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Abstract15

A mobile agent equipped with a compass and a measure of length has to find an inert treasure in16

the Euclidean plane. Both the agent and the treasure are modeled as points. In the beginning,17

the agent is at a distance at most D > 0 from the treasure, but knows neither the distance nor any18

bound on it. Finding the treasure means getting at distance at most 1 from it. The agent makes19

a series of moves. Each of them consists in moving straight in a chosen direction at a chosen20

distance. In the beginning and after each move the agent gets a hint consisting of a positive21

angle smaller than 2π whose vertex is at the current position of the agent and within which the22

treasure is contained. We investigate the problem of how these hints permit the agent to lower23

the cost of finding the treasure, using a deterministic algorithm, where the cost is the worst-case24

total length of the agent’s trajectory. It is well known that without any hint the optimal (worst25

case) cost is Θ(D2). We show that if all angles given as hints are at most π, then the cost can26

be lowered to O(D), which is optimal. If all angles are at most β, where β < 2π is a constant27

unknown to the agent, then the cost is at most O(D2−ε), for some ε > 0. For both these positive28

results we present deterministic algorithms achieving the above costs. Finally, if angles given as29

hints can be arbitrary, smaller than 2π, then we show that cost Θ(D2) cannot be beaten.30
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1 Introduction35

Motivation. A tourist visiting an unknown town wants to find her way to the train station36

or a skier lost on a slope wants to get back to the hotel. Luckily, there are many people37

that can help. However, often they are not sure of the exact direction: when asked about38

it, they make a vague gesture with the arm swinging around the direction to the target,39

accompanying the hint with the words “somewhere there”. In fact, they show an angle40

containing the target. Can such vague hints help the lost traveller to find the way to the41

target? The aim of the present paper is to answer this question.42

The model and problem formulation. A mobile agent equipped with a compass and43

a measure of length has to find an inert treasure in the Euclidean plane. Both the agent44

and the treasure are modeled as points. In the beginning, the agent is at a distance at most45

D > 0 from the treasure, but knows neither the distance nor any bound on it. Finding the46

treasure means getting at distance at most 1 from it. In applications, from such a distance47

the treasure can be seen. The agent makes a series of moves. Each of them consists in48

moving straight in a chosen direction at a chosen distance. In the beginning and after each49

move the agent gets a hint consisting of a positive angle smaller than 2π whose vertex is at50

the current position of the agent and within which the treasure is contained. We investigate51

the problem of how these hints permit the agent to lower the cost of finding the treasure,52

using a deterministic algorithm, where the cost is the worst-case total length of the agent’s53

trajectory. It is well known that the optimal cost of treasure hunt without hints is Θ(D2).54

(The algorithm of cost O(D2) is to trace a spiral with jump 1 starting at the initial position55

of the agent, and the lower bound Ω(D2) follows from Proposition 5.1 which establishes this56

lower bound even assuming arbitrarily large angles smaller than 2π given as hints.)57

Our results. We show that if all angles given as hints are at most π, then the cost of58

treasure hunt can be lowered to O(D), which is optimal. Our real challenge here is in the59

fact that hints can be angles of size exactly π, in which case the design of a trajectory always60

leading to the treasure, while being cost-efficient in terms of traveled distance, is far from61

obvious.62

If all angles are at most β, where β < 2π is a constant unknown to the agent, then we63

prove that the cost is at most O(D2−ε), for some ε > 0. Finally, we show that arbitrary64

angles smaller than 2π given as hints cannot be of significant help: using such hints the cost65

Θ(D2) cannot be beaten.66

For both our positive results we present deterministic algorithms achieving the above67

costs. Both algorithms work in phases “assuming” that the treasure is contained in increasing68

squares centered at the initial position of the agent. The common principle behind both69

algorithms is to move the agent to strategically chosen points in the current square, depending70

on previously obtained hints, and sometimes perform exhaustive search of small rectangles71

from these points, in order to guarantee that the treasure is not there. This is done in such72

a way that, in a given phase, obtained hints together with small rectangles exhaustively73

searched, eliminate a sufficient area of the square assumed in the phase to eventually permit74

finding the treasure.75

In both algorithms, the points to which the agent travels and where it gets hints are76

