h
2 . It satisfies T h

2 = −
∑

n

∑
i

∆X
[
∆Kn+1

i φn+1
i − ∆Kn+1

i+ 1
2
φn+1

i+ 1
2

]
,. Using ∆Kn+1

i = 1
2 (∆Kn+1

i+ 1
2

+ ∆Kn+1
i− 1

2
),

it gives after reordering that T h
2 = −

∑
n

∑
i

∆X∆Kn+1
i+ 1

2

φn+1
i+1 + φn+1

i

2
− φn+1

i+ 1
2

 . Using the boundedness in L∞ of ∆Kn+1
i+ 1

2

and regularity of φ, it leads to |T h
2 | ≤ Cφ∆X‖(∆K)h‖L∞ , which gives immediately lim

h→0
|T h

2 | = 0.

• The term T h
3 satisfies T h

3 =
∑

n

∑
i

∆t
[
pn

i φ
n+1
i (un

i+ 1
2
− un

i− 1
2
) + un

i+ 1
2
φn+1

i+ 1
2
(pn

i+1 − pn
i )
]
. Reordering the terms, it yields

T h
3 =

∑
n

∆t
∑

i

[
pn

i un
i+ 1

2
φn+1

i − pn
i+1un

i+ 1
2
φn+1

i+1 + un
i+ 1

2
φn+1

i+ 1
2
(pn

i+1 − pn
i )
]

=
∑

n

∆t
∑

i

[
un

i+ 1
2
pn

i (φn+1
i − φn+1

i+ 1
2
) + un

i+ 1
2
pn

i+1(φn+1
i+ 1

2
− φn+1

i+1 )
]

= −
∑

n

∆t∆X
∑

i

un
i+ 1

2

1
2

pn
i

φn+1
i+ 1

2
− φn+1

i

∆X
2

+
1
2

pn
i+1

φn+1
i+1 − φ

n+1
i+ 1

2

∆X
2


= −

∑
n

∆t∆X
∑

i

un
i+ 1

2


 pn

i + pn
i+1

4

φn+1
i+ 1

2
− φn+1

i

∆X
2

+
pn

i + pn
i+1

4

φn+1
i+1 − φ

n+1
i+ 1

2

∆X
2

 +

 pn
i − pn

i+1

4

φn+1
i+ 1

2
− φn+1

i

∆X
2

+
pn

i+1 − pn
i

4

φn+1
i+1 − φ

n+1
i+ 1

2

∆X
2


 .

The previous expression is decomposed into two terms denoted T h
3,1 and T h

3,2 with

T h
3,1 = −

∑
n

∆t∆X
∑

i

un
i+ 1

2

 pn
i − pn

i+1

4

φn+1
i+ 1

2
− φn+1

i

∆X
2

+
pn

i+1 − pn
i

4

φn+1
i+1 − φ

n+1
i+ 1

2

∆X
2

 .
T h

3,2 = −
∑

n

∆t∆X
∑

i

un
i+ 1

2

 pn
i + pn

i+1

4

φn+1
i+ 1

2
− φn+1

i

∆X
2

+
pn

i + pn
i+1

4

φn+1
i+1 − φ

n+1
i+ 1

2

∆X
2

 .
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The T h
3,1 is dealt using the assumptions that ph is in BV , uh is bounded in L∞, and φ is in C 1 which gives |T h

3,1| ≤

∆XCφ‖uh‖L∞‖ph‖BV . Hence, passing to the limit, it leads to lim
h→0
|T h

3,1| = 0.

On the other hand, one easily notices that T h
3,2 rewrites as

T h
3,2 = −

∑
n

∆t∆X
∑

i

un
i+ 1

2

pn
i + pn

i+1

2

1
2

φn+1
i+ 1

2
− φn+1

i

∆X
2

+
1
2

φn+1
i+1 − φ

n+1
i+ 1

2

∆X
2

 = −

∫ T

0

∫
Ω

(pu)h∂Xφhdxdt

Using the regularity of φ it leads, passing to the limit, to lim
h→0
T h

3,2 = −

∫ T

0

∫
Ω

p̂̂u∂Xφdxdt. Reassembling all the terms,

it yields that

lim
h→0
T h

1 + T h
2 + T h

3 = −

∫ T

0

∫
Ω

ρ̂0e∂tφdxdt −
∫ T

0

∫
Ω

p̂̂u∂Xφdxdt +

∫
Ω

ρ̂0e(x, 0)φ(x, 0)dx.

