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VOLUMES AND SIEGEL-VEECH CONSTANTS OF H(2g − 2) AND
HODGE INTEGRALS

ADRIEN SAUVAGET

Abstract. In the 80’s H. Masur and W. Veech defined two numerical in-
variants of strata of abelian differentials: the volume and the Siegel-Veech
constant. Based on numerical experiments, A. Eskin and A. Zorich proposed
a series of conjectures for the large genus asymptotics of these invariants. By a
careful analysis of the asymptotic behavior of quasi-modular forms, D. Chen,
M. Moeller, and D. Zagier proved that this conjecture holds for strata of dif-
ferentials with simple zeros.

Here, with a mild assumption of existence of a good metric, we show that
the conjecture holds for the other extreme case, i.e. for strata of differentials
with a unique zero. Our main ingredient is the expression of the numerical
invariants of these strata in terms of Hodge integrals on moduli spaces of
curves.
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1. Introduction

1.1. The Hodge bundle and its stratification. Let g and n be nonnegative
integers satisfying 2g − 2 + n > 0. We denote by Mg,n (respectively Mg,n) the
moduli space of smooth (respectively stable nodal) curves of genus g with n marked
points. Let π : Cg,n → Mg,n be the universal curve and σi : Mg,n → Cg,n the
sections associated to marked points for 1 ≤ i ≤ n.

The Hodge bundle p : Hg,n →Mg,n is the rank g vector bundle whose sheaf of
sections is R0π∗(ωCg,n/Mg,n

). Its total space is the space of tuples (C, x1, . . . , xn, α):
stable curves endowed with an abelian differential. We also denote by p : PHg,n →
Mg,n its projectivization and by p : Hg,n → Mg,n the restriction of the Hodge
bundle to the locus of smooth curves.

The total space of the Hodge bundle is stratified according to the orders of zeros
of the differential. Let µ = (k1, . . . , kn) be a partition of (2g − 2). We denote by
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Hodge integrals.
1



2 ADRIEN SAUVAGET

H(µ) ⊂ Hg the locus of curves endowed with an abelian differential with zeros of
order k1, . . . , kn (here the zeros are not marked). The dimension ofH(µ) is 2g−1+n
and the Hodge bundle is the disjoint union of the H(µ) for all partitions µ of 2g−2.

The locus H(µ) is invariant under the C∗-action. We denote by PH(µ) its pro-
jectivization. Besides, we denote by H(µ) (respectively PH(µ)) the Zariski closure
of H(µ) in Hg (respectively of PH(µ) in PHg). The space PH(µ) is a compact
(singular) DM stack that has been precisely described in [2].

In the present paper we are mainly interested in the strata H(2g − 2) of differ-
entials with a unique zero.

1.2. Mazur-Veech Volumes. Fix g, n and µ as above. Let (C,α) be a point in
H(µ). We denote by x1, . . . , xn the zeros of α. Consider the relative cohomology
group

H = H1(C, {x1, . . . , xn},Z).
The spaceH⊗C provides a system of local coordinates ofH(µ) at the neighborhood
of (C,α) called the period coordinates. The transition maps between two such
system of coordinates are given by matrices with integer coefficients. Therefore the
space H(µ) is endowed with an affine structure and with a volume form ν on : in
period coordinates, this volume form is the Lebesgue volume form normalized in
such a way that the lattice H ⊗ (Z⊕ iZ) has volume 1.

We denote by H1(µ) ⊂ H(µ) (respectively H≤1(µ)) the subspace defined by

i

2

∫
C

α ∧ α = 1 (respectively ≤ 1).

The volume form on H(µ) induces a form ν1 on H1(µ), by a disintegration of ν
(see [5] for definition). The total volume of H1(µ) for ν1 is finite (see [11] and [16]).
This is the Masur-Veech volume (or simply the volume) of H1(µ). We denote it by
Vol(µ).

1.3. Siegel-Veech constants. The spaces H(µ) and H1(µ) are endowed with an
action of SL(2,R). This action is defined in period coordinates: the group SL(2,R)
acts simultaneously on all coordinates. The diagonal sub-group{(

et 0
0 e−t

)
, t ∈ R

}
endows H1(µ) with an ergodic flow with finite measure. This action lifts to the
real vector bundle whose fiber at (C,α) is given by H1(C,R). This vector bundle
is also endowed with an equivariant measure. This set-up allows to define the 2g
Lyapunov exponents of the vector bundle. These 2g invariants are of the following
form: λ1 ≥ λ2 . . . ≥ λg ≥ 0 ≥ λg+1 = −λg ≥ . . . ≥ λ2g = −λ1 (see [5]) . We define
the Siegel-Veech constant of H1(µ) as

carea(µ) = 3
π2

λ1 + . . .+ λg −
1
12
∑
ki∈µ

ki(ki + 2)
ki + 1

 .

Remark 1.1. This definition of carea(µ) is actually a theorem (see [5]). The Siegel-
Veech constant has an inner geometrical interpretation in terms of the number of
families of closed geodesics of a general curve in H(µ).
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1.4. Intersection numbers on strata of differentials. In the present text, un-
less otherwise mentioned, we consider cohomology classes with rational coefficients.
We use the following cohomology classes inMg,n:

• for all 1 ≤ i ≤ n, let Li = σ∗i ωCg,n/Mg,n
→Mg,n be the line cotangent line

bundle at the i-th marked point. We denote by ψi = c1(Li) ∈ H2(Mg,n);
• for all 1 ≤ i ≤ g, we denote by λi = ci(Hg,n) ∈ H2i(Mg,n) (we will no
longer mention Lyapunov exponents, therefore the notation λi will only
stand for these Chern classes);

• δ0 ∈ H2(Mg,n) is the Poincaré-dual class of the divisor whose generic point
is a curve with a self-intersecting node.

If no confusion arises, we use the same notation for classes in H∗(Mg,n) and their
pull-back to H∗(PHg,n) under p.

