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Abstract

This paper contains a model of singularities occurring in soft tissues due to resorption of matter or drying. An asymptotic treatment,
consistent with the fully nonlinear equilibrium theory near the tip of a crack in a slab is considered in plane strain, plane stress and
poro-elastic modeling. The crack faces are free of stresses but capillary effects or surface elasticity are also included. The tensile
loading applied at infinity is due to the resorption of matter or to fluid flow caused by drying.The asymptotic analysis is completed
by the technique of the J-integral and the stress intensity factor can be evaluated in the three cases.

Keywords: Volumetric Growth and Drying; Spatial Singularity; Path-Independent Integrals; Nonlinear

finite Elasticity;Fracture.

1. introduction

Creases have always fascinated theorists. Observed in mate-
rial sciences, they concern foldings [1], D-cones (developable
cones) [2], origami [3] and also delamination [4]. The main
idea is that a system under loading focuses its elastic energy in
a small area instead of spreading it all over the sample. The sim-
plest example is furnished by the Foppl Von Karman equation
[5] where the juxtaposition of a bending energy in h3 (where h
is the thickness of the sample) is discarded in comparison with
the stretching energy in h, forcing the sample to adopt a de-10

velopable surface [6]. Since these surfaces do not match the
boundaries most of the time, it results a crumpling, combina-
tion of conic points and folds. In swelling experiments, creases
have been experimentally observed going back to Tanaka’s se-
ries of papers [7, 8], more recently in [9, 10, 11]. Occurring in
growth processes, such creases are also revealed in numerical
studies [12, 13]. Since their existence is not fully explained in
volumetric growth, it remains a hot topic for theorists.

On the contrary, a more well established subject in finite elas-
ticity concerns cracks. Cracks are commonly observed when20

a gel or an emulsion loose water as clay soils in hot weather
(see Fig.(1)). This figure exhibits a network of fractures rather
geometrical and is an illustration that drying induces tensile
stresses in thin layers able to nucleate fractures. There is no
loading here as in conventional fracture set-ups and the stresses
originate from the loss of water, then corresponding to the poro-
elastic model. The geometry of such network has been mostly
studied numerically with an hydraulic perspective [14] where
fluid flows are important. A more physical interpretation of the
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fracture branching can also be found in [15, 16], based on suc-30

cessive crack formations where a primary set of fractures is fol-
lowed by secondary cracks joining the primary network at right
angles. Such angular distribution allows the maximal relaxation
of stresses by fracturing in a tensorial field. Clearly, the geomet-
rical aspect of these fracture networks is an interesting topic
in itself but the process requires a treatment in finite elastic-
ity, more precisely poro-elasticity which has not been achieved
yet, to the best of our knowledge. Nevertheless, even if such
pattern is out of the scope of this present work, the poro-elastic
model is presented in the context of fracture here. Fracture is an40

important classical domain of applied mechanics and material
sciences which remains very active nowadays. As an example,
recently the technique of laser nano-fracture in living embryos
has motivated new modeling of fracture shape in orthotropic
elasticity with orthogonal tensile loadings [17]. Exact solutions
for the repartition of stresses have been found in applied math-
ematics with the techniques of holomorphic functional analysis
in ideal loading conditions defined by elementary modes (mode
I in tension, II and III for shear modes). But even when it was
impossible to find exact solutions, physical features can been50

explained without solving completely the stresses. It is the
case for the time scale for break-down [18], the dynamics of
the cracks under loading [19], the path of fracture propagation
which may exhibit or not instabilities or branching [20]. Indeed,
even in linear elasticity, the fact that only few exact solutions
have been discovered [21] for simplified geometries, explains
why theoretical models have been elaborated without solving
all the details of the elastic stresses in the sample. In particular,
many physical results can be predicted from the so called stress
intensity factor [22], derived from the stress at the tip. Since60

a local analysis allows to reach this quantity in linear elastic-
ity, it is tempting to adopt the same strategy for finite elasticity
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and cracks that we will assume here generated by desorption or
drying. In this case, it is possible to compare mode I of fracture
mechanics (mode of fracture only in tension) with the state of
tension generated by resorption of matter. We will show that,
even in 2 D, it is not always easy or possible to establish such
a correct local treatment near the tip of a crack according to the
nonlinearities. If, for the Neo-Hookean model, the analysis is
relatively easy in plane strain elasticity, it is more challenging70

in plane stress.
Our aim is then to demonstrate that a local analysis remains

possible, then showing evidence of the existence of a crack un-
der resorption of matter or drying. We will illustrate the method
on three different cases: two cases on volumetric resorption in
Neo Hookean models in plane strain and plane stress in the
strip geometry or for an infinite periodic array of cracks. We
also consider the poro-elastic model which is a better represen-
tation of gel drying. To complete the local analysis, the path-
independent J-integral [23] is used which allows to connect the80

crack opening at the tip as a function of the drying conditions
imposed at long distances. Extensions [25, 26] or variants of
this integral [27] to more complex problems of finite elasto-
static have been achieved by G. Maugin and collaborators.

