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Exploiting Negative Evidence for Deep Latent
Structured Models

Thibaut Durand, Nicolas Thome and Matthieu Cord

Abstract—The abundance of image-level labels and the lack of large scale detailed annotations (e.g. bounding boxes, segmentation
masks) promotes the development of weakly supervised learning (WSL) models. In this work, we propose a novel framework for WSL of
deep convolutional neural networks dedicated to learn localized features from global image-level annotations. The core of the approach
is a new latent structured output model equipped with a pooling function which explicitly models negative evidence, e.g. a cow detector
should strongly penalize the prediction of the bedroom class. We show that our model can be trained end-to-end for different visual
recognition tasks: multi-class and multi-label classification, and also structured average precision (AP) ranking. Extensive experiments
highlight the relevance of the proposed method: our model outperforms state-of-the art results on six datasets. We also show that our
framework can be used to improve the performance of state-of-the-art deep models for large scale image classification on ImageNet.
Finally, we evaluate our model for weakly supervised tasks: in particular, a direct adaptation for weakly supervised segmentation provides
a very competitive model.

Index Terms—Weakly Supervised Learning, Convolutional Neural Networks, Structured Outputs, Image Classification, Ranking,
Semantic Segmentation.
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1 INTRODUCTION

O VER the last few years, deep learning and Convolu-
tional Neural Networks (ConvNets) [1] have become

a key ingredient of visual recognition systems. They have
been successfully applied to various visual recognition
tasks, e.g. image classification [1], [2], [3], object detec-
tion [4], [5], [6], semantic segmentation [7], [8], [9]. Learning
standard architectures (AlexNet [1], VGG16 [2], ResNet [3])
requires a huge number of training examples, which limits
the number of potential training datasets. But it has been
shown that these networks can be efficiently transfered on
small datasets [10], [11]: the common practice is to use
models pre-trained on large scale datasets, e.g. ImageNet
[12], and to fine-tune them on the target domain.

As objects could be small and appear at different lo-
cations in the image, several frameworks [13], [14] rely
on bounding boxes to train object-centric classifiers, and
apply the classifiers by searching over different locations
within the images. However, these rich annotations rapidly
become costly to obtain and difficult to scale up [15], [16].
Another approach is to use Weakly Supervised Learning
(WSL) models. The idea is to simultaneously learned a
model to classify and localize objects, with only image-
level labels. This is a challenging task, because the only
available information for training is the presence / absence
of the objects in the image [17], [18]. There is no information
about the location or the size of the objects in the image.
The aim of this paper is to learn localized representations
for image classification with only image-level labels during
training, indicating the presence or absence of a category.
We call this problem weakly supervised because our model
first localizes the discriminative regions, and then uses the
predicted regions to perform image classification. We show
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that these localized representations can be used for object
localization and semantic segmentation. We use the term
WSL whatever the evaluated prediction.

Recently, several methods have been proposed for WSL
of deep ConvNets with image-level labels [17], [18], [19],
[20], [21], [22]. The key issue is to determine how to pool the
regions to have a score per class. The output of the ConvNet
is a detection map for each category, so to train it with stan-
dard classification loss, it is necessary to aggregate the maps
into a global prediction for each class. This pooling issue is
also present in WSL structured models [23], [24], [25], [26].
The most popular pooling is the max pooling [17], [19], [23],
which selects the best region to perform prediction. In the
case of binary classification, this pooling is an instantiation
of the Multiple Instance Learning (MIL) paradigm [27]. In
another way, some pooling strategies propose to use all
regions to perform prediction, by marginalizing over the
regions [18], [24], [25].

In this work, we propose a new approach to auto-
matically learn localized features, with a pooling strategy
explicitly encoding negative evidence. Our pooling function
use both maximum and minimum scoring regions. The
maximum regions seek discriminative regions for the class
whereas the minimum regions seek regions indicating the
absence of the class i.e. that provide a counter-evidence for
the presence of a class. For instance, a cow detector should
strongly penalize the prediction of the bedroom class. For a
multi-label classification task, our model learn positive and
negative correlation between object classes.

We propose several instantiations of our model for clas-
sification and structured Average Precision (AP) ranking.
In particular, we show that our pooling function allows
to solve exactly and efficiently both inference and loss-
augmented inference problems in the AP ranking case,
which is not the case with max pooling [28]. We apply our
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weakly supervised structured model to end-to-end training
of deep ConvNets with weak supervision. We design a fully
convolutional network architecture which enables fast re-
gion feature computation by convolutional sharing. Finally,
we evaluate our model on different applications: classifica-
tion, ranking, pointwise localization and segmentation. Our
model outperforms previous state-of-the-art results on six
classification datasets. We also perform an analysis of our
model, including an ablation study.
Contributions. This paper extends two conference papers
[29] and [30]. Our contributions are threefold. First, we in-
troduce a unified framework for pooling, which generalizes
standard WSL models as special cases, including our model
[29] (Section 3.5). This study enables a better understanding
of the difference between structured WSL models and their
respective pooling functions, and is supplemented by a
detailed experimental comparison in Section 6.3.4. Secondly,
we propose a fully convolutional network based on ResNet-
101 (Section 4.1) instead of VGG16, to learn feature maps
with more accurate resolution than in [30], which is crucial
for localization. Finally, we extend the experimental valida-
tion of [29], [30] at several levels. We perform experiments
on the large scale ILSVRC 2012 classification dataset [12],
showing a large improvement with respect to similar net-
works with the same number of parameters (Section 6.2).
We also show that our model is able to learn localized fea-
tures and can be successfully applied to weakly supervised
object localization (Section 6.4) and semantic segmentation
(Section 6.5).

The paper is organized as follows. In Section 2, we give
an overview of the most relevant related work. Section 3
describes our weakly supervised structured model, which is
based on negative evidence. We also provide a comparison
between our model and existing weakly supervised struc-
tured models. In Section 4, we propose a fully convolutional
network architecture, with a new prediction layer based on
the weakly supervised structured model of Section 3. We
detail the learning and instantiations for classification and
ranking in Section 5. Section 6 presents the experimental
studies.

2 STATE-OF-THE-ART

Deep ConvNets. The computer vision community is cur-
rently witnessing a revolutionary change, essentially caused
by ConvNets and deep learning. Beyond the outstanding
success reached in the context of large scale classification
(ImageNet [12] or Places [31]), deep features also prove to be
very effecticient for transfer learning: state-of-the-art results
on standard benchmarks are nowadays obtained with deep
features [10]. Several studies reveal that performances can
further be improved by collecting large datasets that are
semantically closer to the target domain [31], or by fine-
tuning the network [11].

Despite their excellent performances, current ConvNet
architectures only carry limited invariance properties. [32]
has shown that, although a small amount of shift invariance
is built into the models through subsampling (pooling) lay-
ers, strong invariance is generally not dealt with. Recently,
attempts have been made to overcome this limitation. Some
methods revisit the BoW model with deep features as local

region activations [33], [34] or design BoW layers [35]. The
drawback of these models is that background regions are
encoded into the final representation, decreasing its dis-
criminative power. Another option to gain strong invariance
is to explicitly align image regions, e.g. by using Weakly
Supervised Learning (WSL) models.

2.1 Pooling scheme for WSL

Learning object detectors with image-level annotations is
a common WSL problem. Most WSL methods are based
on the Multiple Instance Learning (MIL) [27] paradigm: an
image is regarded as a bag of instances (regions), and there
is an asymmetric relationship between the bag and instance
labels. A bag is positive if it contains at least one positive
instance, and negative if all its instances are negative. MIL
models thus perform image prediction through its max
scoring region. The Latent SVM (LSVM) [36] is the most
popular instantiation of MIL for computer vision, and its
use in Deformable Part Model (DPM) [36] showed excellent
performances for object detection. [17], [19], [21] use a
spatial max pooling for WSL of deep ConvNets. Regarding
non-convex optimization issues, a multi-fold MIL procedure
is introduced in [37].