chosen in a natural way, although very differently in each of the algorithms. The main77

difficulty is to prove that the distance travelled by the agent is within the promised cost. In78

the case of the first algorithm, it is possible to cheaply exclude large areas not containing the79

treasure, and thus find the treasure asymptotically optimally. For the second algorithm, the80

agent eliminates smaller areas at each time, due to less precise hints, and thus finding the81

treasure costs more.82
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Due to lack of space, the details of one of the algorithms and proofs of several results are83

in the Appendix that is the full version of the paper.84

Related work. The problem of treasure hunt, i.e., searching for an inert target by one85

or more mobile agents was investigated under many different scenarios. The environment86

where the treasure is hidden may be a graph or a plane, and the search may be deterministic87

or randomized. An early paper [4] showed that the best competitive ratio for deterministic88

treasure hunt on a line is 9. In [8] the authors generalized this problem, considering a89

model where, in addition to travel length, the cost includes a payment for every turn of the90

agent. The book [2] surveys both the search for a fixed target and the related rendezvous91

problem, where the target and the finder are both mobile and their role is symmetric: they92

both cooperate to meet. This book is concerned mostly with randomized search strategies.93

Randomized treasure hunt strategies for star search, where the target is on one of m rays, are94

considered in [13]. In [17, 19] the authors study relations between the problems of treasure95

hunt and rendezvous in graphs. The authors of [3] study the task of finding a fixed point96

on the line and in the grid, and initiate the study of the task of searching for an unknown97

line in the plane. This research is continued, e.g., in [12, 16]. In [18] the authors concentrate98

on game-theoretic aspects of the situation where multiple selfish pursuers compete to find a99

target, e.g., in a ring. The main result of [15] is an optimal algorithm to sweep a plane in100

order to locate an unknown fixed target, where locating means to get the agent originating101

at point O to a point P such that the target is in the segment OP . In [10] the authors102

consider the generalization of the search problem in the plane to the case of several searchers.103

Collective treasure hunt in the grid by several agents with bounded memory is investigated104

in [9, 14]. In [5], treasure hunt with randomly faulty hints is considered in tree networks. By105

contrast, the survey [7] and the book [6] consider pursuit-evasion games, mostly on graphs,106

where pursuers try to catch a fugitive target trying to escape.107

2 Preliminaries108

Since for D ≤ 1 treasure hunt is solved immediately, in the sequel we assume D > 1. Since109

the agent has a compass, it can establish an orthogonal coordinate system with point O110

with coordinates (0, 0) at its starting position, the x-axis going East-West and the y-axis111

going North-South. Lines parallel to the x-axis will be called horizontal, and lines parallel to112

the y-axis will be called vertical. When the agent at a current point a decides to go to a113

previously computed point b (using a straight line), we describe this move simply as “Go114

to b”. A hint given to the agent currently located at point a is formally described as an115

ordered pair (P1, P2) of half-lines originating at a such that the angle clockwise from P1 to116

P2 (including P1 and P2) contains the treasure.117

The line containing points A and B is denoted by (AB). A segment with extremities A118

and B is denoted by [AB] and its length is denoted |AB|. Throughout the paper, a polygon119

is defined as a closed polygon (i.e., together with the boundary). For a polygon S, we will120

denote by B(S) (resp. I(S)) the boundary of S (resp. the interior of S, i.e., the set S \B(S)).121

A rectangle is defined as a non-degenerate rectangle, i.e., with all sides of strictly positive122

length. A rectangle with vertices A,B,C,D (in clockwise order) is denoted simply by ABCD.123