We denote by L = O(1) → PHg,n the dual of the canonical line bundle and by
ξ = c1(L) the canonical class (beware that here canonical class does not refer to
the determinant of the cotangent bundle). We recall that the splitting principle
implies

H∗(PHg,n) ' H∗(Mg,n)[ξ]/(ξg + λ1ξ
g−1 + . . .+ λg).

The top cohomology group H2(4g−4+n)(PHg,n) is canonically identified with Q by
Poincaré-duality. We consider the following intersection numbers∫

PH(µ)
ξ2g−2+n ∈ Q.

We will see that the intersection number
∫
PH(µ)ξ

2g−2+n vanishes if µ 6= (2g− 2).
We will denote by

ag = (−1)g
∫
PH(2g−2)

ξ2g−1.

The line bundle O(1) is endowed with a natural singular hermitian metric (see
Section 2). In all the paper we will make the same assumption as in [9].

Assumption 1.2. There exists a desingularization φ : X → PH(µ) such that the
curvature form associated to the hermitian metric on φ∗O(1) is good in the sense
of [13]

Under this assumption, we have the following relation between ag and Vol(2g−2).

Proposition 1.3. For all g ≥ 1, we have

(1) Vol(2g − 2) = 2(2π)2g

(2g − 1)!ag.

Remark 1.4. The assumption 1.2 should be proved soon. The authors of [2] have
announced the existence of the desingularization of PH(µ). This desingularization is
essentialy obtained by a refinement of the data defining the stratification of PH(µ).

Besides, for a general µ, there exists a cohomology class β ∈ H2(2g−3+n)(PH(µ),R)
such that

carea(µ) = − 1
4π2 ·

∫
PH(µ) δ0 ∧ β∫
PH(µ) ξ ∧ β

.
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In the specific case of µ = (2g − 2), under the Assumption 1.2 the cocycle β is a
multiple of ξ2g−2 (see [9]). Therefore, if we denote by

dg = (−1)g−1
∫
PH(2g−2)

δ0ξ
2g−2,

then we have the relation

(2) carea(2g − 2) = dg
4π2 ag

.

Remark 1.5. Volumes and Siegel-Veech constants are positive, therefore ag and
dg are positive (this explains our sign convention).
1.5. Statement of the results. We define the following formal series

F(t) = 1 +
∑
g>0

(2g − 1)agt2g,

∆(t) =
∑
g>0

(2g − 1)dgt2g,

S(t) = t/2
sin(t/2) .

The main theorem of the paper is the following.
Theorem 1.6. For all g > 0, we have

(3) [t2g]S(t) = 1
(2g)! [t

2g]F(t)2g.

and

(4) [t2g−2]S(t) = 2
(2g − 1)! [t

2g]
(
∆ · F(t)2g−1) .

(where the notation [tn] stands for the n-th coefficient of the formal series).
In particular, the above equality implies that the ag’s and dg’s can be computed

inductively using the coefficients of S.

1.6. Asymptotic behavior for large genera. In the past few years, algebraic
geometers started to study the large genus asymptotic behavior of numerical invari-
ants associated to moduli spaces of curves. For example, M. Mirzakhani and P. Zo-
graf identified the large genus asymptotics of the Weil-Petersson volumes (see [12]).
For strata of differentials, A. Eskin and A. Zorich proposed the following conjec-
tures.
Conjecture 1.7 (see [7]). Volumes of strata satisfy

Vol(k1, . . . , kn) = 4
(k1 + 1)(k2 + 1) . . . (kn + 1)(1 + ε1(µ))

where lim
g→∞

(
max
µ`2g−2

|ε1(µ)|
)

= 0.

Conjecture 1.8. We have

carea(µ) = 1
2 + ε2(µ)

where lim
g→∞

(
max
µ`2g−2

|ε2(µ)|
)

= 0.
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We will use the induction Formulas (3) and (4) to compute the asymptotic
expansion of ag’s and dg’s. Then, using Formulas (1) and (2), we will deduce the
following result.

Theorem 1.9. For all R ≥ 1, we have

(2g − 2)
4 Vol(2g − 2) = 1− π2

12g + 24π2 − π4

288g2 + . . .+ cR
gR

+O

(
1

gR+1

)
,

and

carea(2g − 2) = 1
2 −

1
4g + . . .+ c′R

gR
+O

(
1

gR+1

)
,

where the coefficients ck and c′k lie in Q[π2] and can be effectively computed. In
particular conjectures 1.7, and 1.8 hold for H(2g − 2).

Remark 1.10. For g ≥ 4, the space H(2g − 2) has three connected components:
hyperelliptic, odd and even (see [10]). Our formulas do not separate the volumes
and Siegel-Veech constants of these three components. The volume is the sum of
volumes of the connected components and the Siegel-Veech constant is a mean of
the Siegel-veech constants of the connected components that is weighted by the
volumes.

The hyperelliptic component has an explicitly computable volume and Siegel-
Veech constants (see [1]). We will check that the volume of the hyperelliptic com-
ponent is asymptotically negligible in comparison to the total volume. It remains to
separate the volumes (and Siegel-Veech constants) of the odd and even components.
These are conjectured to be equivalent as g goes to infinity (see [7]).

1.7. Some comments on Theorem 1.9. In [4], D. Chen, M. Möller and D.
Zagier computed the asymptotic expansion of volumes and Siegel-Veech constants
of strata of differentials with simple zeros:

Vol
(
1, 1, . . . , 1︸ ︷︷ ︸

2g−2

)
∼

g→+∞

1
4g−1

(
1− π2

24g + 60π2 − π4

1152g2 + . . .

)
,

and
carea(1, . . . , 1) = 1

2 −
1
8g + . . . .

Therefore Conjectures 1.7 and 1.8 also hold for these strata.
Their proof relies on a careful analysis of the formula of Eskin and Okounkov for

volumes of strata. The main ingredient of this formula is the generating function
of the number of ramified coverings of the punctured torus. These formal series are
quasi-modular forms and the volumes (and Siegel-Veech constants) of strata are
expressed using the asymptotic of the coefficients (see [6]).

By numerical experiments, one observes that, for a fixed value of g, |ε1(µ)| and
|ε2(µ)| are maximal for µ = (2g − 2) and minimal for µ = (1, . . . , 1) (see Figure 1).