A limitation of the max pooling is related to its sensitivity
to noise in the region scores, because it only uses the most
discriminative region [20]. To increase robustness, several
approaches propose to use several regions. The authors of
[18] use the global average pooling (GAP), and show that this
pooling can find all the discriminative regions of a category.
[20], [22], [38] observe that this pooling have problems to
identifying the extent of the object: the models trained with
max pooling tend to underestimate object sizes, while the
models trained with GAP overestimate them. [22] proposes
a trade-off between max and average pooling by using a log-
sum-exp pooling (LSE). Similarly, [38] introduces the global
weighted rank-pooling (GWRP), where max pooling and GAP
are special cases.

Recently, interesting MIL extensions have been intro-
duced in [39], [40], [41], [42]. All these methods use a bag
prediction strategy which departs from the standard max
scoring function in MIL, especially due to the relaxation of
the common Negative instances in Negative bags (NiN) MIL
assumption. In the Learning with Label Proportion (LLP)
framework [39], only label ratios between ⊕/	 instances
in the bags are provided during training. In [40], the LLP
method of [39] is explicitly applied to MIL problems, in the
context of video event detection. LLP outperforms baseline
methods (mi/MI-SVM [43]), especially by its capacity to
relax the NiN assumption. In [41], the authors question
the NiN assumption by claiming that it is often violated
in practice during image annotation: human rather label
images based on their dominant concept than on the actual
presence of the concept in each sub-region. To support the
dominant concept annotation, the authors in [41] introduce
a prediction function selecting the top scoring instances in
each bag.

Other approaches depart from the NiN assumption by
tracking the negative evidence of a class with regions [42],
[44]. The main idea is to learn mutual exclusion constraints,
model scene subcategories where the positive object class
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is unlikely to be found, or to capture specific parts which
potentially indicate the presence of an object of a similar
but distinct class. [44] proposes a generalization of LSVM by
including negative latent variables. In [42], the authors intro-
duce a WSL formulation specific to multi-class classification,
where negative evidence is explicitly encoded by augment-
ing the model parameters to represent the positive/negative
contribution of a part to a class.

In this paper, we incorporate the idea of negative evi-
dence in the weakly supervised structured model. Our pre-
diction function uses max+min region scores. The min scor-
ing region accounts for the concept of negative evidence,
and is capitalized on for learning a more robust model. In
the experiments, we report that our region selection strategy
outperforms approaches pooling over all regions.

2.2 Deep structured models & WSL
Deep structured models. Many problems in real-world ap-
plications (e.g. semantic segmentation, ranking) involve pre-
dicting a collection of random variables that are related to
each other. Several approaches propose to combine Markov
random fields (MRFs) with deep learning algorithms to
estimate complex representations while taking into account
the dependencies between the output random variables.
In [45], the authors use a two step approach to combine
ConvNets and fully-connected CRFs [46]. To jointly learn
the ConvNet and CRF parameters, [47] reformulates the
mean-field approximate inference for the fully-connected
CRF as a Recurrent Neural Networks (RNN), and introduces
CRF-RNN, a network that can be trained end-to-end. The
authors show that joint learning of the ConvNet and the
CRF parameters results in significant performance gains. At
the same time, [48] proposes a general training algorithm
to learn structured models, where MRF potentials are deep
networks. [49] shows that for some kind of energy functions,
proximal methods can be efficiently solved as a RNN feed-
foward pass. Recently, [50] introduces the Structured Predic-
tion Energy Networks (SPENs), where a deep architecture is
used to define an energy function of candidate labels. [51]
proposes direct loss minimization approach, and show its
effectiveness for AP ranking problems.
WSL of deep structured models. The main idea of WSL is
to model the missing information with latent/hidden vari-
ables. The most popular approach is the Latent Structural
SVM (LSSVM) [23], which extends the Latent SVM [36]. The
LSSVM model performs prediction by maximizing the joint
posterior probability over the output and latent variables.
The parameters of the model are learned by minimizing an
upper bound on the empirical risk. One drawback of the
LSSVM prediction is that the maximization over the latent
variables is not robust to the inherent uncertainty of the
latent variables. To address this issue, the Hidden Condi-
tional Random Fields (HCRFs) [24] and the Marginal Struc-
tured SVM (MSSVM) [25] marginalize the latent variables
to estimate the probability of the output variables. The ε-
framework introduced in [26] proposes a trade-off between
maximization and marginalization by using a log-sum-exp
pooling. Other works explicitly model the uncertainty over
the latent space [52], [53] and propose to predict the output
variables by minimizing an entropy-based uncertainty mea-
sure. To put into perspective the differences between models

and pooling functions, we introduce a general framework
which includes LSSVM, HCRF, MSSVM, ε-framework and
our model as special cases.
WSL ranking. In this paper, we also tackle the important
problem of learning to rank, since many computer vision
tasks are evaluated with ranking metrics, e.g. Average Pre-
cision (AP) in PASCAL VOC. [54] shows that the learning
objective should be tailored to the evaluation loss in order
to obtain the best performance with respect to this loss.
Optimizing ranking models with AP is challenging because
the AP loss is non-differentiable and non-decomposable
(it cannot be expressed as simple sums over the example
labels). In the fully supervised case, an elegant instantiation
of structural SVM is introduced in [55], making it possible
to optimize a convex upper bound over the AP. On the
contrary, few works tackle the problem of weakly super-
vised ranking from the latent structured output perspective,
with the exception of [28]. In [28], the authors introduce
LAPSVM, and point out that directly using LSSVM [23] for
this purpose is not practical, mainly because no algorithm
for solving the loss-augmented inference problem exists.
LAPSVM introduces a tractable optimization by defining an
ad-hoc prediction rule dedicated to ranking: first the latent
variables are fixed, and then an optimal ranking with fixed
latent variables is found. We show that our WSL model
offers the ability to solve the loss-augmented inference with
an elegant symmetrization due to the max+min prediction
function.
WSL segmentation. We focus on segmentation models
learned with only labels indicating the presence or absence
of a class in the image. Many methods are based on the
MIL framework: MIL-FCN [21] extends MIL to multi-class
segmentation, while MIL-Base [20] generalizes MIL-FCN
with a LSE pooling to speed up the convergence. EM-Adapt
[56] includes an adaptive bias into the MIL framework,
that boosts classes known to be present and suppresses
all the others. Constrained CNN (CCNN) [57] uses a loss
function optimized for any set of linear constraints on the
output space of a ConvNet, to control the proportion of the
labels of each class. Recently, [38] introduces a more complex
network architecture, that is optimized with a combination
of three losses.

3 NEGATIVE EVIDENCE MODEL

We present here our latent structured model based on
negative evidence. We begin by introducing the notations,
then our prediction function, the learning formulation and
the intuitions. Finally, we compare our model with exiting
latent models.