Section 2 presents the three models with the associated Euler-
Lagrange equations and boundary conditions including capil-
larity from variation of the elastic energy. Section 3 is devoted
to the asymptotic analysis performed around the tip of the crack
in the three models. Section 4 gives the scaling at the tip or the
stress intensity factor by the technique of the J-integral. Finally90

Section 5 contains conclusions and perspectives about this anal-
ysis.

Figure 1: Dry clay soil. Observe the geometry of the network of fractures.
Pixabay image

2. The Models

We first consider the volumetric growth of a sample, infinite
in the Y direction: −∞ < Y < ∞, also infinite in the positive
X direction. The upper horizontal border is located at X = −L,
in the reference configuration. The origin of the axis is fixed at
the crack tip: (X = 0,Y = 0). We restrict on the Neo-Hookean
model but the results can be extended to more complex non-
linear elasticity models, allowing much more possibilities by100

the multiplication of degrees of freedom. The Z direction is per-
pendicular to the plane considered (see Fig.(2.1)). The growth

tensor G is taken diagonal in each direction (X,Y,Z) for volu-
metric changes, in plane strain or stress (but remains isotropic
for the gel modeling) giving G =Diag(g1, g2, g3).

2.1. Volumetric changes in plane strain elasticity
First, the deformation gradient tensors, the geometric tensor

F and elastic tensor Fe, satisfy the relation Fe = FG−1 in the
volumetric growth hypothesis [28, 29]. It reads:

F =

 xX̃ xỸ 0
yX̃ yỸ 0
0 0 zZ̃

 Fe =

 xX̃/g1 xỸ/g2 0
yX̃/g1 yỸ/g2 0

0 0 zZ̃/g3

 , (1)

where xX̃ = ∂x/∂X̃ and equivalent relationships for the other
coordinates. The material is assumed incompressible, which
implies Det (Fe) = 1 and the incompressibility constraints im-
plies that the Jacobian J̃2d

J̃2d = λ3(
∂x
∂X̃

∂y
∂Ỹ
−
∂x
∂Ỹ

∂y
∂X̃

) = g1g2 (2)

where λ3 is the stretch, assumed constant in the third direction
to satisfy the condition of plane strain elasticity. During growth
or shrinking, the elastic energy is then:

E = g1g2g3
µ

2

∫
Ṽ

(
Trace[FeFT

e ] − 3 − 2 p̃(J̃2D − g1g2/λ3)
)

dṼ

(3)
Ṽ being the volume in the reference configuration before
growth, µ the shear modulus and p̃ is the Lagrange parameter
which allows to impose the constraint Eq.(2). At the boundary
of the sample and on the crack lips, surface effects such as sur-
face tension T and surface elastic energy ES can be treated. In
particular for gels, the surface elastic energy has shown impor-
tance, see recent works [30, 31]

T =

∫
s
γ(~n)ds; ES = g3gi

µs

2

∫
S

(
∂xi

∂X̃i

)2

dZ̃dX̃i (4)

where s is the surface of the free boundary in the current con-
figuration and the index i corresponds to the surface coordi-
nate. After rescaling the coordinates (X̃, Ỹ) by X = g1X̃,
Y = g2Ỹ , Z = g3Z̃ and transforming the Lagrange parameter
into p = g1g2 p̃, it is possible to eliminate the growth eigenval-
ues from the elastic energy per unit length in the third direction
which gives:

E =
µ

2

∫
S

{
x2

X + x2
Y + y2

X + y2
Y + λ2

3 − 3 − 2p(J2D − 1/λ3)
}

dXdY

(5)
where J2D = xXyY − xYyX . To simplify in the following, we
restrict on λ3 = 1. The Euler-Lagrange equation can be easily
found (see also [32]):{