A rectangle is straight if one of its sides is vertical.124

In our algorithms we use the following procedure RectangleScan(R) whose aim is to125

traverse a closed rectangle R (composed of the boundary and interior) with known coordinates,126

so that the agent initially situated at some point of R gets at distance at most 1 from every127

point of it and returns to the starting point. We describe the procedure for a straight128

rectangle whose vertical side is not shorter than the horizontal side. The modification of129
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the procedure for arbitrarily positioned rectangles is straightforward. Let the vertices of the130

rectangle R be A, B, C and D, where A is the North-West vertex and the others are listed131

clockwise. Let a be the point at which the agent starts the procedure.132

The idea of the procedure is to go to vertex A, then make a snake-like movement in133

which consecutive vertical segments are separated by a distance 1, and then go back to point134

a. The agent ignores all hints gotten during the execution of the procedure. Suppose that135

the horizontal side of R has length m and the vertical side has length n, with n ≥ m. Let136

k = bmc. Let a0, a1, . . . , ak be points on the North horizontal side of the rectangle, such137

that a0 = A and the distance between consecutive points is 1. Let b0, b1, . . . , bk be points138

on the South horizontal side of the rectangle, such that b0 = D and the distance between139

consecutive points is 1.140

The pseudocode of procedure RectangleScan(R) is given in Algorithm 1.141

Algorithm 1 Procedure RectangleScan(R)
1: if k is odd then
2: for i = 0 to k − 1 step 2 do
3: Go to ai; Go to bi;
4: Go to bi+1; Go to ai+1
5: end for
6: Go to a
7: else
8: for i = 0 to k − 2 step 2 do
9: Go to ai; Go to bi;
10: Go to bi+1; Go to ai+1
11: end for
12: Go to ak; Go to bk
13: Go to a
14: end if

I Proposition 2.1. For every point p of the rectangle R, the agent is at distance at most142

1 from p at some time of the execution of Procedure RectangleScan(R). The cost of the143

procedure is at most 5n ·max(m, 2), where n ≥ m are the lengths of the sides of the rectangle.144

3 Angles at most π145

In this section we consider the case when all angles given as hints are at most π. Without146

loss of generality we can assume that they are all equal to π, completing any smaller angle to147

π in an arbitrary way: this makes the situation even harder for the agent, as hints become148

less precise. For such hints we show Algorithm TreasureHunt1 that finds the treasure at149

cost O(D). This is of course optimal, as the treasure can be at any point at distance at most150

D from the starting point of the agent.151

For angles of size π, every hint is in fact a half-plane whose boundary line L contains the152

current location of the agent. For simplicity, we will code such a hint as (L, right) or (L, left),153

whenever the line L is not horizontal, depending on whether the indicated half-plane is to154

the right (i.e., East) or to the left (i.e., West) of L. For any non-horizontal line L this is155

non-ambiguous. Likewise, when L is horizontal, we will code a hint as (L, up) or (L, down),156

depending on whether the indicated half-plane is up (i.e., North) from L or down (i.e., South)157

from L.158

In view of the work on φ-self-approaching curves (cf. [1]) we first note that there is a big159

difference of difficulty between obtaining our result in the case when angles given as hints160

are strictly smaller than π and when they are at most π, as we assume. A φ-self-approaching161

curve is a planar oriented curve such that, for each point B on the curve, the rest of the curve162

lies inside a wedge of angle φ with apex in B. In [1], the authors prove the following property163
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of these curves: for every φ < π there exists a constant c(φ) such that the length of any164

φ-self-approaching curve is at most c(φ) times the distance D between its endpoints. Hence,165

for angles φ strictly smaller than π, our result could possibly be derived from the existing166

literature: roughly speaking, the agent should follow a trajectory corresponding to any167

φ-self-approaching curve to find the treasure at a cost linear in D. Even then, transforming168

the continuous scenario of self-approaching curves to our discrete scenario presents some169

difficulties. However, the crucial problem is this: the result of [1] holds only when φ < π170

(the authors also emphasize that for each φ ≥ π, the property is false), and thus the above171

derivation is no longer possible for our purpose when φ = π. Actually, this is the real difficulty172

of our problem: handling angles equal to π, i.e., half-planes.173

We further observe that a rather straightforward treasure hunt algorithm of costO(D logD),174

for hints being angles of size π, can be obtained using an immediate corollary of a theorem175

proven in [11] by Grünbaum: each line passing through the centroid of a convex polygon cuts176

the polygon into two convex polygons with areas differing by a factor of at most 5
4 . Suppose177

for simplicity that D is known. Starting from the square of side length 2D, centered at the178

initial position of the agent, this permits to reduce the search area from P to at most 5P
9 in a179

single move. Hence, after O(logD) moves, the search area is small enough to be exhaustively180

searched by procedure RectangleScan at cost O(D). However, the cost of each move during181

the reduction is not under control and can be only bounded by a constant multiple of D,182

thus giving the total cost bound O(D logD). By contrast, our algorithm controls both the183

remaining search area and the cost incurred in each move, yielding the optimal cost O(D).184