3.1 Notations

We first give some basic notations used in the (latent) struc-
tured output learning framework. We consider an input
space X , that can be arbitrary, and a structured output
space Y . For (x,y) ∈ X × Y , we are interested in the
problem of learning a discriminant function of the form:
f : X → Y . In order to incorporate hidden parameters
that are not available at training time, we augment the
description between an input/output pair with a latent
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variable h ∈ H. We define a scoring function Fw(x,y,h),
with depends on the input data x ∈ X , the output y ∈ Y ,
the latent variable h ∈ H and some parameters w ∈ Rd. Our
goal is to learn a prediction function fw, parametrized by w,
so that the predicted output ŷ depends on Fw(x,y,h) ∈ R.
During training, we assume that we are given a set of N
training pairs D = {(xi,y?i ) ∈ X × Y : i ∈ {1, . . . , N}},
where y?i is the ground-truth label of example i. Our goal
is to optimize w in order to minimize a user-supplied loss
function ∆(y?i ,y) over the training set.

3.2 Negative Evidence Model

As mentioned in the introduction, the main intuition of our
negative evidence model is to equip each possible output
y ∈ Y with a pair of latent variables (h+

i,y,h
−
i,y). h+

i,y

(resp. h−i,y) corresponding to the maximum (resp. minimum)
scoring latent value, for input xi and output y:

h+
i,y =arg max

h∈H
Fw(xi,y,h) (1)

h−i,y =arg min
h∈H

Fw(xi,y,h) (2)

For an input/output pair (xi,y), the scoring of the model,
sw(xi,y), sums h+

i,y and h−i,y scores, as follows:

sw(xi,y) =
1

2

(
Fw(xi,y,h

+
i,y) + Fw(xi,y,h

−
i,y)
)

(3)

Finally, our prediction is:

ŷ = fw(xi) = arg max
y∈Y

sw(xi,y) (4)

This maximization in Eq. (4) is known as the inference
problem. Regarding the soring function in Eq. (3), we are
here considering deep ConvNets models for Fw. This gener-
alizes the MANTRA model in [29], using a log-linear scoring
function: Fw(x,y,h) = 〈w,Ψ(x,y,h)〉 where Ψ(x,y,h) is
a joint feature map that describes the relation between input
x, output y, and latent variable h.

3.3 Learning Formulation

During training, we enforce the following constraints:

∀y 6= y?i , sw(xi,y
?
i ) ≥ ∆(y?i ,y) + sw(xi,y) (5)

Each constraint in Eq. (5) requires the scoring value
sw(xi,y

?
i ) for the correct output y?i to be larger than the

scoring value sw(xi,y) for each incorrect output y 6= y?i ,
plus a margin of ∆(y?i ,y). ∆(y?i ,y), a user-specified loss,
makes it possible to incorporate domain knowledge into the
penalization.

To give some insights of how the model parameters can
be adjusted to fulfill constraints in Eq. (5), let us notice that:

• sw(xi,y
?
i ), i.e. the score for the correct output y?i ,

can be increased if we find statistically high scoring
variables h+

i,y?
i

, which represent strong evidence for
the presence of y?i , while enforcing h−i,y?

i
variables

not having large negative scores.
• sw(xi,y), i.e. the score for an incorrect output y, can

be decreased if we find low scoring variables h+
i,y,

limiting evidence of the presence of y, while seeking

h−i,y variables with large negatives scores, supporting
the absence of output y.

To allow some constraints in Eq. (5) to be violated, we
introduce the following loss function:

`w(xi,yi) = max
y∈Y

[∆(y?i ,y) + sw(xi,y)− sw(xi,y
?
i )] (6)

We show that `w(xi,y
?
i ) in Eq. (6) is an upper bound of

∆(ŷ,y?i ) in Appendix A.
Using the standard max margin regularization term

‖w‖2, our primal objective function is defined as follows:

P(w) =
λ

2
‖w‖2 +

1

N

N∑
i=1

`w(xi,y
?
i ) (7)

where λ is the regularization parameter.

3.4 Negative Evidence Intuition

To illustrate the rationale of the approach, let us consider
a multi-class classification instantiation of our negative ev-
idence model, where x is the image, y is the label and
the latent variables h correspond to region locations1. h+

is the max scoring latent value for each class y, i.e. the
region which best represents class y. h− is the min scoring
latent value, and can thus be regarded as an indicator of the
absence of class y in the image.

To highlight the importance of the pair (h+,h−), we
show in Figure 1, for an image of the class bedroom of MIT67
dataset [58], the heatmap representing the classification
scores for each latent location using the bedroom classifier,
the airport inside classifier and the dining room classifier.
The h+ (resp. h−) regions are boxed in green (resp. red).
As we can see, the prediction score for the correct class
classifier (bedroom) is large, since the model finds strong
local evidence h+ of it presence, and no clear evidence of its
absence (medium score Fw(x,y=bedroom,h−y ) = 0.1). For
a wrong class very different like airport inside, the prediction
score is very low, because there is not region similar to an
airport. For a wrong class with similar objects like dining
room, the maximum score for the dining room classifier is
comparable with bedroom classifier: the model heavily fires
on discriminative objects (bed for bedroom and chair for
dining room). The prediction score sw for the dining room
classifier is significantly lower than for the bedroom classifier,
because it also finds clear evidence of the absence of dining
room, here bed (Fw(x,y = dining room,h−y ) = −1.7).
As a consequence, our negative evidence model correctly
predicts the class bedroom. Another example on the fine-
grained bird classification task is shown in Figure 3. In
the Section 6.3.2, we analyze experimentally the selected
regions for multi-label classification task and we show that
our model can learn the positive and negative correlations
between the classes.

3.5 Discussion

To put into perspective connections between negative evi-
dence and existing latent structured models, we introduce

1. This analysis can be extended to any problems where h is a part of
x, e.g. h is a paragraph of a text x.
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y? = bedroom y =bedroom y =airport inside y =dining room
original image sw(x,y) = 2.1 sw(x,y) = −1.7 sw(x,y) = 0.4

Fw(x,y,h+
y )=2: high Fw(x,y,h+

y )=−0.1: low Fw(x,y,h+
y )=2.1: high

Fw(x,y,h−y )=0.1: medium Fw(x,y,h−y )=−1.6: low Fw(x,y,h−y )=−1.7: low

Fig. 1: Negative evidence intuition. The heatmaps and the predicted regions (h+
y in green, h−y in red) for different learned class

models (bedroom, airport inside and dining room) are shown on a bedroom image x. Fw(x,y,h+
y ) (resp. Fw(x,y,h−y )) is the score of

the h+
y (resp. h−y ) region for class y, and sw(x,y) is the predicted score for class y. The bedroom and dining room models have high

score for max regions because each model focus on objects discriminative for the class (bed for bedroom and chair for dining room).
The min region brings complementary information to max region: the min regions score of dining room have a low score because
the dining room model has found a negative evidence (bed) for the absence of dining room class.

the following generalized scoring function, with ”inverse
temperature” β+

h and β−h parameters smoothing between
max, softmax and average:

s
(β+

h ,β
−
h )

w (x,y) =
1

2β+
h

log
1

|H|
∑
h∈H

exp[β+
h Fw(x,y,h)] (8)

+
1

2β−h
log

1

|H|
∑
h∈H

exp[β−h Fw(x,y,h)]

As shown in Table 1, the scoring function in Eq. (8)
includes several existing models as special cases. When
β+
h = β−h → +∞, it maximizes over latent variables and is

equivalent to LSSVM [23] or max pooling for deep ConvNets
[17]. When β+

h = β−h = 1, is is equivalent HCRF [24] or
MSSVM [25], which marginalize over latent variables. GAP
[18] (β+

h = β−h → 0) also sum over latent variables, but
unlike HCRF or MSSVM, all the latent variables have the
same importance. The ε-framework [26] proposes a trade-
off between max and average. This pooling strategy is also
used to learn ConvNets [20], [22]. The prediction function is
equivalent to our model when β+

h → +∞ and β−h → −∞,
and pools over both maximum and minimum scores.