∆x = pXyY − pYyX

∆y = pY xX − pX xY ,

}
(6)

where ∆ is the two-dimensional Laplacian operator. Boundary
conditions depend on the free surface under consideration. Fo-
cussing on the upper boundary where X = −L, we have:

s11 = xX − pyY = d0
d

dY
xY√
x2

Y +y2
Y

for X = −L

s21 = yX + pxY = d0
d

dY
yX√
x2

Y +y2
Y

for X = −L

 (7)
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where d0 = γ/µ. For the boundary conditions along the lips of
the creases (Y=0), it comes:

s22 = yY − pxX = d0
d

dX
yX√
x2

X+y2
X

for Y = 0

s12 = xY + pyX = d0
d

dX
xX√
x2

X+y2
X

for Y = 0

 (8)

where s is the nominal stress. Let us consider now how these
boundary conditions are modified if we incorporate a surface
energy term [30, 31]. We restrict on the crack face Y = 0. Then,
coming back to the variational analysis, it is easy to show that
only the normal stress is modified resulting in:

s22 = d0
d

dX
yX√

x2
X + y2

X

+ dµ
d

dX
(xX − ps) (9)

where ps is the equivalent Lagrange parameter for the surface
and dµ = µs/µ.

X

Y

Figure 2: Crack representation in a strip of length Λ in the reference config-
uration. The axis are defined at the tip. The sample is infinite in the positive
X direction. When the sample is infinite in the Y direction, periodicity is post-
poned.

2.2. Drying processes represented by the poro-elastic model
Gels contain water and the drying cannot be described cor-

rectly by the Kröner-Lee decomposition. Indeed, during drying,
water is ejected from the gel and we are confronted to a solid
mixture of polymers where solvent molecules can move freely
between a reservoir and the sample. In this case, the poten-
tial energy to minimize is indeed the Grand Potential Ŵ which
is constructed via a Legendre transformation of the Helmholtz
free energy density of the mixture W = W(F,C) where F is
the deformation gradient and C the solvent concentration. In-
compressibility of all constituents gives Det F = 1 + νC, νC be-
ing the volume of the solvent divided by the volume of the dry
network. Eliminating C, we finally derive (see also [10, 11]):

Ŵ =W(F, (
Det(F) − 1

ν
) − Π (Det(F) − 1) (10)

Π is the dimensionless chemical potential scaled with µ and
ν. Notice that the last term in Eq.(10) is in fact a surface term.
ForW, we adopt the generalization of the Neo-Hookean model
[11] and the strain-energy density is then:

W =
µ

2

(
x2

X + x2
Y + y2

X + y2
Y − 2 − 2LogDet(F)

)
(11)

The Euler-Lagrange equations and the boundary conditions,110

Eqs.(7,8), are the same as Eq.(6) providing the pressure is
replaced by 1/Det(F). But, the stresses given in Eqs.(7,8)
concerning free borders do not vanish, they must balance
the ”chemical stress” and we have: sT ~N = Π(Det(F)F−T)~N
which at the crack surface, gives surface terms like : δs22 =

(Π)(∂x/∂X) and δs12 = (Π)(−∂y/∂X) to eventually add to cap-
illarity and surface elastic stresses. Let us now consider the last
model, supposed to be more adapted to thin membrane.

2.3. Volumetric resorption in plane stress elasticity

As suggested by the name itself of this modeling, plane stress
elasticity treats deformations where the stress components only
depend on the coordinates (X,Y). It means that for the defor-
mation gradient tensor Eq.(1) remains correct, but the stretch in
the vertical direction is a function of (X,Y). Such modeling is
proposed for thin plates of thickness H in finite elasticity. The
incompressibility constraint becomes:

J3d = λ3(X,Y)
(
∂x
∂X

∂y
∂Y
−
∂x
∂Y

∂y
∂X

)
= 1 (12)

where λ3 is a function on X and Y only to satisfy the definition
of plane stress modeling. The elastic energy becomes:

E3D = g3H
µ

2

∫
S

{
D2D + λ2

3 − 3 − 2p3D(λ3J2D − 1)
}

dXdY

(13)
where we have introduced the elastic energy density: D2D =120

x2
X + x2

Y + y2
X + y2

Y − 2. Elementary variation of E3D with respect
to λ3 gives: p3D = λ3/J2D = λ2

3. So the plane stress Euler-
Lagrange equations can be derived from Eqs.(6,7,8) by replac-
ing p by λ3

3 everywhere, taking into account Eq.(12). As seen
later on, such a modification, plane strain versus plane stress,
introduces a strong nonlinearity making more difficult the local
analysis.

3. Local analysis around a pre-existing crack

In this section, a local asymptotic of the deformations and
stresses in the vicinity of the pre-existing crack tip is performed.130

We focus on mode I of elasticity, it means that the crack is under
tension. The fact that a regular analysis can be achieved is a
proof that these cracks may exist in the framework chosen for
the nonlinear elastic models. As mentioned in [33] and also in
[34] for cracks in compressible materials, it is absolutely not
always the case.

