T. Rapoport, Nature, vol.450, p.663, 2007.

R. M. Brown, D. Montezinos-;-b, ). G. Guerriero, J. Fugelstad, and V. Bulone, Proc.Natl.Acad.Sci. USA, vol.2, p.161, 1976.

C. M. Dobson, Nature, vol.426, p.884, 2003.

J. Clarke, H. Wu, L. Jayasinghe, A. Patel, S. Reid et al., Nature Nanotechnology, vol.4, p.3161, 2009.

G. Viasnoff, J. Charron, L. Di-meglio, F. Auvray, . E. Montel-;-d)-s et al., Phys.Rev.Lett, vol.113, p.3057, 2000.

T. Z. Butler, J. H. Gundlach, and M. A. , Biophysical Journal, vol.90, p.3227, 1999.

J. J. Kasianowicz, E. Brandin, D. Branton, and D. W. Deamer, Proc.Natl.Acad.Sci. USA, vol.93, p.13770, 1996.

G. Oukhaled, J. Mathé, A. Biance, L. Bacri, J. Betton et al., J. Am. Chem. Soc, vol.98, p.9287, 2007.

L. J. Siskind, R. N. Kolesnik, and M. Colombini, JBC, vol.277, p.26796, 2002.

S. , Phys.Rev.Lett, vol.98, p.238104, 2007.

A. Fennouri, R. Daniel, M. Pastoriza-gallego, L. Auvray, J. Pelta et al., Anal.Chem, vol.85, p.8488, 2013.

C. Fennouri, M. Przybylski, L. Pastoriza-gallego, L. Bacri, R. Auvray et al., ACS Nano, vol.6, p.9672, 2012.

A. G. Oukhaled, A. Biance, J. Pelta, L. Auvray, and L. Bacri, Phys.Rev.Lett, vol.108, p.88104, 2012.

V. V. Palyulin, Trends in biotechnology, vol.10, p.125, 2000.

M. Pastoriza-gallego, L. Rabah, G. Gibrat, B. Thiébot, F. Gisou-van-der-goot et al., J. Am. Chem. Soc, vol.133, p.2923, 2011.

G. Pastoriza-gallego, J. Oukhaled, L. Betton, J. Auvray, ). L. Pelta-;-c et al., ACS Chem.Biol, vol.7, p.652, 2012.

A. E. Mathé-;-d)-r.-kawano, C. Shibel, H. S. Cauley, and . White, J.Anal.Chem, vol.84, p.1233, 2009.

C. Dekker, Nature Nanotechnology, vol.2, p.209, 2007.

B. Bourhis, E. Toury, J. Tarnaud, P. Mathé, A. Guégan et al.,

G. Guilet, L. Patriarche, F. Auvray, Q. Montel, B. Wilmart et al., Microelectronic Engineering, vol.12, 2014.

A. L. Sisson, M. R. Shah, S. Bhosale, and S. Matile, Chem.Soc.Rev, vol.35, p.1269, 2006.

N. A. Bell, C. R. Engst, M. Ablay, G. Divitini, C. Ducati et al., Nano.Lett, vol.12, p.512, 2012.

. Howorka, Angew.Chem.Int.Ed, vol.52, p.12466, 2013.

N. Sakai and S. Matile, J. Am. Chem. Soc, vol.125, p.14348, 2003.

B. Barteau, T. Pitard, P. Montier, H. Lehn, P. Cheradame et al., J.Gene Med, vol.13, p.538, 2011.

S. Sebai, D. Milioni, A. Walrant, I. Alves, S. Sagan et al.,

C. Cribier, ). H. Tribet-;-d, Y. Cho, ;. Zhao, V. Langecker et al., Angew.Chem.Int.Ed, vol.51, p.932, 2011.

M. R. Ghadiri, J. R. Granja, R. A. Milligan, D. E. Mcree, N. Khazanovich-;-b et al., Acc.Chem.Res, vol.336, p.2955, 1993.