The high-level idea of our Algorithm TreasureHunt1 is the following. The agent acts in185

phases j = 1, 2, 3, . . . where in each phase j the agent “supposes” that the treasure is in a186

straight square Rj centered at the initial position of the agent, and of side length 2j . When187

executing a phase j, the agent successively moves to distinct points with the aim of using188

the hints at these points to narrow the search area that initially corresponds to Rj . In our189

algorithm, this narrowing is made in such a way that the remaining search area is always190

a straight rectangle. Often this straight rectangle is a strict superset of the intersection of191

all hints that the agent was given previously. This would seem to be a waste, as we are192

searching some areas that have been previously excluded. However, this loss is compensated193

by the ease of searching description and subsequent analysis of the algorithm, due to the fact194

that, at each stage, the search area is very regular.195

During a phase, the agent proceeds to successive reductions of the search area by moving196

to distinct locations, until it obtains a rectangular search area that is small enough to be197

searched directly at low cost using procedure RectangleScan. In our algorithm, such a final198

execution of RectangleScan in a phase is triggered as soon as the rectangle has a side smaller199

than 4. If the treasure is not found by the end of this execution of procedure RectangleScan,200

the agent learns that the treasure cannot be in the supposed straight square Rj and starts201

the next phase from scratch by forgetting all previously received hints. This forgetting again202

simplifies subsequent analysis. The algorithm terminates at the latest by the end of phase203

j0 = dlog2 De+ 1, in which the supposed straight square Rj0 is large enough to contain the204

treasure. Hence, if the cost of a phase j is linear in 2j , then the cost of the overall solution is205

linear in the distance D.206

In order to give the reader deeper insights in the reasons why our solution is valid and207

has linear cost, we need to give more precise explanations on how the search area is reduced208

during a given phase j ≥ 2 (when j = 1, the agent makes no reduction and directly scans209

the small search area using procedure RectangleScan). Suppose that in phase j ≥ 2 the210

agent is at the center p of a search area corresponding to a straight rectangle R, every side of211
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which has length between 4 and 2j (note that this is the case at the beginning of the phase),212

and denote by A,B,C and D the vertices of R starting from the top left corner and going213

clockwise. In order to reduce rectangle R, the agent uses the hint at point p. The obtained214

hint denoted by (L1, x1) can be of two types: either a good hint or a bad hint. A good hint is215

a hint whose line L1 divides one of the sides of R into two segments such that the length y216

of the smaller one is at least 1. A bad hint is a hint that is not good.217

If the received hint (L1, x1) is good, then the agent narrows the search area to a rectangle218

R′ ⊂ R having the following three properties:219

1. R \R′ does not contain the treasure.220

2. The difference between the perimeters of R and R′ is 2y ≥ 2.221

3. The distance from p to the center of R′ is exactly y
2 .222

and then moves to the center of R′.223

An illustration of such a reduction is depicted in Figure 1(a). The reduced search area224

R′ is the rectangle ABde.225

p

CD

A B

1

de

L

y y

(a) A good hint (L1, right)

L2

p k

e d

s

m

p’

s’

g g’

h’h

BA

CD

d’

L
1

(b) A bad hint (L1, right)

Figure 1 In Figure (a) the agent received a good hint (L1, right) at the point p of a rectangular
search area ABCD. In Figure (b) it received a bad hint (L1, right) at the point p and hence it
moved to point p′ and got a hint (L2, left). In both figures the excluded half-planes are shaded.