3.1. Local treatment for the volumetric growth model

In the close vicinity of the singularity, a local frame is defined
in polar coordinates, transforming the (X,Y) axis into (R,Θ).
Remember that X and Y are rescaled coordinates via the growth
eigenvalues, so also R and Θ. R = 0 is chosen at the tip as
(X = 0,Y = 0). Here, the strategy of [33] is closely followed.
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Expanding the x and y coordinates in powers of R, we then
derive for the crack neighborhood (see Fig.(2.1)):{

x = α2R sin2 Θ
2 + R3/2F1(Θ) + R2F2(Θ) + O(R)...

y = β1R1/2 sin Θ
2 + R3/2G1(Θ) + R2G2(Θ) + O(R2)...

}
(14)

where all unknown angular functions of Θ are found order by
order, by solving the Euler-Lagrange equations, Eq.(6), and ap-
plying the incompressibility constraint:

F1(Θ) = 4
3β1

cos Θ
2

(
1 + 2 sin2 Θ

2

)
F2(Θ) = 1

β2
1

sin2 Θ
2

(
b2 + a2 sin2 Θ

2

)
a2 = α2(6b3 − α

2
2)


Notice that the leading order of x, Eq.(14), being R, the co-
efficient in front is named α2 and not α1 which would be the
chosen coefficient in front of R1/2. In a similar way, we obtain
the functions corresponding to the horizontal displacement: G1(Θ) = ( b3

β1
sin 3 Θ

2 −
α2

2
2β1

sin Θ
2 )

G2(Θ) = −α2
β2

1
(2 sin Θ − b4 sin 2Θ)

 (15)

while the pressure reads:

p =
2α2

β1
R1/2 cos

Θ

2
+

8
β2

1

R
(
1 + p1 sin(

Θ

2
)2
)

+ P0 (16)

P0 and p1 are constants which depend on the boundary con-
ditions, Eq.(8). First, let us consider that there is no surface
effects on the crack.140

3.1.1. Free crack lips, without capillary and surface effects
If no surface energy is included, then P0 = 0. On the crack,

we have:

s12 = −
2
β1

(1 + 2p1)
√

R; srr = −
2α2R
β2

1

(b4 − 4p1 − 3) (17)

which gives p1 = −1/2 and b4 = 1.

3.1.2. With surface effects
Adding surface tension, the shear stress becomes

s12 = −
2α2d0 + β2

1P0

2β1
√

R
−

2
√

R
β1

1 + 2p1 −
3d0

β2
1

(α3
2 − b2 − 8α2b3)


(18)

giving the change in the pressure:

P0 = −2
α2d0

β2
1

; p1 = −
1
2

+
3d0

2β2
1

(α3
2 − b2 − 8α2b3) (19)

Using the value obtained for P0 from the cancellation of the
shear stress, the leading term for the normal stress s22 is a con-
stant when the surface elastic energy is added: s22 = 2(α3

2−b2−

6α2b3)dµ/β2
1. Consequently, cancellation of s22 gives b2 = −a2,

according to Eq.(15). Accordingly, we deduce that the elastic
surface effect selects a coefficient entering the determination of
F2(Θ) which becomes −a2/(4β2

1) sin(Θ)2. The next order is not150

affected and b4 keeps the same value, b4 = −1.
To conclude capillarity modified the pressure by adding a

correction proportional to the parameter d0 while the surface
elastic stress selects the shape of the crack profile by fixing one
of the angular function.

3.2. Local analysis near the singularity for the poro-elastic
model

The Euler-Lagrange equations lead the following asymptotic
expansion:{

x = α1R1/2 cos Θ
2 + α2R cos Θ + R3/2H1(Θ) + O(R2)

y = β1R1/2 sin Θ
2 + β2R sin Θ + R3/2H2(Θ) + O(R2),

}
(20)

where {
H1(Θ) = 1

α1
cos Θ

2 + α3 cos 3Θ
2

H2(Θ) = 1
β1

cos Θ
2 + β3 cos 3Θ

2

}
(21)

Let us examine now the boundary conditions.

3.2.1. No surface effects
Boundary conditions, Eqs.(8), when applied on the crack sur-

face, become:

s12 =
α1 − β1Π

2
√

R
−

3
√

R
2α1β1

{
β1(1 + α1α3) + Πα1(1 − β1β3)

}
(22)

s22 = β2 − α2Π + O(R) (23)

It is then possible to calculate the coefficients order by order:160

β1 = α1/Π, β2 = α2Π....suggesting that if the first line of coef-
ficients is known, then all coefficients are fixed.