From the prediction function in Eq. (8), the conditional
probability of output y given an input x can be defined as

follows: P (y|x) ∝ exp

[
βy · s

(β+
h ,β
−
h )

w (x,y)

]
.

Model β+
h β−h

HCRF [24] / MSSVM [25] 1 1
GAP [18] → 0 → 0
LSSVM [23] / max [17] +∞ +∞
Our model +∞ -∞
ε-framework [26] / LSE [20], [22] β+

h = β−h ∈ (1,+∞[

TABLE 1: Model comparison with corresponding parameters.

In Section 6.3.4, we provide a systematic comparison of
the different pooling functions given in Table 1 to highlight
their strengths and weaknesses in different contexts.

4 RESNET-WELDON NETWORK ARCHITECTURE

Based on the model presented in previous section, we pro-
pose ResNet-WELDON, a new weakly supervised learning
dedicated to learn localized visual features by using only
image-level labels during training. The proposed network
architecture is decomposed into two sub-networks: a deep
feature extraction network based on Fully Convolutional
Network (FCN) and a prediction network, as illustrated in
Figure 2. The feature extraction net purpose is to extract
a fixed-size deep descriptor for each region in the image,
while the prediction net outputs a structured output.
Notation. We note F lw(x,y,h) the output of the layer l at
the location h of the feature map (or category) y for the
input image x. w are the parameters of the ConvNet.

4.1 Feature extraction network
The feature extraction network is dedicated to compute a
fixed-size representation for any region of the input image.
When using ConvNets as feature extractors, the most naive
option is to process input regions independently, i.e. to
resize each region to match the size of a full image for
ConvNet architectures trained on large scale databases such
as ImageNet (e.g. 224×224 for ResNet-101 [3]). This is the
approach followed in R-CNN [4], or in MANTRA [29]. This
is, however, highly inefficient since feature computation in
(close) neighbor regions is not shared. Recent improvements
in SPP nets [33], fully convolutional network (FCN) [7]
or fast R-CNN [5] process images of any size by using
only convolutional/pooling layers of ConvNets trained on
ImageNet, subsequently applying max pooling to map each
region into a fixed-size vector. They convolutionalize stan-
dard classification networks (AlexNet, VGG16) by replacing
fully connected by convolution layers.

To have higher spatial resolution on the top of the
network, we use the recently introduced the ResNet-101 [3],
which is by design fully convolutional. ResNet-101 has 100
convolutional layers followed by global average pooling
and fully-connected layer. To have feature map with spatial
information, we remove the fully-connected layer (as usu-
ally done in the litterature), and the global average pooling,
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Fig. 2: ResNet-WELDON deep architecture is decomposed into two sub-networks: a feature extraction network (left) and a
prediction network (right) The feature extraction network is based on ResNet-101 to extract local features from whole images
with good spatial resolution. Then a transfert layer is used to learn class-specific heatmaps (car, motorbike and person), and finally
a prediction layer aggregates the heatmaps to produce a single score for each class. Finally, we show for each class the 3 regions
with the highest score on the right.

which has not learnable parameter. The architecture with
only the convolutional layers (and spatial pooling) allows
to process images of arbitrary sizes, and the sharing of
intermediate features over overlapping image regions. With
this architecture, the spatial information is naturally pre-
served throughout the network: for an input image size
of 224 × 224, the output size is 7 × 7. Spatial resolution
impacts the localization and discriminability of the learned
representations. We thus expect the resolution of the feature
maps to be a key component for our model: finer maps keep
more spatial resolution and lead to more specific regions.
Moreover, ResNet is more effective at image classification
while being parameter- and time-efficient than VGG16.

The input of the feature extraction network is an RGB
image hi×wi, where hi (resp. wi) is the height (resp. width).
The output is a h × w × 2048 feature map, where h = hi

32
and w = wi

32 are number of sliding window positions in the
horizontal and vertical direction in the image, respectively
(see Figure 2). The weights of the feature extraction network
are initialized on ImageNet.

4.2 Prediction network design
This part aims at selecting relevant regions to properly
predict the global (structured) image label.

4.2.1 Transfer layer
The first layer of the prediction network is a transfert layer.
Its goal is to transfer weights of the feature extraction
network from large scale datasets to new target datasets.
It transforms the output of the feature extraction network
F fe into a feature map F t of size h × w × C, where C
is the number of categories (see Figure 2). This layer is
convolutional layer, composed of C filters, each of size
1 × 1 × 2048. Due to the kernel size of the convolution,

this layer preserves the spatial resolution of the feature
maps. The output of this layer can be seen as localization
heatmaps. In Figure 2, we show the heatmaps for differentes
categories: car, motorbike and person.

4.2.2 Weakly-Supervised Prediction (WSP) layer

The second layer is a spatial pooling layer s aggregates
the score maps into classification scores: for each output
y ∈ {1, . . . , C}, the score over the h × w regions are
aggregated into a single scalar value. We note F tw(xi,y,h)
is the score of region h from image xi for category y, and
H = {1, . . . , ri} the region index set, and ri is the number
of regions for image xi. The output s of the prediction
layer is a vector 1 × 1 × C. As mentioned in Section 2, the
standard approach for WSL inherited from MIL is to select
the max scoring region. The output score is the score of the
region with the maximum score. We propose to improve
this strategy in two complementary directions: use negative
evidence and several instances.
WELDON Pooling. This pooling improves max pooling
by incorporate negative evidence. The prediction consists
in summing the max and min scoring regions. Based on
recent MIL insights on learning with top instances [41], we
also propose to extend the selection of a single region to
multiple regions. Formally, let hz ∈ {0, 1} be the binary
variable denoting the selection of the zth region from layer
F t. We propose the scoring function stop, which selects the
k+ highest scoring regions as follows:

stopw,k+(F t(xi,y)) =
1

k+

ri∑
z=1

h+z F
t
w(xi,y, z) (9)

where h+ = arg max
h∈{0,1}ri

ri∑
z=1

hzF
t
w(xi,y, z) s.t.

ri∑
z=1

hz=k+
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where F tw(xi,y, z) is the value of the zth region score for
class y. Beyond the relaxation of the NiN assumption, which
is sometimes inappropriate (see Section 2), the intuition
behind F top is to provide a more robust region selection
strategy. Indeed, using a single area for training the model
necessarily increases the risk of selecting outliers.

To incorporate negative evidence in our prediction func-
tion, we propose the scoring function slow, which selects the
k− lowest scoring regions as follows:

sloww,k−(F t(xi,y)) =
1

k−

ri∑
z=1

h−z F
t
w(xi,y, z) (10)

where h−= arg min
h∈{0,1}ri

ri∑
z=1

hzF
t
w(xi,y, z) s.t.

ri∑
z=1

hz=k−

The final prediction simply consists in summing F top

and F low:

sw(xi,y)=
1

2

(
stopw,k+(F t(xi,y)) + sloww,k−(F t(xi,y))

)
(11)

This prediction function is equivalent to MANTRA predic-
tion function whenever k+ = k− = 1.

5 LEARNING & INSTANTIATIONS

As shown in Figure 2, the WELDON model outputs
s ∈ RC . This vector represents a structured output, which
can be used in a multi-class or multi-label classification
framework, but also in a ranking problem formulation.

5.1 Training formulation
In this paper, we consider three different structured pre-
diction for WELDON, and their associated loss functions
during training.

5.1.1 Classification
Multi-class classification. In this simple case, C is the
number of classes and the output space is Y = {1, . . . , C}.
We use the usual softmax activation function on top of the
spatial aggregation s. The probability of class y for image x
is: P (y|x) = exp(sw(x,y))/

∑
y′∈Y exp(sw(x,y′)) with its

corresponding log loss during training.