We can observe that the dominating term of ε1(2g − 2) is −π2/12g which is
twice the leading term in the expansion of ε1(1, . . . , 1) (the same holds for ε2). This
leads us to the following straightening of the conjecture of Eskin and Zorich (see
Figure 2).
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Figure 1. Absolute value of g.ε1(µ) in function of g. The bro-
ken lines correspond respectively to µ = (2g− 2), (2, 2, . . . , 2), and
(1, . . . , 1).

Conjecture 1.11. The functions ε1 and ε2 satisfy

−ε1(µ) = π2

6 dim(H(µ)) (1 + ε′1(µ)),

−ε2(µ) = 1
2 dim(H(µ)) (1 + ε′2(µ)),

where ε′1 and and ε′2 tends uniformly to 0 as g goes to infinity.
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Figure 2. Absolute value of g.ε1(µ) in function of len(µ)/(2g−2)
for g = 6, 7, . . . , 12. In black, the graph of y = π2/12(1 + x).

1.8. Plan of the paper. We will follow linearly the general strategy of the intro-
duction. In Section 2 we show how to express the volumes of the strata H1(2g− 2)
in terms of integrals of ξ-classes. In Section 3 we prove the induction formula
for the integrals of ξ-classes (Theorem 1.6). The main ingredient in this proof is
the computation of the cohomlogy classes Poincaré-dual to [PH(µ)] ∈ H∗(PHg) as
in [15] (we will recall a simplified version of this computation here). Finally, in
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Section 4 we analyze the asymptotic behavior of the integrals of ξ-classes to deduce
Theorem 1.9.

Acknowledgement. I would like to thank Dimitri Zvonkine, Martin Moëller,
Dawei Chen, Xavier Blot, Siarhei Finski and Felix Janda for very useful conversa-
tions on intersection of tautological classes over spaces of differentials. I am also
very thankful to Anton Zorich and Charles Fougeron for having introduced me to
the topic of large-genus invariants (and for having provided tables of numerical
computations that allowed me to understand part of the results of the paper). Fi-
nally, I am very grateful to Elie de Panafieu for his precious help to handle the
asymptotic analysis.

2. Volumes and integrals of canonical classes

In this section we prove that Vol(2g − 2) = 2(2π)2g

(2g−1)!ag for all g ≥ 1 (i.e. Propo-
sition 1.3). This identity may be known to experts. However, we could not find a
reference to cite so we give the details of the proof.

2.1. The symplectic affine structure on H(2g − 2). Let g ≥ 1. Let (C,α) ∈
H(2g−2). Let x ∈ C be the unique zero of α. We have seen that a local parametriza-
tion of H(2g − 2) is given by the relative cohomology group H1(C, {x},C). This
space is isomorphic toH1(C,C). Moreover, this space contains the latticeH1(C,Z⊕
iZ).

We choose a symplectic basis of H1(C,Z) made of closed curves (Ai, Bi)1≤i≤g
on C. With this basis, the coordinates on H1(C,C) are given by

zAi
=
∫
Ai

α and zBi
=
∫
Bi

α.

Therefore the space H(2g− 2) is endowed with an affine structure whose transition
map are matrices in Sp(2g,Z). Besides, the reciprocity law defines a hermitian
metric on H1(C,C) given by

(5) 〈α, α′〉 = i

2

∫
C

α ∧ α′ = i

2

g∑
i=1

(zAiz
′
Bi
− z′Ai

zBi).

The lattice H1(C,Z ⊕ iZ) ⊂ H1(C,C) defines a volume form ν in H4g(H(2g −
2),R) (normalized in such a way that the volume of a unit cube is 1). Both the
volume form and the hermitian metric are independent of the choice of the basis
(Ai, Bi)1≤i≤g. Now, for all R ∈ R+, we denote by H≤R(2g − 2) the space of (C,α)
with ||α|| ≤ R.

2.2. Two volume forms on PH(2g − 2). Using the period coordinates we define
the following volume forms.

• Let us consider the complex projectivization of the space of period coordi-
nates PH1(C,C). The line bundle O(−1) → PH1(C,C) is endowed with
the hermitian metric h induced by the above hermitian metric 〈·, ·〉 on
H1(C,C). This hermitian metric extends to a singular hermitian metric on
O(−1)→ PH(2g − 2). We define ω to be the curvature form associated to
h in PH(2g − 2), i.e.

ω = 1
2iπ ∂∂ log (h(σ))
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for any local holomorphic non-vanishing section σ of O(−1). With this
2-form we define νh = ω2g−1.

The form ω is a closed 2-form on PH(2g−2). However, this form cannot
be extended to a regular form on the whole boundary of PH(2g−2). Indeed,
the function h is ill-defined along the divisor of pairs (C,α) with infinite
area; i.e. when C has at least one non-seperating node and the form α has
a pole of order exactly 1 at the two branches of this node. This obstruction
is the motivation for Assumption 1.2.

• The second volume form on PH(2g − 2), ν̃, is obtained by disintegration
of ν. We have a projection map p : H(2g − 2) → PH(2g − 2) whose fibers
are isomorphic to C∗. Let D ⊂ PH(2g − 2) be an open domain. Then the
volume of D for ν̃ is the total volume of p−1(D) ∩H≤1(2g − 2).

Lemma 2.1. We have

(6) νh = − (2g − 1)!
2(2iπ)2g dimR(H(2g − 2))ν̃.

Proof. Let us fix a point (C,α) ∈ H(2g− 2) (respectively in PH(2g− 2)). An open
neighborhood of this point is of the form is of the form U/Aut(C,α) for some open
set U in H1(C,C) (respectively in PH1(C,C)). This open set is included in the
positive cone

C = {v ∈ H1(C,C), s.t. h(v) > 0}
(respectively in PC). The volume forms νh and ν̃ can be defined on PC and we will
prove that the relation (6) holds in PC.

In H1(C,C) we have the coordinates (zAi , zBi)1≤i≤g obtained from the symplec-
tic structure on C. We introduce the following coordinates

zai
= 1

2(zAi
− izBi

),

zbi = 1
2(zAi + izBi).

