Q. T. Ostrom, H. Gittleman, and J. Fulop, CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States, NeuroOncol, vol.17, issue.4, pp.1-62, 2008.

P. Buczkowicz, U. Bartels, E. Bouffet, O. Becher, and C. Hawkins, Histopathological spectrum of paediatric diffuse intrinsic pontine glioma: diagnostic and therapeutic implications, Acta Neuropathol, vol.128, pp.573-581, 2014.

J. Schwartzentruber, A. Korshunov, and X. Y. Liu, Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma, Nature, vol.482, pp.226-231, 2012.

G. Wu, A. Broniscer, and T. A. Mceachron, Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas, Nat Genet, vol.44, pp.251-253, 2012.

D. Castel, C. Philippe, and R. Calmon, Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes, Acta Neuropathol, vol.130, pp.815-827, 2015.

D. A. Khuong-quang, P. Buczkowicz, and P. Rakopoulos, K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas, Acta Neuropathol, vol.124, pp.439-447, 2012.

D. A. Solomon, M. D. Wood, and T. Tihan, Diffuse midline gliomas with histone H3K27M mutation: a series of 47 cases assessing the spectrum of morphologic variation and associated genetic alterations, Brain Pathol, vol.26, pp.569-580, 2016.

D. Sturm, H. Witt, and V. Hovestadt, Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma, Cancer Cell, vol.22, pp.425-437, 2012.

L. Bjerke, A. Mackay, and M. Nandhabalan, Histone H3.3 mutations drive pediatric glioblastoma through upregulation of MYCN, Cancer Discov, vol.3, pp.512-519, 2013.

D. N. Louis, A. Perry, and G. Reifenberger, The 2016 World Health Organization classification of tumors of the central nervous system: a summary, Acta Neuropathol, vol.131, pp.803-820, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01479018

S. Larjavaara, R. Mäntylä, and T. Salminen, Incidence of gliomas by anatomic location, Neuro-Oncol, vol.9, pp.319-325, 2007.

K. Aihara, A. Mukasa, and K. Gotoh, H3F3A K27M mutations in thalamic gliomas from young adult patients, Neuro-Oncol, vol.16, pp.140-146, 2014.

J. Feng, S. Hao, and C. Pan, The H3. 3 K27M mutation results in a poorer prognosis in brainstem gliomas than thalamic gliomas in adults, Hum Pathol, vol.46, pp.1626-1632, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01867135

D. Meyronet, M. Esteban-mader, and C. Bonnet, Characteristics of H3 K27M-mutant gliomas in adults, Neuro-Oncol, vol.19, pp.1127-1134, 2017.

G. Reyes-botero, M. Giry, and K. Mokhtari, Molecular analysis of diffuse intrinsic brainstem gliomas in adults, J Neurooncol, vol.116, pp.405-411, 2014.

M. Touat, E. Ileana, S. Postel-vinay, F. André, and J. C. Soria, Targeting FGFR signaling in cancer, Clin Cancer Res, vol.21, pp.2684-2694, 2015.

J. Mondesir, C. Willekens, M. Touat, and S. De-botton, IDH1 and IDH2 mutations as novel therapeutic targets: current perspectives, J Blood Med, vol.7, pp.171-180, 2016.

S. Ryall, R. Krishnatry, and A. Arnoldo, Targeted detection of genetic alterations reveal the prognostic impact of H3K27M and MAPK pathway aberrations in paediatric thalamic glioma, Acta Neuropathol Commun, vol.4, p.93, 2016.

L. Zhang, L. H. Chen, and H. Wan, Exome sequencing identifies somatic gain-offunction PPM1D mutations in brainstem gliomas, Nat Genet, vol.46, pp.726-730, 2014.

G. Reyes-botero, K. Mokhtari, N. Martin-duverneuil, and J. Y. Delattre, Laigle-Donadey F. Adult brainstem gliomas, Oncologist, vol.17, pp.388-397, 2012.

, Available at: wiki.cancerimagingarchive.net/ display/Public/VASARI+Research+Project, VASARI Research Project: the Cancer Imaging Archive (TCIA) Public Access: Cancer Imaging Archive Wiki, 2018.

M. Labussì-ere, B. Boisselier, and K. Mokhtari, Combined analysis of TERT, EGFR, and IDH status defines distinct prognostic glioblastoma classes, Neurology, vol.83, pp.1200-1206, 2014.

M. Labussì-ere, A. Rahimian, and M. Giry, Chromosome 17p Homodisomy is associated with better outcome in 1p19q non-codeleted and IDH-mutated gliomas, Oncologist, vol.21, pp.1131-1135, 2016.

F. Bielle, F. Ducray, and K. Mokhtari, Tumor cells with neuronal intermediate progenitor features define a subgroup of 1p/19q co-deleted anaplastic gliomas, Brain Pathol, vol.27, pp.567-579, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01395265

D. E. Reuss, F. Sahm, and D. Schrimpf, ATRX and IDH1-R132H immunohistochemistry with subsequent copy number analysis and IDH sequencing as a basis for an "integrated" diagnostic approach for adult astrocytoma, oligodendroglioma and glioblastoma, Acta Neuropathol, vol.129, pp.133-146, 2015.