Multi-label classification. In the case of multiple labels,
we use a one-against-all strategy, as [17]. For C different
classes, we train theC binary classifiers jointly, using logistic
regression for prediction P (y|x) = (1+exp(−sw(x,y)))−1,
with its associated log loss.

5.1.2 Ranking: Average Precision
We also tackle the problem of optimizing ranking metrics,
and especially Average Precision (AP). We use a latent
structured output ranking formulation, following [55]: our
input is a set of N training images x = {xi : i ∈ 1, . . . , N},
with their binary labels yi, and our goal is to predict a
ranking matrix y ∈ Y of sizeN×N providing an ordering of
the training examples. Our ranking feature map for category
c is expressed as:

Fwc(x,y,h)=
∑
p∈P

∑
n∈N

ypn(F few (xp,c,h
pn)−F few (xn,c,h

np))

(12)

where P (resp. N ) is the set of positive (resp. negative)
examples. hpn (resp. hnp) is a vector which represent the
selected region for image xp (resp xn) when we consider the
couple of image (p, n), and h is the set of selected regions
for all pair of examples (p, n) ∈ P ×N

h = {(hpn, hnp) ∈ {0, 1}rp × {0, 1}rn , (13)
rp∑
z=1

hpnz = k,
rn∑
z=1

hnpz = k, (p, n) ∈ P ×N}

where rp is the number of regions for image xp (resp. xn).
F few (xp,c,h

pn) is the score for category c of region hpn of
image xp

During training, we aim at minimizing the following
loss: ∆ap(y

?,y) = 1 − AP (y?,y), where y? is the ground-
truth ranking. Since AP is non-smooth, we use the follow-
ing surrogate (upper-bound) loss:

`w(x,y?) = max
y∈Y

[∆ap(y
?,y) + sw(x,y)]− sw(x,y?) (14)

The maximization in Eq (14) is generally referred to as
Loss-Augmented Inference (LAI). Exhaustive maximization
is intractable due to the huge size of the structured output
space. The problem is even exacerbated in the WSL setting,
see [28]. We exhibit here the following result for WELDON:

Proposition 1. For each training example, let us denote s(i) =
stopw,k(F tw(xi, c))+s

low
w,k(F tw(xi, c)) in Eq (11). Inference and LAI

for the WELDON ranking model can be solved exactly by sorting
examples in descending order of score s(i).

The proof is given in Appendix B and comes from an el-
egant symmetrization of the problem due to the max + min
operation. Proposition 1 shows that the optimization over
regions, i.e. score s(i), decouples from the maximization
over output variables y. This reduces inference and LAI op-
timization to fully supervised problems. Inference solution
directly corresponds to s(i) sorting. It also allows to use our
model with different loss functions, as soon as there is an
algorithm to solve the loss-augmented inference in the fully
supervised setting. To solve it with ∆ap, we use the greedy
algorithm proposed by [55], which finds a globally optimal
solution. Note that it is possible to use faster methods [59]
to address large-scale problem if required.

5.2 Optimization
Our model is based on the architecture ResNet-101 [3]. We
initialize it from a model pre-trained on ImageNet [12]
and train it with Stochastic Gradient Descent (SGD) with
momentum with image-level labels only. All the layers of
the network are fine tuned. For multi-class and multi-label
predictions, error gradients are well-known. For the ranking
instantiation, we detail the gradient:

∂`

∂w
=
∂sw(x, ỹ)

∂w
− ∂sw(x,y?)

∂w

where ỹ is the LAI solution. When learning ResNet-
WELDON, the gradients are backpropagated through the
spatial pooling layer only within the selected regions, all
other gradients being discarded. The selection of relevant
regions for backpropagation is a key to learn precisely
localized features without any spatial supervision [22].
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6 EXPERIMENTS

Our deep ConvNet architecture is based on ResNet-101. We
evaluate our ResNet-WELDON strategy on several Com-
puter Vision benchmarks corresponding to various visual
recognition tasks. Absolute comparison with state-of-the-art
methods is provided in Section 6.1, while Section 6.2 reports
results on the large scale dataset ILSVRC. Section 6.3 ana-
lyzes the impact of the different improvements for training
deep WSL ConvNets. Finally, we evaluate our model on
the challenging weakly supervised segmentation applica-
tion. The code is publicly available at https://github.com/
durandtibo/weldon.resnet.pytorch.
Experimental Setup. In order to get results in very differ-
ent recognition contexts, several datasets are used: object
recognition (PASCAL VOC 2007 [60], PASCAL VOC 2012
[61], MS COCO [62]), scene categorization (MIT67 [58]),
action recognition (VOC 2012 Action [61]) and fine-grained
recognition (CUB-200 [63]). For MIT67, CUB-200, VOC 2007
and 2012, the performances are evaluated following the
standard protocol. On CUB-200, we follow the standard
protocol without the bounding boxes and part annotations.
On VOC 2012, we used VOC evaluation server to evaluate.
On MS COCO, we follow the protocol in [17] to perform
classification experiments. On VOC 2012 Action, we use the
same weakly supervised protocol as in [29], with evaluation
on the val set. We also evaluate our model on the the val set
of ILSVRC [12]. Table 2 summarizes dataset information.

Dataset Train Test Classes Eval.

VOC07 5,011 4,952 20 mAP
VOC12 11,540 10,991 20 mAP
VOCAction 2,296 2,292 10 mAP
COCO 82,783 40,504 80 mAP
MIT67 5,360 1,340 67 accuracy
CUB-200 5,994 5,794 200 accuracy
ILSVRC 2012 1,281,167 50,000 1000 accuracy

TABLE 2: Dataset information: number of train and test images,
number of classes and evaluation measures (mAP: mean Aver-
age Precision).

6.1 State-of-the-art comparison
Firstly, we compare the proposed ResNet-WELDON model
to state-of-the-art methods. We use different image size as
input of our model, and scale combination is performed
using an Object-Bank [64] strategy –as done in [30]. The
image size and the values of k+/k− are given in Table 3.
An analysis of the number of selected regions is done
in Section 6.3.4, showing further improvements by careful
tuning. Results are gathered in Table 4 and Table 5. In
this section, we note ResNet-max (resp. ResNet-GAP) the
special case of ResNet-WELDON where the spatial pooling
is equivalent to the max pooling (resp. GAP).
Object datasets. We report in Table 4 the performances
for object datasets, and we can see that ResNet-WELDON
outperforms all recent methods based on deep features by
a large margin. More specifically, the improvement com-
pared to deep features computed on the whole image (
[2], [3], [11]) is significant: there is an improvement over
the best method [3] of 5.2 pt (resp. 4.2 and 9.8) on VOC
2007 (resp. VOC 2012 and MS COCO). Note that since our

Image size Size before pooling k+, k−

224× 224 7× 7 5
280× 280 9× 9 10
320× 320 10× 10 20
374× 374 12× 12 30
448× 448 14× 14 50
560× 560 18× 18 75
747× 747 24× 24 100

TABLE 3: Multi-scale setup. We detail the input image sizes,
along with the sizes of the feature maps before spatial pooling
and the parameter values used in the spatial pooling.