With these coordinates, the hermitian metric h is given by

h(zai
, zbi

) =
g∑
i=1

zai
zai
− zbi

zbi

and it has signature (g, g). We will also consider the standard metric on H1(C,C)
given by

hst(zai
, zbi

) =
g∑
i=1
|zai
|2 + |zbi

|2.

Using this hermitian metric, we can define the curvature of O(−1) on PH1(C,C)
using the Laplace-Beltrami operator and the top intersection of this form νst. Be-
sides one can also construct ν̃st by the same procedure as ν̃. The volume forms νst
and ν̃st are proportional (see [17], Chapter 3 for example). Let us define the two
following functions on PH1(C,C) with value in R>0.

f = νh
νst
, and f̃ = ν̃

ν̃st
.

We have two groups U(g, g) and U(2g) (for the standard metric) acting on
PH1(C,C). The functions f and f̃ are invariant under the action of γ ∈ U(g, g) ∩
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U(2g). Indeed νh is U(g, g)-equivariant and νst is U(2g)-equivariant thus f is in-
variant under U(g, g) ∩ U(2g). Besides the function f̃ is equal to

f̃(v) =
(
h(v)
hst(v)

)2g

for any vector v 6= 0 which is invariant under the action of U(g, g)∩U(2g). Therefore
νh/ν̃ is invariant under the action of U(g, g) ∩ U(2g).

The group U(g, g) ∩ U(g) contains the matrices of the form(
U 0
0 U ′

)
, with U and U ′ in U(g).

For all a and b in R≥0, these matrices act transitively on the subspace

H1(C,C) ⊃ Ea,b =
{

(za1 , zb1 , . . .),
g∑
i=1
|zai
|2 = a and

g∑
i=1
|zbi
|2 = b

}
.

Therefore, we only need to compare the volume forms νh and ν̃ at the points of the
form (za1 , zb1 , 0, 0, . . . , 0).

We consider the chart Ua1 ⊂ PH1(C,C) defined by za1 6= 0 with its natural
identification Ua1 ' C2g−1. The line bundle O(−1) has a natural section σa1 over
Ua1 given by σa1(zb1 , za2 , zb2 , . . .) = (1, zb1 , za2 , zb2 , . . .). In this chart, the volume
form ν̃ is given by

2(2π)
dimR(H(2g − 2)) · h(σa1)2g i

2g−1

(
dzb1 ∧ dzb1 ∧

∏
i>1

(dzai
∧ dzai

∧ dzbi
∧ dzbi

)
)
.

Note the factor 2 in this formula, it comes from the choice of coordinates (zai
, zbi

):
in coordinates (zAi

, zBi
) the expression of ν̃ is the same without this factor 2. At

the point (1, zb1 , 0, . . . , 0), the 2-form ω is given by

ω= 1
2iπ

(1− |zb1 |2)
(
−dzb1 ∧ dzb1 +

∑
i>1 dzai

∧ dzai
− dzbi

∧ dzbi

)
− |zb1 |2dzb1 ∧ dzb1

(1− |zb1 |2)2

= 1
2iπ

(∑
i>1 dzai

∧ dzai
− dzbi

∧ dzbi

h(σa1) − dzb1 ∧ dzb1

h(σa1)2

)
.

We get

νh = (2g − 1)!
(2iπ)2g−1h(σa1)2g · (−1)g

(
dzb1 ∧ dzb1 ∧

∏
i>1

(dzai ∧ dzai ∧ dzbi ∧ dzbi)
)

= − (2g − 1)!
2(2iπ)2g dimR(H(2g − 2))ν̃.

�

End of the proof of Proposition 3.9 under the assumption 1.2. Let φ : X → PH(2g−
2) be a desingularization of PH(2g−2) such that the hermitian metric on φ∗(O(1))
is good. Then the intersection number

∫
X
φ∗(ξ2g−1) is equal to the total volume of

PH(2g − 2) for νh = ω2g−1. Now using the projection formula and the fact that φ
is birational (thus of degree 1) we get∫

PH(2g−2)
ξ2g−1 = νh (PH(2g − 2)) .
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Therefore Propostion 3.9 follows from Lemma 2.1. �

3. Induction formula for integrals of canonical classes

Let Z = (k1, . . . , kn) be a vector of non-negative integers. From now on in the
text, for all vectors of integers we set

`(Z) = length(Z) and |Z| =
n∑
i=1

ki.

Definition 3.1. The projectivized marked stratum of type Z is the locus Ag(Z) ⊂
PHg,n defined as

{(C,α, x1, . . . , xn), s.t. xi is a zero of order ki for all 1 ≤ i ≤ n} .

It is a smooth substack of PHg,n codimension |Z|. We denote by Ag(Z) the Zariski
closure of Ag(Z) in PHg,n.

Note that in this definition Z does not need to satisfy |Z| = 2g − 2. However, if
|Z| = 2g − 2, then we have∫

PHg

ξ2g−2+n[PH(Z)] = 1
|Aut(Z)|

∫
PHg,n

ξ2g−2+n[Ag(Z)]

where Aut(Z) is the group of permutation of [[1, n]] preserving Z (this follows from
the projection formula). The purpose of this section is to compute the intersection
number on the right-hand side.

3.1. Vanishing for n > 1. First let us recall the following classical result.

Lemma 3.2 (Mumford, [14]). We have the following equality in H∗(PMg,n):

s∗(Hg,n) = c∗(Hg,n)−1 = c∗(H
∨
g,n)

where s∗ and c∗ stand for the total Segre and Chern classes. In particular λ2
g = 0.