3.2.2. Interfacial contributions on the surface crack
Let us consider the effect of surface tension and surface elas-

tic energy acting on the crack faces. It can be a way to select
unknowns. Since the equivalent pressure is 1/J2D in this model,
we can assume that the surface pressure is 1/xX and the normal
nominal stress s22 is modified

s22 = β2−α2Π+2d0
α2

2

β2
1

+dµ
2(1 + α2

2)

3α2
1α

2
2β1

(β1(α2−3α2
1α4)+5α1β2),

(24)
while for the shear on the crack, it reads:

s12 =
α1 − β1Π + 2α2d0/β1

2
√

R
(25)

So the capillarity modifies the relationship between β1, being
now a function of α1 and α2 , the stress surface energy gives a
relation for β2 as a function of the previous coefficients:α1, β1
and β2 but also α4. If dµ = 0 but d0 , 0, then we get:

α2 = −β1A; β2 = −A(2Ad0+β1Π) with A = (α1−β1Π)/(2d0)

3.3. Local analysis for the plane stress model
The analysis is more delicate for this model since it tremen-

dously depends on the power of the expansions in x and y, so on
initial guess. Assuming as an example that x ∼ Ra and y ∼ R1/2,
we easily obtain that J2D ∼ R−3/2+a and the apparent pressure
p ∼ R3(3/2−a). Also the left-hand side of the Euler-Equation,
Eq.(6), is of order R(a−2) if the first terms are not equal to the
Real Part of an holomorphic function. The right-hand-side is
of order R3(3/2−a)R1/2R−2 which gives R3(1−a). The same analy-
sis can be achieved for the second Euler-Lagrange equation and

4



the right-hand side in this case behaves as R3(3/2−a)RaR−2 so as
R5/2−2a. Let us choose a = 1 as in Section (3.1) and a = 1/2 as
for the poro-elastic model (Section 3.2). If a = 1, automatically
we derive the following expansion for x and y which respects
both the scaling estimate made above and the symmetry: x = Σ2,3(R,Θ) + R2K1(Θ) + O(R2)

y = Σ̃1,4(R,Θ) + R5/2K2(Θ) + O(R5/2)
(26)

If a = 1/2, then we derive: x = Σ1,6(R,Θ) + R7/2K3(Θ) + O(R7/2)

y = Σ̃1,6(R,Θ) + R7/2K4(Θ) + O(R7/2)
(27)

with 
Σ j,k(R,Θ) =

k∑
j

α jR j/2 cos jΘ/2

Σ̃ j,k(R,Θ) =

k∑
j

β jR j/2 sin jΘ/2

(28)

Concerning the choice of the first terms in Eq.(26), one can also
choose x ∼ R1/2 and y ∼ R, but both choices lead to singular-
ities on the crack lips for the functions K(θ) representing the
first non holomorphic term in the expansion. So we eliminate
such choice and select the expansion given by Eq.(27). Solving
Eqs.(6) gives the followings results for K3 and K4:

K3(Θ) =
8

α3
1β

2
1

cos
Θ

2
+ k3 cos

7Θ

2

K4(Θ) =
8

α2
1β

3
1

cos
Θ

2
+ k4 sin

7Θ

2

(29)

Boundary conditions Eqs.(8) on the crack surface are trans-
formed into:

s12 =
α1

2
√

R
−

3
2
α3
√

R; s22 = −64α2

(
R

α1β1

)3

(30)

The last relation being valid if β2 = β4 = β6 = 0. The only
way to cancel the shear stress at the tip is to choose α1 = 0 or
to introduce surface effect. However taking α1 = 0 means to
choose Eq.(26) that we must reject because of singularities of
the angular function K1.

3.3.1. Capillarity or surface stress170

The previous expansion fails in absence of surface effects that
we introduce now, following Eq.(8). Defining the parameter
and after revisiting the local expansion allows to eliminate the
shear stress singularity giving:

s12 = (
α1

2
+ d0

α2

β1
)

1
√

R
+ O(

√
R) (31)

So α2 = −α1β1/(2d0) and the normal stress component is then

s22 = β2 + α2
1/(2d0) − 2dµ(1 + 2(3d0/α1β1)4) + O(R) (32)

In this case, capillarity is necessary to allow the existence of
the crack by cancelling the singularity of the shear stress and

avoiding the choice Eq.(26). The calculation can be achieved
order by order, in particular β2 does not vanish and is equal to
−α2