If the agent receives a bad hint, say (L1, right), at the center of a rectangular search area226

R, we cannot apply the same method as the one used for a good hint: this is the reason for227

the distinction between good and bad hints. If we applied the same method as before, we228

could obtain a rectangular search area R′ such that the difference between the perimeters of229

R and R′ is at least 2y. However, in the context of a bad hint, the difference 2y may be very230

small (even null), and hence there is no significant reduction of the search area. In order to231

tackle this problem, when getting a bad hint at the center p of R, the agent moves to another232

point p′ which is situated in the half-plane (L1, right) at distance 2 from p, perpendicularly233

to L1. This point p′ is chosen in such a way that, regardless of what is the second hint, we234

can ensure that two important properties described below are satisfied.235

The first property is that by combining the two hints, the agent can decrease the search236

area to a rectangle R′ ⊂ R whose perimeter is smaller by 2 compared to the perimeter of R, as237
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it is the case for a good hint, and such that R\R′ does not contain the treasure. This decrease238

follows either directly from the pair of hints, or indirectly after having scanned some relatively239

small rectangles using procedure RectangleScan. In the example depicted in Fig. 1 (b),240

after getting the second hint (L2, left), the agent executes procedure RectangleScan(ss′d′d)241

followed by RectangleScan(gg′h′h) and moves to the center of the new search area R′ that242

is the rectangle Agpm. Note that the part of R′ not excluded by the two hints and by243

the procedure RectangleScan executed in rectangles ss′d′d and gg′h′h is only the small244

quadrilateral bounded by line L2 and the segments [AB], [s′d′] and [gh]. However, in order245

to preserve the homogeneity of the process, we consider the entire new search area R′ which246

is a straight rectangle whose perimeter is smaller by at least 2, compared to that from R.247

This follows from the fact that no side of R has length smaller than 4. The agent finally248

moves to the center of R′.249

The second property is that all of this (i.e., the move from p to p′, the possible scans250

of small rectangles and finally the move to the center of R′) is done at a cost linear in the251

difference of perimeters of R and R′, as shown in the Appendix. The two properties together252

ensure that, even with bad hints, the agent manages to reduce the search area in a significant253

way and at a small cost. So, regardless of whether hints are good or not, we can show that254

the cost of phase j is in O(2j) and the treasure is found during this phase if the initial square255

is large enough. The difficulty of the solution is in showing that the moves prescribed by our256

algorithm in the case of bad hints guarantee the two above properties, and thus ensure the257

correctness of the algorithm and the cost linear in D.258

The details of the algorithm and its analysis are in the Appendix.259

I Theorem 1. Consider an agent A and a treasure located at distance at most D from the260

initial position of A. By executing Algorithm TreasureHunt1, agent A finds the treasure261

after having traveled a distance O(D).262

4 Angles bounded by β < 2π263

In this section we consider the case when all hints are angles upper-bounded by some constant264

β < 2π, unknown to the agent. The main result of this section is Algorithm TreasureHunt2265

whose cost is at most O(D2−ε), for some ε > 0. For a hint (P1, P2) we denote by (P1, P2)266

the complement of (P1, P2).267

4.1 High level idea268

In Algorithm TreasureHunt2, similarly as in the previous algorithm, the agent acts in phases269

j = 1, 2, 3, . . ., where in each phase j the agent “supposes” that the treasure is in the straight270

square centered at its initial position and of side length 2j . The intended goal is to search271

each supposed square at relatively low cost, and to ensure the discovery of the treasure by272

the time the agent finishes the first phase for which the initial supposed square contains the273

treasure. However, the similarity with the previous solution ends there: indeed, the hints274

that may now be less precise do not allow us to use the same strategy within a given phase.275

Hence we adopt a different approach that we outline below and that uses the following notion276

of tiling. Given a square S with side of length x > 0, Tiling(i) of S, for any non-negative277

integer i, is the partition of square S into 4i squares with side of length x
2i . Each of these278

squares, called tiles, is closed, i.e., contains its border, and hence neighboring tiles overlap in279

the common border.280

Let us consider a simpler situation in which the angle of every hint (P1, P2) is always281

equal to the bound β: the general case, when the angles may vary while being at most β,282
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adds a level of technical complexity that is unnecessary to understand the intuition. In the283

considered situation, the angle of each excluded zone (P1, P2) is always the same as well. The284

following property holds in this case: there exists an integer iβ such that for every square S285

and every hint (P1, P2) given at the center of S, at least one tile of Tiling(iβ) of S belongs286