And, hence, we get
∫ T

0

∫
Ω

ρ̂0e∂tφdxdt +

∫ T

0

∫
Ω

p̂̂u∂Xφdxdt =

∫
Ω

ρ̂0e(x, 0)φ(x, 0)dx. Previous equation gives weak

consistency for the second order in space, forward Euler staggered scheme with internal energy corrector.
Second stage. Now, the problem of high-order in space is tackled. There is no difficulty for the terms T h

1 and T h
2 , but

this is not the case for T h
3 , where the desired result is not obvious. For the sake of simplicity here, we consider that

Ĉ0 = 1, Ĉk = 0,∀|k| > 0. The results does not change, provided
∑

k

Ĉk = 1 but it greatly alleviates the algebra of

the proof. One has that T h
3 = −

∑
n

∆t
∑

i

∑
k≥0

dk

[
pn

i φ
n+1
i (un

i+k+ 1
2
− un

i−k− 1
2
) + un

i+ 1
2
φn+1

i+ 1
2
(pn

j+k+1 − p j−k)
]
. Reordering the

terms, so that only un
i+ 1

2
shows up, leads to

T h
3 = −

∑
n

∆t
∑

i

un
i+ 1

2

∑
k≥0

dk

[
pn

i−k(φn+1
i−k − φ

n+1
i+ 1

2
) + pi+k+1(φn+1

i+ 1
2
− φn+1

i+k+1)
]
.

Highlighting the space derivatives of φ gives

T h
3 = +

∑
n

∆t
∑

i

un
i+ 1

2

∑
k≥0

(k +
1
2

)dk

pn
i−k

φn+1
i+ 1

2
− φn+1

i−k

∆X(k +
1
2

)
+ pi+k+1

φn+1
i+k+1 − φ

n+1
i+ 1

2

∆X(k +
1
2

)

 .
Noticing that (k + 1

2 )dk = rk, k ≥ 0, it yields

T h
3 = +

∑
n

∆t
∑

i

un
i+ 1

2

∑
k≥0

rk

pn
i−k

φn+1
i+ 1

2
− φn+1

i−k

∆X(k +
1
2

)
+ pi+k+1

φn+1
i+k+1 − φ

n+1
i+ 1

2

∆X(k +
1
2

)

 .
As previously for the case of second order accuracy in space, the conclusion is reached using the assumption that

ph is in BV , uh is bounded in L∞, and φ is in C 1. One has lim
h→0
T h

3,2 = −

∫ T

0

∫
Ω

p̂̂u∂Xφdxdt. And, hence, it leads to∫ T

0

∫
Ω

ρ̂0e∂tφdxdt +

∫ T

0

∫
Ω

p̂̂u∂Xφdxdt =

∫
Ω

ρ̂0e(x, 0)φ(x, 0)dx. Previous equation gives weak consistency for for-

ward Euler staggered scheme with internal energy corrector. Using Runge–Kutta sequences adds only more technical
difficulty in the algebra, but does not alter the weak consistency result. Idem for the use of the coefficients Ĉk. The key
point for consistency is to use the same coefficients dk and Ĉk for both the internal and kinetic energies equations.
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Figure 1: Illustration of the importance of the internal energy corrector. Without the internal energy corrector (left), the scheme does not converge
toward the weak solution for the Sod shock tube. Using the internal energy corrector (right), although oscillatory, jump relations are recovered for
small mesh sizes.

Remark 4. Without internal energy corrector, for a forward Euler second order in space scheme, the first term writes

T̂ h
1 = −

∑
n

∆t
∑

i

∆X

ρ0ε
n
i
φn+1

i − φn
i

∆t
+ ρ0ekin

n
i+ 1

2

φn+1
i+ 1

2
− φn

i+ 1
2

∆t


= −

∑
n

∆t
∑

i

∆X


ρ0ε

n
i
φn+1

i − φn
i

∆t
+ (

1
2
ρ0u2)n

i+ 1
2

φn+1
i+ 1

2
− φn

i+ 1
2

∆t

 −∑
n

∆t
∑

i

∆X


(
ρ0ekin

n
i+ 1

2
− (

1
2
ρ0u2)n

i+ 1
2

) φn+1
i+ 1

2
− φn

i+ 1
2

∆t




Define T h
1,1 and T h

1,2 by
T h

1,1 = −
∑

n

∆t
∑

i

∆X

ρ0ε
n
i
φn+1

i − φn
i

∆t
+ (

1
2
ρ0u2)n

i+ 1
2

φn+1
i+ 1

2
− φn

i+ 1
2

∆t

 ,
T h

1,2 = −
∑

n

∆t
∑

i

∆X


(
ρ0ekin

n
i+ 1

2
− (

1
2
ρ0u2)n

i+ 1
2

) φn+1
i+ 1

2
− φn

i+ 1
2

∆t

 .
The term T h

1,1 has been dealt with as it is equal to the term T h
1 of the proof. Now, consider the term T h

1,2. Then
under regularity hypothesis on the test function, one obtains |T h

1,2| ≤ Cφ‖ρ0ekin − ( 1
2ρ0u2)‖l1([0:T ]×Ω). Experimentally,

one observes that without internal energy corrector, ‖ρ0ekin − ( 1
2ρ0u2)‖l1([0:T ]×Ω) does not tend to 0 as ∆X and ∆t tend

to 0. As an example, for the Sod shock tube [36], we perform the computation with and without the internal energy
corrector. Results are displayed in fig. 1. On the left picture, we show that the scheme does not converge toward
the analytical solution without the internal energy corrector. On the right one, we show that adding the internal
energy corrector, the profile obtained in internal energy is much more satisfactory. In table 6, we present the values
of ‖ρ0ekin − ( 1

2ρ0u2)‖l1([0:T ]×Ω), for the scheme without internal energy corrector, to assess that it does not tend to 0
experimentally. Further studies on the Sod shock tube are presented in the sequel.