1/(2d0), if the elastic surface stress is not considered. Here
again, it simply modifies the values of coefficients. However,
one may notice that 2 coefficients remain free at this stage α1
and β1. We conclude that for plane stress, it is possible to find
a correct local expansion around the crack tip if capillarity is
included.180

3.4. Partial conclusion on the local analysis

We have found a way to calculate order by order, the crack
shape in finite elasticity. Such asymptotic analysis seems sys-
tematic but its validity is restricted to the convergence of the
series expansions, difficult to prove for series of 2 variables. As
shown by the 3 cases investigated here, β1 remains an unknown
coefficient while α1 vanishes or is a function of β1 or remains a
free degree of freedom. Concerning the crack shape derived by
imposing Θ = ±π, in the 3 cases, it is parabolic and since the
crack is in tension, we anticipate the fact that β1 < 0. In the next190

paragraph, we use the technique of path-independent integral to
relate β1 to the tension induced by drying or resorption.

4. Evaluation of unknowns via path-independent integrals

Path independent integrals are a very useful tool to fix con-
stants in the asymptotics around singularities. It has been con-
sidered a lot in crack problems [23] mostly in the context of
linear elasticity. However, it has been extended to nonlinear
elasticity in various configurations [27] and when elasticity is
combined to other singular fields such as electrostatic [25, 26].
For a review of the foundation of this technique and extension to
other integrals in other contexts, see [24]. Here, we use the path
independent J integral (in the reference configuration) valid for
finite elasticity. J being a vector, we focus on J1:

J1 =

∮
(WN1 − Nk sikFi1)dl = 0 (33)

This integral cancels for a closed contour when it does not en-
close a singularity. So we choose the contour which follows
the slab of lateral dimension Λ in the reference configuration,
or follows the unit of a periodic network of cells in the same
geometry. Our contour contains the upper border, includes the
two faces of the crack and avoids the neighborhood of the crack
tip (the circle in Fig.(2.1)), then the 2 lateral sides of the cell200

and finally an horizontal path far from the tip. For reason of
symmetry, contribution to J1 cancels on the crack lips and on
contour lines parallel to the X axis (exterior vertical border of
the slab). Indeed N1 = 0 in this case and assuming that the
stress and stretch, far away from the crack, remain diagonal,
the second term in Eq.(33) vanishes.

4.0.1. The J-integral around the crack tip
Focussing on the singularity, it is easy to show (and it is

known) that a crack tip in R1/2 contributes to the J integral by a
constant which can be evaluated by considering a small circular
contour around it, with a radius R = ε, ε → 0 (see the contour in
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Fig.(2.1). In the 3 models, the energy term, being independent
of Θ, cancels when integrated along the small circle and only
the stress contribution (second term in Eq.(33)) contributes:

Jcrack = −R
∫ π

−π

dΘ cos Θ(s11xX + s21yX)

− R
∫ π

−π

dΘ sin Θ(s12xX + s22yX)
(34)

in the limit R → 0. In the case of volumetric growth, we
have α1 = 0 and the pressure in the stress gives a subdom-
inant contribution. Only s22 ∼ β1 cos Θ/2/(2

√
R) and s21 =

−β1 sin Θ/2]/(2
√

R) contribute finally leading to:

Jcrack =
β2

1π

4
(35)

For the poro-elastic model and the plane-stress model with cap-
illarity, again the ”fictive” pressure gives no contribution around
the crack and

Jcrack =
(β2

1 − α
2
1)π

4
Since, for the poro-elastic model, α1 = Πβ1 in absence of sur-
face tension, we also get: Jporo

crack = β2
1(1 − Π2)π/4. If surface

tension exits but remains very small, a good estimation would210

be α1 ∼ 0, in plane stress. In this case, surface tension plays the
role of a singular perturbation.

4.0.2. The J-integral in the volumetric or plane stress model of
resorption

We now need to close the contour but only ideal situations
give exact results, even in linear elasticity. Very often, in our ge-
ometry, the choice is made to consider a crack of finite length
with 2 tips, then to consider the horizontal paths at both in-
finities, where it is possible to play with eventually 2 different
experimental conditions. Here we imagine that the cell is large
enough so that the crack does not perturb too much the imposed
stress field due to the volumetric process. In plane strain, one
easily gets for the elastic stretch tensor: Fe =Diag (g2, 1/g2, 1).
The second term in Eq.(33) vanishes on both horizontal paths
parallel to the Y axis while the lateral borders of the strip are
under tension with s22 = 1/g2 − g3