to the excluded zone (P1, P2).287

In phase j, the agent performs k steps: we will indicate later how the value of k should288

be chosen. At the beginning of the phase, the entire square S is white. In the first step, the289

agent gets a hint (P1, P2) at the center of S. By the above property, we know that (P1, P2)290

contains at least one tile of Tiling(iβ) of S, and we have the guarantee that such a tile291

cannot contain the treasure. All points of all tiles included in (P1, P2) are painted black in292

the first step. This operation does not require any move, as painting is performed in the293

memory of the agent. As a result, at the end of the first step, each tile of Tiling(iβ) of S is294

either black or white, in the following precise sense: a black tile is a tile all of whose points295

are black, and a white tile is a tile all of whose interior points are white.296

In the second step, the agent repeats the painting procedure at a finer level. More297

precisely, the agent moves to the center of each white tile t of Tiling(iβ) of S. When it gets298

a hint at the center of a white tile t, there is at least one tile of Tiling(iβ) of t that can be299

excluded. As in the first step, all points of these excluded tiles are painted black. Note that a300

tile of Tiling(iβ) of t is actually a tile of Tiling(2iβ) of S. Moreover, each tile of Tiling(iβ)301

of S is made of exactly 4iβ tiles of Tiling(2iβ) of S. Hence, as depicted in Figure 2, the302

property we obtain at the end of the second step is as follows: each tile of Tiling(2iβ) of S303

is either black or white.

(a) At the end of a first step
for a hint (P1, P2)

(b) At the end of a second step

Figure 2 White and black tiles at the end of the first and the second step of a phase, for square
S = ABCD and iβ = 2.

304
In the next steps, the agent applies a similar process at increasingly finer levels of tiling.305

More precisely, in step 2 < s ≤ k, the agent moves to the center of each white tile of306

Tiling((s − 1)iβ) of S and gets a hint that allows it to paint black at least one tile of307

Tiling(s · iβ) of S. At the end of step s, each tile of Tiling(s.iβ) of S is either black or white.308

We can show that at each step s the agent paints black at least 1
4iβ

th of the area of S that is309

white at the beginning of step s.310

After step k, each tile of Tiling(k · iβ) of S is either black or white. These steps permit311

the agent to exclude some area without having to search it directly, while keeping some312
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regularity of the shape of the black area. The agent paints black a smaller area than excluded313

by the hints but a more regular one. This regularity enables in turn the next process in314

the area remaining white. Indeed, the agent subsequently executes a brute-force searching315

that consists in moving to each white tile of Tiling(k · iβ) of S in order to scan it using the316

procedure RectangleScan. If, after having scanned all the remaining white tiles, it has not317

found the treasure, the agent repaints white all the square S and enters the next phase. Thus318

we have the guarantee that the agent finds the treasure by the end of phase dlog2 De+ 1, i.e.,319

a phase in which the initial supposed square is large enough to contain the treasure. The320

question is: how much do we have to pay for all of this? In fact, the cost depends on the321

value that is assigned to k in each phase j. The value of k must be large enough so that the322

distance travelled by the agent during the brute-force searching is relatively small. At the323

same time, this value must be small enough so that the the distance travelled during the k324

steps is not too large. A good trade-off can be reached when k = dlog4iβ
√

2je. Indeed, as325

highlighted in the proof of correctness, it is due to this carefully chosen value of k that we326

can beat the cost Θ(D2) necessary without hints, and get a complexity of O(D2−ε), where ε327

is a positive real depending on iβ , and hence depending on the angle β.328

4.2 Algorithm and analysis329

In this subsection we describe our algorithm in detail, prove its correctness and analyze330

its complexity. In the Appendix we define a function index : (0, 2π) −→ N+ that has the331

following properties, for any angle 0 < α < 2π.332

1. For every square S and for every hint (P1, P2) of size 2π − α obtained at the center of S,333

there exists a tile of Tiling(index(α)) of S included in (P1, P2).334

2. For every angle α′ < α, we have index(α) ≤ index(α′).335

In the sequel, the integer index(α) is called the index of α. Algorithm 2 gives a pseudo-336

code of the main algorithm of this section. It uses the function Mosaic described in Algorithm337