Remark 5. One notices that the default of conservation in E is strongly linked to the quantity ‖ρ0ekin−( 1
2ρ0u2)‖l1([0:T ]×Ω).

It tends to attest in the present case that for the presented schemes the key for weak consistency (and correct shock
capturing) is to ensure conservation of E.

2.5. The remapping stage
The remapping is the algorithm designed to project the Lagrangian quantities on the original Cartesian grids, so

that one gets a Cartesian Euler scheme. A possible choice is to project the reconstructed total energy. Here, for
robustness purposes, we would rather remap independently both the internal and the kinetic energies.
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∆X 1
100

1
200

1
400

1
800

1
1600

‖ρ0ekin − ( 1
2ρ0u2)‖l1([0:T ]×Ω) 6.7e-3 4.7e-3 3.7e-3 3.3e-3 3.1e-3

Table 6: Illustration of the interest and importance of the internal energy corrector. Without the internal energy corrector, the term ‖ρ0ekin −

( 1
2ρ0u2)‖l1([0:T ]×Ω) does not tend to 0 as ∆X and ∆t tends to zero.

The quantities to be remapped at the end of the Lagrangian phase (6)-(7)-(14) are ρ0, ρ0ε on the primal grid
{xi+ 1

2
} and ρ0, ρ0u, ρ0ekin on the dual one {xi}. The projection briefly explained hereafter is equal to the one proposed

in [10, 45] but adapted here to the staggered grids as done in [5].

2.5.1. Lagrange polynomials based conservative projection
At the end of the Lagrangian phase, the primal deformed grid {xn+1

i+ 1
2
} is known. In order to project the staggered

variables ρ0, ρ0u, ρ0ekin, one must first deduce the deformation of the dual grid {xn+1
i }. This is done by using the

coefficients rk presented in table 4, and using xn+1
i =

∑
k

rk(xn+1
i+k+ 1

2
+ xn+1

i−k− 1
2
), which leads to locations of cell centers

at high-order accuracy provided {xn+1
i+ 1

2
} is also known at high-order accuracy. Take φ ∈ L∞, one has ∆X(ρ0φ)

n+1
ξ(i) =∫ X

ξ(i)+ 1
2

X
ξ(i)− 1

2

(ρ0φ)(Y, tn+1)dX + O(∆XN). Using the change of variables (x, t)→ (X, t), it yields

∆X(ρ0φ)
n+1
ξ(i) =

∫ xn+1
ξ(i)+ 1

2

xn+1
ξ(i)− 1

2

(ρφ)(y, tn+1)dy + O(∆XN). (18)

On the other hand, one has the following identity ∆X(ρφ)
n+1
ξ(i) =

∫ x
ξ(i)+ 1

2
x
ξ(i)− 1

2
(ρφ)(y, tn+1)dy + O(∆XN). Using the integral

linearity, it gives

∆X(ρφ)
n+1
ξ(i) =

∫ xn+1
ξ(i)− 1

2

x
ξ(i)− 1

2

(ρφ)(y, tn+1)dy +

∫ xn+1
ξ(i)+ 1

2

xn+1
ξ(i)− 1

2

(ρφ)(y, tn+1)dy +

∫ x
ξ(i)+ 1

2

xn+1
ξ(i)+ 1

2

(ρφ)(y, tn+1)dy + O(∆XN).

Plugging eq. (18) into the previous equation, it yields

∆X(ρφ)
n+1
ξ(i) =

∫ xn+1
ξ(i)− 1

2

x
ξ(i)− 1

2

(ρφ)(y, tn+1)dy + ∆X(ρ0φ)
n+1
ξ(i) +

∫ x
ξ(i)+ 1

2

xn+1
ξ(i)+ 1

2

(ρφ)(y, tn+1)dy + O(∆XN),

which written under conservative form, dropping the O(∆XN), gives

(ρφ)
n+1
ξ(i) = (ρ0φ)

n+1
ξ(i) −

 xn+1
ξ(i)+ 1

2
− xξ(i)+ 1

2

∆X
(ρ0φ)?

ξ(i)+ 1
2
−

xn+1
ξ(i)− 1

2
− xξ(i)− 1

2

∆X
(ρ0φ)?

ξ(i)− 1
2

 , (19)

where (ρ0φ)?
ξ(i)+ 1

2
satisfies (ρ0φ)?

ξ(i)+ 1
2

= 1
xn+1
ξ(i)+ 1

2
−x

ξ(i)+ 1
2

∫ xn+1
ξ(i)− 1

2
x
ξ(i)− 1

2
(ρφ)(y, tn+1)dy. One easily notices that (ρ0φ)?