We use this identity here to simplify the computation of ξ2g−2+n[Ag(Z)]. The
class [Ag(Z)] is equal to

2g−2∑
k=0

ξ2g−2−kαkg(Z)

where the classes αkg(Z) are pull-back fromH2k(Mg,n). Therefore the push-forward
of ξ2g−2+n[Ag(Z)] under p is given by

2g−2∑
k=0

sg−1+n+kα
k
g(Z) =

2g−2∑
k=0

(−1)g−1+n+kλg−1+n+kα
k
g(Z)

(this follows from the projection formula and Lemma 3.2). However λ2g−2+n+k = 0
for 2g − 2 + n+ k > g. Therefore we get

Proposition 3.3. The class ξ2g−2+n[Ag(Z)] vanishes if n > 1. For n = 1 we have:∫
PHg,1

ξ2g−1[Ag(2g − 2)] =
∫
Mg,1

(−1)gλgα0
g(Z).
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3.2. λg-Conjecture. We recall the following important result of Faber and Pand-
haripande.

Proposition 3.4 (λg-conjecture, [8]). Let bg =
∫
Mg,1

λgψ
2g−2
1 . Then we have

bg = 22g−1 − 1
22g−1

|B2g|
(2g)! ,

where B2g is the (2g)th Bernouilli number.

In particular, we have
S(t) = 1 +

∑
g>0

bgt
2g

(where we recall that S(t) = t/2
sin(t/2) ).

3.3. Stable differentials. The main tool to prove Theorem 1.6 will be the in-
duction formula established in [15] to compute the cohomology classes [Ag(Z)] in
H∗(PHg,n). We will state a simplified version of this induction formula because we
only need to compute the class λgα0

g(Z) ∈ H∗(Mg,n). The notation of the present
text will also be slightly lighter than the one of [15].

Definition 3.5. Let P = (p1, . . . , pm) be a vector of positive integers. The
space of stable differentials Hg,n,P is the space whose geometric points are tuples
(C, x1, . . . , xn+m, α) where

• (C, x1, . . . , xn+m) is a pre-stable curve (i.e. a nodal curve with distinct
marked points in the smooth locus);

• α is a meromorphic differentials with poles of order (pi + 1) at xn+i for all
1 ≤ i ≤ m;

• there are finitely many automorphisms of C preserving α.

Let p : Hg,n,P → Mg,n+m be the forgetful map of the differential. The space
Hg,n,P is naturally equipped with a structure of cone overMg,n+m. In particular
it has a projectivization PHg,n,P . The rank of this cone is m+ |P |+ g − 1 (if P is
not empty).

Definition 3.6. Let Z = (k1, . . . , kn) be a vector of non-negative integers. We
denote by Ag(Z,P ) ⊂ PHg,n,P the locus of differentials with zeros of order ki at xi
for all 1 ≤ i ≤ n and residues equal to zero at the poles. We denote by Ag(Z,P )
its Zariski closure.

Later, we will need the following lemma in genus 0.

Lemma 3.7. We suppose that g = 0 and Z = (k). If k + 1 6= |P |, then we have
p∗
[
A0 ((k), P )

]
= 0 ∈ H∗(M0,m+1).

If k + 1 = |P |, then this class is equal to 1 ∈ H0(M0,m+1).

Proof. The locus A0((k), P ) is of codimension k + m − 1 in PH0,1,P which is of
relative dimension m+ |P |−2 overM0,1+m. Thus the class p∗[A0((k), P )] vanishes
if k + 1 < |P |.

Besides, any meromorphic differential without residues on a genus 0 curve is
exact. In other words any such differential can be integrated to get a meromorphic
function of degree d = |P |. Thus A0((k), P ) is empty if k − 1 > d = |P |.
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Finally, if k−1 = |P | then p∗[A0((k), P )] = 1. Indeed, for every curve inM0,1+m
there exists exactly one differential up to scale with a zero of order k at x1 and
poles (without residue) of orders prescribed by P at the other marked points: it is
the derivative of the function

1∏m
i=1(z − zi+1)pi

(the first marked point has coordinate z1 =∞). �

3.4. Twisted graphs. Let m be a positive integer. We denote by Part(g)m the set
of vectors g = (g0, g1 . . . , gm) of nonnegative integers such that |g| = g and gi 6= 0
for all 1 ≤ i ≤ m. Given such vector g = (g0, g1 . . . , gm) we denote by Hg ⊂ Hg,1
the space of tuples (C, x1, α) such that:

• the dual graph of C is the following

g1 g2 . . . gm

g0

and the marked point x1 lies on the component of genus g0.
• α is identically 0 on the component of genus g0 and non identically 0 on all
the other ones.

We denote by Hg the closure of Hg. We introduce the following space

Hg = Hg0,m+1 ×
m∏
j=1
Hgi,1 and Mg =Mg0,m+1 ×

m∏
j=1
Mgi,1.

We have two natural gluing maps ζg : Mg → Mg,1 and ζ#
g : Hg → Hg,1 (in fact

the space Hg is the pull-back of the Hodge bundle under ζg).

Now, we fix a choice of g = (g0, g1 . . . , gm) ∈ Part(g)m and an integer k ≥ 0.

Definition 3.8. A twist for the pair (g, k) is a vector I = (i1, . . . , im) of positive
integers such that

k ≥ g0 − 1 + |I|.

The multiplicity m(I) of the twist I is the product of its entries.

Given g, k, and I we construct the locus Ag,k,I ⊂ PHg of tuples (C, x1, α) such
that:

• the differential α has a zero of order (ii − 1) at the node of the component
of genus gi for all 1 ≤ i ≤ m;

• the component C0 of genus g0 of the curve lies in p(Ag0,(k),I) where p :
Hg,1,I →Mg,1 is the forgetful map (i.e. in the image of differentials with
poles prescribed by I at the nodes and a zero of order k at the marked
point).

We denote by Ag,k,I the Zariski closure of Ag,k,I in PHg,1.
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Proposition 3.9 ([15], Proposition 3.21). The Poincaré-dual class of Ag,k,I is
equal to

(ξg0 + λ0
1ξ
g0−1 + . . .+ λ0

g0
) · ζ#

g∗

p∗p∗[Ag0,(k),I ],
m∏
j=1

[Agj (ij − 1)]


where λ0

i = p∗(ζg∗(λi, 1, 1, . . . , 1︸ ︷︷ ︸
m×

)) (we recall that ζg∗ goes from the cohomology ring

H∗(Mg) ' H∗(Mg0,m+1)
⊗m

j=1H
∗(Mgj ,1) to H∗(Mg,n)).