C. M. Danial, K. A. Tran, S. Jolliffe, and . Perrier, J. Am. Chem. Soc, vol.136, p.8018, 2014.

I. Tabushi, Y. Kuroda, and K. Yokota, Tetrahedron Lett, vol.23, p.4601, 1982.

J. Jullien, L. Canceill, J. Lacombe, and . Lehn, J. Chem. Soc. Perkin Trans, vol.2, p.417, 1995.

E. C. Madhavan, M. S. Robert, and . Gin, Angew. Chem. Int.Ed, vol.44, p.7584, 2005.

I. Renia, S. Faye, V. Rassou, C. Bennevault-celton, P. Huin et al., Chem. Commun, vol.49, p.11647, 2013.

A. Przybylski, B. Oukhaled, G. Thiébot, N. Patriarche, J. Jarroux et al., Org.Biomol.Chem, vol.15, p.5842, 2005.

. Guégan, Advanced Materials, vol.21, p.4054, 2009.

W. H. Binder-;-b, ). E. Marie, S. Sagan, S. Cribier, and C. Tribet, Angew.Chem.Int.Ed, vol.47, p.861, 2008.

L. Chen, W. Si, L. Zhang, G. Tang, Z. T. Li et al., J. Am. Chem. Soc, vol.135, p.2152, 2013.

A. R. Khan, P. Forgo, K. J. Stine, and V. T. Souza, Chem.Rev, vol.98, p.1977, 1998.

L. Gu, O. Braha, S. Conlan, S. Cheley, and H. Bayley, Nature, vol.398, p.686, 1999.

S. Gu, H. Cheley, and . Bayley, J.Gen.Physiol, vol.118, p.481, 2001.

C. Huin, Z. Eskandani, N. Badi, A. Farcas, V. Bennevault-celton et al., Carb.Polym, vol.94, p.323, 2013.

Z. Eskandani, C. Huin, and P. Guégan, Carb.Res, vol.346, p.2414, 2011.

V. Bennevault-celton, A. Urbach, O. Martin, C. Pichon, P. Guégan et al., Bioconjugate Chem, vol.22, p.2404, 2011.

P. Mueller, D. O. Rudin, H. Ti-tien, and W. C. Wescott, Nature, vol.194, p.979, 1962.

I. Bezrukov, V. A. Vodyanoy, and . Parsegian, Nature, vol.370, p.279, 1994.

L. V. Arakelyan, Y. A. Chernomordik, V. F. Chizmadzhev, M. R. Pastushenko, and . Tarasevich, Bioelectrochemistry and Bioenergetics, vol.6, p.37, 1979.

J. Mathé, A. Aksimentiev, D. R. Nelson, K. Schulten, and A. Meller, Proc.Natl.Acad.Sci. USA, vol.102, p.12377, 2005.

T. M. Fyles, Chem.Soc.Rev, vol.36, p.335, 2007.

A. Banerjee, E. Mikhailova, S. Cheley, L. Gu, M. Montoya et al., Proc.Natl.Acad.Sci. USA, vol.107, p.8165, 2010.

A. Halperin, Langmuir, vol.15, p.2525, 1999.

J. M. Bartlett and D. Stirling, Molecular Biology, vol.226, p.3, 2003.

P. Prangkio, D. K. Rao, K. D. Lance, M. Rubinshtein, J. Yang et al., Biochimica et Biophysica Acta, vol.1808, p.2877, 2011.

M. Muthukumar, Polymer Translocation, p.251

;. M. London, S. Kondo, and . Nishikawa, J. Phys. Chem. B, vol.111, p.13451, 2007.

G. Abstract and . Nanopores, Amphiphilic Star Polymers with a ?cyclodextrin core behave as an artificial nanopore, allowing ssDNA translocation through lipid bilayers Figure S12. Experiment 3 of translocation (presence of ssDNA in the trans compartment): Recording of the current versus time using CD-PEG1, in the presence of ssDNA

, A-Current-time trace, witnessing the presence of strong interactions B-Current distribution corresponding to the trace A

S. Figure, Experiment 4 of translocation (presence of ssDNA in the trans compartment) Recording of the current versus time, using CD-PEG1, in the presence of ssDNA, for an applied voltage of-100mV

, A-Current-time trace, witnessing the presence of weak interactions B-Current distribution corresponding to the trace A