ξ(i)+ 1
2

can be

written as (ρ0φ)?
ξ(i)+ 1

2
= 1

xn+1
ξ(i)+ 1

2
−x

ξ(i)+ 1
2

∫ xn+1
ξ(i)− 1

2
x
ξ(i? )− 1

2
(ρφ)(y, tn+1)dy −

∫ x
ξ(i)− 1

2
x
ξ(i? )− 1

2
(ρφ)(y, tn+1)dy

 with i? an integer still to be de-

termined to ensure both accuracy and stability. Then introducing the function Hρφ
ξ(i?)(x) =

∫ x
x
ξ(i? )− 1

2

(ρφ)(y, tn+1)dy, one

gets

(ρ0φ)?
ξ(i)+ 1

2
=

1
xn+1
ξ(i)+ 1

2
− xξ(i)+ 1

2

(
Hρφ
ξ(i?)(xn+1

ξ(i)− 1
2
) − Hρφ

ξ(i?)(xξ(i)− 1
2
)
)
. (20)
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Here, upwinded centered Lagrange polynomials are used to interpolate value of Hρφ
ξ(i?). The upwinding is done in

function of sign of xn+1
ξ(i)+ 1

2
− xξ(i)+ 1

2
. It yields natural value for i? as a function of the upwinding and the order of the

scheme N. In practice, one has i? = i − 1 − bN
2 c if xn+1

ξ(i)+ 1
2
> xξ(i)+ 1

2
and i? = i − bN−1

2 c otherwise.

2.5.2. Properties of the remap step
Lemma 6. The remap step (19) is conservative in mass (φ = 1), momentum (φ = u), internal (φ = ε) and kinetic
(φ = ekin) energies. It conserves by summation the total energy E defined in definition 4.

Proof. The proof is straightforward. Indeed due to the conservative form depicted in eq. (19), the projection is
conservative in mass, momentum, internal and kinetic energies. Thus, as E is the sum of both internal and kinetic
energies, it is also conserved.

As pointed out previously, the conservation of E is a desired feature. The dissipation of total energy during the
remap phase is mentioned in the early literature. Indeed, as pointed out by DeBar [6, 7] ”kinetic energy disappears in
the momentum advection process, and must be compensated for in the internal energy if total energy conservation is
to be maintained”. It was also formulated similarly later by Youngs [49, 41]. Using the conservation of E, the internal
energy corrector eq. (14) is applied at the end of the remapping stage. It thus yields straightforwardly conservation of
both E and E. Hence, three algorithms are available.

1. Lagrange phase→ Internal energy corrector,

2. Lagrange phase→ Internal energy corrector→ Remap phase→ Internal energy corrector,

3. Lagrange phase→ Remap phase→ Internal energy corrector,

The first algorithm is used to solve the Euler equations in Lagrangian coordinates, whereas the other two are used
for the standard Euler equations. The numerical examples shown at the end of this paper are obtained with the third
algorithm. A possible modification of the projection is to use monotonicity limiters in order to ensure the monotonic
behaviour of the projection. In practice, one may apply the monotonicity preserving limiters [38] for more robustness
during the remap phase.

3. 2D extension with directional splitting

As presented in [10, 45, 5], the extension to the multidimensional case is realized using directional splitting. The
Euler system in 2D writes 

∂tρ + ∂x(ρu) + ∂y(ρv) = 0,
∂t(ρu) + ∂x(ρu2 + p) + ∂y(ρuv) = 0,
∂t(ρv) + ∂x(ρuv) + ∂y(ρv2 + p) = 0,
∂t(ρe) + ∂x(ρue + pu) + ∂y(ρve + pv) = 0.

(21)

3.1. Derivation of the subsystems using the operator splitting technique
The main idea is to split system presented in eq. (21) according to the x− and y−direction. It writes

∂tρ + ∂x(ρu) = 0
∂t(ρu) + ∂x(ρu2 + p) = 0
∂t(ρv) + ∂x(ρuv) = 0
∂t(ρe) + ∂x(ρue + pu) = 0


∂tρ + ∂y(ρv) = 0
∂t(ρu) + ∂y(ρuv) = 0
∂t(ρv) + ∂y(ρv2 + p) = 0
∂t(ρe) + ∂y(ρve + pv) = 0

(22)

Splitting techniques relies on solving alternatively first and second system of eq. (22) with weighted time-steps in
order to reach high-order accuracy. The theory of operator splitting and especially of high-order splitting sequences
are extensively detailed by McLachlan in [27, 26, 28] and very high-order splitting methods are described by Yoshida
in [48]. Using directionnal splitting methods, each subsystems of eq. (22) is solved using the 1D schemes proposed
in this paper. However, slight modifications must be first performed. Indeed, as one wishes for global conservation
of mass, momentum and total energy, use of values averaged in both directions is required, using rectangle control
volumes.
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3.2. Modifications of the 1D schemes for the 2D finite volume case

The first important point to mention is the special distribution of variables on the staggered grids in both 2D and
3D. The extension of the internal energy corrector proposed for the 1D schemes is straightforward for multidimen-
sional case.