We denote by α0
g,k,I ∈ H∗(Mg,1) the degree 0 coefficient (in ξ) of Ag,k,I . The

above lemma implies the following expression for α0
g,k,I .

Lemma 3.10. The following equality holds in H2k+2(Mg,1):

α0
g,k,I = ζg∗

λg0p∗[Ag0,(k),I ],
m∏
j=1

α0
gj

(ij − 1)

 .

As a consequence λg · α0
g,k,I = 0 if g0 6= 0.

Proof. The first part of the lemma follows from Proposition 3.9. The second part
is a consequence of the decomposition

λg · ζg∗(1, . . . , 1) = ζg∗

( m∏
j=0

λgj

)
.

Indeed, this implies the equality

(7) λg · α0
g,k,I = ζg∗

λ2
g0
p∗[Ag0,(k),I ],

m∏
j=1

λgj
α0
gj

(ij − 1)

 .

Now the second part of the lemma follows from Lemma 3.2: the class λ2
g0

= 0 if
g0 > 0. �

3.5. Induction formula for ag’s. The main tool to compute the ag’s and dg’s is
the following proposition.

Proposition 3.11 ([15], Theorem 4). For all g, k ≥ 0, the following equality holds
in H∗(Mg,1):

(8) (k + 1)ψ1 · α0
g(k) = α0

g(k + 1) +
∑
m≥1

1
m!

 ∑
g∈Part(g)m

∑
I

m(I)α0
g,k,I

 ,

where the right hand sum runs over all g and all possible twists for the pair (g, k)
as in Definition 3.8.

Remark 3.12. Note that our definition of twisted graph only includes trees with a
unique vertex where the differentials vanishes identically. In the induction formula
of [15] the set of twisted graphs is larger (bicolored graphs). However, bicolored
graphs that are not trees do not contribute to the degree 0 part of the induction.
Indeed the cohomology class associated to any bi-colored graph Γ is of the form
ξb1(Γ)a′ with a′ ∈ H∗(Hg,1) where b1(Γ) is the number of loops of Γ.
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The induction formula of Propostion 3.11, together with Lemmas 3.4 and 3.10
implies

Theorem 3.13. We have

bg =
∑
k≥1

1
k!(2g − k)!

∑
d1+...+dk=g

 k∏
j=1

(2dj − 1)adj

 .

Remark 3.14. This theorem is a reformulation of Formula (3) of Theorem 1.6.
Let us outline the strategy of the proof.

• The starting point of the proof is the induction formula of Proposition 3.11
for the classes α0

g(k): for all k, we multiply this formula by λg to reduce
the summation on the RHS.
• Then we identify the numerical contribution of each term in the reduced
sum for all k.
• We conclude by summing the contributions for all values of k between 0
and 2g − 3.

Proof. We have seen that ag =
∫
Mg,1

λgα
0
g(2g − 2). Thus we begin by multiplying

equation (8) by λg to obtain

(9) (k + 1)ψ1 · λgα0
g(k) = λgα

0
g(k + 1) +

∑
g,I,g0=0

m(I)
(`(g)− 1)!λgα

0
g,k,I ,

where the right-hand sum runs over all g with g0 = 0 and all possible twists. Indeed
Lemma 3.10 implies that the terms with g0 6= 0 vanish.

Therefore we need to compute the intersection numbers∫
Mg,1

ψ2g−3−k
1 λgα

0
g,k,I .

We have seen (Formula (7)) that

λg · α0
g,k,I = ζg∗

p∗[A0,(k),I ],
m∏
j=1

λgjα
0
gj

(ij − 1)

 .

Besides the class p∗[Ag0,(k),I ] is equal to 1 if k+1 = |I| and 0 otherwise. Therefore,
if k + 1 = |I| we have∫

Mg,1

ψ2g−1−k
1 λgα

0
g,k,I =

(∫
M0,m+1

ψ2g−3−k
1

)
×

 m∏
j=1

∫
Mgj ,1

λgj
α0
gj

(ij − 1)

 .

For all 1 ≤ j ≤ n, the class λgjα
0
gj

(ij − 1) is not in top degree if ij − 1 6= 2gj − 2
thus we get

(10)
∫
Mgj ,1

λgj
α0
gj

(ij − 1) =
{

0 if ij − 1 6= 2gj − 2
(−1)g0ag0 otherwise.

Therefore for all g with g0 = 0, we denote by I(g) the twist (2g1 − 1, 2g2 −
1, . . . , 2gm − 1).
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Finally, the string equation implies that
∫
M0,m+1

ψ2g−3−k
1 = 1 if 2g−3−k = m−2

and 0 otherwise. Thus we set m = 2g − 1 − k and we multiply equation (9) by
ψm−2

1 to obtain

ψm−2
1 λg

[
(k + 1)ψ1α

0
g(k)− α0

g(k + 1)
]

= 1
m!

∑
g∈Part(g)m

g0=0

m(I(g))λgψm−1
1 α0

g,k,I(g)

= (−1)g

m!
∑

g1+...+gm=g

 m∏
j=1

(2gj − 1)agj

 .

Finally we get

(2g − 2)!ψ2g−2
1 λg = ag +∑

k>1

(2g − 2)(2g − 3) . . . (2g − k + 1)
k!

∑
g1+...+gk=g

 k∏
j=1

(2gj − 1)agj

 .

This implies

ψ2g−2
1 λg =

∑
k>0

1
k!(2g − k)!

∑
g1+...+gk=g

 k∏
j=1

(2gj − 1)agj

 .

We use Proposition 3.4 to conclude

bg =
∑
k>0

1
k!(2g − k)!

∑
g1+...+gk=g

 k∏
j=1

(2gj − 1)agj

 .