D. Capper, S. Weissert, and J. Balss, Characterization of R132H mutation-specific IDH1 antibody binding in brain tumors, Brain Pathol, vol.20, pp.245-254, 2010.

S. Venneti, M. Santi, and M. M. Felicella, A sensitive and specific histopathologic prognostic marker for H3F3A K27M mutant pediatric glioblastomas, Acta Neuropathol, vol.128, pp.743-753, 2014.

, Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways, Nature, vol.455, pp.1061-1068, 2008.

M. Ceccarelli, F. P. Barthel, and T. M. Malta, Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma, Cell, vol.164, pp.550-563, 2016.

K. R. Lamborn, S. M. Chang, and M. D. Prados, Prognostic factors for survival of patients with glioblastoma: recursive partitioning analysis, Neuro-Oncol, vol.6, pp.227-235, 2004.

F. Pignatti, M. Van-den-bent, and D. Curran, Prognostic factors for survival in adult patients with cerebral low-grade glioma, J Clin Oncol, vol.20, pp.2076-2084, 2002.

E. T. Wong, K. R. Hess, and M. J. Gleason, Outcomes and prognostic factors in recurrent glioma patients enrolled onto phase II clinical trials, J Clin Oncol, vol.17, pp.2572-2578, 1999.

M. Gessi, G. H. Gielen, V. Dreschmann, A. Waha, and T. Pietsch, High frequency of H3F3A K27M mutations characterizes pediatric and adult high-grade gliomas of the spinal cord, Acta Neuropathol, vol.130, pp.435-437, 2015.

A. Korshunov, D. Capper, and D. Reuss, Histologically distinct neuroepithelial tumors with histone 3 G34 mutation are molecularly similar and comprise a single nosologic entity, Acta Neuropathol, vol.131, pp.137-146, 2016.

B. J. Theeler, B. Ellezam, and I. Melguizo-gavilanes, Adult brainstem gliomas: correlation of clinical and molecular features, J Neurol Sci, vol.353, pp.92-97, 2015.

A. Salmaggi, L. Fariselli, and I. Milanesi, Natural history and management of brainstem gliomas in adults: a retrospective Italian study, J Neurol, vol.255, pp.171-177, 2008.

I. K. Mellinghoff, M. Touat, and E. Maher, ACTR-46. AG120, a first-in-class mutant IDH1 inhibitor in patients with recurrent or progressive IDH1 mutant glioma: results from the phase 1 glioma expansion cohorts, Neuro-Oncol, vol.18, p.12, 2016.

I. S. Babina and N. C. Turner, Advances and challenges in targeting FGFR signalling in cancer, Nat Rev Cancer, vol.17, pp.318-332, 2017.

M. Gessi, Y. A. Moneim, and J. Hammes, FGFR1 mutations in rosette-forming glioneuronal tumors of the fourth ventricle, J Neuropathol Exp Neurol, vol.73, pp.580-584, 2014.

B. Rivera, T. Gayden, and J. Carrot-zhang, Germline and somatic FGFR1 abnormalities in dysembryoplastic neuroepithelial tumors, Acta Neuropathol, vol.131, pp.847-863, 2016.

A. P. Becker, C. Scapulatempo-neto, and A. C. Carloni, KIAA1549: BRAF gene fusion and FGFR1 hotspot mutations are prognostic factors in pilocytic astrocytomas, J Neuropathol Exp Neurol, vol.74, pp.743-754, 2015.

D. Jones, B. Hutter, and N. Jäger, Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma, Nat Genet, vol.45, pp.927-932, 2013.

K. Dyson, M. Rivera-zengotita, and J. Kresak, FGFR1 N546K and H3F3A K27M mutations in a diffuse leptomeningeal tumour with glial and neuronal markers, Histopathology, vol.69, pp.704-707, 2016.

J. T. Bennett, T. Y. Tan, and D. Alcantara, Mosaic activating mutations in FGFR1 cause encephalocraniocutaneous lipomatosis, Am J Hum Genet, vol.98, pp.579-587, 2016.

H. Ochiiwa, H. Fujita, and K. Itoh, Abstract A270: TAS-120, a highly potent and selective irreversible FGFR inhibitor, is effective in tumors harboring various FGFR gene abnormalities, Mol Cancer Ther, vol.12, p.270, 2013.

N. Joyon, A. Tauzì-ede-espariat, and A. Alentorn, K27M mutation in H3F3A in ganglioglioma grade I with spontaneous malignant transformation extends the histopathological spectrum of the histone H3 oncogenic pathway, Neuropathol Appl Neurobiol, vol.43, pp.271-276, 2017.

A. T. Nguyen, C. Colin, and N. , Evidence for BRAF V600E and H3F3A K27M double mutations in paediatric glial and glioneuronal tumours, Neuropathol Appl Neurobiol, vol.41, pp.403-408, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01577983

M. Pagès, K. Beccaria, and N. Boddaert, Co-occurrence of histone H3 K27M and BRAF V600E mutations in paediatric midline grade I ganglioglioma, Brain Pathol, vol.28, pp.103-111, 2018.

U. Nencha, A. Rahimian, and M. Giry, TERT promoter mutations and rs2853669 polymorphism: prognostic impact and interactions with common alterations in glioblastomas, J Neurooncol, vol.126, pp.441-446, 2016.