3.2.1. nD distribution of variables on the modified Arakawa C-type grids
The distribution of variables on the modified Arakawa C-type grids is very similar to the one for the 1D case. The

x-velocity u is staggered along the x-direction as well as the density and the kinetic energy related to the x-velocity u.
It will be denoted in the following by ekin,u. Then similarly, the y-velocity is staggered along the y-direction as well as
the density and the kinetic energy ekin,v related to the y-velocity v. If one wishes to extend the schemes to the 3D case,
then the z-velocity denoted w should be staggered along the z-direction along with the density and the kinetic energy
ekin,w. Distribution of variables is depicted on fig. 2. Then, for such a choice of variables, the total energy is the sum
of the internal energy and the kinetic energies in each direction. This a key ingredient to yield conservation as will be
shown hereafter.

 ρ0
ρ0τ
ρ0ε


i, j

 ρ0
ρ0u

ρ0ekin,u


i+ 1

2 , j

 ρ0
ρ0v

ρ0ekin,v


i, j+ 1

2

Figure 2: Staggered finite volume space discretization on Cartesian grids

3.2.2. Derivation of a procedure to apply the 1D schemes in one direction using the 2D finite volume formalism
The aim here is to apply with slight modifications the 1D schemes for two dimensions problem using directional

splitting method. For two dimension problems, the degrees of freedom are the 2D-average values inside a cell.
Thus it is mandatory at the beginning of a sweep, to deduce from 2D average values the 1D average values along
one direction. The procedure originates from [10, 45] and is extended here to staggered grids. A sweep along the
x-direction proceeds as follows:

1. Interpolate the 2D average values U along the y-direction to get 1D average values U of the variables according

to eq. (5). It writes for cell-centered variables U
n
i, j =

∑
k

CkU
n

i, j+k. This way, we only get 1D-cell-average values

along the x-direction. This is exactly the values needed to use the 1D scheme.
2. Compute the 1D Lagrange evolution terms using U. Note that the velocity in the y-direction and its related

kinetic energy do not change. The Lagrange evolution step gives values of the deformed grid {xi+ 1
2 , j
}. Interpola-

tion gives value for the {xi, j} and {xi+ 1
2 , j+

1
2
} grids. The first grid is used to compute remap fluxes of the centered

18



variables (ρ0, ρ0τ, ρ0ε), the second for the variables (ρ0, ρ0u, ρ0ekin,u) staggered along the x-direction, and the
third one for the variables (ρ0, ρ0v, ρ0ekin,v) staggered along the y-direction.

3. Denote by ∆U the evolution terms (see fig. 3). Reconstruct the average values of ∆U in the y-direction using
eq. (5) denoted ∆U. It writes for cell-centered variables ∆U

n
i, j =

∑
k

Ĉk∆Un
i, j+k.

4. Apply the reconstructed 2D Lagrange-remap terms ∆U on the 2D-cell-average values. It leads for cell-centered

variables to U
n+1

i, j = U
n

i, j + ∆U
n
i, j.

The procedure is summarized in fig. 3.

U

Compute from 2D average, aver-
age value in the sweep direction

Compute the evolution terms using the 1D
Lagrange-remap-internal energy corrector scheme

Reconstruct the evolution terms aver-
age values in the transverse direction

U ← U + ∆U

U

∆U

∆U

Figure 3: Flow chart of the 2D scheme

3.2.3. Properties of the 2D schemes
Lemma 7. The 2D schemes (6)-(7)-(14)-(19) are conservative in mass, momentum and total energies E and E.

Proof. With the proposed face-staggering of variables, the 2D schemes satisfy lemmas 2, 5 and 6 direction by direction
and so are globally conservative in mass, momentum and total energy for any dimensional splitting sequences.

Remark 6. Extension to the 3D case is straightforward.

4. Numerical results

The goal of this section is to validate the theoretical approach as well as to assess numerically both the robustness
and the accuracy of the designed schemes.
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The reference solutions are computed using the GAD scheme presented in [20]. It is is a cell-centered (or colo-
cated) scheme which is naturally consistent with the Euler equations. In the following, the function χ denotes for the
indicator function. In particular, one has

χF(x) =

{
1 for x ∈ F,
0 otherwise. (23)

The third order Runge–Kutta sequence used for the following numericals results is the SSPRK3 [13, 14]. The fourth
order Runge–Kutta sequence is the 3

8 -Kutta sequence [21]. The fifth order Runge–Kutta sequence is the Dormand–
Prince sequence [9]. Last, the sixth, seventh and eighth order Runge–Kutta sequence are the robust Verner sequences
available in [43].