�

3.6. Induction formula for the dg’s. First let us recall that λg · δ0 = 0 (see [14]
for example). Besides, we have the following equality∫

Mg,1

δ0 · λg−1ψ
2g−2
1 = 1

2

∫
Mg−1,3

λg−1ψ
2g−2
1 = 1

2bg−1

(see [8] for example). Moreover, if we still denote [Ag(2g − 2)] =
∑2g−2
k=0 ξkαk then

we have ∫
Ag(2g−2)

ξ2g−2δ0 =
∫
Mg,1

(−1)g−1δ0λg−1α0.

Using these equalities, we can prove the following theorem (which is equivalent
to Formula (4) in Theorem 1.6).

Theorem 3.15. For all g > 0, we have

bg−1

2 =
g∑

g′=1

g−g′∑
k=0

(2g′ − 1)dg′
k!(2g − 1− k)!

 ∏
g1+...+gk=g−g′

(2gi − 1)agi

 .

Proof. We follow the same strategy as in the proof of Theorem 3.13: we will multiply
the induction formula of Proposition 3.11 by λg−1δ0 and then identify the numerical
contributions of the sum in the RHS.
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First we fix some g ∈ Partm(g). We recall that we have

(δ0λg−1) · ζg(1, . . . , 1) =
m∑
j=0

ζg(λg0 , . . . , δ0λgj−1, . . . , λgm
).

Now we fix k ≥ 0 and a twist I for g. We study the intersection number

ψ2g−3−k
1 δ0λg−1α

0
g,k,I .

By the same arguments as before, this intersection number vanishes if g0 6= 0, or if
I 6= I(g), or if 2g− 3− k 6= m− 2. Besides if g0 = 0, I = I(g), and m = 2g− 1− k
then

ψ2g−3−k
1 δ0λg−1α

0
g,k,I =

m∑
j=1

(2gj − 1)dgj

∏
j′ 6=j

(2gj′ − 1)agj′

 .

Thus, using the induction Formula (8) for the classes α0
g(k) we get

ψm−2
1 δ0 λg−1

[
(k + 1)ψ1α

0
g(k)− α0

g(k + 1)
]

= 1
m!

∑
g1+...+gm=g

m∑
j=1

(2gj − 1)dgj

∏
j′ 6=j

(2gj′ − 1)agj′


= 1

(m− 1)!

g∑
g′=1

(2gj − 1)dgj

∑
g1+...+gm−1=g−g′

 m∏
j=1

(2gj − 1)agj

 ,

if m = 2g − k − 1. Therefore, if we sum over all 0 ≤ k ≤ 2g − 3, then we get

(2g − 2)!ψ2g−2
1 δ0 λg−1 = dg +∑

k>0
1≤g′≤g

(2g − 2)!
(k)!(2g − k − 1)! (2g

′ − 1)dg′
∑

g1+...+gk=g

 k∏
j=1

(2gj − 1)agj

 .

Finally we use the equality ψ2g−2
1 δ0λg−1 = bg−1/2 to conclude. �

4. Large genus asymptotics

In this section, we prove Theorem 1.9 using the induction formulas (3), and (4)
and the relations (1) and (2).

First, let us recall that the Euler-Maclaurin formula gives the following expression
for absolute values of Bernouilli numbers

|B2g| =
2(2g)!

(1− 2−g)π2g

∞∑
k=−∞

(4k + 1)−2g.

Therefore, for all R ∈ N∗ and for all i ∈ N∗ we have

(11) (2π)2g

2 bg = 1+O
(

1
gR

)
, and (2g)!bg

(2g − 2i)!bg−i
= (2π)2i

2i−1∏
j=0

(2g−j)+O
(

1
gR

)
In particular the dominating term in the right hand side is a polynomial in Q[π2][g].
Theorem 1.9 is a consequence of the following lemma.
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Lemma 4.1. For all R ∈ N, we have

(2g)!bg =
R∑
i=0

c
(1)
g,i (2g − 2i− 1)ag−i +O

(
(2g)!bg
gR+1

)
,

(2g − 1)!bg−1 =
R∑
i=0

c
(2)
g,i (2g − 2i− 1)dg−i +

R∑
i=1

c
(3)
g,i (2g − 2i− 1)ag−i +O

(
(2g − 1)!bg−1

gR+1

)

(the last sum is 0 if R = 0) where Q(i)
g (x) =

∑
k≥0 c

(i)
g,kx

k are the formal series in
x defined by

Q(1)
g (x) = 2gF(x)2g−1,

Q(2)
g (x) = 2F(x)2g−1,

Q(3)
g (x) = 2(2g − 1)∆(x)F(x)2g−2.

End of the proof of Theorem 1.9 under the assumption of Lemma 4.1. The formal
series Q(i)

g have coefficients in Q[g]. Besides, we have c(1)
g = 2g and c(2)

g = 2. We
fix R ≥ 0. For all 0 ≤ k ≤ R we have

(2g − 2k)!bg−k =
R−k∑
i=0

c
(1)
g−k,i(2(g − k − i)− 1)ag−k−i +O

(
(2g)!bg
gR+1

)
,(12)

(2g − 2k − 1)!bg−k−1 =
R−k∑
i=0

c
(2)
g−k,i(2(g − k − i)− 1)dg−k−i(13)

+
R−k∑
i=1

c
(3)
g−k,i(2(g − k − i)− 1)ag−k−i +O

(
(2g − 1)!bg−1

gR+1

)
.

The first set of equations (12) implies that the vector ((2g − 2k)!bg−k)0≤k≤R−1
is the image of the vector (ag−k)0≤k≤R−1 under an upper triangular matrix with
coefficients in Q[g] modulo a term in O

(
(2g)!bg/gR+1). The coefficients on the

diagonal of this matrix are equal to (2g − 2k)(2g − 2k − 1) for all 0 ≤ k ≤ R − 1.
Therefore this linear system has an inverse in the space of matrices with coefficients
in Q(g):

ag =
R−1∑
i=0

c̃
(1)
g,i (2g − 2i)!bg−i +O

(
(2g)!bg
gR+1

)
.

Now we use the asymptotic behavior of the bg given in (11) to obtain

ag = 2(2g − 2)!
(2π)2g

(
1− π2

12g + 24π2 − π4

288g2 + . . .+ cR
gR

+O

(
1

gR+1

))
where the coefficients ck lie in Q[π2]. Using Proposition 1.3, we deduce the first
part of Theorem 1.9.