2 , if g2 < 1. So only the
eigenvalue g2 is responsible for the tensile stress in this geome-
try. Jborder = −1/2(g2

2 − 1)2/g2
2)(g2Λ) which gives for the coef-

ficient β1:

β1 = 2
g2

2 − 1
g2

√
g2Λ

π
(36)

The choice is made of a negative sign for β1 which is physi-
cally more relevant. In plane stress elasticity, one needs to take
into account the stretch in the third dimension in the energy es-
timate. Assuming the same base state as before with y = Ỹ so
∂y/∂Y = 1/g2, we deduce from Eq.(7): ∂x/∂X =

√
g2 = λ3

which changes the value of the energy density and finally:

β1 = −2
√

2
√

g2 + 1/g2
2 − 3

√
g2Λ

π
(37)

when α1 is negligible.

4.0.3. The J-integral and the poro-elastic model
We assume the unit cell in three dimensions. Drying is an

isotropic process and all dimensions are characterized by a dry-
ing coefficient at time t. We call v̄ the volume decrease per unit
volume, then v̄ corresponding to g1g2g3. Here again, the axial
direction imposed by the geometry gives F =Diag(v̄, 1, 1) (other
experimental choices can be made, like in [11]). Evaluation of
the stress s11 at the free upper border leads to Π = v̄ − 1/v̄,
which proves that in drying, the chemical potential is negative.
One can calculate now the J integral on the horizontal paths,
we get on both lines the same value and using Jporo

crack, it reads:

β2
1(1 − Π2)π/4 = v̄2 − 1 − 2Logv̄ − 2Π; Π = v̄ −

1
v̄

(38)

which finally gives

β1 = −2

√
(v̄ − 2)Π − 2Logv̄/v̄2

1 − Π2

√
v̄1/3Λ

π
(39)

Notice that the coefficient β1, calculated in Eqs.(36,37,39), cor-
responds to the rescaled coordinates for (X,Y,Z). The corre-
sponding β̃1 in the coordinate system (X̃, Ỹ , Z̃) will be β̃1 =

β1/
√

g2.220

5. Conclusion

We have presented a local analysis of cracks in finite elas-
ticity in two space dimensions. Three models are consid-
ered based on the the Neo-Hookean elasticity. The method is
straightforward and the J-integral allows to relate the main coef-
ficients near the tip to the resorption or drying rates at long dis-
tances, then showing the consistency of the analysis. For com-
pleteness, surface tension and surface elastic energy are added,
although these effects do not change really the results, appear-
ing mostly as perturbation, except for the plane stress model.230

It is known that drying induces cracks (see Fig.(1)), however
when growth is anisotropic, only the growth strain perpendic-
ular to the crack g2 is responsible for the crack formation. Al-
though the theory of cracks is rather well established, little is
known in the context of finite elasticity and in particular when
the tissue itself is anisotropic. However, experimentalists in
biophysical laboratories make laser cuts on embryos to access
the residual stresses due to growth. This technique has the ad-
vantage to obtain the growth pre-stress or pre-strain in different
parts of the embryo without killing it. There is no doubt that240

more works are required on fracture in both anisotropic growth
and anisotropic tissues [17].
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[6] A. Gray, Modern differential geometry of curves and surfaces, Boca Ra-

ton: FL: Chemical Rubber Company (1993)
[7] T. Tanaka it et al. Mechanical instability of gels at the phase-transition,

Nature 325 (1987) 796-798.
[8] E. Matsuo, T. Tanaka, Patterns in shrinking gels, Nature 358 (1992) 482-270

485.
[9] V. Trujillo, J. Kim, R.C. Hayward, Creasing instability of surface attached

hydrogels, Soft Matter 4 (2008) 564569.
[10] W. Hong, X. Zhao, J. Zhou, Z. Suo, A theory of coupled diffusion and

large deformation in polymeric gels, J. Mech. Phys. Solids 56 (2008)
1779-1793.

[11] J. Dervaux, M. Ben Amar, Buckling condensation in constrained growth,
JMPS (2011) 538-560.