4.1. Numerical validation in 1D

The numerical test-suite for validation contains among others three smooth test-problems which are the Cook–
Cabot breaking wave test-case proposed in 2004 [4], a slight modification of the breaking wave using a non-convex
equation of state and last an acoustic propagation which highlights the advantages concerning staggered grids schemes
over cell-centered ones concerning the propagation of waves. Then, four shock test-problems are shown to illustrate
the correct capture of shocks, among which the Sod test-case, the Woodward–Colella double blast wave and the Noh
compression. The idea is to validate the schemes on a very large variety of test-cases to assess both accuracy and
robustness. This is the real difficulty of the proposed test-suite. Recall that for all shock problems, additional artificial
viscosities or hyperviscosities are never used. The dissipation induced by the time and space discretization is enough
for the proposed test-suite.

4.1.1. Cook–Cabot breaking wave test-case [4]
The Cook–Cabot test-case is designed to assess numerically the order of accuracy of the schemes as the variables

profiles are smooth until a given time Tshock where a discontinuity occurs. The breaking wave [4] initial data are set
as follows: 

ρ = ρ0(1 + α sin(2πx)),
p = p0

ρ
ρ0

γ
,

c = c0
ρ
ρ0

(γ−1)/2
,

u = 2
γ−1 (c0 − c),

for − 0.5 ≤ x ≤ 0.5 (24)

with the constants defined as ρ0 = 10−3, p0 = 106, γ = 5
3 , c0 =

√
γ p
ρ

and α = 0.1. Finally Tshock = 1
(γ + 1)παc0

.

The fluid is supposed to be a perfect gas. ”For this set of initial conditions, two of the three caracteristics are initially
constant, with the third satisfying a Burgers-like equation” [4]. The exact solution until Tshock is the initial profile
advected with velocity u − c. The momentum error in l1-norm as well as the experimental order of convergence are
displayed in table 7. Expected orders of convergence are almost reached. For very high-order methods, the machine
precision is already reached with 200 cells.

Nx STAG-3 STAG-4 STAG-5 STAG-6 STAG-7 STAG-8
50 9.3e-5 · 6.4e-6 · 5.3e-7 · 1.0e-7 · 3.1e-8 · 5.6e-9 ·

100 1.2e-5 2.91 4.3e-7 3.89 2.0e-8 4.68 2.1e-9 5.64 2.6e-10 6.88 5.1e-11 6.79
200 1.6e-6 2.95 3.0e-8 3.86 7.7e-10 4.73 4.1e-11 5.69 2.8e-12 6.59 5.4e-13 6.56
400 2.0e-7 2.98 2.0e-9 3.93 2.6e-11 4.87 1.2e-12 5.1 8.2e-13 ? 8.6e-13 ?

800 2.6e-8 2.99 1.2e-10 3.96 1.8e-12 3.87 1.4e-12 ? 1.7e-12 ? 1.7e-12 ?

1600 3.2e-9 2.99 8.7e-12 3.85 3.6e-12 ? 1.5e-12 ? 3.0e-12 ? 2.8e-12 ?

3200 4.0e-10 3.00 6.2e-12 ? 3.8e-12 ? 2.2e-12 ? 3.3e-12 ? 3.1e-12 ?

Table 7: l1-error in momentum and experimental order of convergence for the Lagrange-remap staggered scheme taken on the Cook-Cabot breaking
wave test problem [4], until t = 0.9Tshock. ? indicates machine precision reached.
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4.1.2. Sod test-case [36]
The Sod shock tube [36] is a simple Riemann problem for the Euler equations. This test-case proves useful to

determine the ability of the scheme to handle shocks and especially the capacity to recover correct discrete Rankine-
Hugoniot relations on the shock using the proposed internal energy corrector. Initially, a left state and a right state
trigger a rarefaction, contact discontinuity and shock. The domain is [0 : 1] and the initial data are

ρ0(x) = 1.0χ{x<0.5} + 0.125χ{x>0.5},
p0(x) = 1.0χ{x<0.5} + 0.1χ{x>0.5},
u0(x) = 0,
γ = 1.4.

(25)

Wall boundary conditions are imposed at x = 0 and at x = 1. In fig. 4, profiles of density and internal energy are
depicted with the analytic solution for a mesh containing 100 cells. In table 8, convergence results on density in
norm l1 are proposed. Although oscillatory due to the absence of artificial viscosities, convergence in the l1-norm is
achieved.
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Figure 4: Density (top) and internal energy (bottom) profiles on [0 : 1] for the Sod test-case problem [36] at time t = 0.2, CFL=0.7, 100 cells,
monotonicity limiters used during the remap phase, no artificial viscosities during the Lagrangian phase, for the 3rd, 4th and 6th order staggered
schemes.

Nx STAG-3 STAG-4 STAG-5 STAG-6 STAG-7 STAG-8
50 1.16e-2 1.00e-2 9.70e-3 1.03e-2 1.02e-2 8.69e-3

200 3.47e-3 2.57e-3 2.50e-3 3.08e-3 5.64e-3 2.53e-3
800 8.65e-4 7.82e-4 7.51e-4 7.09e-4 6.95e-4 6.59e-4
3200 2.82e-4 2.38e-4 2.17e-4 2.24e-4 2.17e-4 2.02e-4

12800 1.02e-4 6.86e-5 7.02e-5 9.43e-5 8.67e-5 6.02e-5
25600 6.20e-5 3.80e-5 3.72e-5 7.07e-5 6.20e-5 4.94e-5

Table 8: l1-error in density for the Lagrange-remap staggered scheme taken on the Sod test problem [36], until t = 0.2.