3 that is the key technical tool permitting the agent to reduce its search area. The agent338

interrupts the execution of Algorithm 2 as soon as it gets at distance 1 from the treasure, at339

which point it can “see” it and thus treasure hunt stops.340

Algorithm 2 TreasureHunt2
1: IndexNew := 1
2: i := 1
3: loop
4: repeat
5: IndexOld := IndexNew
6: IndexNew := Mosaic(i, IndexOld)
7: until IndexNew = IndexOld
8: i := i + 1
9: end loop

In the following, a square is called black if all its points are black. A square is called341

white if all points of its interior are white. (In a white square, some points of its border may342

be black).343

I Lemma 2. For any positive integers i and k, consider an agent executing function344

Mosaic(i,k) from its initial position O. Let S be the straight square centered at O with side345

of length 2i. For every positive integer j ≤ dlog4k
√

2ie, at the end of the j-th execution of the346

first loop (lines 5 to 20) in Mosaic(i,k), each tile of Tiling(jk) of S is either black or white.347
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I Lemma 3. For every positive integers i and k, a call to function Mosaic(i,k) has cost at348

most 2i
3+log4k (4k−1)

2 +2k+8.349

Algorithm 3 Function Mosaic(i,k)
1: O:= the initial position of the agent
2: S:= the straight square centered at O with sides of length 2i
3: Paint white all points of S
4: IndexMax:=k
5: for j = 1 to dlog4k

√
2ie do

6: for all tiles t of T iling((j − 1)k) of S do
7: if t is white then
8: Go to the center of t
9: Let (P1, P2) be the obtained hint
10: k′:= index of (P1, P2)
11: if k′ > IndexMax then
12: IndexMax:=k′

13: end if
14: if IndexMax = k then
15: for all tiles t′ of T iling(k) of t such that t′ ⊂ (P1, P2) do
16: Paint black all points of t′

17: end for
18: end if
19: end if
20: end for
21: end for
22: if IndexMax = k then
23: for all tiles t of T iling(k(dlog4k

√
2ie)) of S do

24: if t is white then
25: Go to the center of t
26: Execute RectangleScan(t)
27: end if
28: end for
29: end if
30: Go to O
31: return IndexMax

Let ψ be the index of 2π − β. The next proposition follows from the aforementioned350

properties of the function index.351

I Proposition 4.1. Let (P1, P2) be any hint. The index of (P1, P2) is at most ψ.352

Using Lemmas 2, 3 and Proposition 4.1 we prove the final result of this section.353

I Theorem 4. Consider an agent A and a treasure located at distance at most D from the354

initial position of A. By executing Algorithm TreasureHunt2, agent A finds the treasure355

after having traveled a distance in O(D2−ε), for some ε > 0.356

Proof. We will use the following two claims.357

I Claim 4.1. Let i ≥ 1 be an integer. The number of executions of the repeat loop in the358

i-th execution of the external loop in Algorithm 2 is bounded by ψ.359

Proof of the claim: Suppose by contradiction that the claim does not hold for some i ≥ 1.360

So, the number of executions of the repeat loop in the i-th execution of the external loop361

in Algorithm 2 is at least ψ + 1. In each of these executions of the repeat loop, the agent362

calls function Mosaic(i, ∗) exactly once. For all 1 ≤ j ≤ ψ + 1 (ψ ≥ 1, by definition of an363

index), denote by vj the returned value of function Mosaic(i, ∗) in the j-th execution of the364

repeat loop in the i-th execution of the external loop. Note that v1 6= 1: indeed, if v1 = 1365

the repeat loop would be executed exactly once, which would be a contradiction because it366

is executed at least ψ + 1 ≥ 2 times.367
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In view of Algorithm 2 and Proposition 4.1, the returned value of Mosaic(i, ∗) is a positive368

integer that is at most ψ. Since v1 6= 1, this implies that ψ ≥ 2. Moreover, for all 2 ≤ j ≤ ψ,369

we have vj ≥ vj−1 (cf. lines 5-6 of Algorithm 2 and lines 4, 11-12 of Algorithm 3). Hence,370

there exists an integer k ≤ ψ such that vk = vk−1. However, according to Algorithm 2, this371

implies that the number of executions of the repeat loop in the i-th execution of the external372

loop is at most k ≤ ψ. This is a contradiction which concludes the proof of the claim. ?373