[12] B. Li, F. Jia, Y.P. Cao, X.Q. Feng, H. Gao, Surface wrinkling pat-
terns on a core-shell soft sphere. Phys. Rev. Lett. 106 (2011) 234301.280

(doi:10.1103/PhysRevLett. 106.234301)
[13] F. Jia, B. Li, Y.P. Cao, W.H. Xie, X.Q. Fen, Wrinkling pattern evolution

of cylindrical biological tissues with differential growth Phys. Rev. E 91
(2015) 012403. (doi:10.1103/PhysRevE.91.012403)

[14] M. F. Benedetto, S. Berrone, S. Pieraccini, S. Scialo,The virtual element
method for discrete fracture network simulations, Journal of Computa-
tional Physics, 280, 135-156 (2014)

[15] Y Couder, L Pauchard, C Allain, M Adda-Bedia & S. Douady, The leaf
venation as formed in a tensorial field. Eur. Phys. J. B 28, 135-138 (2002)

[16] C. Allain & L. Limat, Regular patterns of cracks formed by directional290

drying of a collodial suspension.Phys. Rev. Lett. 74, 2981-2984 (1995)
[17] T. Kim Vuong-Brender, M. Ben Amar, J. Pontabry, M. Labouess,e The

interplay of stiffness and force anisotropies drive embryo elongation eLife
6 :e23866 (2017)DOI: 10.7554/eLife.23866

[18] D. Bonn, H. Kellay, M. Prochnow, K. Ben-Djemiaa, J. Meunier , Delayed
fracture of an inhomogeneous soft solid. Sciences280 (1998) 265-267.

[19] M. Adda-Bedia, M. Ben Amar Stability of quasi-equilibrium cracks under
uniaxial loading, Phys. Rev. Lett. 76(9) (1996) 1497-1500.

[20] M. Adda-Bedia, R. Arias, M. Ben Amar , F. Lund Dynamic instability of
brittle fracture, Phys. Rev. Lett. 82 (1999) 2314-2317.300

[21] E. Yoffe, The moving Griffith crack, Phil. Mag. 42 (330) (1951) 739-750.
[22] G. Freund, Dynamic fracture mechanics, Cambridge University Press

(1990)
[23] J.R. Rice, A path independent integral and the approximate analysis of

strain concentration by notches and cracks. J. Appl. Mech.35 (1968) 379-
386 .

[24] J.K. Knowles and E. Sternberg, On a class of Conservation Laws in Lin-
earized and Finite Elastostatics, Archive for rational mechanics and anal-
ysis 1972 Springer.

[25] G.A. Maugin, M. Epstein,The Electroelastic Energy-Momentum Tensor.310

Proc. Roy. Soc. A 433 (1991) 299-312.
[26] C. Dascalu, G.A. .Maugin, Energy-release rates and path-independent in-

tegrals in electroelastic crack propagation, International Journal of Engi-
neering Science 32,(1994) 755-765.

[27] C. Trimarco, G.A. Maugin, Bui’s path-independent integral in finite elas-
ticity Meccanica 30 (1995) 139-145.

[28] A.K. Rodriguez, A. Hoger, A. McCulloch, Stress-dependent finite growth
in soft elastic tissue. J. Biomech. 27 (1994) 455-467.

[29] A. Goriely, The Mathematics and Mechanics of Biological
Growth.Interdisciplinary Applied Mathematics, Springer (2017)320

[30] C.Y. Hui, A. Jagota, Surface tension, surface energy, and chemical poten-
tial due to their difference 29 (36) (2013) 11310-11316.

[31] R.W. Style, A. Jagota, C.Y. Hui, E. R. Defresne. Elastocapillarity: Surface
Tension and the Mechanics of Soft Solids. Annual Review of Condensed
Matter Physics 8 (2017) 99-118.

[32] M. Ben Amar, P. Ciarletta, Swelling instability of surface-attached gels as
a model of tissue growth under geometric constraints. JMPS 58 (2010)
935-954.

[33] R.A. Stephenson,The equilibrium field near the tip of a crack for finite
plane strain of incompressible elastic materials Journ. Elast. 12(1) (1992)330

65-98.
[34] JK Knowles, E Sternberg An asymptotic finite-deformation analysis of

the elastostatic field near the tip of a crack.Journal of Elasticity 3 (2)
(1973) 67-107. doi:10.1007/BF00045816.

7


	introduction
	The Models
	Volumetric changes in plane strain elasticity
	Drying processes represented by the poro-elastic model
	Volumetric resorption in plane stress elasticity

	Local analysis around a pre-existing crack
	Local treatment for the volumetric growth model
	Free crack lips, without capillary and surface effects
	With surface effects

	Local analysis near the singularity for the poro-elastic model
	No surface effects
	 Interfacial contributions on the surface crack

	Local analysis for the plane stress model
	Capillarity or surface stress

	Partial conclusion on the local analysis

	Evaluation of unknowns via path-independent integrals
	The J-integral around the crack tip
	 The J-integral in the volumetric or plane stress model of resorption
	The J-integral and the poro-elastic model


	Conclusion
	Acknowledgments