4.1.3. Noh test-case [30]
We use the Noh test-case to assess the strong robustness of the schemes without any artifical viscosity or hyper-

viscosity. This test-case [30] is a compression with a complete conversion of kinetic energy into internal energy. The
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domain is fixed at [0 : 1]. A continuous incoming flux of gas at x = 1 is entering the computational domain with a
constant speed and compress the gas located around x = 0. We consider an incoming constant state of gas at x = 1
and a wall boundary at x = 0. The initial data are (ρ0, u0, p0, γ) = (1,−1, 10−8, 5

3 ). The analytical solution writes
ρ(x, t) = 4.0χ{x< t

3 }
+ 1.0χ{x> t

3 }
,

u = −1.0χ{x> t
3 }
,

p = 4
3χ{x< t

3 }
+ 10−8χ{x> t

3 }
,

(26)

which gives an infinite shock intensity. This is a real difficulty for most schemes as highlighted in [30]. In fig. 5,
profiles of density and pressure are depicted with the analytic solution for a mesh containing 400 cells over [0 : 1].
Zoom is made on [0 : 0.25]. The higher the order, the more oscillatory the profile is. This is due to the high-
order approximations done in the scheme. The important point is that even without artificial viscosity, these high
order schemes are robust enough to handle such a difficult test-case. If one is interested to get rid of the remaining
oscillations, a possibility is to add artificial viscosity to smear them out.
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Figure 5: Density (top) and pressure (bottom) profiles on [0 : 0.25] for the Noh test-case problem [30] at time t = 0.6, CFL=0.7, 400 cells,
monotonicity limiters used during the remap phase, no artificial viscosities during the Lagrangian phase, for the 3rd, 4th and 6th order staggered
schemes.

4.1.4. Shu-Osher test-case [35]
The Shu-Osher test-case [35] is a Mach 3 shock wave interacting with a sinusoidal density field. Computations

till t = 1.8 with CFL=0.7 are reported in fig. 6. This test-case highlights the interest of high-order accuracy even on
a shock problem, and especially the restitution of the density profile with high-order accurate schemes. Reference
solution is obtained using the GAD scheme with CFL=0.5 and 50000 cells. Initial data, on a [−5 : 5] domain, are

ρ0(x) = 27
7 χ{x<−4} + (1 +

sin(5x)
5 )χ{x>−4},

p0(x) = 31
3 χ{x<−4} + 1χ{x>−4},

u0(x) = 4
√

35
9 χ{x<−4},

γ = 1.4.

(27)
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Figure 6: Density (top) and pressure (bottom) profiles on [−3 : 3] for the Shu-Osher test-case problem [35] at time t = 1.8, CFL=0.7, 200 cells,
monotonicity limiters used during the remap phase, no artificial viscosities during the Lagrangian phase, for the 3rd, 4th and 6th order staggered
schemes.

4.1.5. Interacting blast-waves test-case [46]
The interacting blast-waves test-case was proposed in [46]. It is a three states shock tube. The left blast propagates

to the right and the right one to the left till interaction between both. This test-case highlights the robustness of the
schemes. The domain is set to [0 : 1]. Wall boundary conditions are imposed at x = 0 and x = 1. The initial data are
ρ0 = 1, u0 = 0, γ = 1.4 and p0(x) = 1000χ{x<0.1} + 0.01χ{0.1<x<0.9} + 100χ{0.9<x}. Density and pressure profiles are
shown in fig. 7. Reference solution is obtained using the GAD scheme with CFL=0.5 and 50000 cells.

4.2. Numerical validation in 2D

4.2.1. Isentropic vortex advection [47]
We assess high-order accuracy on the 2D vortex test [47] whose initial data are given by (with r2 = x2 + y2)

ρ0(x, y) =

(
1 −

(γ − 1)β2

8γπ2 e1−r2
) 1
γ−1

,

~u0(x, y) = (2, 1)t +
β

2π
e

1−r2
2 · (−y, x)t,

p0(x, y) = ρ0(x, y)γ,

γ = 1.4

(28)

with γ = 1.4 and β = 5. Computations are performed till t = 20 with a CFL number of 0.9 on the computational
domain Ω = [−10, 10]2. Periodic boundary conditions are imposed. The l1-error as well as experimental order of
convergence are presented in table 9. Expected orders of accuracy of the schemes are reached.