Method VOC07 VOC12 MSCOCO

Return Devil [11] 82.4 - -
VGG16 [2] 89.3 89.0 -
SPP net [33] 82.4 - -
NUS-HCP [65] 85.2 84.2 -
Nonlinear Embeddings [66] 86.1 - -
ResNet-101 [3] ? 89.8 89.2 72.5

DeepMIL [17] - 86.3 62.8
MANTRA [29] 85.8 - -
WELDON [30] 90.2 - 68.8
ProNet [22] - 89.3 70.9
RRSVM [67] 92.9 - -
SPLeaP [68] 88.0 - -

ResNet-max 92.0 90.9 78.9
ResNet-WELDON 95.0 93.4 80.7

TABLE 4: mAP results on object recognition datasets. ResNet-
WELDON and state-of-the-art methods results are reported.
Half at the top shows the performances using global image rep-
resentation, whereas the half at the bottom shows performances
for models based on regions selection. ? means that the results
are obtained by fine-tuning the network on the dataset with the
online code https://github.com/facebook/fb.resnet.torch.

model used a ResNet-101 architecture, the performance gain
directly measures the relevance of using a WSL method,
which selects localized evidence for performing prediction,
rather than relying on the whole image information. Both
ResNet-101 and ResNet-WELDON have the same number
of parameters. Compared to SPP net [33], the improvement
of 12 pt on VOC 2007 highlights the superiority of region se-
lection based on supervised information, rather than using
handcrafted aggregation with spatial-pooling BoW models.

The most important comparison is the improvement
over other recent WSL methods on deep features [17], [22],
[29], [30], [67]. We outperform the deep WSL ConvNet
in [17], the approach which is the most closely connected to
ours, by 7.1 pt (resp. 17.9) on VOC 2012 (resp. MS COCO).
This big improvement illustrates the positive impact of
incorporating MIL relaxations for WSL training of deep
ConvNets, i.e. negative evidence scoring and top-instance
selection. We also note a significant gain of 4.1 pt (resp
9.8) on VOC 2012 (resp. MS COCO) with ProNet [22], that
relaxes the max pooling with a log-sum-exp pooling. Unlike
our model, these models use a VGG16, but a fair comparison
of the pooling of these methods with the same feature
extraction network is done in Section 6.3.4. We also report
the results of ResNet-max, where the only difference with
respect to ResNet-WELDON is that the spatial pooling is
a max pooling. We note that ResNet-WELDON is 2 or 3
pt better than ResNet-max on the three datasets. ResNet-

https://github.com/durandtibo/weldon.resnet.pytorch
https://github.com/durandtibo/weldon.resnet.pytorch
https://github.com/facebook/fb.resnet.torch
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WELDON also outperforms by 2.1 pt the RRSVM [67] on
VOC 2007, which learn a constrained aggregation operator
on all the regions. Compared to [30], the improvement of
4.8 pt (resp. 11.9) on VOC 2007 (resp. MS COCO) essentially
shows the importance of the FCN ResNet-101 that preserves
spatial information throughout the network, and allows
finer maps to learn more specific regions.

Method CUB-200 MIT67 VOCAct

CaffeNet Places [31] - 68.2 -
MOP CNN [34] - 68.9 -
Nonlinear Embeddings [66] 63.1 - -
Compact Bilinear Pooling [69] 84.0 76.2 -
ResNet-101 [3] ? 72.5 78.0 77.9

Two-level attention [70] 69.7 - -
STN [71] 84.1 - -
MANTRA [29] - 76.6 -
Negative parts [42] - 77.1 -
MetaObject-CNN [72] - 78.9 -
NAC [73] 81.0 - -
GAP GoogLeNet [18] 63.0 66.6 -
WELDON [30] - 78.0 75.0
Part-Stacked CNN [74] † 76.6 - -
SPLeaP [68] - 73.5 -

ResNet-max 76.1 68.3 79.9
ResNet-GAP 82.7 85.3 85.5
ResNet-WELDON 85.6 84.0 86.4

TABLE 5: Results on scene, action and fine-grained datasets.
The performances on MIT67 and CUB-200 (resp. VOC 2012
Action) are evaluated with multi-class accuracy (resp. mAP).
ResNet-WELDON and state-of-the-art methods results are re-
ported. Half at the top shows the performances using global
image representation, whereas the half at the bottom shows
performances for models based on regions selection. † uses
part-annotations during training.

Scene, action and fine-grained datasets. We also validate
our model on scene, action and fine-grained classification.
The results are reported in Table 5 and illustrate the big
improvement of ResNet-WELDON compared to deep fea-
tures computed on the whole image [2], [3], [31] and global
image representation with deep features computed on im-
age regions: MOP CNN [34] and Compact Bilinear Pooling
[69] – these models use a VGG16. It is worth noticing
that ResNet-WELDON also outperforms recent part-based
methods [68], [72] including negative evidence during train-
ing [29], [42], but most of these models use a VGG16 archi-
tecture. This validates that our region selection approach is
better than using all regions. ResNet-WELDON also signifi-
cantly outperforms, on CUB-200 and MIT67, the recent GAP
GoogLeNet [18], which used a global average pooling. On
CUB-200, we can also note that our model is 9 pt better
than Part-Stacked CNN [74], which uses bounding boxes
and part annotations during training. This validates that our
model can automatically find discriminative regions, even
in the case of fine-grained classification. Finally, we report
the results of ResNet-max and ResNet-GAP, which have the
same architeture as ResNet-WELDON, except the spatial
pooling. ResNet-WELDON and ResNet-GAP significantly
outperform ResNet-max on the three datasets. We can note
that the ResNet-GAP is better than ResNet-WELDON on
MIT67. In Section 6.3.4, we show that using a lot of regions
is important on MIT67 dataset.

6.2 Large-scale Image Classification
We also evaluate ResNet-WELDON on ILSVRC classifica-
tion challenge [12] to show the scalability and the effi-
ciency of our model for large-scale image classification. Ta-
ble 6 summarizes the classification performances of ResNet-
WELDON and existing models. To have a fair comparison
between models, we only report results for single model.
For our model, we use a mono-scale model with an input
image size 448× 448, and k+ = k− = 50.

We can see that ResNet-WELDON outperforms most
of existing models trained using whole image (VGG16
[2], GoogleNet [75], ResNet-152 [3]) and regions (RRSVM
[67], GoogleNet-GAP [18]). Our model have similar per-
formances that ResNeXt-101 [76], which proposes a new
residual block with a multi-branch architecture. ResNet-
WELDON is slightly worse than Inception-ResNet-v2 (12
crops) [77] that combines both ResNet and Inception archi-
tectures. Better results can be obtained by learning ensemble
of models.

We also reported results for different ResNets. The
ResNet-101 is directly comparable to our model, because
it corresponds to our initial model. It is important to note
that with the same number of parameters and a very
similar architecture, our model have a significant perfor-
mance gain with respect to ResNet-101 (1 crop): +3.2 pt
(resp. +2.0) on top-1 (resp. top-5) error. We also report the
results with multi-crops post-processing, which a widely
used post-processing to boost performances. Compared to
our approach, multi-crops strategy extracts regions with a
fixed grid, whereas our model automatically selects relevant
regions. The important gain validates the relevance of our
region selection approach. We also compare our model to
deeper ResNet models: ResNet-WELDON is +0.9 pt (resp.
+0.7) better than the deeper model ResNet-200, which have
about the double of parameters. We can also note that
ResNet-WELDON prediction is simple because it needs only
1 forward on the image to predict image label, whereas the
multi-crops prediction needs several forwards on different
image regions.