Now to compute the asymptotic expansion of the Siegel-Veech constants we
turn to the second set of linear equations. Once again the coefficients c(2)

g−k,i define
a triangular matrix with coefficients in Q[g]. All coefficients on the diagonal of this
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matrix are equal to 2. Therefore we have

dg =
R−1∑
i=0

c̃
(2)
g,i (2g − 2i− 1)!bg−i +

R−1∑
i=1

c̃
(3)
g,iag−i +O

(
1

gR+1

)
where the coefficients c̃(2)

g,i and c̃
(3)
g,i are in Q[g]. Therefore we get

dg = (2g − 2)!
(2π)2g−2

(
1− 3 + π2

12g + . . .+ c̃R
gR

+O

(
1

gR+1

))
where the coefficients c̃k lie in Q[π2]. Therefore we deduce the second part of
Theorem 1.9 by using carea(2g − 2) = dg/(4π2ag). �

The proof of Lemma 4.1 is essentially borrowed from [3] but we repeat most
arguments for completeness. We begin by proving two preliminary lemmas.

Lemma 4.2. Let us denote by B′g = (2g − 1)!bg (with B′0 = 0). There exists a
positive constant C such that for all g ≥ k ≥ 2, we have

(14)
∑

g1+...+gk=g

( k∏
j=1

B′gi

)
≤ Ck−1B′g−k+1.

Proof. We have seen that B′g is equivalent to 2(2g−1)!/(2π)2g as g goes to infinity.
Thus there exist positive constants C ′ and C such that

g−1∑
i=1

B′iB
′
g−i ≤ C ′

g−1∑
i=1

(2i− 1)!(2g − 2i− 1)!
(2π)2g

= C ′

(2π)2
(2n− 3)!
(2π)2g−2

(
2 +

g−2∑
i=2

2g − 2(2g−3
2i−1

))

≤ 4 C ′

(2π)2
(2n− 3)!
(2π)2g−2 ≤ CB

′
g−1.

We will prove that the inequalities (14) hold for all g ≥ k ≥ 2 with this constant
C. We work by induction on k.

We have seen that the inequality (14) holds for k = 2. Suppose that k ≥ 3.
Then for all g ≥ k we have

∑
g1+...+gk=g

( k∏
j=1

B′gj

)
=

g−k+1∑
g1=1

B′g1

∑
g2+...+gk=g−g1

( k−1∏
j=2

B′gj

)

≤ Ck−2
g−k+1∑
g1=1

B′g1
B′g−g1−k+2 ≤ Ck−1B′g−k+1,

thus the inequality (14) holds for any g ≥ k ≥ 2. �

Lemma 4.3. We have the following asymptotic results

ag = 2dg +O

(
(2g − 2)!bg

g

)
= (2g − 2)!bg +O

(
(2g − 2)!bg

g

)
.
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Proof of Lemma 4.3. The numbers ag and dg are positive for all g. Therefore, using
Theorems 3.13 and 3.15, we deduce the following inequalities for all g ≥ 1

ag ≤ (2g − 2)!bg,
2dg ≤ (2g − 2)!bg−1.

We use these two sets of inequalities to get also lower bounds

ag ≥ (2g − 2)!bg −
∑
k>1

(2g − 2)!
k!(2g − k)!

∑
g1+...+gk=g

 k∏
j=1

(2gj − 1)!bgj

 ,

2dg ≥ (2g − 2)!bg −
∑
k>0
g0>0

(2g − 2)!(2g0 − 1)!bg0−1

k!(2g − 1− k)!
∑

g1+...+gk=g−g0

 k∏
j=1

(2gj − 1)!bgj

 ,

≥ (2g − 2)!bg −
∑
k>1

(2g − 2)!
(k − 1)!(2g − k)!

∑
g1+...+gk=g

 k∏
j=1

(2gj − 1)!bgj

 ,

Now we use Lemma 4.2 to deduce

0 ≤(2g − 2)!bg − ag ≤
g∑
k=2

(2g − 2)!
k!(2g − k)!C

k−1B′g−k+1

= (2g − 2)!
(2π)2g

[
g∑
k=2

(4Cπ2)k−1

k!
(2g − 2k + 1)!

(2g − k)!

](
1 + o

(
1
g

))

= O

(
(2g − 2)!
(2π)2g

g∑
k=2

(4Cπ2)k

k!
1
g

)

= O

(
(2g − 2)!
(2π)2g

1
g

∑
k>1

(4Cπ2)k

k!

)
= O

(
(2g − 2)!bg

g

)
.

By the same argument we have

0 ≤(2g − 2)!bg2 − dg ≤
∑
k>1

(2g − 2)!
(k − 1)!(2g − k)!C

k−1B′g−k+1

= O

(
(2g − 2)!bg

g

)
.

�

Proof of Lemma 4.1. For all R ∈ N, we have

(2g)!bg =
R+1∑
k=1

(
2g
k

) ∑
g1+...+gk=g

 k∏
j=1

(2gj − 1)agj


+

∞∑
k=R+2

(
2g
k

) ∑
g1+...+gk=g

 k∏
j=1

(2gj − 1)agj

 .

Using Lemma 4.3, the second sum is O
(

(2g)!bg

gR+1

)
and the first sum is equal to
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g∑
g1=1

(2g1 − 1)ag1

R∑
k=0

(
2g
k

) ∑
g2+...+gk+1=g

k+1∏
j=2

(2gj − 1)agj


=

g∑
g1=g−R

(2g1 − 1)ag1

R∑
k=0

(
2g
k

) ∑
g2+...+gk+1=g

k+1∏
j=2

(2gj − 1)agj

+O

(
(2g)!bg
gR+1

)

=
g∑

g1=g−R
c(1)
g,g1

(2g1 − 1)ag1 +O

(
(2g)!bg
gR+1

)

where the coefficients c(1)
g,i are defined above. This finishes the proof of the first part

of Lemma 4.1. The proof of the second part is identical. �
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