I Claim 4.2. The distance traveled by the agent before variable i becomes equal to dlog2 De+2374

in the execution of Algorithm 2 is O(D2−ε), where ε = 1
2 (1− log4ψ (4ψ − 1)) > 0.375

Proof of the claim: In view of the fact that the returned value of every call to function376

Mosaic in the execution of Algorithm 2 is at most ψ, it follows that in each call to function377

Mosaic(∗, k) the parameter k is always at most ψ. Hence, in view of Claim 4.1 and Lemma 3,378

as long as variable i does not reach the value dlog2 De+ 2, the agent traveled a distance at379

most380

ψ ·
dlog2 De+1∑

i=1
2i

3+log4ψ (4ψ−1)
2 +2ψ+8 (1)381

≤ ψ2(dlog2 De+1)
3+log4ψ (4ψ−1)

2 +2ψ+9 (2)382

≤ ψ22ψ+12+log4ψ (4ψ−1)2(log2 D)
3+log4ψ (4ψ−1)

2 (3)383

= ψ22ψ+12+log4ψ (4ψ−1)D2− 1
2 (1−log4ψ (4ψ−1)) (4)384

385

By (4), the total distance traveled by the agent executing Algorithm 2 is O(D2−ε) where386

ε = 1
2 (1− log4ψ(4ψ − 1)). Since ψ is a positive integer, we have 0 < log4ψ(4ψ − 1) < 1 and387

hence ε > 0. This ends the proof of the claim. ?388

Assume that the theorem is false. As long as variable i does not reach dlog2 De + 2,389

the agent cannot find the treasure, as this would contradict Claim 4.2. Thus, in view of390

Claim 4.1, before the time τ when variable i reaches dlog2 De+ 2 the treasure is not found.391

By Algorithm 2, this implies that during the last call to function Mosaic before time τ ,392

the function returns a value that is equal to its second input parameter. This implies that393

during this call, the agent has executed lines 23 to 28 of Algorithm 3: more precisely, there is394

some integer x such that from each white tile t of Tiling(x) of the straight square S that is395

centered at the initial position of the agent and that has sides of length 2dlog2 De+1, the agent396

has executed function RectangleScan(t). Hence, at the end of the execution of lines 23397

to 28, the agent has seen all points of each white tile of Tiling(x) of S. Moreover, in view398

of Lemma 2, we know that the tiles that are not white, in Tiling(x) of S, are necessarily399

black. Given a black tile σ of Tiling(x), each point of σ is black, which, in view of lines 15400

to 17 of Algorithm 3, implies that σ cannot contain the treasure. Since square S necessarily401

contains the treasure, it follows that the agent must find the treasure by the end of the last402

execution of function Mosaic before time τ . As a consequence, the agent stops the execution403

of Algorithm 2 before assigning dlog2 De+ 2 to variable i and thus, we get a contradiction404

with the definition of time τ , which proves the theorem. J405

5 Arbitrary angles406

We finally observe that if hints can be arbitrary angles smaller than 2π then the treasure407

hunt cost Θ(D2) cannot be improved in the worst case.408

I Proposition 5.1. If hints can be arbitrary angles smaller than 2π then the optimal cost of409

treasure hunt for a treasure at distance at most D from the starting point of the agent is410

Ω(D2).411
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6 Conclusion412

For hints that are angles at most π we gave a treasure hunt algorithm with optimal cost413

linear in D. For larger angles we showed a separation between the case where angles are414

bounded away from 2π, when we designed an algorithm with cost strictly subquadratic in D,415

and the case where angles have arbitrary values smaller than 2π, when we showed a quadratic416

lower bound on the cost. The optimal cost of treasure hunt with large angles bounded away417

from 2π remains open. In particular, the following questions seem intriguing. Is the optimal418

cost linear in D in this case, or is it possible to prove a super-linear lower bound on it? Does419

the order of magnitude of this optimal cost depend on the bound π < β < 2π on the angles420

given as hints?421
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