Model Top-1 error Top-5 error

VGG16 (144 crops) [2] 24.4 7.2
GoogleNet (144 crops) [75] - 7.89
ResNet-152 (10 crops) [3] 21.43 5.71
RRSVM [67] 22.9 6.7
GoogleNet-GAP [18] 35.0 13.2
Inception-ResNet-v2 (12 crops) [77] 18.7 4.1
ResNeXt-101 (1 crop) [76] 19.1 4.4

ResNet-101 † (1 crop) 22.44 6.21
ResNet-101 † (10 crops) 21.08 5.35
ResNet-152 † (10 crops) 20.69 5.21
ResNet-200 † (10 crops) 20.15 4.93

ResNet-WELDON 19.21 4.23

TABLE 6: Classification error on the ILSVRC validation set with
single model. ResNet-101 is our initial model. † is the results
of pretrained model given at https://github.com/facebook/fb.
resnet.torch.

6.3 ResNet-WELDON Analysis
In this section, we analyze our model. In Section 6.3.1,
we analyze the impact of the different contributions with

https://github.com/facebook/fb.resnet.torch
https://github.com/facebook/fb.resnet.torch
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an ablation study. Then, we show some visual results in
Section 6.3.2. In Section 6.3.3, we compare our ranking
model with existing model. Finally, we analyze our pooling
function and we compare it with standard pooling functions
(Section 6.3.4).

6.3.1 Ablation study

We analyze the impact on prediction performances of the
different contributions of ResNet-WELDON. Our baseline
model a) is the WSL ConvNet model using an aggregation
function s=max at the prediction layer (Figure 2). We present
results for an input image of size 448 × 448, but similar
behaviors are observed for other scales. It gives a network
similar to [17], trained at a single scale. To measure the im-
portance of the difference between ResNet-WELDON and
a), we perform a systematic evaluation on the performance
when the following variations are incorporated:
b) Fine-tuning (FT) the network on the target dataset.
c) Use of k top instances instead of the max. We use k = 30.
d) Incorporation of negative evidence through max+min

aggregation function. When b)+c) are combined, we use
k lowest-instances instead of the min, with k = 30.

a) max b) FT c) k=30 d) min VOC07 VOCAct MIT67 CUB-200

X 86.8 71.8 62.4 66.0
X X 91.3 77.9 65.4 72.8
X X X 91.7 82.1 72,2 78.9
X X X 92.2 82.4 69.6 78.2
X X X X 93.7 85.4 77.2 82.4

TABLE 7: Ablation study of our WSL deep ConvNet contribu-
tions on object (VOC 2007), action (VOC 2012 Action), scene
(MIT67) and fine-grained (CUB-200) datasets.

The results are reported in Table 7 for object (VOC 2007),
action (VOC 2012 action), scene (MIT67) and fine-grained
(CUB-200) datasets. From this systematic evaluation, we can
draw the following conclusions:

1) The fine-tuning (b)) significantly impacts performances,
with +4.5 pt (resp. +6.1, +3.0 and +6.8) gain on VOC
2007 (resp. VOC 2012 Action, MIT67 and CUB-200). It
validates that jointly updating all network parameters
is crucial, in particular for fine-grained datasets.

2) Both c) and d) improvements result in a very large
performance gain on all datasets w.r.t the baseline max
pooling with fine-tuning. But the trends change accord-
ing to the datasets. d) leads to a better improvement
than c) on VOC 2007 and VOC 2012 Action datasets:
d) has a gain of +0.9 pt (resp. +4.5) whereas c) has a
gain of +0.3 pt (resp. +4.2) on VOC 2007 (resp. VOC
2012 Action). On the contrary, on MIT67 and CUB-200,
c) leads to a better improvement than d): c) has a gain
of +6.8 pt (resp. +6.1) whereas c) has a gain of +4.2 pt
(resp. +5.4) on MIT67 (resp. CUB-200).

3) Combining c) and d) improvements further boost per-
formances with respect to the best of c) or d): +5 pt on
MIT67, +3.5 pt on CUB-200, +1.5 pt on VOC 2007 and
3 pt on VOC 2012 Action. This shows the complemen-
tarity of these two extensions at the aggregation level.
This confirms that our pooling with several instances
and negative evidence is relevant.

6.3.2 Visual results
To illustrate the region selection policy performed by
ResNet-WELDON, we show in Figure 3 the top 3 positive
(resp. top 3 negative) regions selected by the model in green
(resp. red), on the CUB-200 dataset. We show the results for
two similar bird species, where the main difference is that
the indigo bunting is completely blue, whereas the painted
bunting is multicolor. The painted bunting model has high
scores for all regions, because all regions are correlated with
the class. On the contrary, the indigo bunting model has high
score on the head – because the head is blue – but very low
score on the tail because it is not blue. The red-black tail is a
clear evidence of the absence of indigo bunting class.

painted bunting (1.9) indigo bunting (0.2)
top-3=1.8 low-3=0.1 top-3=1.9 low-3=-1.7

Fig. 3: Visual results of ResNet-WELDON with the final predic-
tion score. We visualize the predicted regions for the ground
truth model (left column) and a model of a similar incorrect
class (right column). The top 3 positive (resp. top 3 negative)
regions selected by the model are in green (resp. red).

In Figure 4, we show the heatmaps of 2 classes: motorbike
which is present in the image and bottle which is absent.
The motorbike model outputs high scores for the motorbike
regions and medium scores for the other regions including
the person regions. The motorbike model learns that the
person class is positively correlated with the motorbike class.
This positive correlation is confirmed by the co-occurrence
matrix on VOC 2007 shown in Figure 5: 70% of the motorbike
images also contain a person. On the contrary, we observe
that motorbike regions have very low scores for bottle model
and act as negative evidence for the bottle class, because
the model learns that motorbike never occurs with a bottle.
This negative correlation is confirmed by the co-occurrence
matrix. An interesting behavior of the negative evidence
model is that it can model positive and negative correlation
between object classes.

6.3.3 Ranking analysis
In this section, we compare models optimized with clas-
sification loss and ranking AP loss. We report results for
model using max pooling and max+min pooling (k = 1).
The results are shown in Table 8 and are obtained with an
input image size 448 × 448. To have a fair comparison, we
use the same network architecture for all experiments.

We compare our model with the LAPSVM [28], which
is, to the best of our knowledge, the only method that op-
timizes an AP-based loss function over weakly supervised
data. We note that both methods optimizing AP ranking
during training have better results than classification base-
line on all datasets. For our model, we note a significant
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motorbike bottle

Fig. 4: Visual results of ResNet-WELDON. We show the
heatmaps of 2 categories: motorbike which is present in the
image and bottle which is absent. For each class, we show the
maximum (resp. minimum) region in green (resp. red) with its
corresponding score. The model learns that the person class is
positively correlated with motorbike class. On the contrary, the
bottle model learns that the motorbike is a negative evidence of
the class: the motorbike has a very low score, which shows the
absence of bottle class.

Fig. 5: Normalized co-occurrence matrix between the classes
of PASCAL VOC 2007 (trainval). For each category (row), we
show the percentage of other objects (column) that appear in
the same image. For instance, we observe that in horse images,
there is usually a person (77%), but there is never an aeroplane
(0%).

improvement of +2.2 pt on VOC 2007, +2.2 pt on VOC 2012
Action and +1 pt on MS COCO. This validates that optimiz-
ing AP ranking during training is better than optimizing
classification when the performances are evaluated with
AP. We can also see that our ranking model outperforms
LAPSVM model: +3.3 pt on VOC 2007, +7.4 pt on VOC 2012
Action and +0.8 pt on MS COCO.

Dataset VOC07 VOCAct MS COCO

max + classif. loss 86.8 71.8 77.4
max + AP loss (LAPSVM [28]) 87.9 73.3 77.9
max+min + classif. loss 89.9 78.5 77.7
max+min + AP loss 91.2 80.7 78.7

TABLE 8: Comparison of optimization with classification loss
and ranking AP loss.