4.2.2. Sedov test-case [32]
With the Sedov test-case, we assess the robustness of the staggered schemes as well as the ability to restitue

correct cylindrical symmetry. Let rSedov = 1
√

2

√
∆X2 + ∆Y2. Initial data are ρ0 = 1, u0 = v0 = 0, γ = 1.4 and

p0(x, y) =
(γ − 1)εSedov

πr2
Sedov

χ{x2+y2<r2
Sedov}

+ 10−14χ{x2+y2>r2
Sedov}

with εSedov = 0.851072. A scatter plot is realized to display
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Figure 7: Density (top) and pressure (bottom) profiles on [0 : 1] for the Woodward test-case problem [46] at time t = 0.038, CFL=0.7, 300 cells,
monotonicity limiters used during the remap phase, no artificial viscosities during the Lagrangian phase, for the 3rd, 4th and 6th order staggered
schemes.

Nx STAG-3 STAG-4 STAG-5 STAG-6 STAG-7 STAG-8
50 3.3e-1 · 1.5e-1 · 2.6e-1 · 1.7e-1 · 1.5e-1 · 1.1e-1 ·

100 9.5e-2 1.79 1.9e-2 3.01 4.9e-2 2.41 8.9e-3 4.27 1.2e-2 3.70 2.0e-3 5.83
200 1.6e-2 2.54 1.0e-3 4.19 1.9e-3 4.68 6.5e-5 7.10 8.0e-5 7.20 5.2e-6 8.59
400 2.2e-3 2.89 6.1e-5 4.06 6.1e-5 4.96 7.2e-7 6.48 6.3e-7 7.00 1.6e-8 8.37
800 2.8e-4 2.97 3.9e-6 3.99 1.9e-6 4.98 9.9e-9 6.18 5.0e-9 6.97 1.1e-10 7.17
1600 3.5e-5 2.99 2.4e-7 3.99 5.98e-8 4.99 1.5e-10 6.02 3.9e-11 6.99 3.4e-12 ?

Table 9: l1-error in density and experimental order of convergence for the Lagrange-remap staggered scheme taken on the isentropic vortex
advection test problem [47], until t = 20, CFL=0.9. ? indicates machine precision reached.

profiles of density along each radius in fig. 8 using 100 cells in each direction. Even without the use of artificial
viscosities, the density profile is quite smooth for each scheme. The higher the order of the staggered schemes, the
better the maximum of density near the shock is recovered. The shock position is in good agreement with the analytic
solution for the three staggered schemes.

4.2.3. Rayleigh–Taylor instability [37, 40, 24]
Our last test-case is representative of multi dimensional CFD calculations for a complex problem in a low Mach

regime with both gravity and Navier-Stokes viscous stress tensor. It is a Rayleigh–Taylor instability. For such prob-
lems, colocated schemes struggle to restitute correct hydrostatic profiles, and accuracy is damped. On the contrary,
staggered schemes are not prone to such difficulties. Our initial data for a single perturbation mode are

ρ0(x, y) = 2χ{y>0} + 1χ{y<0},
u0(x, y) = 0,
v0(x, y) = 0.25a(1 + cos(4πx))(1 + cos(3πy))χ{|y| < 1/6},
p0(x, y) = K0 + ρ0(x, y)gy,

(29)

where g = −0.1, K0 = 2.5, a = 10−2. In order to highlight the role of viscosity, computations are run first with the
Euler schemes and then with the Compressible Navier–Stokes (CNS) schemes. The viscous parameters are either
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Figure 8: Scatter plot of density profiles for the Sedov blast-wave test-case using the third, fourth and sixth order staggered schemes (CFL=0.7) at
t = 1.0; 100 cells in each direction.

µ = λ = 0 (Euler) or µ = 10−4 and λ = − 2
3µ (CNS). Periodic boundary conditions are set on the left and right

boundaries, whereas wall boundary conditions are imposed on the top and bottom boundaries. The computation
domain is set to [−0.25 : 0.25] × [−0.75 : 0.75]. Results are depicted in fig. 9. Without viscous stress tensor, the
higher the order, the more modes develop. Without dissipation, Euler schemes are unable to recover correctly the
Rayleigh–Taylor expected profiles, and do not seem to converge as already explained in [24]. On the contrary, using
even a small coefficient of viscosity prevents such modes from developing, and seems to help a lot the numerical
code to reach numerical convergence. This last test problem also highlights that it is relatively easy to incorporate
additional physics to the schemes that have been presented and justified in this work. Here we still consider explicit
time integration, and that the diagonal part of the viscous tensor is discretized at the cell centers, whereas the non-
diagonal ones is at the cell corners.

5. Conclusion

Using an a posteriori internal energy corrector, the proposed staggered schemes are proved to be both conservative
in total energy but also weakly consistent with the Euler equations (see theorem 1). They are able to capture properly
shocks and discontinuities. Ongoing work includes the use of implicit Runge–Kutta sequences or Rosenbrock ones for
time-integration instead of explicit Runge–Kutta sequences. Implicitation is particularly of great interest for low Mach
regimes where the Lagrangian CFL condition is the most restrictive, compared to the remap one. The conservation
and consistency for such sequences are still to investigate.
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