6.3.4 Pooling analysis

In this section, we analysis our pooling function, and we
compare it with standard pooling functions presented in
Section 3.5. We report results for an input image of size
448 × 448, but similar behaviors are observed for other
scales. To have fair comparison, all the experiments uses
the same network (ResNet-101). We analyse the impact of
the number of selected instances. We show in Figure 6
the performance with respect to the proportion of selected
regions. We can note that the Global Average Pooling (GAP)
[18] (resp. MANTRA pooling) is a special case of WELDON
pooling, when the proportion of selected regions is 1 (resp.
∼0).

Firstly, we can see that negative evidence is important,
because on all dataset, MANTRA is better than max pooling.
In particular, we observe a large improvement of +4.5 pt
on VOC 2012 Action dataset, where the context plays an
important role [78]. We can also see that region selection
is important: on all dataset except MIT67, the WELDON
pooling with a proportion of selected instances in [0.2, 0.8]
is equal or better than GAP. The WELDON pooling has
similar or better results than GAP by using only 20% of
regions. Using more regions (50%) gives better results than
GAP: +0.4 pt on VOC 2007, +0.3 pt on VOC 2012, +0.6 pt
on VOC 2012 Action, +1.9 pt and +2.1 pt on CUB-200. On
MIT67, we can see that using a large number of regions is
better (≥ 80%). This shows that a large number of regions
are discriminants.

We also compare our pooling function to max and LSE
pooling functions. The LSE pooling is a soft extension of max
pooling. On all datasets, LSE is better than max pooling:
+6 pt on CUB-200 and +5.5 on MIT67. This shows that
using several regions is more robust than using only the
best region. We also note that LSE pooling performances
are closed to MANTRA pooling performances. MANTRA
pooling, which used only 2 regions, is as efficient as the
LSE pooling which used all regions. Except on MS COCO,
we observe that the GAP is better than LSE which is better
than max: using more regions increase the robustness. On
MS COCO, we see that the region selection is important
because a lot of objects have small sizes: the gain is +3 pt
between WELDON with 20% of regions and GAP.

6.3.5 ResNet-WELDON vs. WELDON

We show the improvements of ResNet-WELDON over
WELDON [30]. In Tables 4 and 5, we observe that ResNet-
WELDON based on ResNet-101 delivers better classification
results than WELDON based on VGG16. We also compare
the training time (forward+backward) of both architectures
for different image sizes. The results in Table 9 are evaluated
for one epoch on VOC 2007. We see that the ResNet-
WELDON is faster than WELDON for all image sizes. We
note that the larger the image size, the greater the improve-
ment. The limitation of the FCN VGG16 is because of the
first fully-connected layer that has 4,096 filters of large 7× 7
spatial size and becomes the computational bottleneck after
converting the VGG16 to a FCN [79]. These results show
that ResNet-WELDON is better and faster than WELDON.
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Fig. 6: Pooling analysis. We compare different spatial pooling strategies on 6 datasets for an input image of size 448 × 448. The
x-axis shows the proportion of selected regions and the y-axis the performance. We can see that MANTRA always outperforms
the max pooling, which validates the relevance of negative evidence. We can also see that our spatial performes equally or better
than GAP with only 20% of regions.

Image size 224 320 448 560 747

WELDON [30] 91 193 391 682 1302
ResNet-WELDON 75 150 286 480 866
Speed-up +21% +29% +36% +42% +50%

TABLE 9: Training time (s) for one epoch with different image
sizes on VOC 2007.

6.4 Pointwise object localization
In this section, we evaluate the localization performances of
our model on VOC 2012 validation set [61] and MS COCO
validation set [62]. We use the pointwise localization metric,
which is a standard evaluation metric for weakly supervised
models introduced by [17]. We report the results of our
model and three other methods in Table 10. Our model is
trained with an input image 448 × 448 and k+ = k− = 30.
The DeepMIL [17] is a MIL-based architecture – max pool-
ing. In spite of its simple architecture, our model outper-
forms the complex cascaded architecture of ProNet [22] and
WSLocalization [80], which used a complex strategy based
on search- trees to predict locations. Our model outperforms
these models on the two datasets, but these models use older
architecture. To have a fair comparison, we also report the
result of our model for max pooling, and call it ResNet-
max. This model is equivalent to DeepMIL and has lower
performances than ResNet-WELDON on the two datasets.

Method VOC 2012 MS COCO

DeepMIL [17] 74.5 41.2
ProNet [22] 77.7 46.4
WSLocalization [80] 79.7 49.2

ResNet-max 80.2 50.6
ResNet-WELDON 81.5 51.7

TABLE 10: Pointwise object localization performances (MAP)
on VOC 2012 and MS COCO.

6.5 Weakly supervised image segmentation

In this section, we show that our model can be applied to
weakly supervised image segmentation, while being trained
from global image labels only. We evaluate our model on
the VOC 2012 image segmentation dataset [61], consisting
of 20 foreground object classes and one background class.
We train our model with the train set (1,464 images) and
the extra annotations provided by [81] (resulting in an aug-
mented set of 10,582 images), and test it on the validation set
(1,449 images). The network is trained with an input image
448×448 and k+ = k− = 50. The performance is measured
in terms of pixel Intersection-over-Union (IoU) averaged
across the 21 categories. As in existing methods, we use
a fully connected CRF (FC-CRF) [46] to post-process the
final segmentation mask. We use the class-specific heatmaps
generated by the network as unary potentials of the FC-CRF.

Method Mean IoU

MIL-FCN [21] 24.9
MIL-Base+ILP+SP-sppxl [20] 36.6
EM-Adapt +FC-CRF [56] 33.8
CCNN + FC-CRF [57] 35.3
SEC [38] 50.7

ResNet-WELDON + FC-CRF 42.1

TABLE 11: Comparison of weakly supervised semantic segmen-
tation methods on VOC 2012.

Results. The result of our method is presented in Table 11,
and some predictions are shown in Figure 7. We compare
it to weakly supervised methods that use only image labels
during training. Firstly, we note a large improvement with
respect to MIL models based on max pooling [21] (+17.2
pt) or its soft extension [20] (+5.5 pt). This validates the
efficient of our negative evidence pooling for segmentation.
ResNet-WELDON also significantly outperforms the recent
CCNN [57] that uses a loss function to optimize for any set
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Image Ground truth Our prediction

Fig. 7: Segmentation examples on VOC 2012. We show the
prediction of our model after FC-CRF and the ground truth.

of linear constraints on the output space of the ConvNet.
[38] achieves the best results by using a quite more complex
strategy. The training scheme incorporates different terms,
which are specifically tailored to segmentation: one enforces
the segmentation mask to match low-level image bound-
aries, another one incorporates prior knowledge to support
predicted classes to occupy a certain image proportion. In
contrast, our model is generic, and is trained in the same
manner for the classification and segmentation. It would be
possible to use the specific segmentation priors of [38] in our
model to boost performances.

7 CONCLUSION

We propose a new structured output latent variable model,
based on negative evidence. Based on this model, we pro-
pose ResNet-WELDON, a new weakly supervised learn-
ing dedicated to learn discriminative localized visual fea-
tures by using only image-level labels during training.
ResNet-WELDON model uses a fully convolutional archi-
tecture, where the spatial information is naturally preserved
throughout the network. Extensive experiments have shown
the effectiveness of our model for image classification. We
show the scalability and the efficiency of our model on large
scale ILSVRC dataset. We also present a detailed experi-
mental comparison of different pooling functions on several
datasets. Finally, we show that ResNet-WELDON can be
successfully apply for weakly supervised segmentation.
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